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Summary 

Heparin is one of the oldest drugs, which nevertheless remains in widespread clinical 
use as an inhibitor of blood coagulation. The history of its identification a century ago 

unfolded amid one of the most fascinating scientific controversies turning around the 
distribution of credit for its discovery. The composition, purification, and structure-

function relationship of this naturally occurring glycosaminoglycan regarding its 
classical role as anticoagulant will be dealt with before proceeding to discuss its 
therapeutic potential in, among other, inflammatory and infectious disease, cancer 

treatment, cystic fibrosis, and Alzheimer’s disease. The first bibliographic reference hit 
using the words “nanomedicine” and “heparin” is as recent as 2008. Since then, 

nanomedical applications of heparin have experienced an exponential growth that will 
be discussed in detail, with particular emphasis on its antimalarial activity. Some of the 
most intriguing potential applications of heparin nanomedicines will be exposed, such 

as those contemplating the delivery of drugs to the mosquito stages of malaria parasites. 
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Discovery of heparin 

The history of heparin discovery dates back to 1915, when a second-year medical 

student, Jay McLean, arrived at Johns Hopkins Medical School in Baltimore to work 
under the supervision of Prof. William Henry Howell. Howell was a renowned 
physiologist that had developed a blood coagulation theory, according to which 

coagulation was produced by the binding of the phosphatide thromboplastin (also called 
cephalin) to antithrombin, and the subsequent conversion of prothrombin to thrombin in 
presence of calcium [1]. As cephalin was a key element in Howell’s theory, he assigned 

McLean the task of studying its purity and demonstrate that it was the phosphatide itself 
and not a contaminant the responsible for cephalin clotting action [2]. McLean, who had 

limited financial resources to pay for the expenses related to the university, agreed with 
his tutor a one-year deadline to reach this goal. By 1916, not only McLean had studied 
cephalin but also the properties of another related phospholipid extracts. It was precisely 

this additional work which led to the discovery of heparin, when the retest of stored 
extracts from ox heart and dog liver unexpectedly showed in vitro anticoagulant 

properties [3]. Though initially skeptical, Howell soon realized the importance of this 
finding and continued working on the subject once McLean left Baltimore with a 
fellowship for the university of Pennsylvania. Between 1918 and 1924 Howell 
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substituted the original isolation protocol, which used organic solvents, by a more 

efficient aqueous extraction. He named the new substance “heparin” (from the Greek 
word hepar that means liver) and studied its chemical composition. Howell stated that 

the water-soluble extract prepared by him was not a phosphatide but a carbohydrate 
containing glucuronic acid. This different chemical composition convinced him that this 
substance was different from McLean’s material. Consequently, although Howell 

recognized McLean’s pioneering studies on the anticoagulant phosphatides, he did not 
credit his student for the heparin discovery.  

Except for occasional attempts during his years as a medical student, McLean did 
not further investigate on heparin until after his graduation in 1919. He performed some 
unsuccessful preclinical studies and made two clinical trials in humans [4], whose 

results were published in scientific journals in the early 1940s. These reports were part 
of a campaign that McLean had started to change the widespread perception about 

Howell being the heparin discoverer. McLean was convinced that Howell’s 
carbohydrate was already present in the phosphatide preparations he made during 1916; 
therefore, he claimed for priority. His claim, which also included letters to researchers, 

lectures and even an autobiography, found some opponents among the scientific 
community but was finally successful [5]. As J.A. Marcum commented in his article 

about heparin discovery [1], scientific findings are the result of the dynamic interplay 
between different ideas, events, and people. From this perspective, both McLean’s and 
Howell’s work were complementary. McLean’s selection of alternative tissues to 

extract cephalin allowed the observation of the anticoagulant action of phosphatides. 
However, Howell’s theory gave McLean a scientific frame to recognize the importance 

of his finding and the unexpected character of it stimulated Howell to improve the 
extraction process. 
 

Chemistry and clinical use of heparin 

Heparin belongs to the family of glycosaminoglycans (GAGs), a group of linear 

negatively charged polysaccharides that also includes heparan sulfate, dermatan sulfate, 
chondroitin sulfate, hyaluronic acid and keratan sulfate. Heparin chains are 
biosynthesized in the Golgi complex of connective tissue-type mast cells as part of a 

serglycin glycoprotein. Its biosynthesis involves the activity of several enzymes that 
participate in a multi-step process initiated with the synthesis of heparosan, a 

polysaccharide composed of alternating glucuronic acid and N-acetyl glucosamine 
residues. This polymer is further modified by N-deacetylation/N-sulfation of the 
glucosamine units, C-5 epimerization of the glucuronic acid and O-sulfation at different 

sites of the chain. Most of these transformations do not proceed to completion, leading 
to high structural heterogeneity [6,7]. The cellular mechanisms that regulate the 

expression and activity of the enzymes at each biosynthetic step are currently unknown 
[8,9]. Once heparin chains are formed, they are randomly cleaved by an endo-β-D-
glucuronidase generating shorter fragments that are stored, together with histamine and 

mast cell basic proteases, in the cytoplasmic secretory granules. These fragments 
constitute the commercial unfractionated heparin (UFH) recovered during extraction 

[10]. Chains of heparin active pharmaceutical ingredient are in the range of 5,000 to 
50,000 Da [11]. 

The manufacturing process of clinical grade heparin starts with a proteolytic 

digestion of the tissue source, followed by recovery of the heparin-like material using 
binding to anion-exchange resins or complexation with quaternary ammonium. After 

release from resins or complex, crude heparin is precipitated with organic solvents and 
dried. Components of crude heparin are heparin and dermatan sulfate, besides minor 
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impurities such as proteins, nucleic acids, other GAGs and endotoxins [12]. Purification 

of crude heparin is performed in different ways depending on the manufacturer. This 
stage usually involves a treatment with an oxidative agent aimed at reducing color, 

endotoxin content and the microbial and viral contaminations. Small and low-sulfated 
heparin chains are removed during purification through selective precipitations with 
organic solvents [13]. Nowadays clinical grade UFH is sourced almost exclusively from 

porcine intestinal mucosa. Nevertheless, some Islamic and Latin-American countries 
use ovine or bovine intestinal heparin for religious or economic reasons. In addition, the 

Food and Drug Administration is currently considering the reintroduction of bovine 
heparin into the US market to avoid possible shortages or contamination issues of the 
global supply chain, currently highly dependent on China [14,15]. 

Around 70% of the heparin chain is composed of a repeating trisulfated 
disaccharide (Figure 1A) that forms highly sulfated and regular domains [16]. In 

addition, other short and less sulfated sequences are present containing disaccharides 
with different substitution patterns such as: 2-O-desulfated iduronic acid, 6-O desulfated 
glucosamine, N-acetylglucosamine instead of N-sulfated glucosamine and glucuronic 

acid instead of iduronic acid (Figure 1B). 
 

 
 

Figure 1. Repeating disaccharides in the heparin chain. Main trisulfated 
disaccharide (A) and less abundant disaccharides (B). 

 
The extension of these substitutions varies with the tissue source for heparin 

extraction. For example, bovine lung heparin has the lowest content in N-

acetylglucosamine units and the highest degree of 6-O-sulfation in comparison to 
porcine and bovine intestinal heparins. The latter is the less sulfated material with the 
lowest level of 6-O-sulfation [15]. In addition, heparins from different sources also 

differ in their average molecular weight. Source-dependent structural modifications 
could have clinical impact in terms of required therapeutic dose, amount of protamine to 

neutralize the anticoagulant effect, and formation of complexes with platelet factor 4 
[14,17,18]. Approximately 1/3 of the heparin chains in UFH contain a specific sequence 
of five sugars with a central 3-O-sulfated glucosamine residue (Figure 2). 

 

 
 

Figure 2. Pentasaccharidic antithrombin-binding domain. 
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This pentasaccharide is responsible for the anticoagulant activity of heparin 

mainly through its strong binding to antithrombin (AT), a key plasma coagulation 
inhibitor. The binding induces a conformational change in AT, potentiating the rate of 

its inhibitory action on serine proteases of the coagulation cascade, such as factor Xa 
and factor IIa. This catalytic action of heparin is size-dependent. Factor Xa requires the 
presence of the AT-binding pentasaccharide only, while inhibition of factor IIa 

additionally needs a minimum chain length of 18 residues (Mw > 5,400 Da) to form a 
ternary complex [AT-heparin- factor IIa] [19,20]. The development of powerful 

separation and analytical techniques has allowed the identification of some structural 
variations of the pentasaccharide sequence [15,21-23] as well as oligosaccharide 
fragments bearing more than one antithrombin-binding domain [24,25]. In addition, it 

was recently demonstrated that the structure of sequences flanking the pentasaccharide 
can modulate AT affinity [26]. Altogether these variations highlight the structural 

complexity of the heparin molecule, which can be further increased by the conditions of 
the extraction process, in particular during the purification steps. Strong alkaline or 
oxidative treatments induce the formation of structural artifacts (2,3-epoxides, 

galacturonic acid [27], acetylated uronic acid [28] or oxidated reducing-end N-
acetylglucosamine units [29]) that constitute fingerprints of the type of purification 

performed.  
The discovery of the molecular mechanism underlying the anticoagulant and 

antithrombotic activities of heparin led to the development of the low molecular weight 

heparins (LMWHs), which are characterized by having at least 60% of the chains with 
an average molecular weight below 8,000 Da. Consequently, they partially inhibit factor 

IIa and their anti-factor Xa/anti-factor IIa ratio is greater than 1.0 [30]. LMWHs are 
prepared by incomplete depolymerization of UFH using chemical or enzymatic 
reactions. Commonly used depolymerization methods for commercial production are: 

deaminative cleavage, perioxidative cleavage and chemical or enzymatic β-elimination 
[31]. Alternative methods to produce new LMWHs are being continuously reported [32-

35]. The type of depolymerization reaction or changes in the reaction conditions for the 
same depolymerization method can induce variation in the molecular weight of the 
resulting product, its sulfation degree, the content and position of the AT-binding 

domain in the oligosaccharide fragments, and the type and content of terminal residues 
at the cleavage site. Purification conditions can also contribute to further structural 

variability. Altogether these process-related structural features make each LMWH a 
unique and non-interchangeably therapeutic entity with a distinct pharmacological and 
biomedical profile [16,36,37]. 

UFH and LMWHs are indicated for the treatment and prophylaxis of venous 
thromboembolism (VTE), a lethal disorder including both deep vein thrombosis and 

pulmonary embolism. Due to their predictable pharmacokinetic behavior, LMWHs can 
be administered at a fixed or body-weight dose, usually without monitorization. This, 
together with their reduced risk of side-effects, makes LMWHs preferred to UFH. 

LMWHs have shown great efficacy in the treatment and prevention of VTE in trauma 
and in major orthopedic surgery of hips and legs. They are also preferred for the 

treatment and prophylaxis of VTE during pregnancy and in cancer patients [38]. In 
combination with thrombolytic agents, UFH and LMWHs are used in the treatment of 
patients with ST segment elevation myocardial infarction. Additionally, UFH is the 

most commonly used antithrombin agent for percutaneous coronary intervention 
[39,40]. LMWHs have also been approved as anticoagulant in extracorporeal circulation 

system for patients undergoing hemodialysis due to acute renal failure or chronic renal 
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insufficiency [41]. Heparin solutions of different concentrations are commonly used as a 

flush solution to prevent clotting in intravascular catheters [42]. 
 

Novel potential therapeutic applications of heparin 

Besides its original therapeutic use as an anticoagulant, other potential applications of 
heparin for a number of human diseases have been identified [43]. Since heparin itself is 

found in mast cell granules complexed with basic proteases [44], anticoagulant activity 
is unlikely to be its major natural function, and indeed it is active in other systems due 

to its structural similarity to the cell surface and extracellular matrix GAG heparan 
sulfate [45]. Heparin interacts non-specifically with proteins such as cytokines, growth 
factors, adhesion molecules and proteases. Many of these molecules are associated to 

inflammation processes [46], which are attenuated when heparin or similar compounds 
are administered. Because inflammation, atherogenesis, thrombogenesis and cell 

proliferation are related with each other, and heparin influences all of them, its 
increased therapeutic activity might be due to such simultaneous activities [47]. Based 
on these properties, several studies on the effect of heparin and modified heparin 

derivatives have been performed in some inflammation- involving disorders such as 
asthma, cystic fibrosis, ulcerative colitis, Alzheimer’s disease and cancer [48]. 

Structural tailoring to these novel applications is usually limited to reduction of 
anticoagulant activity, which may be achieved by mild chemical treatment such as 
glycol-splitting, more comprehensive chemical modification such as selective 

desulfation, or by extensive depolymerisation into small oligosaccharides. 
When mast cell granules are released, their contents change tissue morphology, 

allowing the infiltration of granulocytes and starting the inflammatory process [49]. 
Different mechanisms have been suggested for the heparin-mediated inhibition of 
inflammatory response [50]. The anti-asthmatic activity of heparin [51], which is 

inversely proportional to its molecular weight and independent of its anticoagulant 
activity, is related to its capacity to inhibit the degranulation of mast cells by interacting 

with the intracellular receptor of inositoltriphosphate [9]. LMWHs smaller than 2,500 
Da had no effect on such release but nevertheless could diminish inflammation of 
airways in allergic sheep [52]. In guinea pigs, airway hiperresponse normalization 

induced by heparin could be reversed by nitric oxide synthase (NOS) inhibitors [53]. 
Because thrombin stimulates mucus secretion and induces goblet cell metaplasia, it has 

been suggested that inflammation could also be controlled through the heparin-mediated 
inhibition of thrombin [54]. In sepsis, heparin has been shown to decrease endotoxin-
stimulated gene expression and the production and release of pro-inflammatory 

cytokines [55]. For other applications in airway inflammatory processes like cystic 
fibrosis, heparin has exhibited mucolytic activity [56,57], although in separate studies 

with cystic fibrosis patients [58] and in prophylaxis treatments against pneumonia [59], 
heparin inhalation had no influence on the symptoms. 

Heparin plays a significant role in gastric ulcer healing by virtue of its ability to 

activate NOS and facilitate mucosal cell proliferation by stimulating growth factors 
[60]. In colitis-related diseases, both in animal models [61] and clinical trials [62], 

administration of heparin helped to restore normal conditions. However, a systematic 
review [47] highlighted that the studies on the effects of heparin in inflammatory bowel 
disease offered conflicting results, as inflammatory factors remained similar in heparin-

treated subjects and controls. 
Heparin may also possess antineoplastic properties. In cell-based and animal 

models, non-anticoagulant heparin significantly slowed down the migration of breast 
cancer cells and reduced their metastatic spread [63]. Data evaluation from preclinical 
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studies in anticancer therapy indicated that heparin seemed to affect the formation of 

metastases rather than the growth of primary tumours [64]. Chemically modified 
heparins with no or limited anticoagulant activity also showed anti-metastatic 

properties. Possible mechanisms to explain these observeations include inhibition of 
blood coagulation, of cancer cell-platelet and -endothelial interactions by selectin 
blocking, and of cell invasion and angiogenesis [65]. 

GAGs have been considered of interest in Alzheimer’s disease (AD) ever since 
they were first demonstrated in amyloid plaques and neurofibrillary tangles. AD also 

has an inflammatory process involved, and it has been hypothesized that LMWH could 
cross the blood-brain barrier and attenuate this inflammation [66]. Heparin 
oligosaccharides have also been found to inhibit amyloid-β peptide (Aβ) precursor 

protein (APP) secretion in the brain [67] and Aβ production by cortical neurons [68]. In 
an AD murine model LMWHs have been described to reduce the ability of Aβ to 

activate complement and contact systems as well as lowering Aβ deposits in the brain 
[69], and to inhibit experimental amyloidosis in clinically relevant doses [70]. It is 
known that heparin and heparan sulfate regulate the activity of a number of proteases, 

and it has been reported that heparin inhibits β-site APP-cleaving enzyme 1 (BACE-1) 
activity in vitro [71]. A low concentration of heparin can stimulate recombinant human 

BACE-1, leading to increased autocatalytic cleavage of the protease domain and a 
subsequent loss of enzyme activity [72]. GAGs and other sulfate-containing compounds 
significantly attenuated the toxicity of Aβ on human neuroblastoma SH-SY5Y cells [73] 

and on neuronal differentiated PC12 cells [74,75]. To avoid anticoagulant effects, a 
mixture of heparin oligosaccharides showed neuroprotective capacity in AD 

experimental models, also by the oral route [76]. Heparin has been observed to 
accelerate aggregation and amyloid formation by the model protein muscle 
acylphosphatase [77], although the actual role of amyloidogenesis in AD is still a matter 

of dispute. In vitro, heparin and other GAGs have been shown to enhance Aβ 
fibrillogenesis [78], but they may also prevent the persistence of the toxic forms of Aβ 

oligomers or protofibrils by transforming them into harmless aggregates [79]. 
The observation that heparin-containing tissues are in direct contact with the 

external environment suggests also a role in host defense. The potential application of 

heparin derivatives in the field of infectious disease is less studied compared to 
inflammatory and oncologic conditions. However, they are also under investigatio n for 

use as antimicrobial agents due to their inhibitory effects on pathogen binding to cell 
surfaces. The pathogenesis of most infectious diseases involves an adherence of 
microbes to cell membranes in which GAGs play a key role [80]. Adhesion is usually 

followed by internalization of the organism into the cell, which, in turn, leads to 
downstream effects of the infectious process on the cellular level. The successful use of 

3-O-sulfated octasaccharides to inhibit entry of herpes simplex virus type 1 into corneal 
fibroblasts indicated the possibility of using heparin-based compounds in anti-viral 
therapy [81]. Heparin has also been described to have a clear potential for the treatment 

of malaria, as it will be discussed in the next section. 
 

Heparin and malaria 

The malaria infectious cycle [82] starts when a parasitized female Anopheles mosquito, 
while taking a blood meal, inoculates sporozoites of the malaria parasite, the protist 

Plasmodium spp. In the liver, sporozoites develop into merozoites [83], which enter the 
circulation, invade red blood cells (RBCs) [84], and replicate asexually through 

trophozoite and schizont stages to produce daughter cells that invade new RBCs to 
perpetuate the blood-stage cycle. Some parasites eventually differentiate into sexual 
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stages, female or male gametocytes that are ingested by a mosquito from peripheral 

blood. Following fertilization in the insect’s midgut, the zygote differentiates into an 
ookinete that moves through the midgut epithelium and forms an oocyst, which releases 

sporozoites. The malaria transmission cycle is restarted when sporozoites migrate to the 
salivary glands and are injected into a human with the mosquito’s next bite. The current 
trend of global warming and generalised transcontinental travel, added to the growing 

number of displaced populations in endemic areas due to political, economic, and 
environmental reasons, threatens with expanding the geographic distribution of the 

disease. Despite the undeniable importance of malaria elimination on the global 
research agenda, current vaccines in development do not offer prospects of complete 
protection [85] and the available front-line drugs are rapidly losing efficacy [86]. Thus, 

alternative strategies [87] working through radically new mechanisms are urgently 
needed. 

GAGs are one of the main molecules associating with Plasmodium-parasitized 
RBCs (pRBCs). Binding to the GAG chondroitin 4-sulfate (CSA) is thought to cause 
pRBC sequestration in the microvasculature [88] and the placenta [89], which has been 

linked to the severe disease outcome of pregnancy-associated malaria [90,91]. 
Negatively charged polysaccharides, such as heparin, chondroitin and dextran sulfates, 

fucoidan, and the nonsulfated GAG hyaluronan, block the interaction of pRBCs with 
various host cell surface receptors [91-94] and disrupt P. falciparum adhesion to RBCs 
to form rosettes [95,96]. Heparan sulfate (HS), or a HS-like molecule exposed on RBCs 

is the ligand responsible for rosetting [97]. The potential use of heparin as drug in 
malaria therapy [98-102] has been hindered by its high anticoagulation and bleeding 

properties [103] and by the potential risk of infection since some GAGs are obtained 
from mammals. However, depolymerized heparin lacking anticoagulant activity has 
been found to disrupt rosette formation and pRBC cytoadherence in vitro and in vivo in 

animal models and in fresh parasite isolates [104]. Nevertheless, shorter heparin 
fragments consisting of hexa- and octasaccharides having insignificant anticoagulant 

activity [105] exhibited a much smaller antimalarial activity in vitro than the native 
polymer, with respective IC50s of 174 and 134 µg/mL [106], compared to around 4 
µg/mL for heparin. As an interesting alternative approach, non-mammalian marine 

organisms are a rich source of unique sulfated polysaccharides, some of them with 
structures resembling pRBC-binding GAGs [107-109]. Some of these marine sulfated 

glycans inhibit P. falciparum cytoadhesion and in vitro growth as efficiently as heparin 
at concentrations where their anticoagulant activity is very low [110,111], and might 
therefore offer interesting alternatives for future antimalarial therapies. Remarkably, 

efforts to select for heparin-resistant parasites have proven unsuccessful [112], which 
places sulfated polysaccharides as interesting candidates in the race for finding efficient 

long-lasting antimalarials. GAG antimalarial activity unfolds by inhibition of merozoite 
invasion [92,93,110,112-118]. Naturally acquired immunity to malaria is largely 
directed against extracellular merozoites [119] but currently there are no drugs targeting 

erythrocyte invasion by Plasmodium [120], although some candidates have been 
proposed [121]. Heparin has been shown to bind merozoites inside late-stage pRBCs 

(Figure 3), a finding that, as it will be discussed below, opened interesting perspectives 
for the incorporation of heparin to future antimalarial nanomedicines. 
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Figure 3. Specific targeting of heparin to pRBCs vs. RBCs. Heparin-FITC was added 

to living cocultures of P. falciparum-infected RBCs and non-infected RBCs and 
incubated for the indicated times before sample preparation for microscopic analysis. 

Each series shows a pRBC and a non-infected erythrocyte as a control of the specificty 
of heparin targeting. Free FITC used at the same concentration according to 
fluorescence intensity was not observed to stain any cells. Reproduced from Ref. [122], 

with permission. 
 

Heparin in nanomedicine 

The first bibliographic reference hit using the words “nanomedicine” and “heparin” 
dates from 2008 [123], describing iron-heparin complexed hollow capsules displaying a 

more prolonged anticoagulant activity than free heparin. Since then, nanomedical 
applications of heparin have experienced an exponential growth. Functionalization of 

nanoparticles with heparin is accomplished through the formation of covalent bonds or 
through electrostatic interactions. Heparin confers novel properties to nanoparticles such 
as stealth, which contributes to bypass clearance by the reticuloendothelial system 

[124], improved targeting of molecules with enhanced uptake and accumulation 
[122,125], and increased stability and solubility [126]. A potential nanomedicine 

consisting of heparin-loaded chitosan/carboxymethyl-β-cyclodextrin nanocarriers has 
been proposed for the treatment of asthma [127]. Self-assembled stable heparin-
containing nanoparticles [128-130] have been described to possess a high growth factor 

loading capacity allowing cytokines to maintain their bioactivity for longer periods and 
representing a promising delivery system for tissue regeneration [131,132]. Vascular 

endothelial growth factor (VEGF) encapsulated in chitosan-heparin nanostructures 
stimulated proliferation of endothelial cells in vitro, increased fibroblast infiltration and 
extracellular matrix production, and accelerated vascularization in a murine 

subcutaneous implant model in vivo [132]. Nanoparticle-coated decellularized bovine 
jugular vein scaffolds exhibited highly effective localization and sustained release of 
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VEGF for several weeks; the physical adsorption of heparin could prevent early 

degradation of growth factors, thereby preserving their biological activity. Heparin-
chitosan nanocomplexes loaded with placental growth factor and bone morphogenic 

protein have been described to provide a sustained dual release of both molecules which 
provided greater potential for bone tissue regeneration than the delivery of either growth 
factor alone [133]. LMWH-protamine nanoparticles have been used as carriers for 

heparin-binding growth factors [134], which in this way were protected from 
inactivation by heat and proteolysis thus substantially prolonging their biological half-

life. Heparin-nanomodified acellular bovine jugular vein scaffolds showed significantly 
improved biomechanical stability and biocompatibility, allowing the sustained release 
of heparin for several weeks [135]. The modified scaffolds had reduced platelet 

adhesion and stimulated proliferation of endothelial cells in vitro, and exhibited low in 
vivo calcification in a subcutaneous implantation rat model. Heparin incorporated into 

poly(L-lactide-co-ε-caprolactone) nanofibers was released in a controlled manner and 
this system was suggested to be a potential substitute for natural small-diameter vessels 
in planned vascular bypass surgery [136]. The intercalation of LMWH into layered 

double hydroxide (LDH) nanoparticles also resulted in an enhanced pharmaceutical 
efficacy of heparin, whereby cellular uptake of LMWH-LDH conjugates into cultured 

rat vascular smooth muscle cells was more than ten times greater than that of LMWH 
alone [137]. 

Sugar-based biopolymers, including heparin, might open a new emerging 

nanomedicine era for cancer imaging and therapy [138]. In vitro cell tests revealed 
marked phototoxicity and high intracellular uptake of pheophorbide a (PhA)-conjugated 

heparin/gold nanoparticles in contrast with free PhA [139]. The heparin-containing 
nanostructures also exhibited prolonged circulation, enhanced tumor specificity, and 
improved photodynamic therapeutic efficacy in tumor-bearing mice. As outlined above, 

LMWH exerts its anticancer activity by affecting the proliferation, adhesion, 
angiogenesis, migration, and invasion of cancer cells. Nanoparticle conjugates of 

LMWH with stearylamine [140] and with chitosan [141] have been shown to be 
promising delivery systems of the anticancer agents docetaxel and cytolethal distending 
toxin, respectively. The intracellular delivery of doxorubicin encapsulated in pH-

responsive chitosan-heparin nanocapsules fabricated by the layer-by-layer technique on 
silica nanoparticles followed by dissolution of the silica core resulted in an enhanced 

bioavailability when compared to the free drug [142]. Heparin-polyethyleneimine 
nanoparticles have been assayed as nonviral gene carrier and successfully used to 
deliver plasmids expressing mouse survivin-T34A to treat C-26 carcinoma in vitro and 

in vivo [143]. Heparin nanocomplexes have also been proposed for improved magnetic 
labeling of stem cells in clinical translational studies [144], and heparin-conjugated 

quantum dots (QDs) exhibit superior imaging properties compared to their native 
counterparts [145]: heparin binding to the CD11b receptor facilitated internalization of 
QDs into the nucleus of THP-1 cells whereas the heparin layer may reduce the 

unfavourable thrombogenic nature of QDs observed in vivo. One potential drawback of 
using heparin is the development of heparin-induced thrombocytopenia (HIT), an 

immune complication of heparin therapy caused by antibodies to complexes of platelet 
factor 4 (PF4) and heparin [146]. Nanoformulated heparin, if specifically targeted to its 
site of action, will require minimal amounts; because PF4-heparin interactions are 

exclusively charge-dependent [147], changes in molar amounts leading to excess of 
either compound results in charge imbalance and increased repulsive forces that affect 

complex assembly, and in this way the incorporation of heparin in nanoparticles will 
minimize HIT. In addition, heparin-containing nanomedicines designed to be active in 
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the blood will be often functionalized with poly(ethylene glycol) in order to reduce 

reticuloendothelial system uptake and increase circulation time; the resulting poor 
recognition of such nanocarriers by antibody-producing cells will also contribute to 

limit the risk of HIT. 
Various methods have been reported over the last two decades for the synthesis of 

silver and gold nanoparticles. These involve the reduction of metal salts with a chemical 

reducing agent, such as sodium citrate, sodium borohydride or other organic compounds 
that introduce contaminants, which are often toxic. Using as reducing agents natural 

carbohydrates such as glucose, chitosan or heparin has been proposed as a clean method 
for the production of metal nanoparticles for medical applications [148]. Finally, 
heparin sensing has been proposed as the basis for future biomedical sensors having 

potential applications in the bedside detection of heparin levels in human blood during 
surgery [149], although the difficulties in achieving selective high-affinity molecular 

recognition in the complex environment of human blood represents a challenging 
obstacle. However, preliminary results obtained with biotinylated heparin arrays have 
verified the feasibility of implementing a heparin microarray to selectively sort pRBCs 

from non-infected RBCs [150]. Other nanotechnological applications of heparin to 
malaria are starting to assert themselves as the basis of potential future medical tools. 

 
Heparin for future antimalarial nanomedicines 

The concept of antimalarial therapy has been locked for over 100 years on the 

administration of drugs against which Plasmodium has evolved resistance shortly after 
their deployment. Because malaria pathophysiology is so complex and the disease is so 

widespread, it is generally accepted that to achieve eradication a combination of tools 
targeting the parasite and/or mosquito will be needed [151]. These include the 
improvement of existing approaches and the development of new ones, with drug 

therapy remaining the mainstay of treatment and prevention to target the parasite 
reservoir [152], and nanotechnology being able to provide innovative useful strategies. 

Encapsulation of drugs in targeted nanovectors is a rapidly growing area with a clear 
applicability to infectious disease treatment [153], and pharmaceutical nanotechnology 
has been identified as a potentially essential tool in the future fight against malaria 

[154]. Because malaria is a disease prominent in countries with limited resources, new 
treatments need to consider such economic landscape. In this regard, the use of 

molecular elements combining several antimalarial activities, whether drug, targeting, 
carrier, or booster of immune reactions, will contribute to reduce the cost of their 
development [155]. 

Rather than focusing all efforts on identifying new drugs whose efficacy is rapidly 
diminished by the parasite’s evolution of resistance, an important and often disregarded 

battlefront is the implementation of targeted delivery methods capable of increasing the 
doses reaching the pathogen up to local levels sufficiently high to minimize this 
resistance emergence. Regrettably, the search for this long sought-after magic bullet 

against malaria has not taken off in earnest yet. However, recent data outline the 
feasibility of some such potential novel approaches, among which we can count new 

types of combination therapies where one of the activities does not act on individual 
Plasmodium gene products [155]. Despite the lack of economic incentives for research 
in nanomedicine applications to malaria a number of liposome- and polymer-based 

nanocarriers engineered for the targeted delivery of antimalarial drugs have been 
developed [122,154,156-161]. Although successful efforts have been made to obtain 

new nanostructures having affordable synthesis costs while still exhibiting good 
performance in lowering the IC50 of drugs [122,161], new approaches are required to 
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further optimize these scarce resources. The implementation of novel delivery 

approaches is less expensive than finding new antimalarial drugs and may optimize the 
rate of release of current and future compounds [162]. 

The potential hemorrhagic activity of sulfated polysaccharides in future antimalarial 
clinical applications can possibly be averted by encapsulating them in pRBC-targeted 
nanocapsules as it has been reported for other antimalarial agents [154,160,161]. 

Liposome-bound heparin has been demonstrated to be capable of substituting for 
antibodies as targeting molecule of drug-loaded nanocarriers [106,122], thus adding to its 

own antiparasitic action and potentiating therapeutic activity (Figure 4). 1 µg/mL heparin 
electrostatically adsorbed onto positively charged liposomes containing the cationic lipid 
1,2-dioleoyl-3-trimethylammonium-propane and loaded with the antimalarial drug 

primaquine was capable of increasing three-fold the activity of encapsulated drug in P. 
falciparum cultures [122]. At concentrations below those inducing anticoagulation of 

mouse blood in vivo, parasiticidal activity was found to be the additive result of the 
separate activities of free heparin as antimalarial and of liposome-bound heparin as 
targeting element for encapsulated primaquine. Surface plasmon resonance biosensor 

studies showed that covalent binding through its carboxyl groups dramatically reduced the 
interaction of heparin with antithrombin [163], and there is evidence of a significantly 

diminished anticoagulant activity of heparin when covalently immobilized on a substrate 
[164]. Indeed, the anticoagulant activity of heparin covalently bound to liposomes has been 
found to be significantly smaller than similar amounts electrostatically bound [106], 

whereas such primaquine-loaded liposomes had a clearly improved antimalarial activity. In 
contrast, covalently linked heparin hexa- and octasaccharides did not improve the activity 

of the liposomized antimalarial drug [106], suggesting that also the pRBC targeting 
capacity of heparin is lost upon depolymerization. Single-molecule force spectroscopy data 
have revealed a complete specificity of adhesion of heparin to late-form pRBCs vs. RBCs 

(Figure 5), with a binding strength matching that of antibody-antigen interactions [165]. 
Heparin conjugated to the surface of different types of nanoparticles has been found to be 

more active against Plasmodium than in free form [115], highlighting the importance of 
nanostructured heparin for increased antimalarial activity. 

 

 
 

Figure 4. Additive activity of heparin as antimalarial and as targeting agent 

towards pRBCs. Scheme of heparin-functionalized, drug-containing liposomes (A), 
and expected outcome when they specifically deliver their contents (both drug and 
heparin) to pRBCs (B), lowering the drug IC50 and adding to it the antimalarial activity 

of heparin itself. Reproduced from Ref. [122], with permission. 
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Figure 5. Single-molecule force spectroscopy analysis of heparin-pRBC 

interaction. (A) Heparin sequence region corresponding to the antithrombin 
pentasaccharide binding site; the carboxyl groups used for the covalent crosslinking of 

heparin to atomic force microscope (AFM) cantilevers are shaded. (B) Cartoon of a 
binding event between an erythrocyte and one of the heparin chains crosslinked to the 
AFM cantilever tip. (C,D) AFM force spectroscopy results. (C) Typical force curves 

from independent experiments obtained when retracting heparin-functionalized 
cantilever tips from pRBCs. Arrows indicate individual heparin-pRBC unbinding 

events. For the sake of clarity, the force curves were shifted vertically to avoid 
overlapping. (D) Representative force histograms for the binding of heparin to pRBCs 
(grey) and RBCs (black) at a loading rate of 17.5 nN s−1. Heparin-pRBC binding data 

were fitted to a Gaussian curve. Reproduced from Ref. [165] with permission from The 
Royal Society of Chemistry. 

 



13 
 

Since resistance of Plasmodium to heparin has not been shown so far [112], 

heparin-based targeting will predictably be more long-lasting than pRBC recognition 
relying on antibodies, which typically are raised against highly variable exposed 

antigens whose expression is constantly varied by successive generations of  the 
parasite [166]. The specific binding of CSA to pRBCs infected by the P. falciparum 
CS2 strain, which sequester in the maternal circulation of the placenta [167], suggests 

that future nanovectors functionalized with CSA can be foreseen to be adapted to target 
drugs to pRBCs for the treatment of placental malaria. Such nanocarriers will bypass 

the concerns discussed above regarding the hemorrhagic risks of administering heparin 
to humans, since CSA has been shown to be devoid of anticoagulant activity [111]. 

In the past, malaria parasites have developed resistance to widely used drugs 

[168]. This threat of resistance-driven treatment failure is prompting research oriented 
to target the transmission stages of the pathogen between humans and mosquitoes [169], 

represented by smaller populations less likely to contain resistant individuals that would 
benefit from the removal of susceptible parasites [170]. Although the innate immune 
system of mosquitoes is capable of completely clearing a malaria infection [171], it is 

far from the sophisticated arsenal providing long-term protection in mammalian 
adaptive immunity. In addition, the richness of biological processes required for 

development in the mosquito likely withdraws from the parasite metabolic resources 
otherwise allocated to drug resistance. During initial malaria infection in the liver, 
heparin and HS are hepatocyte receptors for sporozoite attachment [172]. CS 

proteoglycans in the mosquito midgut and a synthetic polysulfonated polymer that 
mimics the structure of GAGs present in the midgut epithelium have been described to 

bind Plasmodium ookinetes during host epithelial cell invasion [173,174], whereas 
ookinete-secreted proteins possess significant binding to heparin [106,175] (Figure 6). 
Thus, GAGs might be adequate to direct antimalarial-loaded nanovectors to 

Plasmodium stages exclusive to the insect.  
 

 
 

Figure 6. Fluorescence confocal microscopy analysis of the binding of heparin-

FITC to Plasmodium berghei ookinetes in vitro. Ookinete fluorescence is shown by 

mCherry and parasite nuclei were stained with 4',6-diamidino-2-phenylindole. 
Reproduced from Ref. [106], with permission (doi: 10.1016/j.nano.2016.09.010; 

https://creativecommons.org). 
 

A largely unexplored avenue, however, is the development of strategies for 

blocking the mosquito stages of Plasmodium by directly targeting parasites in the insect 
vector [176]. The engineering of antimalarial nanomedicines designed to be delivered to 

mosquitoes might spectacularly reduce costs because the clinical trials otherwise 
required for therapies to be administered to people could be significantly simplified. 
Strategies that control malaria using direct action against Anopheles are not new, but 
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most of them aim at eliminating the vector, either by killing it with pesticides [177] or 

through the release of sterile males [178,179]. Since eradicating an insect species might 
have as a consequence unpredictable disruptions of ecosystems with potential 

undesirable side effects (e.g. crop failure if pollinators were inadvertently affected), 
mosquito-friendly antimalarial strategies should be favored whenever possible. 
Administration of drugs encapsulated in heparin-containing nanovectors to mosquitoes 

to free them of malaria with the objective of blocking transmission of the disease is a 
challenging, yes, but promising alternative worth exploring. 

 

Conclusion 

Despite existing as drug for over a century, heparin continues being the anticoagulant of 

choice in the vast majority of clinical applications where blood clotting has to be kept 
under control. As a wave of new anticoagulants is approaching [180], heparin does not 

resign itself to being pushed aside, and this enduring drug is finding new and 
unexpected biomedical uses in several devastating diseases. 
 

Future perspective 

The endogenous nature of heparin makes it highly biocompatible and biosafe, especially 

in the case of low molecular weight heparin. It has an affordable production cost and its 
purification from animal tissues does not require sophisticated protocols or expensive 
equipment. Finally, it exhibits an astonishing curative capacity in a plethora of human 

diseases. These three characteristics place heparin as the basis of potentially key 
medicines in the threshold of an era where medical care has to be universalized to the 

farthest corners of the Earth. Developing regions of the world suffer massively of 
malaria and other infectious diseases, but as their economies grow and their population 
ages, other pathologies like cancer and Alzheimer’s disease will appear with force. 

Foreseeingly, heparin and its nanomedical derivatives will not only be increasingly used 
in the wealthiest areas of the planet, but they will also become essential medicines for 

the welfare and progress of poverty-stricken nations. 
 

Executive summary 

Discovery of heparin 

• Heparin was identified a century ago amid a fascinating controversy regarding the 

distribution of credit for its discovery. 
Chemistry and clinical use of heparin 

• Around 70% of the heparin chain is composed of a repeating trisulfated disaccharide 

that forms highly sulfated and regular domains. 
• Unfractionated heparin and low molecular weight heparin are indicated for the 

treatment and prophylaxis of venous thromboembolism. 
Novel potential therapeutic applications of heparin 

• Besides its original therapeutic use as an anticoagulant, other potential applications of 

heparin for a number of human diseases have been identified. 
• Heparin is being currently tested for the treatment of inflammation-related disorders 

such as asthma, cystic fibrosis, ulcerative colitis, Alzheimer’s disease and cancer. 
• Heparin is under investigation for use as antimicrobial agent due to its inhibitory effect 
on pathogen binding to cell surfaces. 

Heparin and malaria 

• Glycosaminoglycans are one of the main Plasmodium-infected red blood cell-binding 

molecules. 
Heparin in nanomedicine 
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• Nanomedical applications of heparin have experienced an exponential growth since 

the first published report in 2008. 
• Heparin confers novel properties to nanoparticles such as stealth, improved targeting 

of molecules with enhanced uptake and accumulation, and increased stability and 
solubility. 
• In cancer therapy, heparin-containing nanostructures exhibit prolonged circulation and 

enhanced tumor specificity. 
• Using as reducing agents natural carbohydrates such as glucose, chitosan or heparin 

has been proposed as a clean method for the production of metal nanoparticles for 
medical applications. 
Heparin for future antimalarial nanomedicines 

• Despite the lack of economic incentives for research in nanomedicine applications to 
malaria a number of liposome- and polymer-based nanocarriers engineered for the 

targeted delivery of antimalarial drugs have been developed. 
• Liposome-bound heparin has been demonstrated to be capable of substituting for 
antibodies as targeting molecule of drug-loaded nanocarriers. 

• The engineering of antimalarial nanomedicines designed to be delivered to mosquitoes 
might spectacularly reduce costs because the clinical trials otherwise required for 

therapies to be administered to people could be significantly simplified. 
• The administration of drugs encapsulated in heparin-containing nanovectors to 
mosquitoes to free them of malaria is a promising alternative worth exploring. 
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