
GRAU DE MATEMÀTIQUES

Treball final de grau

MONOID GRAPHS AND
GENERALIZED PETERSEN GRAPHS

Autor: Ernest Vidal i Garcia

Director: Dr. Kolja Knauer

Realitzat a: Departament de Matemàtica Aplicada

Barcelona, 13 de juny de 2023

Abstract

First, a wide definition of Cayley graphs is presented. We focus on the notion
of monoid graph: a graph is a monoid graph if it is isomorphic to the underlying
graph of the Cayley graph Cay(M, C) of some monoid M with some connection
set C ⊆ M. Secondly, the family of Generalized Petersen Graphs G(n, k) is presen-
ted. We study the open question whether every Generalized Petersen Graph is a
monoid graph, and we focus on the smallest one for which the question remains
unanswered: G(7, 2). Finally, we explore the feasibility of using the computer
to search for a possible monoid for G(7, 2). We conclude that it is not viable to
check all the possibilities with the proposed algorithms. Nevertheless, we are able
to provide a computer-assisted proof that if G(7, 2) is a monoid graph then the
connection set C does not have any invertible element.

Key words: Cayley graphs, monoid graphs, Generalized Petersen Graphs, en-
domorphisms

Resum

En primer lloc, presentem una definició àmplia dels grafs de Cayley. Ens cen-
trem en el concepte graf de monoide: un graf és un graf de monoide si és isomorf
al graf subjacent del graf de Cayley Cay(M, C) d’algun monoide M amb algun
conjunt de connexió C ⊆ M. En segon lloc, presentem la família dels Grafs de
Petersen Generalitzats G(n, k). Estudiem la pregunta sense resposta de si tot Graf
de Petersen Generalitzat és un graf de monoide, i ens centrem en el més petit pel
qual no se sap: G(7, 2). Finalment, estudiem la viabilitat d’utilitzar la computació
per buscar un possible monoide per G(7, 2). Concloem que no és viable compro-
var totes les possibilitats amb els algoritmes proposats. Tot i així, som capaços
de donar una demostració assistida per ordinador que si G(7, 2) és un graf de
monoide, llavors el conjunt de connexió C no té cap element invertible.

Paraules clau: grafs de Cayley, grafs de monoides, Grafs de Petersen Genera-
litzats, endomorfismes

Acknowledgments

I would like to thank my tutor Kolja for helping me all along the process; my
friend Anna for her valuable comments on the revision of the document; and my
family, especially my mother Àgueda and my brother Eduard, for giving me the
energy and confidence to overcome the difficulties.

2020 Mathematics Subject Classification. 05C25, 20M32, 60L70, 08A35

Contents

Introduction 1

1 Monoid graphs 2
1.1 Cayley graphs . 2
1.2 The endomorphism monoid . 5
1.3 Properties of monoid graphs . 10

1.3.1 Simple monoid graphs . 10
1.3.2 Monoid digraphs . 12
1.3.3 Monoid colored digraphs . 13

2 Generalized Petersen Graphs G(n,k) 14
2.1 Generalized Petersen Graphs . 14
2.2 Monoids and Generalized Petersen Graphs 16
2.3 G(7,2) . 22

3 Computational search: is G(7,2) a monoid graph? 24
3.1 The plan . 24
3.2 Approach 1: digraph endomorphisms 26

3.2.1 Case A: C has no invertible elements 26
3.2.2 Case B: C has exactly one involution 35

3.3 Approach 2: colored digraph endomorphisms 38
3.3.1 Case A: C has no invertible elements 38
3.3.2 Case B: C has exactly one involution 41

3.4 If C is not a generating set . 41

4 Conclusions 43

Bibliography 45

Introduction

Algebraic graph theory is a branch of mathematics in which algebraic meth-
ods are applied to study graphs. One of the main tools to do so are Cayley
graphs, which are used for representing simple algebraic structures like groups
or monoids, and whose definition was already suggested by Arthur Cayley in
1878 [3]. The vertices of a Cayley graph represent the elements of the group, and
the edges represent the abstract structure of the binary operation between.

It is well known that every graph is isomorphic to some induced subgraph of
a group graph [1]. Nevertheless, not every graph is a group graph. For example,
the Petersen graph is not a group graph, but it is a monoid graph [6].

Examples of non-monoid graphs have also been found [8] but, as far as we
know, not a single example of a non-semigroup graph has been found up to date.

Generalized Petersen Graphs G(n, k) constitute an interesting family of graphs,
which was introduced by Coxeter [4] and named by Watkins [16]. There is a
characterization of the Generalized Petersen Graphs that are group graphs [11],
but it remains an open question whether all Generalized Petersen Graphs are
monoid graphs.

One of the main objectives of this work is to collect existing knowledge on
Generalized Petersen Graphs that are monoid graphs, and to study in depth the
graph G(7, 2), which is the smallest Generalized Petersen Graphs for which the
question remains unresolved. Finally, another objective is to explore the feasibility
of using computation to study if it is a monoid graph.

In Chapter 1, we provide the definition of Cayley graphs and the general re-
sults for monoid graphs. In Chapter 2, the Generalized Petersen Graphs are pre-
sented and their relation with group graphs and monoid graphs is studied. In
Chapter 3, we explain in detail the code that we developed in order to check if
G(7, 2) is a monoid graph, as well as the obtained results. Finally, the conclusions
of the work are presented in Chapter 4.

Chapter 1

Monoid graphs

In the first section of this chapter the notation is established and a wide defini-
tion of Cayley graphs is presented. In the second section we highlight the relation
between monoid graphs and the endomorphism monoid of a graph, and present
some well known results and characterizations of Cayley graphs of groups and of
monoids. Finally, in the third section we collect some properties of monoid graphs
that will be useful in later chapters.

1.1 Cayley graphs

A graph G consists of a vertex set V and an edge set E, G = (V, E), where
an edge is an unordered pair of vertices of G. A directed graph or digraph D
consists of a vertex set V and an arc set A, D = (V, A), where an arc, or directed
edge, is an ordered pair of vertices of D. Usually, the words ’edge’ and ’arc’ are
reserved for pairs of distinct vertices, whereas the word loop is used for edges or
arcs from one vertex to itself. The terms multigraph and multidigraph are used to
indicate that repeated edges or arcs are also considered. Repeated edges or arcs
are called parallel edges or arcs; two arcs that join the same pair of vertices but on
the opposite order are called anti-parallel arcs.

If {x, y} is an edge, then we say that x and y are adjacent, or that y is a neighbour
of x, y ∈ N(x), and x is a neighbour of y, x ∈ N(y). If (x, y) is an arc we say that
x is an in-neighbour of y, x ∈ N−(y), and y is an out-neighbour of x, y ∈ N+(x).
The degree δ(v) (resp. in-degree δ−(v), out-degree δ+(v)) of a vertex v is the number
of edges (resp. incoming arcs, outgoing arcs) of the vertex, which in general does
not coincide with its number of neighbours (resp. in-neighbours, out-neighbours).
A graph is k-regular (resp. k-inregular, k-outregular) if every vertex v has degree
δ(v) = k (resp. in-degree δ−(v) = k, out-degree δ+(v) = k).

A set X with a binary operation X × X → X, (a, b) 7→ ab, is called a magma.

2

1.1 Cayley graphs 3

The binary operation of a finite set X = {x1, ..., xn} is usually given through the
multiplication table, or Cayley table, which is a square matrix of size n such that
in the position [i][j] it has xixj. A magma is called a semigroup S if the operation
is associative. A semigroup is called a monoid M if it has a neutral element e. A
monoid is called a group G if every element has an inverse. The notation ⊆ is used
to denote subsets while ≤ is used for subgroups, submonoids, subsemigroups and
submagmas.

Definition 1.1. Let X be a finite magma and C ⊆ X a subset. The digraph Cay(X, C) :=
(X, A) with arc set A such that

∀x, y ∈ X : (x, y) ∈ A ⇐⇒ ∃c ∈ C : xc = y

is called the Cayley digraph (or simply the Cayley graph) of X with connection set C . It
can have loops and anti-parallel arcs but not parallel arcs.

The Cayley colored digraph, Caycol(X, C), is obtained by assigning one color to every
element c of the connection set C and then coloring each arc (x, y) = (x, xc) with its
corresponding color c. In this case multiple parallel arcs of different color are allowed.

The underlying graph of the Cayley digraph, Cay(X, C), is the simple graph obtained
by not considering colors, neglecting orientations (i.e. replacing every arc (x, y) with edge
{x, y}), suppressing repeated edges and suppressing loops.

The Cayley colored digraph is the graphic representation of X that contains
most of its algebraic information. On the other hand, the underlying graph of
the Cayley graph carries the least information but it is more natural from the
perspective of graph theory, since it is a simple graph.

Example 1.2. The Cayley colored digraph of the monoid M defined by the follow-
ing multiplication table with connection set C = {a, b, c} is [Figure 1.1]:

Remark 1.3. The resulting digraph depends strongly on the chosen connection
set, as seen in the following picture [Figure 1.2].

Definition 1.4. Let G be a simple graph (uncolored, undirected and without loops). We
say that G is a semigroup graph (resp. a monoid graph or group graph) if it is the under-
lying graph of the Cayley graph of a semigroup (resp. monoid or group). This is:

G semigroup graph ⇐⇒ ∃ semigroup S, ∃ subset C ⊆ S: G ∼= Cay(S, C)

G monoid graph ⇐⇒ ∃ monoid M, ∃ subset C ⊆ M: G ∼= Cay(M, C)

G group graph ⇐⇒ ∃ group G, ∃ subset C ⊆ G: G ∼= Cay(G, C)

4 Monoid graphs

M e a b c d f
e e a b c d f
a a a a a a a
b b c d e f a
c c c c c c c
d d f e a b c
f f f f f f f a c

f

e

bd

Figure 1.1: Left: multiplication table of the monoid M. Right: Cayley colored
digraph Caycol(M, C) of the monoid M with connection set C = {a, b, c}.

01

2

3

4

5

6

01

2

3

4

5

6

Figure 1.2: Left: Caycol(Z7, {1}). Right: Caycol(Z7, {1, 2})

Example 1.5. The graph C3 = K3 =
(
{0, 1, 2}, {(0, 1), (0, 2), (1, 2)}

)
is a group

graph, as it is, for example, the underlying graph of the Cayley graph of the
group Z3 with the sum operation and connection set C = {1}. In this case there
are other connection set that work [Figure 1.3].

There are non-monoid graphs. The smallest one we know of is the following
graph, which was obtained by [8, Proposition 4.7.]:

Example 1.6. The disjoint union graph K4 ∪ C5 is non-monoid [Figure 1.4].

Lemma 1.7. Let X1 and X2 be magmas (resp. semigroups, monoids, groups) and C1 ⊆ X1

and C2 ⊆ X2 be subsets. If C1 ⊆ C2 and X1 ≤ X2, then G1 = Cay(X1, C1) is a
subdigraph of G2 = Cay(X2, C2), where ≤ stands for submagma (resp. subsemigroup,
submonoid, subgroup).

Proof. We know that X1 ⊆ X2, therefore V1 ⊆ V2, since the vertices of a Cayley
graphs correspond to the elements of its magma. On the other hand, the fact

1.2 The endomorphism monoid 5

Z3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

C = {1} C = {2} C = {1, 2}

C = {0, 1} C = {0, 2} C = {0, 1, 2}

Figure 1.3: Left: sum table of the group Z3. Right: six possible ways to see the
graph C3 as a group graph of the group Z3 with different connection sets.

Figure 1.4: Graph K4 ∪ C5

that the binary operation of X1 and X2 is the same, together with the hypothesis
C1 ⊆ C2, implies that A1 ⊆ A2.

1.2 The endomorphism monoid

A homomorphism is a structure-preserving map between two algebraic struc-
tures of the same type, and an endomorphism is a homomorphism from one
algebraic structure to itself. For magmas, semigroups, monoids and groups, ho-
momorphisms preserve the binary operation and its additional properties in each
case.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. A mapping φ : V1 → V2

is a homomorphism of graphs if it sends adjacent vertices of G1 to adjacent vertices
of G2. If G1 and G2 are directed and/or colored graphs, we require homomor-
phisms to map any arc to an arc of the same direction and/or color. An invertible
homomorphism φ whose inverse is also a homomorphism is an isomorphism.

Proposition 1.8. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. A mapping φ :
V1 → V2 is an isomorphism if and only if it is a bijective homomorphism such that

6 Monoid graphs

{u, v} ∈ E1 ⇐⇒ {φ(u), φ(v)} ∈ E2.

Proof. Necessity. If φ, φ−1 are homomorphisms, we have that {u, v} ∈ E1 ⇒
{φ(u), φ(v)} ∈ E2 and {u′, v′} ∈ E2 ⇒ {φ−1(u′), φ−1(v′)} ∈ E1, which implies
the condition {u, v} ∈ E1 ⇐⇒ {φ(u), φ(v)} ∈ E2. Finally, the existence of in-
verse implies the bijectivity. Sufficiency. The right implication (⇒) of the condition
directly implies that φ is an homomorphism. The bijectivity implies the existence
of the inverse function φ−1. Then, by applying φ−1 to both sides of the left impli-
cation (⇐) of the condition, we see that φ−1 is an homomorphism.

Example 1.9. Consider graphs G1 = (V1, E1) and G2 = (V2, E2) of Figure 1.5. The
homomorphism φ : V1 → V2 that sends 1 → a, 2 → b and 3 → c is a bijective
homomorphism of graphs that is not an isomorphism of graphs. This happens
when E2 has more edges than E1.

0 2

1 b

a c

Figure 1.5: Graphs of Example 1.9. Left: G1. Right: G2

A homomorphism from a graph G to itself is an endomorphism, and an isomor-
phism from a graph G to itself is an automorphism.

Proposition 1.10. Let G = (V, E) be a graph. A mapping φ : V → V is an automor-
phism if and only if it is a bijective endomorphism.

Proof. Necessity. An automorphism of G is necessarily a bijective endomorphism
by applying Proposition 1.8. Sufficiency. Let φ be a bijective endomorphism. Since
φ is bijective, it has finite order k (φk = id) and therefore there exists φ−1 = φk−1.
Since φ is an endomorphism, {u, v} ∈ E ⇒ {φ(u), φ(v)} ∈ E ⇒ {φj(u), φj(v)} ∈
E ∀j. Then, {φ−1(u), φ−1(v)} = {φk−1(u), φk−1(v)} ∈ E, as we wanted to see.

Given a graph G, the set of all its endomorphisms (with the composition of
homomorphisms) form the endomorphism monoid of the graph, End(G), and the
set of all its automorphisms form the automorphism group of the graph, Aut(G).
Trivially, the endomorphism monoid of a graph contains its automorphism group,
since every automorphism is an endomorphism: Aut(G) ≤ End(G) ∀G.

Let’s see some basic properties of the endomorphism monoid of Cayley graphs.

1.2 The endomorphism monoid 7

Observation 1.11. For a magma X and a subset C ⊆ X we have:

End(Caycol(X, C)) ≤ End(Cay(X, C))

Observation 1.12. Contrary to what happens with orientations and colors, adding or
removing loops has a critical impact on the endomorphism monoid: there exist X and C
for which End(Cay(X, C)) ≰ End(Cay(X, C)).

Example 1.13. Consider the following graphs G1 and G2 of Figure 1.6. Then con-

1

20

3

1

20

3

G1 G2

Figure 1.6: The graph K3 without loops and with one added loop.

sider the mappings φ1 = [1, 2, 3, 0] and φ2 = [0, 0, 2, 3], which can also be written
as follows:

φ1 : 0 7→ 1
1 7→ 2
2 7→ 3
3 7→ 0

φ2 : 0 7→ 0
1 7→ 0
2 7→ 2
3 7→ 3

Observe that φ1 ∈ End(G1) but φ1 /∈ End(G2) and that φ2 ∈ End(G2) but φ2 /∈
End(G1).

A key tool for working with Cayley graphs is the fact that the multiplication
law of a monoid M is related to the endomorphism monoid End(D) of the Cayley
digraphs D = Caycol(M, C) it defines, regardless of the chosen connection set C.
Let’s see this relation in depth.

Definition 1.14. Let X be a semigroup and a ∈ X. Left-multiplication with a is the
magma endomorphism λa : X → X, x 7→ ax.

These are endomorphisms of the algebraic structure, and correspond to the
rows of the multiplication table. When the structure has associativity, they also
happen to be endomorphisms of the corresponding colored digraphs of the struc-
ture:

Lemma 1.15. Let S be a semigroup, C ⊆ S and s ∈ S. Left-multiplication λs is a
color-preserving endomorphism of Caycol(S, C).

8 Monoid graphs

Proof. Let (t, tc) be an arc of color c. Then, using associativity of S we have that its
image by λs is the arc (st, s(tc)) = (st, (st)c), which is also of color c.

This means that when we have a semigroup digraph D, we can associate each
vertex to its corresponding row in the multiplication table [8, Lemma 2.1.]:

Lemma 1.16. Let S be a semigroup and C ⊆ S. Mapping every s ∈ S to left-multiplication
λs with s is a homomorphism from S to End(Caycol(S, C)).

Proof. As we have seen, left-multiplication λs with s is an element of End(Caycol(S, C)).
Clearly, λst = λs ◦ λt, so this is a semigroup homomorphism.

Observation 1.17. The homomorphism of Lemma 1.16 is not necessarily injective.

Example 1.18. Let’s consider the right-zero semigroup, defined as Rn = {r1, ..., rn}
such that rirj = rj ∀i, j. We can see that End(Caycol(R4, R4)) = id [Figure 1.7]. So
in this semigroup mapping each element to left multiplication is not injective.

0 2

1

3

Figure 1.7: The Cayley graph Caycol(R4, R4).

For monoids, under the additional hypothesis that C is a generating set of M,
we have a well-known stronger result [9, Theorem 7.3.7.]:

Lemma 1.19. Let M be a monoid and be C ⊆ M such that M = ⟨C⟩. Then left-
multiplication yields an isomorphism from M to End(Caycol(M, C)). In other words,

M monoid, C ⊆ M, ⟨C⟩ = M ⇒ M ∼= End(Caycol(M, C))

These results lead to a characterization of monoid digraphs. These characteri-
zations are called Sabidussi-type characterizations, due to the first result on group
graphs by Sabidussi [12, Lemma 4]:

1.2 The endomorphism monoid 9

Lemma 1.20. A (colored, directed) graph G = (V, A) is a (colored, directed) group graph
if and only if Aut(G) has a subgroup G that acts regularly on G, i.e., for any two vertices
x, y ∈ V there exists a unique automorphism φ ∈ G such that φ(x) = y. In this case, G
is a Cayley graph of the group G.

Corollary 1.21. All group graphs are regular.

Proof. By the Sabidussi Lemma 1.20, there are automorphisms between any pair
of vertices of the graph. Since automorphisms preserve the degree of the vertices,
the graph is regular.

Furthermore, the connectivity of group graphs is ensured when the connection
set is a generating set of the groups [7, Lemma 3.7.4.]:

Proposition 1.22. A group graph G ∼= Cay(G, C) is connected if and only if ⟨C⟩ = G.

In the case of monoid digraphs, there is the following Sabidussi-type charac-
terization [8, Lemma 2.4.]:

Lemma 1.23. A directed graph D = (V, A) is a monoid digraph if and only if there
exists a vertex e ∈ V and a submonoid M ≤ End(D) such that for each x ∈ V there is a
unique φx ∈ M with φx(e) = x. Moreover, φx satisfies that for each (x, y) ∈ A there is
a (e, c) ∈ A such that φx(c) = y.

Proof. Suppose that there is a vertex e and a submonoid M ≤ End(G) satisfying
this property. Let C = {φ ∈ M|(e, φ(e)) ∈ A}. We claim that there is an isomor-
phism G ∼= Cay(M, C) given by x 7→ φx. It is clear that this map is injective. It
is also surjective: the preimage of φ ∈ M is φ(e). Now, if (x, y) ∈ A, there is an
out-neighbour c of e with φx ◦ φc(e) = φx(c) = y; thus φx ◦ φc = φy. Since φc ∈ C,
(φx, φy) is an arc of Cay(M, C). Conversely, if (φx, φy) is an arc of Cay(M, C) then
φx ◦ φ = φy for some φ ∈ C. This implies that the arc (e, φ(e)) ∈ A is mapped by
φx to (x, φx ◦ φ(e)) = (x, y), which must be also in A, because φx is an endomor-
phism.

Conversely, suppose that G = Cay(M, C) for a monoid M and C ⊆ M. For each
vertex x consider the endomorphism φx of G defined by left-multiplication by x.
All these endomorphisms together form a submonoid M′ ≤ End(Caycol(M, C)) ≤
End(G), by Lemma 1.16. Let e be the neutral element of M. It is clear that for
any vertex x, the mapping φx is the only of them that maps e to x. Moreover, for
any out-neighbour y of x there is an out-neighbour c ∈ C of e with xc = y, so
φx(c) = y.

10 Monoid graphs

Finally, let’s study the image of digraph endomorphisms. If we have an endo-
morphism f of some digraph D = (V, A), we know some information about the
image of f , denoted by Im(f) = f (V), which will be useful later on:

Lemma 1.24. Let D = (V, A) be a finite colored digraph with n vertices and f ∈ End(D)

an endomorphism of the colored digraph. Then, f is an automorphism if and only if its
image is of size n:

f ∈ End(D) =⇒
(

f ∈ Aut(D) ⇐⇒ f (V) = V

)

Proof. We are using that a bijective endomorphism is an automorphism (Proposi-
tion 1.10), and that on any two finite sets X and Y, f : X → Y is bijective if and
only if X and Y have the same number of elements.

Lemma 1.25. Let D = Cay(M, C) be a monoid digraph and λm ∈ End(D) left-
multiplication. Then, the image of the λm has no outgoing arcs, i.e., δ+(Im(λm)) = 0

Proof. Let x ∈ Im(λm). Then ∃z such that λm(z) = x. Let (x, y) be an arc of color
c. Then, using the associativity of the multiplication of M, we can see that y must
also be in Im(λm): y = xc = λm(z)c = (mz)c = m(zc) = λm(zc) ∈ Im(λm).

1.3 Properties of monoid graphs

In this section we collect the aspects of monoid graphs that show up on the
actual drawing of the graph. First we look at the properties that a simple graph
must have in order to be a monoid graph. Then we do the same for digraphs and
colored digraphs.

1.3.1 Simple monoid graphs

The neutral element can be assumed not to be in the connection set:

Proposition 1.26. If G ∼= Cay(M, C), it can be assumed without loss of generality that
e /∈ C.

Proof. Having the neutral element in the connection set only adds one loop to all
the vertices, which does not affect the underlying graph Cay(M, C).

1.3 Properties of monoid graphs 11

It can also be assumed that C does not have the inverses of its elements (in case
they exist and are different from themselves):

Proposition 1.27. If G ∼= Cay(M, C) and c ∈ C is invertible of order > 2, it can be
assumed without loss of generality that c−1 /∈ C.

Proof. Having c and c−1 in the connection set only adds antiparallel arcs of color
c−1 to all the arcs of color c. Since the direction and multiplicity of arcs is not
important for Cay(M, C), we can avoid this situation whenever we can, i.e. when
c−1 ̸= c.

The neighbours of the neutral element can be used as connection set [8, Lemma
4.1.]:

Lemma 1.28. Let M be a monoid, C ⊆ M and the graph G ∼= Cay(M, C). Then
G ∼= Cay(M, N(e)).

Note that this does not mean that all the neighbours of e are necessary. The
minimal connection set might be a subset of N(e):

Remark 1.29. If G ∼= Cay(M, C), then C ⊆ N(e).

This sets a maximum order of C. In general, the minimum order of C is de-
termined by the number of edges m in proportion to the vertices n of the graph,
since there cannot be more edges than n times the order of C:

Proposition 1.30. If G ∼= Cay(M, C), then:

i. |C| ≤ δ(e)

ii. |C| ≥ m/n

where n is the number of vertices and m is the number of edges.

Proof. Assuming that the neutral element e is not in C, we have:

i. This follows from 1.29. We are implicitly using that e does not have loops
because e /∈ C, so e is not an out-neighbour of himself.

ii. Any vertex of the Cayley colored multidigraph has by definition one outgoing
arc of each color, so for each color c there are n edges of that color c. Since
different colored arcs can be in the same edge, every c ∈ C contributes at the
most n edges in the underlying simple graph, so m ≤ n|C|.

12 Monoid graphs

1.3.2 Monoid digraphs

First of all, the multidigraph is |C|-outregular, since every vertex has an out-
going arc of each color. The existence of neutral element plays a key role, since it
sets remarkable restrictions to the possible orientations. In general, there can be
parallel arcs, since the monoid can have c ̸= c′ such that sc = sc′; and there can
be loops, since it can have c ̸= e such that sc = s. But the neutral element has a
distinctive behaviour:

Proposition 1.31. If D ∼= Cay(M, C), the neutral element has no loops.

Proof. If e has a loop of color c, it must be ec = e ⇒ c = e ∈ C. If we assume that
e /∈ C, then neutral element has no loops.

Proposition 1.32. If D ∼= Cay(M, C), the neutral element does not have parallel outgo-
ing arcs.

Proof. Let c1, c2 ∈ C such that ec1 = ec2, then c1 = c2.

The out-neighbours of e are now exactly the connection set of the Cayley graph:

Lemma 1.33. If D ∼= Cay(M, C), then D ∼= Cay(M, N+(e)).

Proof. By definition, there is one outgoing arc for each element of the connection
set C. Since there are no parallel outgoing arcs of e, each element of the connection
set corresponds to one different out-neighbour of e.

Under the addition hypothesis that C is a generating set there are stronger
consequences:

Lemma 1.34. If D ∼= Cay(M, C) and ⟨C⟩ = M, every vertex v ̸= e is reachable from e
through a sequence of arcs.

Proof. Using the correspondence between the digraph and the monoid, the fact
that every vertex is reachable through a sequence of n arcs a1, . . . , an (of colors
c1, . . . , cn) that start at e is equivalent to the fact that every element of M is equal
to ec1 . . . cn, which is the condition ⟨C⟩ = M.

1.3 Properties of monoid graphs 13

1.3.3 Monoid colored digraphs

For colored digraphs there is actually a characterization of those that are monoid
digraphs, by just looking at the colored arcs [2, Theorem 4.4].

Definition 1.35. A colored path is a sequence of consecutive colored arcs. The label word
L of a colored path is the sequence of colors of the arcs.

Definition 1.36. A propagating vertex p is a vertex such that, if there are two colored
paths from p to x labeled by LA and LB then for any vertex v there are also two colored
paths from v to x labeled by the same LA and LB.

Theorem 1.37. A graph is a monoid graph if and only if all the following conditions are
fulfilled:

1. From every vertex of the graph there is exactly one outgoing arc of each color.

2. The graph has a vertex e such that every other vertex is reachable from e, e does not
have parallel outgoing arcs and e is a propagating vertex.

Finally, apart from the global properties of the directed colored graph, each
component of each color also has additional properties to be fulfilled. The sub-
digraph constructed by keeping all the vertices and keeping only the arcs of one
color is a 1-outregular digraph. The class of 1-outregular semigroup digraphs was
studied by Zelinka [17].

Let D be a 1-outregular digraph. Each connected component C has exactly one
cycle (possibly a loop), denoted by Z, with length z(C). Then, we denote by ℓ(v)
the length of the (unique) shortest directed path from vertex v ∈ C to the cycle
Z, and by ℓ(C) the maximum length to the cycle among all the vertices of the
connected component.

The following is a Zelinka-type characterization of 1-outregular monoid di-
graphs [8, Theorem 3.2]:

Theorem 1.38. A 1-outregular digraph D is a monoid digraph if and only if D has a
component C such that z(D) devides z(C) and ℓ(D) ≤ ℓ(C) for all components D of D.
Moreover, the component C is the component of the neutral element e and the element e is
one that attains ℓ(C).

Chapter 2

Generalized Petersen Graphs
G(n,k)

In the first section of this chapter, we present the Generalized Petersen Graphs,
which is a particularly interesting family of graphs, and we set the notation. In the
second section we see some results that might help to understand which General-
ized Petersen Graphs are monoid graphs. In the third section we focus especially
on G(7, 2), which is the smallest of them for which the question remains open.

2.1 Generalized Petersen Graphs

Generalized Petersen graphs are defined as follows [16]:

Definition 2.1. Let k, n be integers such that 0 < k < n
2 . The Generalized Petersen

graph G(n, k) is the cubic graph with vertex set

V = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1},

and with edges set E consisting of all those of the form

[ui, ui+1] [ui, vi] [vi, vi+k]

where i is an integer and all subscripts are to be read modulo n.

Observation 2.2. All Generalized Petersen Graphs are cubic, i.e., 3-regular.

Example 2.3. The Petersen graph itself is the graph G(5, 2) [Figure 2.1]

Example 2.4. Among the generalized Petersen graphs are the n-prism G(n, 1), the
Dürer graph G(6, 2), the Möbius-Kantor graph G(8, 3), the dodecahedron G(10, 2),
the Desargues graph G(10, 3) and the Nauru graph G(12, 5) [Figure 2.2].

14

2.1 Generalized Petersen Graphs 15

Figure 2.1: The Petersen graph G(5, 2).

Figure 2.2: From left to right: the triangular prism G(3, 1), the Dürer graph G(6, 2),
the Desargues graph G(10, 3) and the Nauru graph G(12, 5).

The dihedral group D2·n is the group of symmetries of the regular n-gon. When
drawing the Generalized Petersen Graphs as suggested in Figures 2.1 and 2.2 it
becomes evident that these symmetries are also symmetries of the graphs.

Observation 2.5. If G is a Generalized Petersen Graph, then the dihedral D2·n is a sub-
group of Aut(G): D2·n ≤ Aut(G).

The automorphism group of all Generalized Petersen Graphs depending on n
and k was determined in 1971 by Frucht, Graver, and Watkins [5]. Here we just
present the case k2 ̸= ±1 (mod n) as an example, since it is the case for G(7, 2).

Proposition 2.6. If G is a generalized Petersen graph of the form G(n, k) where (n, k) is
not equal to (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), or (24, 5), and k2 ̸= ±1 (mod n),
then Aut(G) ∼= D2·n.

The range of indices n and k in the definition is chosen to avoid some isomor-
phic graphs, but there are still some other isomorphisms among the Generalized
Petersen Graphs [14].

16 Generalized Petersen Graphs G(n,k)

Theorem 2.7. G(n, k) ∼= G(n, l) if and only if either

(i) l ≡ ±k(mod n), or

(ii) gcd(n, k) = gcd(n, l) = 1 and kl ≡ ±1(mod n).

The first case is implicitly considered by our definition of G(n, k) since we
only pick k < n

2 . In the following table (Table 2.1) we represent all Generalized
Petersen Graphs included by our definition above the dotted line. For each n up
to n = 16 we count how many isomorphic classes ∼=i of G(n, k) there are. The
pairs of isomorphic graphs are represented in different colors.

n
16 ∼=1 ∼=2 ∼=3 ∼=4 ∼=3 ∼=5 ∼=6

15 ∼=1 ∼=2 ∼=3 ∼=4 ∼=5 ∼=6 ∼=2

14 ∼=1 ∼=2 ∼=3 ∼=4 ∼=3 ∼=5

13 ∼=1 ∼=2 ∼=3 ∼=3 ∼=4 ∼=2

12 ∼=1 ∼=2 ∼=3 ∼=4 ∼=5

11 ∼=1 ∼=2 ∼=3 ∼=3 ∼=2

10 ∼=1 ∼=2 ∼=3 ∼=4

9 ∼=1 ∼=2 ∼=3 ∼=2

8 ∼=1 ∼=2 ∼=3

7 ∼=1 ∼=2 ∼=2

6 ∼=1 ∼=2

5 ∼=1 ∼=2

4 ∼=1

3 ∼=1

1 2 3 4 5 6 7 k

Table 2.1: Isomorphism classes ∼=i among Generalized Petersen Graphs G(n, k) up
to n = 16.

2.2 Monoids and Generalized Petersen Graphs

There is a characterization of the Generalized Petersen graphs that are group
graphs [11]:

Theorem 2.8. G(n, k) is a group graph if and only if k2 ∼= 1 (mod n).

2.2 Monoids and Generalized Petersen Graphs 17

n
16 • - - - - - •
15 • - - • - - -
14 • - - - - -
13 • - - - - -
12 • - - - •
11 • - - - -
10 • - - -
9 • - - -
8 • - •
7 • - -
6 • -
5 • -
4 •
3 •

1 2 3 4 5 6 7 k

• group graphs

Table 2.2: Generalized Petersen Graphs that are group graphs (•).

The following table (Table 2.2) includes all the Generalized Petersen graphs up
to n = 16 and indicates if they are a group graph (•). If G(n, k1) ∼= G(n, k2), we
only represent the graph with smallest k and leave a blank space for the other one.

As we can see in the Table 2.2, the Petersen graph is the first Generalized
Petersen Graph that is not a group graph.

Nevertheless it is a monoid graph [6, Proposition 3.6.]:

Example 2.9. G(5, 2) has different possible semigroups and monoids, as shown
in Table 2.3. S and M are unions of Z6 and the null semigroup N[6,9], for which
ab = 9 for all a, b ∈ {6, 7, 8, 9}. S′ and M′ are unions of the dihedral group D2·3
and the null semigroup N[6,9]. Then, G(5, 2) ∼= Cay(S, {1, 6}) ∼= Cay(M, {1, 6}) ∼=
Cay(S′, {0, 4, 8}) ∼= Cay(M′, {0, 4, 8}) [Figure 2.3].

The next Generalized Petersen Graph, G(6, 2), is also a monoid graph.

Example 2.10. G(6, 2) is a monoid graph, and a possible monoid is shown in Table
2.4. M is the union M = A ∪ A′ with A = Z6 and A′ = Z3 × L2, where Lk := LZk

is the left-zero semigroup with k elements, for which lilj = li for all li, lj ∈ Lk.
This construction is based on [6, Theorem 3.11]. Then, G(6, 2) ∼= Cay(M, {1, 6}) ∼=
Cay(M, {1, 8}) ∼= Cay(M, {1, 10}) [Figure 2.4].

18 Generalized Petersen Graphs G(n,k)

S 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 0 7 8 6 9
2 2 3 4 5 0 1 8 6 7 9
3 3 4 5 0 1 2 6 7 8 9
4 4 5 0 1 2 3 7 8 6 9
5 5 0 1 2 3 4 8 6 7 9
6 9 9 9 9 9 9 9 9 9 9
7 9 9 9 9 9 9 9 9 9 9
8 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9

M 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 0 7 8 6 9
2 2 3 4 5 0 1 8 6 7 9
3 3 4 5 0 1 2 6 7 8 9
4 4 5 0 1 2 3 7 8 6 9
5 5 0 1 2 3 4 8 6 7 9
6 6 6 6 6 6 6 9 9 9 9
7 7 7 7 7 7 7 9 9 9 9
8 8 8 8 8 8 8 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9

S′ 0 1 2 3 4 5 6 7 8 9
0 5 4 3 2 1 0 8 7 6 9
1 2 3 4 5 0 1 8 6 7 9
2 1 0 5 4 3 2 7 6 8 9
3 4 5 0 1 2 3 7 8 6 9
4 3 2 1 0 5 4 6 8 7 9
5 0 1 2 3 4 5 6 7 8 9
6 9 9 9 9 9 9 9 9 9 9
7 9 9 9 9 9 9 9 9 9 9
8 9 9 9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9

M′ 0 1 2 3 4 5 6 7 8 9
0 5 4 3 2 1 0 8 7 6 9
1 2 3 4 5 0 1 8 6 7 9
2 1 0 5 4 3 2 7 6 8 9
3 4 5 0 1 2 3 7 8 6 9
4 3 2 1 0 5 4 6 8 7 9
5 0 1 2 3 4 5 6 7 8 9
6 6 6 6 6 6 6 9 9 9 9
7 7 7 7 7 7 7 9 9 9 9
8 8 8 8 8 8 8 9 9 9 9
9 9 9 9 9 9 9 9 9 9 9

Table 2.3: Multiplication tables of different semigroups and monoids for G(5, 2).
From left to right, from top to bottom: S, M, S′, M′.

For the moment, there is not a characterization for the Generalized Petersen
graphs that are monoid graphs. Nevertheless we have some useful information
about the hypothetical connection set.

Proposition 2.11. If a cubic graph is a monoid graph, then |C| = 2 or |C| = 3.

Proof. We know that in general m
n ≤ |C| ≤ δ(e) (Proposition 1.30). By the hand-

shake lemma, a cubic graph has m = 3
2 n edges and it obviously has δ(e) = 3. This

implies that there are only two possibilities for the order of the generating set C:
|C| = 2 or |C| = 3.

Corollary 2.12. If G(n, k) ∼= Cay(M, C), then |C| = 2 or |C| = 3.

Proof. By construction, any Generalized Petersen Graph is cubic (Observation 2.2).

Under the additional hypothesis that ⟨C⟩ = M, stronger results can be found.
For the specific case of Generalized Petersen Graphs with ⟨C⟩ = M and with
|C| = 2 there is the following remarkable characterization [6, Theorem 3.13.]:

2.2 Monoids and Generalized Petersen Graphs 19

2

3

6

0

1

8

4

9

5

7

2

3

6

0

1

8

4

9

5

7

2

3

6

0

1

8

4

9

5

7

2

3

6

0

1

8

4

9

5

7

Figure 2.3: From left to right, from top to bottom: the Cayley colored digraphs
Caycol(S, {1, 6}), Caycol(M, {1, 6}), Caycol(S′, {0, 4, 8}) and Caycol(M′, {0, 4, 8}).

01

2

3 4

5

6
9

10

7
8

11

01

2

3 4

5

8
11

6

9
10

7

01

2

3 4

5

10
7

8

11
6

9

Figure 2.4: The colored digraphs Caycol(M, {1, 6}), Caycol(M, {1, 8}) and
Caycol(M, {1, 10}).

Theorem 2.13. The Generalized Petersen Graph G(n, k) is a monoid graph Cay(M, C)
with ⟨C⟩ = M and |C| = 2 if and only if one of the following holds:

(a) (n, k) = (5, 2) (Petersen graph),

(b) k2 ≡ 1 (mod n), or

20 Generalized Petersen Graphs G(n,k)

M′ 0 1 2 3 4 5 (0, l0) (0, l1) (1, l0) (1, l1) (2, l0) (2, l1)
0 0 1 2 3 4 5 (0, l0) (0, l1) (1, l0) (1, l1) (2, l0) (2, l1)
1 1 2 3 4 5 0 (1, l1) (1, l0) (2, l1) (2, l0) (0, l1) (0, l0)
2 2 3 4 5 0 1 (2, l0) (2, l1) (0, l0) (0, l1) (1, l0) (1, l1)
3 3 4 5 0 1 2 (0, l1) (0, l0) (1, l1) (1, l0) (2, l1) (2, l0)
4 4 5 0 1 2 3 (1, l0) (1, l1) (2, l0) (2, l1) (0, l0) (0, l1)
5 5 0 1 2 3 4 (2, l1) (2, l0) (0, l1) (0, l0) (1, l1) (1, l0)

(0, l0) (0, l0) (1, l0) (2, l0) (0, l0) (1, l0) (2, l0) (0, l0) (0, l0) (1, l0) (1, l0) (2, l0) (2, l0)
(0, l1) (0, l1) (1, l1) (2, l1) (0, l1) (1, l1) (2, l1) (0, l1) (0, l1) (1, l1) (1, l1) (2, l1) (2, l1)
(1, l0) (1, l0) (2, l0) (0, l0) (1, l0) (2, l0) (0, l0) (1, l0) (1, l0) (2, l0) (2, l0) (0, l0) (0, l0)
(1, l1) (1, l1) (2, l1) (0, l1) (1, l1) (2, l1) (0, l1) (1, l1) (1, l1) (2, l1) (2, l1) (0, l1) (0, l1)
(2, l0) (2, l0) (0, l0) (1, l0) (2, l0) (0, l0) (1, l0) (2, l0) (2, l0) (0, l0) (0, l0) (1, l0) (1, l0)
(3, l1) (2, l1) (0, l1) (1, l1) (2, l1) (0, l1) (1, l1) (2, l1) (2, l1) (0, l1) (0, l1) (1, l1) (1, l1)

∼=

∼=

M 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 3 4 5 0 9 8 11 10 7 6
2 2 3 4 5 0 1 10 11 6 7 8 9
3 3 4 5 0 1 2 7 6 9 8 11 10
4 4 5 0 1 2 3 8 9 10 11 6 7
5 5 0 1 2 3 4 11 10 7 6 9 8
6 6 8 10 6 8 10 6 6 8 8 10 10
7 7 9 11 7 9 11 7 7 9 9 11 11
8 8 10 6 8 10 6 8 8 10 10 6 6
9 9 11 7 9 11 7 9 9 11 11 7 7
10 10 6 8 10 6 8 10 10 6 6 8 8
11 11 7 9 11 7 9 11 11 7 7 9 9

Table 2.4: Table of a monoid M for G(6, 2). Top: illustrative construction of the
table. Bottom: isomorphic table changing the names of the elements.

(c) k2 ≡ ±k (mod n)

The condition ⟨C⟩ = M can be dropped under certain circumstances [6, Propo-
sition 3.19, Proposition 3.20, Conjecture 3.18.]:

Theorem 2.14. Let 1 ≤ k ≤ n/2 such that gcd(n, k) = 1. The Generalized Petersen
Graph G(n, k) is a monoid graph Cay(M, C) with |C| = 2 if and only if one of the
following holds:

(a) (n, k) = (5, 2) (Petersen graph),

(b) (n, k) = (10, 3) (Desargues graph), or

(c) k2 ≡ 1 (mod n)

Theorem 2.15. Let 1 ≤ k ≤ n/2 such that gcd(n, k) = 1 or such that n/ gcd(n, k) is
odd. The Generalized Petersen Graph G(n, k) is a monoid graph Cay(M, C) with |C| = 2
if and only if one of the following holds:

2.2 Monoids and Generalized Petersen Graphs 21

(a) (n, k) = (5, 2) (Petersen graph),

(b) k2 ≡ 1 (mod n), or

(c) k2 ≡ ±k (mod n)

Conjecture 2.16. The Generalized Petersen Graph G(n, k) is a monoid graph Cay(M, C)
with |C| = 2 if and only if one of the following holds:

(a) (n, k) = (5, 2) (Petersen graph),

(b) (n, k) = (10, 3) (Desargues graph),

(c) k2 ≡ 1 (mod n), or

(d) k2 ≡ ±k (mod n)

To sum up, the current knowledge on Generalized Petersen graphs that are
monoid graphs is represented in Table 2.5.

n
16 • - - - - - •
15 • - - • ◦ ◦ -
14 • - - - - ◦
13 • - - - - -
12 • - ◦ ◦ •
11 • - - - -
10 • ◦ ◦ ◦
9 • - - -
8 • - •
7 • - -
6 • ◦
5 • ◦
4 •
3 •

1 2 3 4 5 6 7 k

• group graphs
◦ known monoid graphs

Table 2.5: Generalized Petersen Graphs that are group graphs (•) and known
Generalized Petersen Graphs that are monoid graphs (◦).

22 Generalized Petersen Graphs G(n,k)

2.3 G(7,2)

Let us focus on the graph G(7, 2) which, as we have seen, is the smallest Gen-
eralized Petersen Graph that it is not known if it is a monoid graph or not.

First of all, we know that the connection set has exactly 3 elements:

Proposition 2.17. If G(7, 2) ∼= Cay(M, C), then |C| = 3.

Proof. Proposition 2.12 says |C| is 2 or 3. Then, by Theorem 2.14 (or also Theorem
2.15) we have that the case |C| = 2 is not possible for n = 7 and k = 2. So if G(7, 2)
is a monoid graph it must have |C| = 3.

Corollary 2.18. If G(7, 2) ∼= Cay(M, C), then |C| = N(e).

Proof. We know that C ⊆ N(e) (Remark 1.29) and δ(e) = 3 (Observation 2.2) so
Proposition 2.17 implies that |C| = N(e).

We also know some restrictions on the invertible elements of C:

Lemma 2.19. If G(7, 2) ∼= Cay(M, C), then C does not contain any invertible element
of order > 2.

Proof. Since G(7, 2) ∼= Cay(M, C), then C = N(e) because |C| = 3 (Proposition
2.17), C ⊆ N(e) (Remark 1.29) and |N(e)| = 3 (Observation 2.2). Then, if c ∈ C =

N(e) is invertible of order > 2, c−1 ̸= c and c−1 ∈ N(e). Then c−1 ∈ C but this
is a contradiction because C is assumed not to have the inverses of its invertible
elements of order > 2 (Proposition 1.27).

Lemma 2.20. If G(7, 2) ∼= Cay(M, C), then C cannot have 2 invertible elements.

Proof. Let c, d ∈ C be invertible. We have that c ̸= d−1 and d ̸= c−1 (Proposition
1.27). Then X = ⟨c, d⟩ is a group, therefore H = Cay(⟨c, d⟩, {c, d}) is a Cayley
graph of a group contained in G(7, 2) (Lemma 1.7). H is a group graph, so it
is regular (Corollary 1.21). Since G(7, 2) is not a group graph (Theorem 2.8), H
is a proper subgraph of G(7, 2); then H must be 2-regular. Since the connection
set is a generating set of the group, H is connected (Proposition 1.22). So H is
connected and 2-regular, which implies that it must be a cycle. Then, there are
two possibilities for the group X, since X ≤ Aut(H) (Lemma 1.20):

2.3 G(7,2) 23

- X is a cyclic group. But then its Cayley graph is a cycle only if it is generated
by exactly one element (!)

- X is a dihedric group. We also know that the group X is a submonoid of M
and M ≤ End(G(7, 2)) (Lemma 1.23), so X is a subgroup of Aut(G(7, 2)) =
D2·7 (Proposition 2.6). But it is well known that D2·m < D2·n ⇐⇒ m|n, so
D2·7 cannot have a dihedric subgroup X since 7 is prime (!)

An invertible element with order 2 is called involution. So we have seen that
either C has exactly one invertible element and it is an involution or C does not
have any invertible elements.

Chapter 3

Computational search: is G(7,2) a
monoid graph?

In this chapter we explore the feasibility of using the computer to check if
G(7, 2) is a monoid graph. In the first section, we explore the possibilities that
the theory gives us to search all the possible monoids. We design two possible
approaches to the problem, explained in detail in the second and third sections.
In the fourth section we explore the case of non-generated monoid graphs.

3.1 The plan

We have seen that the graph G(7, 2) is the smallest Generalized Petersen Graph
for which it is unknown whether it is a monoid graph or not. We want to use
computation to search for a monoid M and a subset C ⊆ M such that G(7, 2) ∼=
Cay(M, C).

If it is a monoid graph, the connection set C must fulfill the following proper-
ties:

i. |C| = 3 so C = N(e) (Proposition 2.17, Corollary 2.3)

ii. C does not have invertible elements of order > 2 (Lemma 2.19)

iii. C has at most one involution (Lemma 2.20)

We also know that, if it is a monoid graph, there exists a digraph D of which
G(7, 2) is its underlying graph such that M is a submonoid of End(D):

i. There exists a 3-outregular multiorientation D (with loops) of the graph
such that M ∼= { fi}i=0,...,13 ≤ End(D) where fi(e) = vi ∀vi ∈ V (Lemma
1.23). Moreover, if ⟨C⟩ = M, then M ∼= ⟨ f1, f2, f3⟩, where f j(e) = cj ∈
C = N(e) (Corollary 2.3).

24

3.1 The plan 25

ii. There exists a 3-outregular colored multiorientation Dcol (with loops) of
the graph such that M ∼= { fi}i=0,...,13 ≤ End(Dcol) where fi(e) = vi ∀vi ∈
V (Lemma 1.23). Moreover, if ⟨C⟩ = M, then M ∼= End(Dcol) (Lemma
1.19).

The search space is so vast that we focus on the case ⟨C⟩ = M, so from now
on we will assume that the connection set C is a generating set of M unless stated
otherwise. In conclusion, all these results and considerations induce two different
approaches for the computational search of M:

Approach 1: For each possible multiorientation of the graph without loops, for
each the candidates of neutral element e, for each way of adding
loops, compute End(D) and for each subset of 3 elements f1, f2, f3 ∈
End(D) such that N(e) = {c1, c2, c3} = { f1(e), f2(e), f3(e)} check if
G(7, 2) ∼= Cay(⟨c1, c2, c3⟩, {c1, c2, c3}).

Approach 2: For each possible multiorientation of the graph without loops, for
each the candidates of neutral element e, for each way of adding
loops, for each way of coloring the arcs, compute End(Dcol) and
check if G(7, 2) ∼= Cay(M, C) with M = { fi(e)| fi ∈ End(Dcol)} and
C = N(e).

Since these endomorphisms fi correspond to left multiplication with vi, they
can be seen as the rows of the multiplication table of M. When considering M =

{ fi}i=0,...,13 as a monoid, their order does not matter, but when considering them
as the rows of the multiplication table, they have to be put in the right order so
that fi is exactly the row i, since it sends e to vi.

Note that the characterization of colored digraphs that are monoid digraphs of
Theorem 1.37 is not viable to check on the computer, since determining whether
the vertex e is a propagating vertex could in principle need an infinite number
of steps, since there are an infinite number of possible paths between any pair of
vertices.

Finally, another theoretical approach would be to compute all monoids M of
N = 14 elements and check all the subsets C of 3 elements, and then check if
G(7, 2) ∼= Cay(M, C). But this is also not viable since the number of monoids
grows fast with N [13, https://oeis.org/A058129]. In fact, the total number of
nonisomorphic monoids of N = 14 elements is unknown. A lower bound to the
number of monoids of N elements is the number of semigroups of M = N − 1
elements, since you can always add a neutral element to obtain a monoid. In
this case, this lower bound is also unknown since the number of nonisomorphic
semigroups also grows fast with M [13, https://oeis.org/A027851].

https://oeis.org/A058129
https://oeis.org/A027851

26 Computational search: is G(7,2) a monoid graph?

The code is written in python. Although this programming language is slower
than other options, it allows us to use SageMath [15], which is a free open-source
mathematics software system that includes useful libraries to work with digraphs,
including the object class DiGraph() (class sage.graphs.digraph.DiGraph). This will
allow us to focus on the mathematical aspects of the code and the optimization of
the algorithms themselves.

The code can be found in https://github.com/ernestv98/TFG_Mat.git. Along
the following sections its structure is explained and some parts are shown in a bit
more detail.

3.2 Approach 1: digraph endomorphisms

3.2.1 Case A: C has no invertible elements

First of all, we want to create a file that contains a list of all the possible multi-
orientations of the graph G(7, 2), stored in a compact way.

The graph6 (g6) format is used to store undirected graphs as strings.

Example 3.1. The graph G(7, 2) [Figure 3.1] in g6 format is 'MhCKK@?GO`@A@Q?h?' .

3

2

4

5

6

01

8
7

13

12

11

10

9

Figure 3.1: Graph G(7, 2).

The digraph6 (dig6) format is used to store directed graphs as strings. It
allows antiparallel arcs, but it does not allow loops or parallel arcs.

Example 3.2. Consider the digraph D consisting on G(7, 2) but replacing each
edge with two antiparallel arcs [Figure 3.2]. The digraph D in dig6 format is
'MOoIA@OOIA@OOIA`?W@H?HGP@AGGP@Q?IO' .

https://github.com/ernestv98/TFG_Mat.git

3.2 Approach 1: digraph endomorphisms 27

3

2

4

5

6

01

8
7

13

12

11

10

9

Figure 3.2: Digraph D.

Since |C| = 3, we are interested in 3-outregular multiorientations with loops.
We are not considering loops yet, so we are interested in all the multiorientations
that have at most 3 outgoing arcs for each vertex: δ+(v) ≤ 3 ∀v ∈ V. Thus, in
principle there could be 15 ways to orient each edge [Figure 3.3].

Figure 3.3: Possible multiorientations of one edge up to outdegree 3.

But parallel arcs do not change the endomorphism monoid, which in the end
is what we are interested in, so we allow antiparallel arcs but not parallel arcs.

28 Computational search: is G(7,2) a monoid graph?

Then, each edge has only 3 possibilities: one direction, the other direction or both
directions [Figure 3.4].

Figure 3.4: Possible multiorientations of one edge up to outdegree 1.

This would lead to 321 ∼ 1011 multiorientations. Nevertheless, at the end some
of them represent isomorphic digraphs and we do not want to consider them.
The time complexity of determining whether two finite graphs are isomorphic is
unknown (graph isomorphism problem). The program Nauty [10] claims to be the
best known program up to date to tackle this question from a practical point of
view.

In conclusion, we need to compute all the multiorientations of the graph with-
out parallel arcs and suppressing isomorphic multiorientations. The function
directg from Nauty does exactly this. It requires as input the graph in format
g6 , which we obtain with SageMath, and then the function returns an output file

with all the multiorientations in format dig6 .
The resulting file contains 747197622 multiorientations. This is the total amount

of multiorientations that have G(7, 2) as their underlying graph and that have to
be analysed.

The next step is to filter these multiorientations and discard those that don’t
have a neutral element candidate e.

Remark 3.3. Properties of the neutral element e that we check on the code:

i. δ+(e) = 3

ii. δ−(e) = 0 (in general it can be 0 or 1, but we are in the case of no
invertible elements)

iii. Every vertex is reachable from e .

iv. From e there exists at least one endomorphism to every other vertex.

Before adding the loops, we can only check properties i, ii and iii, but not iv.
This is done by a straight-forward function there_is_e_candidate_G72() .

1 def everybody_reachable_from_e(d, e_candidate):
2 for v in d.vertices():

3.2 Approach 1: digraph endomorphisms 29

3 if d.distance(e_candidate, v) > d.order():
4 return False
5 return True
6

7 def there_is_e_candidate_G72(d):
8 for v in d.vertices():
9 if d.out_degree(v) == 3 and d.in_degree(v) == 0:

10 if everybody_reachable_from_e(d, v):
11 return True
12 return False

Then function filter_the_ors_G72() reads the file (line by line, because it is too
long) and consider that the multiorientation is valid if it has a neutral element
candidate.

1 def filter_the_ors_G72():
2 fin = open('G72_multiors.d6', 'r')
3 fout = open('G72_multiors_less_new.d6', 'w')
4 line = fin.readline()
5 cnt = 1
6 while line:
7 print(cnt, "of 747197622")
8 fixed_line = line[1:]
9 D = DiGraph(fixed_line, multiedges=True)

10 if there_is_e_candidate_G72(D):
11 fout.write(fixed_line)
12 line = fin.readline()
13 cnt += 1
14 fin.close()
15 fout.close()

This process takes several hours. Before filtering there are 747197622 multi-
orientations and after filtering there are 240088032 multiorientations, so with this
simple step we get a reduction of 68% of the initial data volume.

After this first filtering, everything else is done during the execution of the
main function (Figure 3.5).

Step (1) just consists on reading the file line by line. Step (2) is the following
function add_loops . We avoid repeated loops, since they don’t contribute to the
endomorphism monoid of the digraph. Vertices with outdegree 0 need a loop
and vertices with already outdegree 3 cannot have any loop. For vertices with
outdegree 1 or 2 both possibilities are possible, since the remaining outgoing arcs
could be parallel arcs to the existing ones or could be loops, so we try all the

30 Computational search: is G(7,2) a monoid graph?

(1) For each multiorientation

(2) For each way of adding loops

(3) For each neutral element candidate e

(4) Check if it is a monoid digraph

Figure 3.5: Structure of function MAIN_approach1()

possibilities.

1 def add_loops(D):
2 vertices_outdeg_1_2 = []
3 for v in D.vertices(sort=True):
4 if D.out_degree(v) == 1 or D.out_degree(v) == 2:
5 vertices_outdeg_1_2.append(v)
6 D_essential_loops = DiGraph(D,loops=True)
7 for v in D_essential_loops.vertices(sort=True):
8 if D_essential_loops.out_degree(v) == 0:
9 D_essential_loops.add_edge(v, v)

10 done = []
11 for V in powerset(vertices_outdeg_1_2):
12 if V not in done:
13 D_loops = D_essential_loops.copy()
14 for v in V:
15 D_loops.add_edge(v, v)
16 yield D_loops
17 for phi in D.automorphism_group().list():
18 phi_of_V = im_aut(phi,V)
19 if phi_of_V not in done:
20 done.append(phi_of_V)

Step (3) is a function find_e_candidates_G72_loops() that now checks all the
properties that e must fulfill stated in Remark 3.3.

1 def exist_endos_from_e(d, e):
2 n = d.order()
3 f = [0 for _ in range(n)]

3.2 Approach 1: digraph endomorphisms 31

4 for v in range(n):
5 if v != e:
6 f[e] = v
7 endos_list = digraph_endos(d, e, f)
8 good_endos_list = []
9 for f_i in endos_list:

10 if not outdeg_bad(d, f_i):
11 good_endos_list.append(f_i)
12 if not good_endos_list:
13 return False
14 return True
15

16 def find_e_candidates_G72_loops(d):
17 candidates = []
18 for v in d.vertices(sort=False):
19 if v not in candidates:
20 if d.out_degree(v) == 3 and d.in_degree(v) == 0:
21 if everybody_reachable_from_e(d, v):
22 if exist_endos_from_e(d, v):
23 candidates.append(v)
24 return candidates

Finally, step (4) is the core of the algorithm, and is a function with the following
structure (Figure 3.6).

The endomorphisms are computed by a recursive function using yield and
yield from in order to compute one endomorphism at a time when needed.

1 def digraph_endos(G, e, f, v=0):
2 n = G.order()
3 if v == n:
4 if not outdeg_bad(G,f):
5 if not_invertible(G,f):
6 yield f
7 else:
8 if v == e:
9 yield from digraph_endos_1(G, e, f, v+1)

10 else:
11 for u in G.vertices(sort=True):
12 if u >= f[v]:
13 u_is_bad = False
14 for w in G.neighbors_out(v):
15 if w < v and not G.has_edge(u, f[w]):
16 u_is_bad = True

32 Computational search: is G(7,2) a monoid graph?

Compute C = N(e) = {c1, c2, c3}

Compute all the possible endomorphisms f1 that sent e to c1

For each f1 candidate

Check that f1 is good so far

Compute all the possible endomorphisms f2 that sent e to c2

For each f2 candidate

Check that f1 and f2 are good so far

Compute all the possible endomorphisms f3 that sent e to c3

For each f3 candidate

Check that f1, f2 and f3 are good

Check that G(7, 2) ∼= Cay(⟨ f1, f2, f3⟩, { f1, f2, f3})

Figure 3.6: Structure of the function check_monoid()

17 break
18 if not u_is_bad:
19 for w in G.neighbors_in(v):
20 if w < v and not G.has_edge(f[w], u):
21 u_is_bad = True
22 break
23 if not u_is_bad:
24 f[v] = u
25 yield from digraph_endos_1(G, e, f, v+1)
26 f[v] = 0

At each step, when checking if an endomorphism is good, we first check that its
image does not have outgoing edges (Lemma 1.25). We also compute the closure of

3.2 Approach 1: digraph endomorphisms 33

the endomorphisms we have so far to see how many new endomorphisms we get
by combining the existing ones, and check that we do not get more than N = 14
endomorphisms.

The closure of a set of endomorphisms is computed using a recursive function
that stops either when the closure is completed or when it finds more than 14
endomorphisms, since we are looking for a monoid of exactly 14 elements.

1 def closure(S_original, top_s=0, m=0):
2 S = S_original.copy()
3 k = len(S)
4 n = len(S[0])
5 if top_s == 0:
6 top_s = n
7 if k > top_s:
8 S.append("...")
9 return S

10 todo = []
11 if m == 0:
12 for i in range(k):
13 todo.append(list(range(k)))
14 if m != 0:
15 for i in range(k-m):
16 todo.append(list(range(k-m, k)))
17 for i in range(k-m, k):
18 todo.append(list(range(k)))
19 new_k = k
20 for i in range(k):
21 for j in todo[i]:
22 h = comp(S[i], S[j])
23 new_endo = True
24 for l in range(new_k):
25 if h == S[l]:
26 new_endo = False
27 break
28 if new_endo:
29 S.append(h)
30 new_k += 1
31 if (new_k > top_s):
32 S.append("...")
33 return S
34 if new_k == k:
35 return S
36 else:

34 Computational search: is G(7,2) a monoid graph?

37 return closure(S, top_s, new_k-k)

At this point of the check_monoid() function, after computing the closure of the
endomorphisms we have so far, we also discard the endomorphisms if on their
corresponding partial multiplication table every column has a repetition, since
then there would not be a right neutral element. We finally compute the Cayley
graph of the endomorphisms we have so far with the corresponding elements of
the connection set and check that its underlying graph is isomorphic to a subgraph
of G(7, 2). All these intermediate checks make the program faster, since most of
the times they are triggered way before computing the whole monoid.

At the last step, we actually check that we have found exactly 14 endomor-
phisms and that G(7, 2) ∼= Cay(M, C). When the Cayley graph Cay(M, C) is com-
puted, we also associate each endomorphism to its corresponding vertex using the
function set_vertex() which allows us to associate any object to a graph vertex.
This way we are able to recover M afterwards when needed.

1 def cayley_graph(M, C, directed=False):
2 n = len(M)
3 order_of_C = len(C)
4 if directed:
5 G = DiGraph(loops=True)
6 if not directed:
7 G = Graph(loops=True)
8 for i in range(n):
9 G.add_vertex(i)

10 G.set_vertex(i,M[i])
11 for i in range(n):
12 for j in C:
13 x = comp(M[i], M[j])
14 for m in range(n):
15 if M[m] == x:
16 G.add_edge(i, m)
17 break
18 return G
19

20 def monoidfromcayley(G):
21 return [G.get_vertex(i) for i in range(G.order())]

Despite all the attempts to make the program faster by discarding bad endo-
morphisms as soon as possible, the execution of the code does not finish all the
computations.

3.2 Approach 1: digraph endomorphisms 35

Executed the program for 125 lines of the input file, distributed all along the
file, and obtained an average computation time per line of about 1 hour and 20
minutes per line (using CPU cores of 2.0GHz), with some lines being computed
in a few minutes and other lines lasting for several days. Since the file contains
240088032 lines to be analyzed, the estimated total computation time is of about
40000 years. The sample is small so this is a very rough estimation, just to grasp
the order of magnitude.

3.2.2 Case B: C has exactly one involution

Now we are under the hypothesis that C has one invertible element c of order
2. Then ⟨c⟩ is a group, so Cay(⟨c⟩, {c}) is a regular (Corollary 1.21) and connected
(Proposition 1.22) 1-outregular subdigraph of Cay(M, C), so it must be a cycle.
Since it is of order 2, Cay(⟨c⟩, {c}) consists on two antiparallel arcs between vertex
e and vertex c.

The endomorphism λc is an involution, so λc is an automorphism of the graph
of order 2 that inverts the edge {e, c}. We know that Aut(G(7, 2)) = D7·2 (Propo-
sition 2.6), so λc has to be a reflection (Figure 3.7).

3

2

4

5

6

01

8
7

13

11

10

9

12

Figure 3.7: The reflection λc, marked with a dashed line.

The fact that Aut(G(7, 2)) = D7·2 also tells us that there is no automorphism
that brings the inner vertices out and viceversa, so we have two possible locations
of the edge {e, c} (Figure 3.8).

Since λc is an automorphism of the colored graph, orientations and colors must
be preserved by this reflection. In particular, this implies that the vertices located
on the symmetry axis can’t have outgoing arcs leaving the axis. This is because if

36 Computational search: is G(7,2) a monoid graph?

3

2

4

5

6

01

8
7

13

11

10

9

0 = e1 = c

12

3

2

4

5

6

01

8
7

13

11

10

9

12 = e

10 = c

12

Figure 3.8: Two possible locations of the edge (e, c) when c is an involution. The
reflection λc is marked with a dashed line.

an arc of one color leaves the axis, there must be a second symmetrical outgoing
arc of the same color from the same vertex, but this cannot happen because any
vertex only has one outgoing arc of each color by definition.

In conclusion, for each choice of the location of e there are some arcs that are
mandatory, some arcs that are forbidden and the rest is free, meaning that can be
oriented in one direction, the other or both. In the following image (Figure 3.9) we
represent the two possible partial orientations that we determined. The fixed arcs
are represented in red and the free edges in black.

First of all, for each partial orientation we create a file with all the possible
orientations it allows, by trying all the possibilities for the free edges that lead to
a symmetrical multiorientation.

For the first partial orientation we find 1248 possible symmetrical multiorien-
tations, and for the second partial orientation we find 528 possibilities, so in total
there are only 1776 multiorientations to be analyzed.

Then, the main function has a similar structure to the main function in the
previous section, but now we already know where the neutral element is in each
case, since we build the multiorientations from scratch (3.10).

Step (3) is essentially the same function than in the previous section, but with-
out the intermediate checks that are specific for the case of no invertible elements.

This function does finish all the computations in about 6 hours. The result is
that any of these symmetric digraphs is a monoid digraph:

3.2 Approach 1: digraph endomorphisms 37

3

2

4

5

6

01

8
7

13

11

10

9

12

1 = c 0 = e

3

2

4

5

6

01

8
7

13

11

10

9

12

10 = c

12 = e

Figure 3.9: The two possible partial orientations determined by the symmetry.

(1) For each symmetrical multiorientation

(2) For each way of adding loops symmetrically

(3) Check if it is a monoid digraph

Figure 3.10: Structure of function MAIN_approach1_INV()

Proposition 3.4. If G(7, 2) ∼= Cay(M, C) with ⟨C⟩ = M, then C does not have any
invertible elements.

Proof. We know by Lemma 2.19 and Lemma 2.20 that at most C could have one
invertible element and it is an involution. Since Aut(G(7, 2)) ∼= D7·2 by Proposition
2.6, this involution has to be a reflection. As explained along this section, using
computation one can check all the possible multiorientations with loops that are
compatible with the reflection, and get that none of these possibilities correspond
to a monoid digraph with ⟨C⟩ = M.

38 Computational search: is G(7,2) a monoid graph?

3.3 Approach 2: colored digraph endomorphisms

3.3.1 Case A: C has no invertible elements

The starting point is common with the first approach. But now, for every
looped multiorientation, we try all the possible ways to add colors to it, in order
to compute directly the endomorphisms monoid of the colored multidigraphs. As
already said, the motivation to do such an expensive extra step is that if G(7, 2) ∼=
Cay(M, C) with ⟨C⟩ = M then exists one of this colored multidigraphs Dcol such
that End(Dcol) isomorphic to the monoid M we are looking for. So the structure
of the main function for this section is the following (Figure 3.11).

(1) For each multiorientation

(2) For each way of adding loops

(3) For each e candidate

(4) For each way of adding colors

(5) Check if it is a monoid colored digraph

Figure 3.11: Structure of function MAIN_approach2()

Steps (1), (2) and (3) are exactly the same as they were in the first approach.
The only difference is that then we weren’t considering parallel arcs but now we
have to consider them because they have different colors. So after these 3 steps, for
every vertex v if δ+(v) ̸= 3 we have to repeat the existing arcs in all the possible
ways to get δ+(v) = 3, in order to fill the digraph until it is exactly 3-outregular.

One option is to first fill the digraph and then add colors to it. Another option
is doing both things together in one single function, so that we add the repeated
arcs at the very last moment before coloring them. We will be discarding bad
partial colorations before finishing them, so we prefer the second option since it
avoids unnecessary computations.

1 def change_colors_v(d, v, colors):
2 k = 3
3 edges = edges_out_v(d, v)

3.3 Approach 2: colored digraph endomorphisms 39

4 d.delete_edges(edges)
5 for i in range(k):
6 edges[i][2] = colors[i]
7 d.add_edges(edges)
8

9 def add_colors(d, e, D_with_colors=DiGraph(multiedges=True,loops=True), v=0):
10 import itertools
11 n = d.order()
12 k = 3
13 colors = list(range(k))
14 if D_with_colors == DiGraph(multiedges=True,loops=True):
15 D_with_colors = d.copy()
16 if not cycles_good(D_with_colors, e):
17 yield None
18 else:
19 if v == n:
20 yield D_with_colors
21 else:
22 if v == e:
23 change_colors_v(D_with_colors, v, colors)
24 yield from add_colors(d, e, D_with_colors, v+1)
25 else:
26 edges = edges_out_v(D_with_colors, v)
27 outdeg = len(edges)
28 if outdeg != D_with_colors.out_degree(v):
29 print("ERROR 0 (add_colors)")
30 if outdeg == 1:
31 edge = edges[0]
32 D_with_colors.add_edges([edge, edge])
33 yield from add_colors(d, e, D_with_colors, v)
34 elif outdeg == 2:
35 edge1 = edges[0]
36 edge2 = edges[1]
37 D_with_colors_1 = D_with_colors.copy()
38 D_with_colors_1.add_edge(edge1)
39 yield from add_colors(d, e, D_with_colors_1, v)
40 D_with_colors_2 = D_with_colors.copy()
41 D_with_colors_2.add_edge(edge2)
42 yield from add_colors(d, e, D_with_colors_2, v)
43 elif outdeg == 3:
44 parallel_edges = parallel_edges_v(D_with_colors, v)
45 if parallel_edges == [0,1,2]:
46 change_colors_v(D_with_colors, v, colors)
47 yield from add_colors(d, e, D_with_colors, v+1)

40 Computational search: is G(7,2) a monoid graph?

48 elif parallel_edges == [0,1]:
49 list_of_possible_colors_1 = [[0,1,2], [0,2,1], [1,2,0]]
50 for possible_colors in list_of_possible_colors_1:
51 change_colors_v(D_with_colors, v, possible_colors)
52 yield from add_colors(d, e, D_with_colors, v+1)
53 elif parallel_edges == [1,2]:
54 list_of_possible_colors_2 = [[0,1,2], [1,0,2], [2,0,1]]
55 for possible_colors in list_of_possible_colors_2:
56 change_colors_v(D_with_colors, v, possible_colors)
57 yield from add_colors(d, e, D_with_colors, v+1)
58 elif parallel_edges == []:
59 for perm_colors in itertools.permutations(colors):
60 change_colors_v(D_with_colors, v, perm_colors)
61 yield from add_colors(d, e, D_with_colors, v+1)
62 else:
63 print("ERROR 1 (add_colors)")
64 exit()
65 else:
66 print("ERROR 2 (add_colors)")
67 exit()

Each time the function calls itself, it checks that the partial coloration is good
by checking the cycles of the subdigraphs of each color. It uses that each colored
digraph is 1-outregular, and that all its connected components have shorter cycles
than the component of the neutral element e and the length of their branch devides
the length of the branch of the component of the neutral element e (Theorem 1.38).

Finally, step (4) of the main function is to check if the colored multidigraph is
a colored monoid digraph of the graph. The function has a quite simple structure
(Figure 3.12).

Compute C = N(e) = {c1, c2, c3}

Compute all the endomorphisms of the colored digraph M = End(Dcol)

If |M| = 14, check that G(7, 2) ∼= Cay(M, C)

Figure 3.12: Structure of the function check_monoid()

The endomorphisms are computed in the same way as for looped multidi-
graphs, but now they are also require to respect the colors.

Again, the main function does not finish checking all the possibilities, since

3.4 If C is not a generating set 41

computing all possible colorations is very expensive.
For this approach we only had the time to execute the program for 25 lines

of the input file, and compared with the performance of the first approach on
the same lines. The second approach took on average twice as long as the first
approach to execute the same lines, so the estimated total computation time is of
about 80000 years.

3.3.2 Case B: C has exactly one involution

In this case we follow the same procedure of the first approach, starting with
the two possible symmetrical partial orientations and computing all the possible
looped multidigraphs they define. Afterwards, we add colors symmetrically be-
fore checking if it is a monoid graphs.

The main function for this case is the following (3.13).

(1) For each symmetrical multiorientation

(2) For each symmetrical way of adding loops

(3) For each symmetrical coloration

(4) Check if it is a monoid colored digraph

Figure 3.13: Structure of function MAIN_approach1_INV()

This function does finish all the computations in about 3 hours, and returns the
same result that the first approach: that none of the possible symmetrical colored
multiorientations of G(7, 2) are Cayley colored graphs of a monoid.

3.4 If C is not a generating set

For the first approach, if we drop the hypothesis ⟨C⟩ = M we cannot use
anymore that M ∼= ⟨ f1, f2, f3⟩, where f j(e) = cj ∈ C = N(e), but instead we
have to compute all the 14 endomorphisms M ∼= { fi}i=0,...,13 ≤ End(D), where
fi(e) = vi ∀vi ∈ V, each time. This makes it inconvenient to adapt.

For the second approach, if we drop the hypothesis ⟨C⟩ = M we cannot check
that M ∼= End(Dcol) but instead M ≤ End(Dcol). This makes this approach easier
to adapt to the case of C not being a generating set of M.

42 Computational search: is G(7,2) a monoid graph?

We adapted the algorithm of the second approach by trying all submonoids
M of size 14 of End(Dcol), and we also adapted the filtering of the orientations
demanding that not everybody is reachable from e this time.

With this small changes we were able test the case where C has an involution
but without the hypothesis ⟨C⟩ = M. This function does finish all the computa-
tions in about 3 minutes, and returns the same negative result: none of the pos-
sibilities corresponds to a monoid digraph. Therefore, we proved the following
result.

Proposition 3.5. If G(7, 2) ∼= Cay(M, C), then C does not have any invertible elements.

Proof. As explained along this section and chapter, using computation one can
check all the possible colored multiorientations with loops that are compatible
with the reflection, and get that none of these possibilities correspond to a monoid
colored digraph.

Chapter 4

Conclusions

We studied the properties of monoid graphs in general, and also the particular
attributes of Generalized Petersen Graphs that are monoid graphs. We focused
on the graph G(7, 2), and the properties that a monoid M and a connection set C
need to fulfill in order for G(7, 2) to be isomorphic to Cay(M, C).

Based on the theoretical results, we built two different algorithms to test if
G(7, 2) is a monoid graph with monoid M and connection set C, under the hy-
pothesis that ⟨C⟩ = M. If C has an involution, both approaches finish computing
in a relatively short period of time and give the same negative result: they don’t
find any monoid for G(7, 2). In this case, Approach 2 is faster than Approach 1.
On the other hand, if C has no invertible elements, none of the algorithms fin-
ish. With the reduced sample that could be tested we estimated that, in this case,
Approach 1 would be twice as fast as Approach 2, but due to the high uncer-
tainty of the estimations we can only conclude that they are of the same order of
magnitude. The results are summarized in the following table (Table 4.1).

Case Approach Computation time Result

C has no invertible elements
1 ∼ 4 · 104 years -
2 ∼ 8 · 104 years -

C has exactly one involution
1 6 h False
2 3 h False

Table 4.1: Computation results under the hypothesis ⟨C⟩ = M.

We adapted the second algorithm to test the case that C has an involution
under the hypothesis that ⟨C⟩ ̸= M. The results are displayed in the following
table (Table 4.2).

43

44 Conclusions

Case Approach Computation time Result
C has exactly one involution 2 3 min False

Table 4.2: Computation results under the hypothesis ⟨C⟩ ̸= M.

All together, we could draw two main conclusions:

1. We provided a computer-assisted proof that if G(7, 2) is a monoid graph
with monoid M and connection set C, then C cannot have any invertible
element.

2. We determined that, if C does not have any invertible element, the lack of
symmetries makes it infeasible to check if G(7, 2) is a monoid graph using
the computer. New theoretical results are needed to either discard this case
or to set further restrictions to the multiorientations of G(7, 2) that are really
needed to be considered.

Bibliography

[1] Laszlo Babai, Embedding graphs in Cayley graphs, Problèmes combinatoires et
théorie des graphes, Orsay 1976, Colloq. int. CNRS No. 260 (1978), 13–15.

[2] Didier Caucal, Cayley graphs of basic algebraic structures, Discrete Mathematics
and Theoretical Computer Science 21 (2020), no. 1, id/no. 16, 20.

[3] A. Cayley, Desiderata and suggestions. No. 1: The theory of groups. No. 2: Graphical
representation., American Journal of Mathematics 1 (1878), 50–52.

[4] H. S. M. Coxeter, Self-dual configurations and regular graphs, Bulletin of the
American Mathematical Society 56 (1950), 413–455.

[5] Roberto Frucht, Jack E. Graver, and Mark E. Watkins, The groups of the gener-
alized Petersen graphs, Proceedings of the Cambridge Philosophical Society 70
(1971), 211–218.

[6] Ignacio García-Marco and Kolja Knauer, Beyond symmetry in generalized pe-
tersen graphs, 2022.

[7] Chris Godsil and Gordon Royle, Algebraic graph theory, Graduate Texts in
Mathematics, vol. 207, New York, NY: Springer, 2001.

[8] Kolja Knauer and Gil Puig i Surroca, On monoid graphs, 2021.

[9] Ulrich Knauer and Kolja Knauer, Algebraic graph theory. Morphisms, monoids
and matrices, 2nd revised and extended edition ed., De Gruyter Studies in
Mathematics, vol. 41, Berlin: De Gruyter, 2019.

[10] Brendan D. McKay and Adolfo Piperno, Practical graph isomorphism. II., Jour-
nal of Symbolic Computation 60 (2014), 94–112.

[11] Roman Nedela and Martin Škoviera, Which generalized Petersen graphs are Cay-
ley graphs?, Journal of Graph Theory 19 (1995), no. 1, 1–11.

45

46 BIBLIOGRAPHY

[12] Gert Sabidussi, On a class of fixed-point-free graphs, Proceedings of the Ameri-
can Mathematical Society 9 (1958), 800–804.

[13] Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Notices of the
American Mathematical Society 65 (2018), no. 9, 1062–1074.

[14] Alice Steimle and William Staton, The isomorphism classes of the generalized
Petersen graphs, Discrete Mathematics 309 (2009), no. 1, 231–237.

[15] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version
9.8), 2023, https://www.sagemath.org.

[16] Mark E. Watkins, A theorem on Tait colorings with an application to the generalized
Petersen graphs, Proof techniques in graph theory: proceedings of the Second
Ann Arbor Graph Theory Conference (1969), 171–177.

[17] Bohdan Zelinka, Graphs of semigroups, Časopis Pro Pěstování Matematiky 106
(1981), 407–408.

	Introduction
	Monoid graphs
	Cayley graphs
	The endomorphism monoid
	Properties of monoid graphs
	Simple monoid graphs
	Monoid digraphs
	Monoid colored digraphs

	Generalized Petersen Graphs G(n,k)
	Generalized Petersen Graphs
	Monoids and Generalized Petersen Graphs
	G(7,2)

	Computational search: is G(7,2) a monoid graph?
	The plan
	Approach 1: digraph endomorphisms
	Case A: C has no invertible elements
	Case B: C has exactly one involution

	Approach 2: colored digraph endomorphisms
	Case A: C has no invertible elements
	Case B: C has exactly one involution

	If C is not a generating set

	Conclusions
	Bibliography

