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Abstract

In this work, a new interdisciplinary approach is presented to study the dimen-
sionality of complex networks using techniques from topological data analysis
(TDA) through a filtration of graphs by vertex degrees. For each of two real-world
complex networks, 30 surrogate graphs were generated in each dimension from
1 to 10, and several TDA descriptors of graphs were compared with the corre-
sponding values for the real networks in order to estimate their latent dimension.
Total persistence, Wasserstein distance and scale-space kernel dissimilarity, among
other descriptors, yielded consistent outcomes. The results of this study suggest
that TDA is sensible to the latent dimension of complex networks, and provide
conclusions consistent with those obtained in previous studies.

Resum

En aquest treball es presenta una nova metodologia interdisciplinària per estu-
diar la dimensionalitat de les xarxes complexes utilitzant tècniques d’anàlisi de
dades topològica (TDA) mitjançant una filtració de grafs segons els graus dels
vèrtexs. Per a cadascuna de les dues xarxes estudiades, es van generar 30 grafs
sintètics en cada dimensió d’1 a 10, i s’han comparat diversos descriptors de TDA
de grafs amb els valors corresponents de les xarxes reals per tal d’estimar-ne la
dimensió latent. La persistència total, la distància de Wasserstein i la dissimilaritat
de nuclis, entre d’altres descriptors, han donat resultats consistents. Els resultats
d’aquest estudi suggereixen que la TDA és sensible a la dimensió latent de les
xarxes complexes i proporcionen conclusions consistents amb les obtingudes en
estudis anteriors.

2020 Mathematics Subject Classification. 55N31, 05C82, 62R40
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Introduction v

Introduction

0.1 The problem of dimension

The problem of dimension, that is, identifying the dimensionality of the relevant
space associated with a given phenomenon, is common in many disciplines of the
natural sciences. For example, in statistical physics and string theory, the num-
ber of dimensions is important for understanding critical properties and particle
interactions. Other illustrative examples can be computer science and network
science, where high-dimensional data is often simplified by reducing redundancy
and finding patterns in a lower-dimensional space. However, defining similarity
distances and determining the appropriate number of dimensions can be challeng-
ing. This is why, although it is not an easy task, identifying the dimensionality of
a complex phenomenon is important for understanding and simplifying complex
data and the interactions therein.

In [1], P. Almagro, M. Boguñá and M. A. Serrano introduced a model and a
method to infer the dimensionality of the latent hyperbolic space underlying the
connectivity of a complex network. It is a model-driven approach and it assumes
that real-world networks are well described by the geometric SD/HD+1 model
(see Section 1.1.2), in D dimensions. It is a generalization of the S1/H2 model,
which is based on fundamental principles to describe the observed connectivity of
unweighted and undirected networks, and it is described in detail in the first part
of this work.

It is remarkable that the structure of a network can reveal its intrinsic dimen-
sionality, since it is based on a latent space where nodes are more likely to be
connected if they are closer to each other. In [1] the authors propose to mea-
sure dimensionality by analyzing the frequencies of chordless cycles of different
lengths in the network. These are closed paths in the network that do not have any
edges connecting nodes within the cycle. Their frequencies can provide insights
into the network’s underlying structure. We call surrogates the synthetic graphs
generated by the SD model for each D, imitating the properties of real-world net-
works. Surrogates can be used to test in which dimension the density of cycles is
more similar to the one from the original network.

Persistent homology of complex networks (see Section 1.2) also focuses on
cycles to obtain geometrical information from data. Therefore, in the current work,
a further step of abstraction is taken to give a response on whether topological data
analysis (TDA) can shed any light on the dimensionality problem, by studying
cycles of surrogates. This work incorporates new ideas by establishing connections
between the fields of persistent homology and complex networks. It explores an
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uncharted territory by means of TDA techniques. This interdisciplinary approach
provides fresh insights into the nature of complex networks and their underlying
structures. By integrating methodologies from persistent homology and complex
networks, this study not only contributes to both disciplines but also introduces
novel ideas that could inspire further investigations in both areas.

0.2 Objectives

This work aims to acquire a solid background of complex networks and of per-
sistent homology, for a further application of this knowledge to the problem of
dimensionality. It is divided in two parts; the first one contains theoretical prelim-
inary concepts. Those are used in the second part, which is more computational.

The main goal of this work is to seek for topological descriptors, in the con-
text of persistent homology, that reveal the characteristics of the complex networks
studied in [1]. To achieve this, we propose a suitable filtration for the persistent ho-
mology process, as well as appropriate dissimilarity measures between persistence
diagrams. In the end, the results are compared with those obtained in [1]. The
ultimate objective is to determine whether TDA is able to detect patterns caused
by dimension differences in real-world networks.

0.3 Hypothesis

We work under the hypothesis that persistent homology should be able to detect
the dimension of a complex network, provided that the dimension in which we
work affects the probability of connection between nodes (see Equation 1.12 in
Section 1.1.2) and therefore the distribution of cycles.

We propose that the best filtration (see Section 1.2.4) to analyse complex net-
works should be the one based on the degree of their nodes. Given the nature
of these networks and their surrogates (see Section 1.1.2), the number of vertices
gives little information. Instead, how edges are combined (and which cycles they
produce) provides relevant information about the dimension of the network. This
is suggested in [1], where the dimension is found to be related to the density of
cycles. Therefore, it is strongly believed that a filtration of graphs based on the
degree of nodes can be appropriate to treat this problem.

Moreover, when using TDA techniques, usually a study is performed in homo-
logical dimensions 0 and 1 (see Section 1.2.4). In this work, a hypothesis is made
that H1 should give more relevant information than H0, since H1 focuses on the
study of cycles. Using shortest-path distance in graphs and the corresponding
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Vietoris-Rips complexes is not suitable for this kind of study due to the small-
world phenomenon in complex networks (see Section 1.1.1).

0.4 The origins of this work

This research is framed in the context of a double bachelor degree, in Mathematics
and Physics. A global analysis of the problem is pretended to be done from
a mathematical point of view as well as from the physics perspective. That is
why, further from the theoretical understanding of complex networks, persistent
homology and graph theory, an experimental part is performed in the second part
of this work in order to put in practice the acquired skills. Therewith, another
perspective is added: the programming one, combining data analysis techniques
with conceptual knowledge.

Very few articles in the literature [3, 4] combine the study of complex net-
works with TDA. However, to our knowledge, this is the first study attempting
to estimate the dimensionality of complex networks using persistence descriptors
of graphs. The methodological novelties in this work are the choice of a degree-
based filtration and the selection of descriptors that best capture the distribution
of cycles of the real-world networks on which our analysis focuses.

0.5 Work structure

This work is structured as follows. In Chapter 1 some preliminary concepts are
introduced. In Section 1.1 complex networks are described, starting with an in-
troduction in Section 1.1.1. In Section 1.1.2 a detailed description of the geometric
model is provided. An explanation is given for the S1 model, the H2 model and
the generalization to D dimensions with the SD model. In Section 1.2 an overview
to persistent homology in graph learning is given. Section 1.2.1 starts with some
basic definitions from graph theory, and then in Section 1.2.2 some topological
features of graphs are defined. Euler’s characteristic and the Betti numbers are in-
troduced. Then, in Section 1.2.3 the basic concepts of simplicial homology are
reviewed. Simplicial complexes and the Vietoris-Rips complex are defined. Further,
in Section 1.2.4 the concepts of filtration, persistent homology group, persistence dia-
gram and persistence barcode are defined, followed, in Section 1.2.5, by a series of
persistence descriptors and measures of distance between diagrams: the bottleneck
distance, the Wasserstein distance, total persistence, entropy, landscapes and persistence
images. A small introduction to kernel theory is given in Section 1.2.6. Section 1.2.7
defines the concept of extended persistence from a theoretical point of view. This
section is ended with an illustrative example of how extended persistence has
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been adapted for the purposes of this research, with a degree-based filtration.
In the end of this chapter, a brief introduction to heat kernel signatures, using the
normalized graph Laplacian is offered in Section 1.2.8.

In Chapter 2 a method to solve the problem of dimension is proposed and
implemented using TDA techniques. Code has been programmed in Python to
analyse the data, implementing resources from the Gudhi library. At the begin-
ning of this chapter, in Section 2.1, the methods implemented in [1] to solve the
problem of dimension are discussed. In Section 2.2 different approaches to solve
the problem are analysed from the TDA perspective. Section 2.2.1 describes the
data that is being analysed in this work. Then, Sections 2.2.2 and 2.2.4 study the
possibility to infer a metric by studying the probability matrix from the model
that generates the surrogates, as well as the shortest path distance. In Section 2.2.3
the relation between Euler’s characteristic and the dimension D is studied in de-
tail. And in Section 2.2.5 a filtration based on the degree of vertices is described
and implemented. Two real-world networks are studied, and 30 surrogates are
generated for each network and dimension using the SD model. Some topological
descriptors are used to compare each of the surrogates with the original network.
Graphical results are drawn and discussed also in Section 2.2.5. In the end, a study
is done using graph theory to detect the dimension of networks. The results are
shown in Section 2.3.

Finally, in Chapter 3 this research is concluded with an overview on the present
work and an outlook of new research lines that could derive from this one. All the
figures and plots that are not referenced throughout this work have been done by
the author, in the majority of the cases using Python. Two annexes are adjoined at
the end. Annex 3.1 contains 60 persistence diagrams and 60 extended persistence
diagrams of three example surrogates for each dimension D ∈ {1, . . . , 10} of the
CElegans-C and Human1 networks. In Annex 3.2 the complete code in Python
elaborated to analyse the data is given.



Chapter 1

Preliminary concepts

1.1 Complex networks

1.1.1 Introduction to complex networks

Many real complex networks are natural geometric objects and can be mapped
into hidden low-dimensional metric spaces with hyperbolic geometry, where dis-
tances determine the likelihood of the interactions and encode the different intrin-
sic attributes determining how similar the elements of the system are. Network
geometry has become one of the fundamental areas within the field of network
science devoted to the discovery and modeling of nontrivial geometric properties
of complex networks.

Complex networks typically have been studied as graphs where elements are
represented as nodes and their interactions as links. Graphs of real networks,
though, are not regular lattices nor are they completely random. The most im-
portant properties that we find are the small-world phenomenon, connecting every
pair of nodes in a network, on average, by a small number of intermediate links;
scale-free distributions of the number of connections per node (degree), usually
being a power-law of the form P(k) ∼ k−γ with γ ∈ [2, 3]; heterogeneity and the
presence of many triangles, that is, clustering [5].

It can be thought that, because of the small-world effect, every pair of nodes
is connected in a few steps and, therefore, the system lacks a metric structure
defined. It is true that in this type of network, the distribution of shortest path
lengths among pairs of nodes is sharply peaked around its average. Therefore,
the minimum distance between two nodes is almost the same for every pair. For
this reason, complex networks are often considered difficult to map. Neverthe-
less, some networks are embedded in metric spaces, like airport networks, trading
routes, neural networks, etc. In this work we will take the particular example of

1
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connectomes. This is, several neural networks representing an organism’s ner-
vous system, made up of neurons (nodes) which communicate through synapses
(links). A connectome is constructed by tracing the neuron in a nervous system
and mapping where neurons are connected through synapses.

Taking everything stated before into consideration, in [5] a model was devel-
oped to embed complex networks in hidden metric space models with an underlying
hyperbolic geometry. In this hidden metric space, the probability of connection be-
tween two nodes depends on their distance in this space, and combines popularity
and similarity dimensions of the nodes, such that more popular and similar nodes
are more likely to interact. This model is able to reproduce universal features
observed in real-world systems, such as the small-world effect, scale-free degree
distributions or clustering, among others.

This model assumes that there exists some similarity between nodes, and the
fact that geometry is an appropriate mathematical formalism. Another keystone is
that clustering, or the number of triangles, can be considered as a consequence of
the triangular inequality. Conferring, therefore, a connection between the topology
of the network and the geometry of the underlying metric space.

In order to develop a model for these networks, the main difficulties arise as
a consequence of the small-world effect. Since the distance between two nodes
grows with d ∼ log N, where N is the number of nodes, this implies an expo-
nential expansion of space, meaning that the number of nodes within a disk of a
certain radius grows exponentially with the radius: N ∼ ed. From here an under-
lying hyperbolic geometry arises. It can be explained, though, with the networks
being heterogeneous; since some nodes have high degree, and the others very low,
nodes can be organized in such a way that the network has a tree structure [2].

1.1.2 Geometric model

Many real networks, indeed, share the hyperbolic space as their hidden metric
space. It is the case of Internet, metabolic networks, trading maps or human brain
structures. There are two presentations of the hyperbolic space: as the hyperbolic
plane H2, usually with the Poincaré disk representation, or as its quasi-isomorphic
version, the S1 model, which can then be generalized to the SD model. This quasi-
isomorphism allows us to use both models, depending on the particular applica-
tion. The S1 model is convenient for theory development, analytical calculations
or implementation of embedding techniques. Whereas the H2 version is best for
visualization purposes or analyzing navigation properties. An interesting physical
interpretation is that this model corresponds to an entropy-maximizing probabilis-
tic mixture of grand canonical network ensembles. Here, links can be thought of
as non-interacting fermions whose energies depend on distances [5].
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The S1 model

In the S1 model, the hidden metric space is a circle of radius R = N/2π, being
N the number of nodes. Without loss of generality, this sets density to 1. Every
node i is defined by two variables: a hidden degree κi, related to its popularity, and
an angular position θi. The probability of connection between nodes has to increase
with the product of hidden degrees, and decrease as long as two nodes are far
from each other. It is said that the probability of connection follows a gravity
law, in which similar nodes are angularly closer and, in consequence, probably
connected. In this way, two non similar nodes will only be likely to be connected
if they have high popularity [5].

Specifically, nodes i and j are connected with probability

pij =
1

1 +
(

dij

µκiκk

)β
(1.1)

where β controls the level of clustering of the network, dij is the angular distance
between nodes i and j and µ controls the average degree. For β < 1, networks
are unclustered in the infinite size limit, and for β > 1 we obtain networks with
finite clustering in the thermodynamic limit. 1 Thus, there is a structural phase
transition for β = 1. In [6] it is proved that Eq. (1.1) is the only possible choice for
the connection probability that creates maximally random, clustered, small-world
and heterogeneous networks, without two-point hidden degree correlations, cor-
responding, indeed, to the Fermi-Dirac form.

One can think of a simple algorithm to generate graphs from the S1 model,
with uncorrelated hidden degrees, angular positions homogeneously distributed,
and working in the N ≫ 1 thermodynamic limit. First, we fix the number of
nodes, β > 1, and the target average degree ⟨k⟩. Then µ is defined as follows

µ =
β

2π⟨k⟩ sin
(π

β

)
. (1.2)

Second, we assign each node i an angular position θi from a [0,1]-uniform distri-
bution, and a hidden degree κi from a distribution ρ(κ) so that ⟨κ⟩ = ⟨k⟩. Finally,
we connect every pair of nodes with the probability given by Eq. (1.1) [5].

In the thermodynamic limit, using this parametrization, the expected degree
of a node with a hidden degree κ is k. The hidden degrees κi can be obtained

1In statistical mechanics, the thermodynamic limit of a system is the limit for a large number N
of particles where the volume is taken to grow proportionally with N, that is, N → ∞, V → ∞,
N/V = constant.
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from different distributions; however, in many real networks a Pareto distribution
is observed:

ρ(κ) = (γ − 1)κγ−1
0 κ−γ; κ > κ0 =

γ − 2
γ − 1

⟨k⟩; γ > 2, (1.3)

which results in a power-law degree distribution P(k) ∼ k−γ for N ≫ 1 [5].
To simulate networks with 2 < γ < 3 and compensate finite size effects in

networks with γ ≳ 2 we need to introduce a cutoff in ρ(κ). For this, one uses a
cutoff of the form

ρ(κ) =
(γ − 1)κγ−1

0
1 − ( κc

κ0
)1−γ

κ−γ; κ0 < κ < κc, (1.4)

where κ0 =
1 − N−1

1 − N
2−γ
γ−1

γ − 2
γ − 1

⟨k⟩ and κc = κ0N
1

γ−1 [5].

The H2 model

In the H2 model, the hidden metric space is the two-dimensional hyperbolic disk
with radius

RH2 = 2 ln
N

πµκ2
0

(1.5)

and metric tensor
ds2 = dr2 + sinh2 rdθ2. (1.6)

In this model, points in H2 (of constant curvature K = −1) are characterized by
two coordinates (r, θ). In this quasi-isomorphic geometric version of S1, popularity
and similarity are combined into a single distance in the hyperbolic plane, such
that closer nodes in this metric are more likely to be connected. In the limit where

sin2 ∆θij

2
≫

cosh(ri − rj)

cosh(ri − rj) + cosh(ri + rj)
,

the distance between two nodes can be approximated by

xij ≈ ri + rj + 2 ln sin
∆ij

2
≈ ri + rj + 2 ln

∆ij

2
, (1.7)

which turns to be a very good approximation for almost all real networks which
we are working with [5].

As in the S1 model, maximum entropy ensembles are obtained when the con-
nection probability takes the Fermi-Dirac form, interpreting the network as a set
of fermions (edges) that can be in different states (pairs of nodes), with energies
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defined by the corresponding hyperbolic distances, and where β is the inverse of
the system’s temperature: 2

pij =
1

1 + e
β
2 (xij−R

H2 )
. (1.8)

If the angular distribution of nodes is uniform and the radius of nodes are dis-
tributed with probability density

ρ(r) = α
sinhαr

coshαRH2 − 1
; r ∈ [0, RH2 ]; α ≥ 1/2, (1.9)

then the model generates graphs with a power-law degree distribution, with ex-
ponent, in this case, γ = 2α + 1; see [5].

To establish a mapping between S1 and H2, the angular coordinates remain as
in the S1 model, but the hidden degrees are transformed into radial coordinates:

(κi, θi) 7→ (ri, θi) = (RH2 − 2 ln
κi

κ0
, θi), (1.10)

where RH2 is given by Eq. (1.5). This way, higher degree nodes are located closer to
the center of the disk, and low degree nodes are placed near its boundary. Now, for
large RH2 , i.e., for N ≫ 1, if hidden degrees are power-law distributed according
to Eq. (1.3), then the mapping Eq. (1.10) implies that the radial coordinates are
distributed as in Eq. (1.9).

Substituting Eq. (1.5) and Eq. (1.10) into the probability in S1 from Eq. (1.1), we
obtain the connection probability

pij =
1

1 + e
β
2 (x̃ij−R

H2 )
; x̃ij = ri + rj + ln

∆ij

2
. (1.11)

As mentioned before, x̃ij ≈ xij for almost all pairs of nodes, so we can conclude
that in the thermodynamic limit both models are equivalent [5].

2For a system of identical fermions in thermodynamic equilibrium, the average number of
fermions in a single state i is given by ni = 1/(1 + e(ϵi−µ)/kBT), where kB is Boltzmann constant, T
is the absolute temperature, ϵi is the energy of the state i, and µ is the chemical potential.
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Figure 1.1: (a) S1 model. The similarity distances da between some pairs of nodes have
been highlighted. The size of a node is proportional to its hidden degree κi. (b) H2 model
in the hyperbolic plane. Nodes in the different pairs are separated by the same hyperbolic
distance. Nodes are equally sized, but nodes with higher hidden degree are positioned
closer to the center [5].

The SD model

Analogously to the S1 model, in the SD model a node i is assigned two hidden
variables: a hidden degree κi, quantifying its popularity, and a position vi in a
similarity space (represented as a D-sphere, that is, a hypersphere in a D + 1
Euclidean space). The probability of connection between any pair of nodes i and j
takes the form of a gravity law, generalizing Eq. (1.1), so that, again, more popular
and similar nodes are more likely to be connected:

pij =
1

1 +

(
R∆θij

(µκiκj)1/D

)β
. (1.12)

Again, κi is the hidden degree of node i because it coincides with the expected
degree of node i in the ensemble of graphs produced by the model. To model the
degree heterogeneity observed in real networks, ρ(k) is chosen to be power-law
distributed: ρ(k) ∼ κ−γ, with γ > 2. vi and vj are vectors indicating the position
of nodes i and j in the D-sphere, with angular distance ∆θij. And the radius of the
sphere, set such that the density of nodes is 1, having N nodes, is

R =

[
N

(2π)
D+1

2
Γ
(

D + 1
2

)] 1
D

, (1.13)
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where Γ is the gamma function. The parameter β calibrates the coupling of the
network with the underlying metric space and controls the level of clustering in
the topology, and µ controls the average degree of the network.

As with in the S1 model, this has an isomorphic geometric formulation, where
the popularity and similarity dimensions are combined into a single distance in a
D + 1 hyperbolic space: the HD+1 model.

Figure 1.2: Representation of the SD model for D = 1 and D = 2. The size of each node is
proportional to its hidden degree κi.

1.2 Persistent homology in graph learning

1.2.1 Basic definitions

In this work we consider undirected graphs. An undirected graph is a pair G =

(V, E) of finite sets of n vertices and m edges, with E ⊆ {{u, v} | u, v ∈ V, u ̸= v}.
We will take for granted that (u, v) and (v, u) refer to the same edge. Two graphs
G = (V, E) and G0 = (V0, E0) are isomorphic, G ∼= G0, if there is a bijective
function ϕ : V → V ′ that preserves adjacency, this is, (u, v) ∈ E if and only if
(ϕ(u), ϕ(v)) ∈ E′. The isomorphism ϕ is thus preserving edges and connectivity.
Since it is bijective, it has an inverse function ϕ−1. We might also need the defini-
tion of a multiset, denoted by {{}}; this is a set whose elements are included with
multiplicities.

Let Sn be the permutation group on n letters, and consider two graphs G and
G′ with n nodes. An element σ ∈ Sn acts on a graph by permuting the order of
vertices, and, by transitivity, the edges. If G ∼= G′, there is a permutation σ ∈ Sn
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such that σ(G) = G′. Assuming that all graphs have n vertices, we call a function
f : V → Rn permutation-equivariant if f (σ(G)) = σ( f (G)) for a permutation σ [7].

1.2.2 Topological features of graphs

The simplest topological features we can use to analyze graphs are connected com-
ponents and cycles. Assuming that we are dealing with planar graphs, i.e., graphs
that afford an embedding in the plane such that there are no overlaps between
edges, Euler’s formula for planar graphs holds:

|V| − |E|+ |F| = 2, (1.14)

where F are the faces of the graph and | · | denotes the cardinality of a set.
Another interesting observation is that we only need to know the number of

connected components to calculate the number of cycles in a graph. If β0 is the
number of connected components and β1 the number of cycles, we have

β1 = m + β0 − n, (1.15)

where the number of vertices and edges are denoted, respectively, by n and m.
The values β0 and β1 are also known as the first two Betti numbers of a graph [7].

1.2.3 Simplicial homology

The Betti numbers of a graph are part of a more generic concept, namely simplicial
homology. Under this context, the Betti numbers are, in fact, the ranks of the zeroth
and first homology group, respectively.

A simplicial complex K is a collection of sets that is closed under the subset
operation. Thus, for any σ ∈ K and τ ⊆ σ, we have τ ∈ K. An element σ ∈ K with
|σ| = k + 1 is also referred to as a k-simplex. We say that dim σ = k. Moreover,
if k is maximal among all the simplices of K, we call K a k-dimensional simplicial
complex. We observe that a k-simplex has indeed k + 1 elements. This convention
makes sense when we relate it to the concept of dimension. A 0-simplex, that is,
a point or a vertex, has dimension 0. A typical example of a simplicial complex
is a graph G = (V, E). Putting K := V ∪ E, we obtain a 1-dimensional simplicial
complex.

The Vietoris-Rips complex Rϵ(X) is the abstract simplicial complex with ver-
tex set X and a k-face for each collection xi0 , . . . , xik such that ||xir − xis || ≤ ϵ

for all r, s ∈ {0, . . . , k}. This is, Rϵ(X) has a k-face {xi0 , . . . , xik} if and only if
diam{xi0 , . . . , xik} ≤ ϵ, where diam(A) = sup{||a − b|| | a, b ∈ A}. Thus, there is
an edge {x0, x1} in Rϵ(X) if and only if ||x0 − x1|| ≤ ϵ. We observe that Rϵ(X) is
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determined by the distance matrix (||xi − xj||) for xi, xj ∈ X. The family {Rϵ(X)}ϵ≥0

is called a filtered simplicial complex, and ϵ is the filtering parameter [12].
The Euler’s characteristic of a finite abstract simplicial complex K is defined as

χ(K) =
∞

∑
n=0

(−1)ncn (1.16)

where cn denotes the number of n-faces of K. We note that, for surfaces (or for
graphs), χ = V − E + F. And this quantity is a topological invariant. Given
a simplicial complex K, the vector space generated over Z2 coefficients whose
elements are the k-simplices of K is called the kth chain group, denoted by Ck(K).
The elements of a chain group are also referred to as simplicial chains. Thus, sums
of simplices of a compatible dimension form the elements of the chain group [7].

Given σ = (v0, . . . , vk) ∈ K, the kth boundary homomorphism ∂k : Ck(K) →
Ck−1(K) is

∂k(σ) :=
k

∑
i=0

(v0, . . . , vi−1, vi+1, . . . , vk), (1.17)

a sum of simplices with the ith vertex of the simplex missing.
Since ∂k is a homomorphism, it extends to arbitrary simplicial chains, for which

it is sufficient to define it on individual simplices [7]. The kth homology group of
a simplicial complex K is the quotient group obtained from the two subgroups
Ker ∂k and Im ∂k+1 of Ck(K):

Hk(K) := Ker ∂k / Im ∂k+1. (1.18)

The kth homology group of a simplicial complex contains its k-dimensional topo-
logical features in the form of equivalence classes of simplicial chains, also known
as homology classes [7].

The rank of the kth homology group Hk(K) is known as the kth Betti number,
denoted by βk. Betti numbers can be very useful when simplicial complexes are
compared. Noting that Euler’s characteristic χ(K) = ∑i(−1)i|{σ | dim σ = i}|
can also be expressed as χ(K) = ∑i(−1)iβi, which is the sum of alternating Betti
numbers, we can reproduce Eq. (1.15).

Homology groups are preserved under graph isomorphisms [7].

Lemma 1.1. Let G, G′ be two isomorphic graphs, and ϕ : G → G′ an isomorphism.
Then the homology groups of G and G′ are isomorphic, that is, Hp(G) ∼= Hp(G′)

for all p.

From this fact we see that the Betti numbers of G and G′ are the same. A
similar property holds for isomorphic simplicial complexes [7].
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1.2.4 Persistent homology

Let us consider an arbitrary graph G = (V, E). We notice that the addition of an
edge to G changes its Betti numbers, either by merging two connected components
(decreasing β0) or by creating an additional cycle (increasing β1). In fact, we
already saw this fact from Eq. (1.15); there it is clear that the insertion of a new
edge e = (u, v) with u, v ∈ V either increases β1 by 1 (m varies), or instead β0

varies. We note that β0 decreases at most by 1, given that a single edge may only
merge two connected components into one. Because of that, Betti numbers are not
so useful in large-scale graph analysis and we may want to formulate everything
in terms of simplicial complexes, to get a more general description [7].

Given a simplicial complex K, we call a sequence of simplicial complexes a
filtration if it affords a nesting property of the form

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K. (1.19)

Since each element of this sequence is a simplicial complex, we can also think
of this construction as building K by adding simplices one after the other. In
the context of graphs, we can imagine filtrations as sequencing a graph based on
some type of data, or function, assigned to its vertices. For example, we can build
a filtration of a graph based on the degree of its vertices, by assigning to each
edge the maximum of the weight (or degree) of its vertices. This construction is
sometimes known as a lower-star filtration [7].

The boundary operators ∂(·), combined with the inclusion homomorphism be-
tween consecutive simplicial complexes, induce homomorphisms between corre-
sponding homology groups of any filtration of simplicial complexes. Given i ≤ j,
we denote the homomorphism by li,j : Hk(Ki) → Hk(Kj). For every dimension k,
this construction provides a sequence of homology groups:

0 = Hk(K0)
l0,1
k−→ Hk(K1)

l1,2
k−→ · · ·

lm−2,m−1
k−−−−→ Hk(Km−1)

lm−1,m
k−−−→ Hk(Km) = Hk(K). (1.20)

With this notation, the kth persistent homology group is

Hi,j
d := Ker ∂k(Ki)/(Im ∂k+1(Kj) ∩ Ker ∂k(Ki)). (1.21)

From the definition of the ordinary Betti numbers, we define the kth persistent
Betti number as the rank of this group:

β
i,j
k := rank Hi,j

k . (1.22)

Let our filtration be associated to a set of values a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am

(for example, the function values on the vertices). We are now able to compute
some topological descriptors, such as persistence diagrams [7].
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Let F be a field. Let Hn(X; F) be the n-th dimensional homology F-vector
space of the topological space X, with coefficients in F. Given a filtration of a
finite abstract simplicial complex K, for all i ≤ j and n ≥ 0, the inclusion Ki ↪→ Kj

induces an F-linear map

ϕ
i,j
n : Hn(Ki; F) → Hn(Kj; F). (1.23)

A homology class α ∈ Hn(Kj; F) is said to be born at Kj if it does not belong to the

image of ϕ
i,j
n for i < j. It is said to die at Kj for j > i if ϕ

i,j
n (α) = 0 but ϕ

i,j−1
n (α) ̸= 0.

If α is born at Ki and dies at Kj, then the life or persistence of α is defined as (j − i).
The image of ϕ

i,j
n is an F-subspace of Hn(Kj; F), which is called persistent homology,

denoted by Hi,j
n (K; F).

Given a filtration K0 ⊆ K1 ⊆ · · · ⊆ Km−1 ⊆ Km = K of an ordered abstract
simplicial complex K, the associated persistence barcode has a horizontal segment
from i to j for each homology generator born at i and dying at j. Homology classes
are shown by increasing order of dimension. Longer segments are drawn under
shorted ones, and segments starting later are above those starting earlier.

Figure 1.3: Example of a filtration with its associated persistence barcode. Solid lines
represent the lifetime of connected components, and dashed lines represent the lifetime
of holes [15].

The persistence diagram associated with a barcode has a point (b, d) in a coor-
dinate plane for each finite line [b, d) in the barcode. Thus a point (b, d) in a per-
sistence diagram represents a homology class with birth parameter b and death
parameter d. The rays [b, ∞) in the barcode are represented as points (b, d∞) in
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the persistence diagram, where d∞ is a chosen value above all finite death values
in the barcode, representing infinity.

Figure 1.4: Example of a persistence barcode with its associated persistence diagram [15].

Thus, the topological activity of a filtration is contained in persistence dia-
grams. Persistence indicates if a feature created in a simplicial complex during the
filtration is relevant or not. Typically, a feature is considered to be relevant when
it shows a high persistence, while features with a low persistence might indicate
low reliability or be considered as noise [7].

1.2.5 Persistence descriptors and comparison of diagrams

Bottleneck distance

The most common metric to compare two persistence diagrams D and D′ is the
bottleneck distance3.

A matching between D and D′ is a bijective function ψ : D → D′ such that, for
every (x, x) ∈ ∆, either ψ(x, x) = (x, x) or ψ(x, x) = (b, d) with b ̸= d. For each
matching ψ : D → D′, define

||ψ|| = max{d∞((x, y), ψ(x, y)) | (x, y) ∈ D}

3Note that D is being used in this work for persistence diagram and for dimension, in order to
preserve the notation from the bibliography. The two concepts are very different and, by context,
they can always be distinguished.
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where d∞ is the l∞ distance on R2,

d∞((x, y), ψ(x, y)) = max{|x − x′|, |y − y′|}.

Definition 1.2. The bottleneck distance between two persistence diagrams D and D′

is defined as

W∞(D, D′) = min{||ψ|| | ψ : D → D′ matching}. (1.24)

Therefore, W∞(D, D′) is the smallest ϵ ≥ 0 for which there exists a matching
ψ : D → D′ for which d∞((x, y), ψ(x, y)) ≤ ϵ for all (x, y) ∈ D.

In general, the Wasserstein distances are defined for p, q ≥ 1 as

Wp[q](D, D′) = min
ψ: D→D′

 ∑
(x,y)∈D

dq((x, y), ψ(x, y))p

1/p

(1.25)

where dq((x, y), (x′, y′)) = (|x − x′|q + |y − y′|q)1/q [12].

Example 1.3. Consider the persistence diagrams D and D′ in Figure 1.5. There
we find that ||ϕ|| = max{1.0, 0.2} = 1.0 and ||ψ|| = max{0.5, 0.5, 0.2} = 0.5.
Therefore, W∞(D, D′) = 0.5.

Figure 1.5: Example of two matchings between D and D′. [12]
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Total persistence

Definition 1.4. Let D be a persistence diagram. For x = (b, d) ∈ D, the lifetime
l = d − b is called persistence of x. If D = {xj}j∈J , the total persistence of D is

L = ∑
j∈J

(dj − bj). (1.26)

Entropy

Definition 1.5. The entropy of a random variable is the average level of uncertainty
inherent in its outcomes. For a persistence diagram, it is computed as follows:

E = −∑
i∈I

di − bi

L
log2

(
di − bi

L

)
; L = ∑

i∈I
(di − bi). (1.27)

Landscape

For real numbers b < d, consider the tent function

∆(b,d)(t) = max{0, min(t − b, d − t)}. (1.28)

Given a set of points {(bi, di)}n
i=1 defining a persistence diagram, with relative

multiplicities mi, its associated landscape over a field F is a collection of piecewise
linear continuous functions λk : R → R defined by

λk(t) = kmax{λ(bi ,di)(t)}
n
i=1 (1.29)

where kmax returns the k-th largest value in a given set of real numbers, counted
with their multiplicities, or 0 if there is no k-th largest value [12].

Figure 1.6: Example of a persistence landscape [13].
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Persistence image

For a given persistence diagram, consider a function

Φ(s, t) =
n

∑
i=1

wiGi(s, t) (1.30)

for (s, t) in a square, where each wi is a weight and Gi is a 2-dimensional Gaussian
function centered at (bi, di). This yields a smoothing of the persistence diagram
called a persistence surface. A persistence image is a discretization of Φ on a grid
overlay [12].

Figure 1.7: Process for the obtention of a persistence image [12].

1.2.6 Kernels in Hilbert space

Let X be any set. A kernel is a function K : X × X → R which is symmetric, that is,
K(x, y) = K(y, x) for all x, y ∈ X, and positive definite, ∑n

i,j=1 cicjK(xi, xj) ≥ 0; for
all n and c1, . . . , cn ∈ R and x1, . . . , xn ∈ X, and, moreover, equality holds if and
only if ci = 0 for all i [12].

A function K : X × X → R is a kernel if and only if there exists a Hilbert space
H and a map ϕ : X → H such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩ for all x, y. The Hilbert
space H is called feature space and the map ϕ is called feature map.

Example 1.6. The following are kernels in Euclidean space Rd [12]:

• Linear: K(x, y) = xTy. In this case, ∑n
i,j=1 cicjK(xi, xj) = K(∑i cixi, ∑i cixi) by

bilinearity.

• Polynomial: K(x, y) = (1 + xTy)n with n ≥ 1.
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• Gaussian: K(x, y) = e−
||x−y||2

2σ2 with σ > 0.

• Laplacian: K(x, y) = e−α||x−y|| with α > 0.

Example 1.7. The heat kernel Kt(x, y) = 1
(4πt)d/2 e−||x−y||2/4t solves the heat equation

∂Kt
∂t (x, y) = ∆xKt(x, y) for t > 0 and x, y ∈ Rd, with initial condition, where δx is

the Dirac delta distribution centered at x, lim
t→0

Kt(x, y) = δx(y).

Every kernel K : X × X → R induces a pseudometric on X corresponding to the
norm distance on the feature space:

dk(x, y) =
√

K(x, x)− 2K(x, y) + K(y, y) = ||ϕ(x)− ϕ(y)||. (1.31)

Note that here it is possible that dk(x, y) = 0 with x ̸= y since the feature map ϕ

need not be injective [12].

Scale-space kernel

Consider K : D ×D → R where D is a set of persistence diagrams. It is defined
via a feature map ϕ : D → L2(Ω), where Ω = {(x, y) ∈ R2 | y ≥ x} is the half
plane above the diagonal.

To each persistence diagram D ∈ D one assigns a sum ∑p∈D δp of Dirac delta
distributions. Here δp is viewed as a functional that evaluates each smooth func-
tion at p = (b, d). However, the induced metric on D does not take into account
the distance to the diagonal and hence it is not robust against noise [14].

Instead, the sum of Dirac deltas is taken as initial condition for a heat diffusion
problem with a boundary condition on the diagonal. A solution u : Ω × R+ → R

of the Dirichlet problem is found:

∆xu = ∂u in Ω × R+, u = 0 on ∂Ω × R+, u = ∑
p∈D

δp on Ω × {0}.

For each D ∈ D and each scale parameter σ > 0, ϕσ(D) = u|t=σ is defined. Thus,
Kσ(D1, D2) = ⟨ϕσ(D1), ϕσ(D2)⟩. In this case, the feature map ϕσ is injective, so Kσ

yields a metric. Explicitly, one obtains that

u(x, t) =
1

4πt ∑
p∈D

e−||x−p||2/4t − e−||x−p||2/4t,

where p = (d, b) if p = (b, d) [14]. Thus, the scale-space or Reininghaus kernel is
given by

Kσ(D1, D2) =
1

8πσ ∑
p∈D1,q∈D2

e−||p−q||2/8σ − e−||p−q||2/8σ. (1.32)
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1.2.7 Extended persistence

Consider a graph G = (V, E), with vertices V and (non-oriented) edges E. If
f : V → R is a function defined on its vertices (in our case, assigning to each
vertex its degree), the sublevel graphs Gα = (Vα, Eα), where α ∈ R, are defined as
Vα = {v ∈ V : f (v) ≤ α} and Eα = {(v1, v2) ∈ E : v1, v2 ∈ Vα}. In the sequence
(Vα)α, the loops persist forever since they never disappear from the sequence of
sublevel graphs, and the same argument states for whole connected components of
G. Moreover, branches pointing upwards (with respect to the orientation given by
f ) are missed, since they do not create connected components when they appear
in the sublevel graphs [8].

Extended persistence refines the analysis by looking also at superlevel sets Vα =

{v ∈ V : f (v) ≥ α}, letting α decrease from +∞ to −∞. We restrict to the case in
which X = G is a graph. Now, death times can be defined for loops and whole
connected components by picking the superlevel graphs in which the feature ap-
pears again, and using the corresponding αd value as the death time for these
features (analogously, the birth time is denoted αb). This way, branches pointing
upwards can be detected in the sequence of superlevel graphs, in an analogous
way as downwards branches were detected in the sublevel graphs [8]. Figure 1.8
illustrates an example of sublevel and superlevel graphs.

Figure 1.8: Example of sublevel and superlevel graphs. (a) Input graph with the values
of a function f : V → R. (b, c, d) Sublevel graphs for α = 1, 2, 3, respectively. (e, f , g)
Superlevel graphs for α = 1, 2, 3, respectively. [8]

Definition 1.8. The extended persistence diagram of f, denoted by Dg(G, f ) ⊂ R2, is
the family of intervals of the form [αb, αd] which is turned into a multiset of points
in the Euclidean plane R2 by using the interval endpoints as coordinates [8].

In comparison with ordinary persistence, extended persistence ensures that
points have finite coordinates. This avoids losing information or having to give
a special treatment to points with infinity coordinates. In practice, computing
extended persistence diagrams can be done with the Python Gudhi library, and
in Chapter 2 this is actually programmed and implemented. Those, however, can
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be computed only after having defined a real-valued function on the nodes of the
graphs. In the next section, a family of functions satisfying this from the Heat
Kernel Signatures (HKS) for graphs is defined [8]. In this work, a vertex degree
filtration, this is, v 7→ deg(v), is proposed.

Definition 1.9. In the extended persistence context, using a degree-based filtration,
we say that a cycle is born when the vertex with lower degree forming the cycle
vl is visited by the filtration function, that is, vl ∈ Vα. Analogously, we say that a
cycle dies when the vertex with greatest degree forming the cycle vg is visited by
the filtration function, i.e., vg ∈ Vα.

In the problem that is treated here, extended persistence is especially useful for
H1. The reason, as stated before, is that cycles live forever once they are detected,
in ordinary persistence. Extended persistence, instead, will detect when the cycle
is born and when it dies. Example 1.10 illustrates this phenomenon.

Example 1.10. Consider the graph in Figure 1.9. A visual examination evidences
that it has two cycles.

Figure 1.9: Persistence diagram and extended persistence diagram of an example graph.
Birth (B) and death (D) vertices are painted in orange or green, for each cycle. In the
ordinary persistence diagram, red points correspond to H0, and blue points to H1. Axes
are in degree units.

The ordinary persistence diagram contains two blue points: (4, ∞) and (6, ∞).
The x-coordinate corresponds to the higher vertex degree of each cycle, meaning
that at this point the cycle is created. The y-coordinate, instead, is ∞, because
the cycle will live forever for the next steps of the filtration. In this case, point
(4, ∞) corresponds to the triangle (in green) because its greatest vertex degree is
4. The same applies for the square (in orange), whose greatest vertex degree is 6
and corresponds to the point (6, ∞). In this example, there are only two points
at infinity, and cycles can be distinguished. When a complex network is analysed
by this method, points in H1 appear at infinity. Extended persistence provides a
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resolution of the points at infinity, by giving them finite coordinates corresponding
to birth and death. The extended persistence diagram in Figure 1.9 has a point at
(2, 4) and a point at (3, 6). The first one corresponds to the triangle, and the second
one to the square. The y-coordinate now indicates the greatest vertex degree, but
the birth information is added here. In the case of the triangle, the lowest degree
is 2, while in the case of the square it is 3.

At this point the reader might ask why extended persistence is not used here
for H0. The reason is that in a tree-like structure (as the ones studied in this
work) there are no branches that are born from the top and then united to a larger
component.

1.2.8 Heat Kernel Signatures

Heat Kernel Signatures (HKS) yield an example of family of functions derived
from the spectral decomposition of Laplacian graphs, providing relevant features
for graph analysis.

The adjacency matrix A of a graph G with vertices V = {v1, . . . , vn} is A :=
(1(vi ,vj)∈E)ij. The degree matrix D is the diagonal matrix D := ∑j Aij, and the nor-
malized graph Laplacian Lw = Lw(G) is the linear operator acting on the space
of functions defined on the vertices of G, which is represented by the matrix
Lw = I − D−1/2AD−1/2.

The elements of Lw are given by

(Lw)ij :=


1 if i = j and deg(vi) ̸= 0,

− 1√
deg(vi)deg(vj)

if i ̸= j and vi is adjacent to vj,

0 otherwise.

The normalized graph Laplacian admits an orthonormal basis of eigenfunc-
tions Φ = ϕ1, . . . , ϕn and its eigenvalues satisfy 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2. Since the
eigenbasis Φ is not uniquely defined, ϕi are not useful to compare graphs. We use
instead Heat Kernel Signatures [8].

Definition 1.11. Given a graph G and t ≥ 0, the Heat Kernel Signature with diffu-
sion parameter t is the function hksG,t defined on the vertices of G by

hksG,t : v 7→
n

∑
k=1

e−tλk ϕk(v)2.
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Chapter 2

Development

2.1 Detecting the ultra low dimensionality of real networks

In Section 0.1, we discussed the problem of dimension. This problem is success-
fully addressed in [1] from a physical and geometrical point of view, where the
density of triangles, squares and pentagons play a fundamental role. The method
and results obtained in [1] are briefly commented in this section.

The main goal of this chapter, though, is to present a new methodology used
to address the problem of dimensionality by means of Topological Data Analysis
(TDA), focusing on study of two real-world networks, and to compare our results
with those from [1].

2.1.1 Methods

In [1] it is described how cycles of different lengths and dimensions in SD networks
are intertwined in a non-trivial way, which helps determine the dimensionality of
the similarity space. Power-law distributions are used for the hidden degrees and
the number of triangles incident on edges properly normalized is measured; that
is, the mean density of edge triangles, Ct. Normalization is performed by dividing
the number of triangles going through an edge by the maximum possible number
given the degrees at the ends of the edge and then averaged over links that connect
nodes in the network with a degree greater than one. The results show that the
maximum values of clustering coefficients and densities of cycles decrease as the
dimensionality of the similarity space increases. The dependency on dimension-
ality is also evident for the mean density of edge squares and pentagons, which
display a maximum for a value of the dimension that increases with network het-
erogeneity [1].

The phase space, defined by (Ct, Cs, Cp), is then analyzed. When plotting the

21
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results for different dimensions, fixing γ and D, and varying β, on the planes
(Cx, Cy), x, y ∈ {t, s, p} (where t, s, p denote triangles, squares and pentagons, re-
spectively), the curves are found to be different, meaning that each dimension
presents a characteristic profile.

Inferring hidden dimensions

According to this, a method is performed in [1] to determine the dimension of
real-world networks. First, an ensemble of synthetic surrogates is created using
the SD model with different values of the inverse temperature β and dimension D.
An iterative process is used to match the expected and observed degrees, ensur-
ing that the model reproduces the degree distribution of the network. Next, the N
nodes are assigned homogeneous random positions in the D-sphere. The ensem-
ble of synthetic surrogates is restricted to feasible values of dimension and inverse
temperature based on the maximum achievable density of edge triangles. At this
point, the sample of random surrogates is generated using the connectivity law
Eq. (1.12). Finally, a data-driven classifier (K-NN) is used to infer the dimension
of the real network based on the densities of edge cycles (triangles, squares, and
pentagons) in the synthetic surrogates that best approximate the real network. We
note that the K-NN classifier identifies the K surrogates closest to the original net-
work in the phase space (Ct, Cs, Cp) by minimizing the Euclidean distance. Other
tests using decision trees and neural networks as classifiers are also tested in the
article with similar results [1].

To quantify the goodness of their method, they computed confusion matrices for
different types of topologies, using the inferred dimensionality. These are defined
as the probability of predicting the dimensionality D′ in a network generated
with dimension D. An inference method is considered a good method when
the confusion matrices are close to the identity matrix. In this case, the results
happened to be very good predictions [1].

2.1.2 Discussion

The method presented in [1] infers the dimensionality of a graph by analyzing
the densities of edge cycles. The results show that complex networks are well-
represented in hyperbolic geometry with ultra low dimensionality, and the dimen-
sion of real-world networks (such as the Internet at the autonomous system level,
the email network within the Enron company, and the human connectome) is ob-
tained. In fact, it is found that many real-world networks, including biomolecular
and social networks, have ultra-low dimensionality and can be well represented
in hyperbolic geometry.
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Even if a network is embedded in Euclidean space, the formalism of this
method is also valid for geometric random graphs and non-small-world networks,
which are effectively described by the geometry of the D-sphere. However, the
model is not suited for describing D-dimensional lattices because their links are
strongly correlated, unlike in this model where links are statistically independent.
In [1] it is also suggested that multidimensional hyperbolic embeddings can pro-
vide a more accurate description of network complex systems and help reveal the
correlation of factors that determine connectivity. Moreover, it seems clear that
understanding network dimensionality is crucial for predicting network behavior.

2.2 Dimension detection using persistent homology

The main goal of this project is to search for topological invariants that can be
computed in a complex network, and that provide meaningful information in or-
der to study the dimensionality of the network. The final objective is to reproduce
results found in [1] using an alternative method based on TDA.

2.2.1 Surrogate generation and description

From now on, we work with two different real-world networks, namely C. Elegans-
C, representing the nervous systems network of the Caenorhabditis elegans worm,
and Human1, representing a connectome of the human brain including one hemi-
sphere [9].

Network Type |V| |E| av. deg. C D

CElegans-C Biological - Brain 279 2287 16.39 0.34 1
Human1 Biological - Brain 493 7773 31.53 0.49 3

Table 2.1: Properties of real networks and their dimensionality, according to the
method described in [1]. Here |V| and |E| denote the number of nodes and edges,
respectively; C is the clustering coefficient, and D the dimension.

Table 2.1 shows the dimension obtained in [1] of each network, as well as other
properties such as the number of nodes and edges, the average degree and the
clustering coefficient.

In order to generate surrogates in different dimensions for the geometric model,
we first need to infer the characteristic parameters from the given network. The
hidden degrees (κi) and β (which in turn will fix the level of clustering of the net-
work) are computed using Mercator [10], a tool to embed networks in their hidden
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hyperbolic space. From equations (1.12) and (1.2) we see that the probability of
connection between nodes is determined by the values of κi, β, and D (and a ran-
dom angular position ∆θij). Once κi and β are computed from the real network,
30 surrogates are generated for each dimension D using Mercator. Table 2.2 sum-
marizes the inferred beta values for each network and for each dimension. In this
surrogates, nodes are connected between each other according to Eq. (1.12).

Therefore, after this process, the data consists of 30 surrogates for each dimen-
sion D from 1 to 10, for the samples CElegans-C and Human1. At this point, the
topological data analysis approach begins.

D β CElegans-C β Human1

1 1.4449 2.5165
2 3.1096 5.9064
3 4.5399 11.3629
4 5.8723 34.7880
5 7.1800 134.0782
6 9.1164 111.1748
7 9.1783 124.0354
8 10.4483 139.7730
9 11.9787 159.0632
10 12.3331 123.5125

Table 2.2: Inferred beta values for each dimension and both samples CElegans-C
and Human1.

2.2.2 pij matrices as distance matrices

The typical approach when using TDA on data sets is to search for 0 and 1 dimen-
sional homology by constructing a simplicial complex, based on distances between
nodes. This, however, requires a notion of distance. As a first attempt to study
these networks, pij values were considered. From Eq. (1.12) one can see that 1− pij

is proportional to a distance. These values, therefore, can be used to construct a
distance matrix and proceed to compute the Vietoris-Rips complex.

Different patterns can be observed when persistence diagrams of the Vietoris-
Rips filtration are represented for different surrogates in each dimension. How-
ever, further from the visual approach, it is difficult to determine any relationship
between the diagrams and the dimension of the real network. This is because there
is no notion of probability in the real network, and it does not make sense to com-
pute 1 − pij on it. Therefore, there is no comparable item between the surrogates
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and the original network. This approach, though, suggests that TDA might be able
to enlighten some characteristics related with the dimension of the surrogates.

2.2.3 Euler characteristic

Figure 2.1: Average Euler characteristic of the surrogates for both CElegans-C and Human1
samples, with the appropriate error bars, corresponding to the standard deviation interval.
In red, the value of the original network is shown.

In Figure 2.1 the average Euler characteristic of the surrogates for both CElegans-C
and Human1 is represented. An increasing tendency is clearly noticed. In this
section an explanation of this phenomenon is provided.

Notice that if pij decreases with increasing D, this implies that there is less
probability of connection as D grows. Therefore, the number of edges decreases
with D and χ = V − E + F is less negative (for a fixed number of V and F, as hap-
pens with the surrogates that vary very little among different D). In conclusion,
if pij decreases with D, the Euler characteristic increases. We want to prove now
that, for an increasing value of β, the value for pij decreases with D.

Proposition 2.1. Given Eq. (1.12), if β and D increase then pij decreases for all i, j.

Proof. From Eq. (1.12) and the expression of the radius in function of D we have:
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Let C =
N

2µκiκj
. Then,
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We now want to prove that f (D) is an increasing function. We do so by com-
puting its derivative.
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We observe that g(D) = D−1
D2 has derivative g′(D) = 2−D

D3 , which is 0 for D = 2.
Also, g′′(D) = 2D−6
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increasing, it is clear now that pij decreases when D is increased.
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At this point some remarks must be made. In this proof we have assumed
that κi and κj are constant among the different surrogates. This is not exactly
true, but in the thermodynamic limit in which the background theory is based,
the assumption holds. In fact, the κ’s are inferred with Mercator and fed into the
generator of surrogates but, in theory, they intend to imitate the expected values
of the original network.

Another assumption done here is that β is increasing. Table 2.2 shows that, in
fact, it is not always the case (it holds true for CElegans-C but not for Human1, for
example). What is the same for all dimensions is the clustering level controlled
by β. However, β has an almost increasing tendency. This does not contradict the
thesis that Euler’s characteristic is an increasing function of D (when β is chosen
increasing).

Among the consequences of Proposition 2.1, it is worth noting that Euler’s
characteristic χ cannot be considered as an appropriate descriptor to estimate the
dimension of a network. In fact, χ performs a totally deterministic behaviour and
reflects the growth of the number of edges.

2.2.4 Shortest paths

A second attempt to introduce a metric in this problem was to consider the shortest
path between two nodes, which is the path that has the minimum number of edges
or the minimum total weight among all possible paths connecting the nodes. In
an unweighted graph, the shortest path length is simply the count of edges in
the path. The algorithm used to find the shortest path in an unweighted graph is
typically breadth-first search (BFS).

BFS explores the graph level by level, visiting vertices in a breadth-first order.
This is, it starts at a given source vertex and systematically visits its neighbors,
which in turn visits their neighbors, and so on, until all vertices are visited. BFS
uses a queue data structure to keep track of the vertices to visit. The algorithm
maintains a visited set to avoid revisiting vertices.

In our problem, a distance matrix can be created by assigning to each position
aij in the matrix the shortest path between nodes i and j. This is clearly a distance
matrix, and, again, the Vietoris-Rips complex can be computed. The complete code
in Python elaborated to compute a persistence barcode and a persistence diagram
from the shortest path distance matrix can be found in Annex 3.2.

In Section 1.1.1 we already discussed a consequence of the small-world effect
of complex networks that can influence a study based on shortest path lengths. As
mentioned there, having every pair of nodes connected in a few steps makes the
distribution of shortest path lengths among pairs of nodes to be sharply peaked
around its average [5]. Therefore, the minimum distance between two nodes is
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almost the same for every pair. This theoretical observation has successfully been
checked using TDA. Figure 2.2 is shown as an example of the persistence barcodes
and persistence diagrams obtained. The diagrams obtained for the surrogates for
the CElegans-C sample were very similar. Very few points are observed for H0 as
well as for H1 in the persistence diagrams, but they all have very high multiplicity,
as it can be seen in the persistence barcodes. This matches with the previous
explanation, since nodes are connected in a few steps, and this is reflected in the
nature of connected components and cycles.

Figure 2.2: Persistence barcode and persistence diagram corresponding to Human1 using
the shortest path length to determine a distance matrix and compute the Vietoris-Rips
complex. In red, H0 is represented, and in blue, H1 is shown. Axes are in distance units,
where one distance unit corresponds to one edge length between two nodes.

Note that triangles are not detected by this method. This is due to the fact that
nodes forming a triangle are at distance 1 between each other and, therefore, are
born and die at the same step, for which reason TDA is unable to see them.

Using the shortest path to establish a metric and apply TDA methods to anal-
yse the graphs could be used in other contexts. However, it is not appropriate
when data come from complex networks. Not only because of the small-world
phenomenon, but also because in this particular study we are very interested in
the differences between dimensions among the embedded surrogates. And we
have evidence from [1] that cycles, and in particular triangles, play a fundamental
role in the assessment of dimensionality.
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2.2.5 Filtration based on the degree of vertices

In the attempt to find a filtration based on intrinsic properties of the graph (as an
alternative to basing it on distance matrices), the latest bibliography on the topic
has been reviewed. In [7], persistent homology has shown strong empirical per-
formance in the context of graph classification. Being able to capture long range
graph properties via topological features, such as cycles of arbitrary length, in
combination with other topological descriptors, it has improved predictive perfor-
mance for data sets with prominent topological structures.

In practice, in [7], they comment on the empirical performance of several fil-
trations, and study to what extent they are capable of distinguishing between
non-isomorphic graphs.

The degree filtration v 7→ deg(v) showed surprising empirical performance in
graph classification tasks in [7]. This is why the main part of the experimental
work of this project has been carried out using a vertex degree filtration.

In practice, what this means is that in order to analyse a network using per-
sistent homology, the graph is built by adding the vertices in increasing order of
degree at each step.

Example 2.2. Consider the graph in Figure 2.3. The degree of each vertex is used
to filter the graph. The calculation of persistent homology along this filtration
involves counting the connected components and cycles, which are features that
can only change whenever the filtration function changes. Figure 2.4 shows the
persistence diagram arising from the filtration.

Figure 2.3: Three different steps of a degree-based filtration for a simple graph. The pre-
image of the filtration function f is indicated at each step [7].
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Figure 2.4: Persistence diagram corresponding to the filtration depicted in Figure 2.3.
Axes are in degree units. Homology in dimension 0 is shown in red, and in blue in di-
mension 1. The multiplicity of points in the diagram is larger than one. The vertices with
degree 1 correspond to the points (1, 3) and (1, ∞), since one of them merges into a larger
connected component at step 3 and the other connected component lives forever. By con-
trast, the point (2, 3) has multiplicity 2 and corresponds to the two connected components
that appear at step 2 and merge into a larger connected component at step 3. The point
(3, ∞) also has multiplicity 2 and corresponds to the two cycles born in step 3, that live
forever.

An important observation to be made here is that, while homology in dimen-
sion 0 provides meaningful information of the graph’s structure, the information
provided by points of homology in dimension 1 is limited. In fact, the first coor-
dinate of the points corresponds to the maximum vertex degree forming a cycle,
and the second coordinate is always infinite, since all cycles live forever.

To address this issue, and try to extract more information about cycles, the
concept of extended persistence is explored. We already introduced extended per-
sistence in Section 1.2.7. The idea is extracted from [8]. In our work, however,
extended persistence is adapted to the vertex degree filtration that is being used.
Therefore, the extended persistence diagram for homology in dimension 1 shows
when cycles are born (counting as birth the moment in which the first vertex is
included in the graph) and die (considering as death the moment in which the last
vertex is included in the graph, and the cycle is completed). Naturally, this adds
information on the cycle structure of the graph.

An extended persistence filtration based on the degree of vertices is a new tech-
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nique in the TDA context, that is proposed in this work. This is the reason why
a detailed theoretical analysis has been done (in this section and in Section 1.2.7),
more in-depth than what it would be required for a project using more conven-
tional TDA methods.

Figure 2.5: Extended persistence diagram corresponding to the graph depicted in Figure
2.3. Axes are in degree units. Notice that point (2, 3) has multiplicity 2, and corresponds
to the two cycles, whose lowest vertex degree is 2 and whose highest vertex degree is 3.

The information provided by H0 is analysed now. Consider the visual repre-
sentation of the distribution of degrees from the graph shown in Figure 2.6.

Figure 2.6: Visual representation of the tree-like structure of Example 1.10 and the degree
based filtration. The lowest degree vertices are represented on the lower part of the figure,
while vertices with greatest degrees are placed on top.
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Recall Figure 1.9. We observe the following H0 points in the persistence di-
agram: (2, 4), (1, 5), (1, 6) and (1, ∞). From Figure 2.6 it is clear that at the first
step, eight connected components are created (those with degree 1). Another con-
nected component is created at the second step (with degree 2). This one dies at
step 4, leading to the point (2, 4). One connected component dies at step 5, and
is represented by the point (1, 5). Finally, a great mortality is produced at step 6,
killing all the connected components (point (1, 6)), except the whole graph itself,
which is the connected component that lives forever: (1, ∞).

Persistence diagrams of real-world networks and their surrogates

As mentioned in Section 2.2.1, 30 surrogates were generated for each network. A
persistence diagram was obtained for each surrogate and dimension, as well as
for each of the given networks. The persistence diagram corresponding to each
original network is represented in Figure 2.7. A sample of persistence diagrams
and extended persistence diagrams of several surrogates from each network can
be found in Annex 3.1, for each dimension from 1 to 10.

A visual examination of the diagrams represented in Figure 2.7, compared to
the ones in Annex 3.1 corresponding to the surrogate, suggests that, in both cases,
the low dimension diagrams look more similar to the original network than the
ones with larger dimensions.

Figure 2.7: Persistence diagram and extended persistence diagram corresponding to the
CElegans-C and Human1 networks, respectively. Axes are in degree units.
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Figure 2.8: Visual representation of the tree-like structure of two networks and the degree
based filtration. The lowest degree vertices are represented on the lower part of the figure,
while vertices with greatest degrees are placed on top.

From Figure 2.8 the nature of the networks is captured. Points with death value
at 93, 75 or 74, for example, are noticeable in the tree visualization of CElegans-C,
as well as points with death value 65 or 44 in the case of Human1. These are also
represented in the persistence diagrams in Figure 2.7, which indicates that the late
appearance of some high degree nodes kills many connected components. Here
the heterogeneity property of complex networks in the distribution of the number
of contacts per node is clearly reflected, since many low-degree points can be
seen, but there are only a few nodes with high degree. These high-degree points
will play a significant role further in this work, and are analyzed in Section 2.2.6.
The fact that a node with degree 77, for example, appears for Human1 in the
tree visualization and not in the persistence diagram only means that the other
nodes contributing to this connected component were already connected between
each other. Therefore, the appearance of this high-degree node does not kill any
connected component.

Topological descriptors used to infer dimension

At this point, to compare each of the surrogate’s diagram with the real one, a
numerical quantification of the distance between diagrams is required. This will
allow us to choose which dimension is more accurate to the original network. To
do so, several topological descriptors have been considered. In this section it is
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discussed whether the descriptors are appropriate or not, and in case they are, the
results are shown. The complete code in Python elaborated to analyse the data can
be found in Annex 3.2. Note that many computations are implemented from the
Python Gudhi library [11].

In [1] the authors conclude that the CElegans-C network has dimension D = 1,
and that Human1 has dimension D = 3. Further from the specific number, what
we aim with this section is to analyse whether TDA can distinguish between a
low, a medium or a high dimension.

Figures 2.9 and 2.10 graphically summarize the results obtained. Note that
there are two types of descriptors. The ones that are distances should have a
minimum around the dimension of the real network. And the ones that show
characteristic features of the networks should coincide, at the appropriate dimen-
sion, with the dashed red line, corresponding to the value of the corresponding
feature for the real network.
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Figure 2.9: Topological persistence descriptors averaged over 30 surrogates of the
CElegans-C sample in each dimension, with error bars corresponding to standard devi-
ation. The x-axis shows the dimension of surrogates. When appropriate, the value of the
original network is shown in red. Wasserstein distance is computed with p = 1 and q = 2.
Reininghaus kernel is computed with σ = 0.6.
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Figure 2.10: Topological persistence descriptors averaged over 30 surrogates of the Hu-
man1 sample in each dimension, with error bars corresponding to the standard deviation
interval. The x-axis shows the dimension of surrogates. When appropriate, the value of
the original network is shown in red. Wasserstein distance is computed with p = 1 and
q = 2. Reininghaus kernel is computed with σ = 0.6 for 10 surrogates in H1 for Human1
due to computational constraints.
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1. Bottleneck distance

Bottleneck distance, as defined in Section 1.2.5, is the most basic metric to com-
pare persistence diagrams. If we look at the definition, it is easy to see that after
choosing the best matching between pairs of points from each diagram, the dis-
tance corresponds to the maximum of the distances between points. If one looks
at Figure 2.7, in both cases the persistence diagram for H0 has a point which is
clearly separated from the rest, and near the infinity line.

Take the case of CElegans-C, for example, and consider the point (1, 93). If we
compare the original diagram to surrogate diagrams, in many matchings this point
is paired with the diagonal, and is also the maximum distance between points in
the matching. Therefore, in many cases, the distance d∞ between two diagrams
is reduced to the distance between (1, 93) and the diagonal. This is independent
of the other points, and therefore gives very little information of dissimilarity
between the two diagrams. This result has been checked computationally. The
same happens for the Human1 sample.

Therefore, bottleneck distance has been discarded in H0. This shortcoming
does not happen in H1, since there are many more points, and they are distributed
through the whole diagram. Bottleneck distance has been computed to compare
each of the 30 surrogates with the original network. The average distance is shown
in Figure 2.9 and Figure 2.10, with the appropriate error bars, corresponding to
the standard deviation interval. Bottleneck distance in H1 performs well and con-
sistently with the expected results according to [1]. It can be seen in Figure 2.9 that
CElegans-C is expected to have a very low dimension. The closest to the original
would be D = 2. From Figure 2.10 we infer that Human1 has a medium dimension.
The results here suggest that the optimal dimension is D = 4 or D = 5.

2. Wasserstein distance

A similar argument applies for the Wasserstein distance, which refines the bottle-
neck distance. In this work, the Wasserstein distance between the real network
and its surrogates has been computed with the standard parameters p = 1 (indi-
cating a first-order Wasserstein distance) and q = 2 (which represents the internal
norm used in the computation of the distance, being q = 2 the Euclidean norm).
The results can be found in Figures 2.9 and 2.10.

Again, it can be seen that the expected dimension for CElegans-C is very low,
between D = 1 and D = 2, and instead the supposed dimension for Human1 is
medium, around D = 4. It is visually clear that the Wasserstein distance (with
p = 1 and q = 2) measures the same features as the bottleneck distance, but
enhanced. Note, for instance, that the standard deviation bars are shorter.
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3. Total persistence

For a better understanding of the data, other topological features have been com-
puted, starting with total persistence. Total persistence sums among all the differ-
ences between death and birth of all points. The existence or not of points in the
persistence diagram with very high persistence can strongly influence the results.
Recall the example of point (1, 93) from Figure 2.7. In Figures 2.9 and 2.10, H1
averages of the total persistence in each dimension are shown for CElegans-C and
Human1, as well as the value for the original network in each case.

While the results in H0 are not accurate and strongly affected by the existence
of points with very high persistence, the performance with H1 continues to be
satisfactory and in agreement with previous calculations. Thus, H0 has been dis-
carded for this study. The closest value to the original network for CElegans-C in
this case continues to be D = 2, followed by D = 1. And looking at the total
persistence graphic for Human1 the value is close to D = 5. This is, in fact, a bit
far from D = 3 as stated in [1], but still shows that the appropriate dimension for
Human1 is a medium value.

4. Entropy

As mentioned in Section 1.2.5, entropy provides a measure of the average amount
of information or uncertainty in the variable’s outcomes. Here entropy is mea-
sured in both H0 and H1, for the original networks and their surrogates. Again,
H0 results were little informative and seemed to have a significant random com-
ponent. The results suggested that the dimension is probably low or medium in
both samples, although it is not conclusive. By the contrary, results for H1 are,
again, satisfactory, and can be found in Figures 2.9 and 2.10. For CElegans-C it is
clear that the most similar entropy value to the original is the one with D = 1.
Moreover, Human1 seems to have D = 2, with a value for D = 3 also quite close.

5. Other descriptors

Silhouette distance, being quadratic pointwise difference between the silhouette
function of the original network and each of the surrogates, has been computed in
this work. Landscapes and persistence images have also been obtained for every
surrogate and the original networks. Results are not shown in this work because
they did not add any better information with respect to the one provided by the
other descriptors.
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6. Reinighaus kernel

A more sophisticated distance between diagrams is computed using the scale-
space kernel defined in Section 1.2.6. We will also refer to it as Reininghaus kernel.
The value of the kernel evaluated at two persistence diagrams K(D, Dsur) is the
scalar product of the vectors Φ(D) and Φ(Dsur) and is given by Eq. (1.32). The
distance between the diagrams is the norm of Φ(D) − Φ(Dsur) and is given by
Eq. (1.31). The Reininghaus kernel distance is represented in Figures 2.9 and 2.10.
Figure 2.9 indicates that CElegans-C has a very low dimension. In fact, it clearly
suggests that the dimension of this network is 1. Computations are both done for
H0 and H1 in this case. The results shown in Figure 2.10 are also very promising,
since a low-to-medium dimension (1 to 4) is seen, with a large jump from 4 to 5
which discards any dimension greater than 4.

2.2.6 Overview of results

It is worth mentioning a possible reason why the results in H0 have been so im-
precise in terms of discerning between dimension, and instead H1 seems to be
very successful. It is clear, as it has been hypothesized at the beginning of this
work, that there exists a relation between dimensionality of a real network and its
cycles. This is exactly what we seek for with H1, and it is also the reason why the
results are so conclusive.

H0, instead, has not performed accurately for this particular problem. Some
insights of a theoretical explanation for this fact are given when the bottleneck
distance is analyzed. As can be seen in Annex 3.1, the persistence diagrams of
the surrogates share a "bubble pattern" concentrated at the left of each diagram.
Point (1, 93) is included there. These points are perfectly vertically aligned. This
corresponds to the fact that x-values of the points indicate the degree of vertices,
while y-values indicate the degree value in which two connected components have
been merged, because an edge between them has appeared. Persistence diagrams
in H0 provide little reliable information because points with high y-values have
much weight on all persistence descriptors, but it only indicates that there is a
connected component that has taken more time to connect with the rest. Whether
this phenomenon happens or not is of random nature (since it depends on whether
the pij matrix makes a particular edge appear or not), but it does not carry any
information concerning the surrogate generation process.
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2.3 Dimension estimate using graph theory

An alternative method based on graph theory has been used in order to com-
pare it with our TDA approach. Heat Kernel Signatures have been introduced in
Section 1.2.8. The analysis of surrogates in this section follows the same pipeline
as the one described in the previous section. Thus, the same 30 surrogates that
were generated for each sample and dimension are analysed here. The feature
measured, though, has no longer a topological nature, but it is based on the nor-
malized graph Laplacian.

Definition 1.11 gives an expression for the Heat Kernel Signature function.
This function assigns a value to each vertex in the network. It requires a previous
computation of the normalized graph Laplacian matrix, together with its eigen-
values and its eigenvectors. In the expression hksG,t : v 7→ ∑n

k=1 e−tλk ϕk(v)2, λk

represents the k-th eigenvalue and ϕk(v) corresponds to the v-th position of the
k-th eigenvector.

The Heat Kernel Signature distance is then computed as the quadratic differ-
ence between the vector of values assigned to each vertex in the real network and
the vector of values assigned to the surrogate’s vertices. Figure 2.11 shows the re-
sults corresponding to the average distance between the real network Heat Kernel
Signature vector and its surrogate vectors for both CElegans-C and Human1.

Figure 2.11: Average distance between the real network Heat Kernel Signature vector
(with t = 0.6) and its surrogate vectors for CElegans-C and Human1, with error bars corre-
sponding to standard deviation.

This method clearly assigns dimension 1, a very low dimension, to the CElegans-
C sample, which is the expected result. By the contrary, the election of an accurate
dimension is not so clear in the case of Human1. What is noticeable is the fact
that HKS distance in this second case discards extreme dimensions (very low or
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very high), and that a small increasing tendency can be seen. One concludes here
that HKS distance is not an accurate analytic estimator of the dimensionality of
networks.

In fact, HKS does not perform better than TDA persistence descriptors. In any
case, the results are consistent between one method and the other, which supports
the claim that graph theory and TDA are capable to detect differences between
surrogates according to their dimension.
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Chapter 3

Conclusions

In this work, the dimension of two complex networks is studied through a ge-
ometric network model. The model has been implemented in order to obtain 30
surrogates for each dimension and network. In [1] the dimension is found to be
related to the density of cycles. Thus, it is plausible that persistent homology
can detect dimensionality of networks. A degree-based filtration has been imple-
mented together with an extended persistence technique. Bottleneck and Wasser-
stein (with p = 1 and q = 2) distances as well as Reininghaus kernel dissimilarities
have been applied to compute differences between persistence diagrams from the
real network and each surrogate. Total persistence and entropy have also been
computed and compared with the corresponding values of the original network.

The results are promising and match the ones obtained in [1]. A very low
dimension (1-2) has been obtained for CElegans-C in all cases. Similarly, Human1
has been found to have a low-middle dimension, between 2 and 5.

The inference of a metric on graphs, seeking to apply traditional TDA tech-
niques, has also been studied. Two approaches have been used; one based on
the pij matrices, which are proportional to a distance in the model, and the other
based on the distribution of shortest paths. The intrinsic properties of complex
networks make both of these approaches less appropriate than the one based on
the degree of vertices. The concept of hidden degree inferred to the surrogates by
the geometrical model makes it ideal to study and compare different graphs with
the chosen filtration function. Even though this focuses on the degree of vertices, it
enhances differences between the surrogates at each step of the filtration because
the appearance of a different number of edges per step gains importance.

In this sense the proposed study has successfully behaved for H1, as the focus
is centered on the study of cycles. For H0, instead, little relevant information has
been added to the one found from H1. Possible causes for this phenomenon have
been discussed.
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Other perspectives have been also implemented. The Euler characteristic has
been studied. A mathematical proof is provided for the fact that an increasing
tendency is expected as long as β and D are increasing. This has been checked
computationally. Moreover, a graph theoretical point of view is added to the
study. This is independent from TDA techniques, since it is based on properties of
the graph Laplacian. The average distance between the real network Heat Kernel
Signature vector and its surrogate vectors has been computed for both samples and
the conclusion is that even if HKS can distinguish between high or low dimensions,
it certainly does not perform better than TDA persistence descriptors.

There are several ways in which this work could be continued. Firstly, the
methodology proposed here could be tested with synthetic networks generated
by the model, by giving all the parameters manually instead of obtaining them
from real-world networks. The advantage of it is that D could be exactly moni-
tored, and the results would be more precise (because in real networks noise can
be a factor). Secondly, networks with higher dimensions, such as Internet, should
be tested. One must consider the impact of network complexity on computing
times. The size of the network is tightly related to the computational demands,
and dealing with networks of greater complexity presents additional computa-
tional restrictions. For example, even if the results are robust with the Reininghaus
kernel, which vectorizes persistence diagrams into Hilbert spaces, total persistence
is computationally faster and the results show that it is also a good analytic in-
dicator. Finally, and most importantly, this research provides a bridge between
network geometry and algebraic topology. By combining these two fields, the
work pushes the boundaries of what we know, offering new insights and spark-
ing curiosity for future exploration. It opens up exciting opportunities to delve
deeper into the connections between persistent homology and complex networks,
encouraging researchers to explore this fascinating domain.
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Annex

3.1 Persistence diagrams of network surrogates

Figure 3.1: Persistence diagrams of three example surrogates for each dimension D from
1 to 5 of the CElegans-C network. Axes are in degree units. Red points correspond to H0
and blue points to H1.
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Figure 3.2: Persistence diagrams of three example surrogates for each dimension D from
5 to 10 of the CElegans-C network. Axes are in degree units. Red points correspond to H0
and blue points to H1.
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Figure 3.3: Persistence diagrams of three example surrogates for each dimension D from
1 to 5 of the Human1 network. Axes are in degree units. Red points correspond to H0 and
blue points to H1.
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Figure 3.4: Persistence diagrams of three example surrogates for each dimension D from
5 to 10 of the Human1 network. Axes are in degree units. Red points correspond to H0
and blue points to H1.
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Figure 3.5: Extended persistence diagrams for H1 of three example surrogates for each
dimension D from 1 to 5 of the CElegans-C network. Axes are in degree units.
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Figure 3.6: Extended persistence diagrams for H1 of three example surrogates for each
dimension D from 5 to 10 of the CElegans-C network. Axes are in degree units.
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Figure 3.7: Extended persistence diagrams for H1 of three example surrogates for each
dimension D from 1 to 5 of the Human1 network. Axes are in degree units.
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Figure 3.8: Extended persistence diagrams for H1 of three example surrogates for each
dimension D from 5 to 10 of the Human1 network. Axes are in degree units.
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The reader should notice that Figures 3.5, 3.6, 3.7 and 3.8 do not necessarily share
the same scale in the axes (although in the vast majority, they do). This is done on
purpose, in order to help the reader distinguish the features between dimensions,
and at the same time to make the diagrams readable.
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3.2 Python code generated to analyse the data using vertex
filtrations

The following code was generated to obtain the figures in Section 2.2.4. Note
that Networkx internally uses BFS to calculate the shortest path length between the
source and target nodes in unweighted graphs.

1 !pip install networkx gudhi
2 !pip install gudhi
3

4 from sklearn import datasets
5 import pandas as pd # pandas for data bases
6 import numpy as np # numpy for vectors and matrices
7 import matplotlib.pyplot as plt # to draw graphics
8 import gudhi as gd #for the TDA computations
9 import networkx as nx #to manipulate complex graph networks

10 import gudhi
11

12 # Read edges from file and create a graph
13 G = nx.Graph()
14 with open(’Human1_3_10.edge’, ’r’) as f:
15 for line in f:
16 if line.startswith(’#’):
17 continue
18 u, v = line.strip().split()
19 u = int(u[1:])
20 v = int(v[1:])
21 G.add_edge(u, v)
22

23 # Sort the nodes numerically
24 nodes = sorted(G.nodes())
25

26 # Print the nodes and edges of the graph
27 print("Nodes: ", nodes)
28 print("Edges: ", G.edges())
29

30 # Draw the graph
31 nx.draw(G, with_labels=True, node_size=70)
32 plt.show()
33

34 # Build the associate matrix using the shortest path lengths
35 n = len(nodes)
36 matriu = np.zeros((n, n))
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37 for i, node1 in enumerate(nodes):
38 for j, node2 in enumerate(nodes):
39 if i != j:
40 try:
41 matriu[i][j] = matriu[j][i] = nx.shortest_path_length(G,

source=node1, target=node2)
42 except nx.NetworkXNoPath:
43 matriu[i][j] = matriu[j][i] = float(’inf’)
44

45 print(matriu)
46

47 rips_complex_sample = gd.RipsComplex(distance_matrix = matriu)
48 rips_complex_tree = rips_complex_sample.create_simplex_tree(max_dimension

=2)
49 persistence = rips_complex_tree.persistence()
50

51 bx = gd.plot_persistence_barcode(persistence)
52 ax = gd.plot_persistence_diagram(persistence)

The code used to analyse the networks using topological data analysis tools is
also available in this section. This first part corresponds to the packages that need
to be installed or imported.

1 !pip install networkx gudhi
2 !pip install gudhi
3 !pip install tqdm
4 !pip install POT
5

6 import numpy as np
7 import pandas as pd
8 import gudhi as gd
9 import math

10 import matplotlib.pyplot as plt
11 import networkx as nx
12 import gudhi.wasserstein
13 import ot
14

15 from mpl_toolkits.mplot3d import Axes3D
16 from sklearn import metrics
17 from numpy.linalg import eig
18 from gudhi import representations as gdr
19 from tqdm.notebook import tqdm
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Next, several functions are defined in order to compute different topological de-
scriptors.

1

2 def compute_Euler_characteristic(G):
3 return G.number_of_nodes() - G.number_of_edges()
4

5 def total_persistence(persistence, dim):
6 summ = 0
7 for i in range(len(persistence)):
8 if persistence[i][0] == dim:
9 if persistence[i][1][1] < float(’inf’):

10 summ += persistence[i][1][1] - persistence[i][1][0]
11 return summ
12

13 def compute_laplacian_spectrum(G):
14 nodes = G.nodes
15 laplaciana = np.zeros((G.number_of_nodes(), G.number_of_nodes()))
16 for i, n in enumerate(nodes):
17 for j, m in enumerate(nodes):
18 if i == j:
19 laplaciana[i][i] = G.degree(n)
20 elif n in G.neighbors(m):
21 laplaciana[i][j] = laplaciana[j][i] = -1
22 w,v = eig(laplaciana)
23 return np.sort(w)
24

25 def compute_Euler_characteristic_distance(E1, E2):
26 return E1 - E2
27

28 def compute_normalized_laplacian_spectrum(G):
29 #Laplaciana
30 nodes = G.nodes
31 #n = 280
32 laplaciana = np.zeros((G.number_of_nodes(), G.number_of_nodes()))
33 for i, n in enumerate(nodes):
34 for j, m in enumerate(nodes):
35 if i == j and G.degree(n) != 0:
36 laplaciana[i][i] = 1
37 elif n in G.neighbors(m):
38 laplaciana[i][j] = laplaciana[j][i] = -1.0/np.sqrt(G.degree(n)*

G.degree(m))
39 w,v = eig(laplaciana)
40 return np.sort(w)
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41

42 def compute_landscape(dirty_diagram, dim = 0, k = 50, res = 200):
43 clean_dgm= [np.array(dirty_diagram[i][1]) for i in range(len(dirty_diagram

)) if dirty_diagram[i][0] == dim and dirty_diagram[i][1][1] != float(’
inf’)]

44 L = gdr.Landscape(num_landscapes=k, resolution=res).fit_transform([np.
array(clean_dgm)])

45 return L[0]
46

47 def compute_silhouette(dirty_diagram, dim = 0, p = 1, res = 200):
48 clean_dgm= [np.array(dirty_diagram[i][1]) for i in range(len(dirty_diagram

)) if dirty_diagram[i][0] == dim and dirty_diagram[i][1][1] != float(’
inf’)]

49 sil = gdr.Silhouette(weight = lambda x: np.power(x[1]-x[0], p), resolution
=200)

50 silueta = sil.fit_transform([np.array(clean_dgm)])
51 return silueta[0]
52

53 def compute_persistence_image(dirty_diagram, dim = 0, sigma = 1, res = 200)
:

54 clean_dgm= [np.array(dirty_diagram[i][1]) for i in range(len(dirty_diagram
)) if dirty_diagram[i][0] == dim and dirty_diagram[i][1][1] != float(’
inf’)]

55 img = gdr.PersistenceImage(bandwidth = sigma, resolution=[res, res])
56 imatge = img.fit_transform([np.array(clean_dgm)])
57 return imatge[0]
58

59 def compute_bottleneck_distance(dgm1, dgm2):
60 diag1 = [[bd[1][0], bd[1][1]] for bd in dgm1 if bd[0] == 0]
61 diag2 = [[bd[1][0], bd[1][1]] for bd in dgm2 if bd[0] == 0]
62 return gd.bottleneck_distance(diag1, diag2)
63

64 def compute_wasserstein_distance(dgm1, dgm2):
65 diag1 = [[bd[1][0], bd[1][1]] for bd in dgm1 if bd[0] == 0]
66 diag1.pop(0)
67 diag1 = np.array(diag1)
68 diag2 = [[bd[1][0], bd[1][1]] for bd in dgm2 if bd[0] == 0]
69 diag2.pop(0)
70 diag2 = np.array(diag2)
71 return gd.wasserstein.wasserstein_distance(diag1, diag2, order=1.,

internal_p=2.)
72

73 def compute_landscape_distance(L1, L2, k = 50, res = 200):
74 diff_area = []
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75 for i in range(k):
76 auc1_i = metrics.auc(range(res), L1[i*res:(i+1)*res])
77 auc2_i = metrics.auc(range(res), L2[i*res:(i+1)*res])
78 diff_area.append((auc1_i - auc2_i)**2)
79 return np.sqrt(np.sum(diff_area)) / res
80

81 def compute_silhouette_distance(S1, S2):
82 return np.sqrt(np.sum(np.square(S1-S2)))
83

84 def Reininghaus_kernel(sigma, dgm1, dgm2, dim=1):
85 dgm1 = np.array(dgm1)
86 dgm2 = np.array(dgm2)
87 n = dgm1.shape[0]
88 m = dgm2.shape[0]
89 K = np.zeros((n, m))
90 for i in range(n):
91 for j in range(m):
92 if dgm1[i][0] == dim or dgm2[j][0] == dim:
93 continue
94 p = np.array(dgm1[i][1])
95 q = np.array(dgm2[j][1])
96 if np.isfinite(p[1]) and np.isfinite(q[1]):
97 d2 = (p[0]-q[0])**2 + (p[1]-q[1])**2
98 d_bar2 = (p[0]-q[1])**2 + (p[1]-q[0])**2
99 K[i,j] = np.exp(-d2/(8*sigma)) - np.exp(-d_bar2/(8*sigma))

100 total = np.sum(K) / (8*np.pi*sigma)
101 return total
102

103 def compute_reininghaus_distance(sigma, dgm1, dgm2, dim=1):
104 d = np.sqrt(Reininghaus_kernel(sigma, dgm1, dgm1)-2*Reininghaus_kernel(

sigma, dgm1, dgm2)+Reininghaus_kernel(sigma, dgm2, dgm2))
105 return d
106

107 def compute_entropy(dgm1, dim=0):
108 dgm1 = np.array(dgm1)
109 n = dgm1.shape[0]
110 L = total_persistence(dgm1, dim)
111 entropy = 0
112 for i in range(n):
113 if dgm1[i][0] == 1:
114 continue
115 di = dgm1[i][1][1]
116 if np.isfinite(di):
117 bi = dgm1[i][1][0]
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118 p = (di - bi) / L
119 entropy -= p * np.log2(p)
120 return entropy
121

122 def compute_heat_kernel_signature(G):
123 n = G.nodes
124 H = []
125 t = 0.6
126 vaps, veps = compute_normalized_laplacian_spectrum(G)
127 for v in range(len(n)):
128 sum=0
129 for k in range(len(n)):
130 l = vaps[k]
131 phi = veps[k][v] #k-th vector at v position
132 c = math.exp(-t*l)*(phi**2)
133 sum += c
134 H.append(sum)
135 return H
136

137 def read_graph(path):
138 # read edges from file and create an undirected graph G
139 G = nx.Graph()
140 with open(path, ’r’) as f:
141 for line in f:
142 u, v = line.strip().split()
143 G.add_edge(u, v)
144 return G
145

146 def read_graph_modified(path):
147 G = nx.Graph()
148 with open(path, ’r’) as f:
149 for line in f:
150 if line.startswith(’#’):
151 continue
152 u, v = line.strip().split()
153 u = int(u[1:]) # convert node labels to integers by removing the

’v’ prefix
154 v = int(v[1:])
155 G.add_edge(u, v)
156 return G
157

158 def compute_degree_filtration_persistence(G):
159 #A dictionary called node_index_map is created to map nodes to their

indices in the simplex tree.
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160 node_index_map = {node: i for i, node in enumerate(G.nodes())}
161

162 st = gd.SimplexTree()
163 for (u, v) in G.edges():
164 st.insert([node_index_map[u], node_index_map[v]])
165 for i, node in enumerate(G.nodes()):
166 st.insert([node_index_map[node]])
167 st.assign_filtration([node_index_map[node]], G.degree[node])
168

169 _ = st.make_filtration_non_decreasing()
170

171 dgm = st.persistence(persistence_dim_max=True)
172

173 return dgm

The following code corresponds to the main program in homological dimension
0 (H0). At first, it reads and computes topological descriptors for an original net-
work. Then, in a loop over the 10 dimensions and the 30 surrogates for each net-
work, it computes the same topological descriptors for surrogates, and compares
them to the values for the original network.

1

2 G = read_graph(’Human1.edge’)
3 dgm = compute_degree_filtration_persistence(G)
4

5 caract = compute_Euler_characteristic(G)
6 entropy = compute_entropy(dgm)
7 laplaciana_spec = compute_laplacian_spectrum(G)
8 laplaciana_spec_norm = compute_normalized_laplacian_spectrum(G)
9 totpers = total_persistence(dgm, 0)

10 silhouette = compute_silhouette(dgm)
11 landscape = compute_landscape(dgm)
12 imatge = compute_persistence_image(dgm)
13

14 #BEGINING OF THE MAIN PROGRAM
15

16 # DataFrame to store the values
17 df = pd.DataFrame(columns = [’Nom’, ’Euler Caract’, ’Wasserstein Dist’, ’

Entropy’, ’TotPers Dist’, ’Sil Dist’, ’Rein dist 0.6’, ’Sign dist’])
18 base_name = ’Human1_’
19 for dim in tqdm(range(1, 11)):
20 for i in tqdm(range(1, 31)):
21 name = base_name + str(i) + "_" + str(dim) +".edge"
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22 print(name)
23 G_sur = read_graph_modified(name)
24 caract_sur = compute_Euler_characteristic(G_sur)
25 caract_dist = compute_Euler_characteristic_distance(caract, caract_sur)
26 #laplaciana_spec_sur = compute_laplacian_spectrum(G_sur)
27 #laplaciana_spec_norm_sur = compute_normalized_laplacian_spectrum(G_sur)
28 dgm_sur = compute_degree_filtration_persistence(G_sur)
29 signature_sur = compute_heat_kernel_signature(G_sur)
30

31 # compute the bottleneck distance
32 bottleneck_dist = compute_bottleneck_distance(dgm, dgm_sur)
33

34 # compute the wasserstein distance
35 wasserstein_dist = compute_wasserstein_distance(dgm, dgm_sur)
36

37 # Compute the total persistence
38 totperszero_sur = total_persistence(dgm_sur, 0)
39 totpers_dist = abs(totperszero_sur - totpers)
40

41 # Compute the entropy
42 entropy_sur = compute_entropy(dgm_sur, 0)
43 entropy_dist = abs(entropy_sur - entropy)
44

45 # Compute the silhouette
46 silhouette_sur = compute_silhouette(dgm_sur)
47 silhouette_dist = compute_silhouette_distance(silhouette, silhouette_sur

)
48

49 # Compute distance between landscapes by summing quadraticaly the
difference between areas

50 landscape_sur = compute_landscape(dgm_sur)
51 landscape_dist = compute_landscape_distance(landscape, landscape_sur)
52

53 # Compute the persistence image
54 imatge_sur = compute_persistence_image(dgm_sur)
55 imatge_dist = compute_persistence_image_distance(imatge, imatge_sur)
56

57 # Distance between images using Reininghaus Kernel’s
58 Rein_dist_06 = compute_reininghaus_distance(0.6, np.array(dgm), np.array

(dgm_sur))
59

60 # Euclidean distance between the two heat signature vectors
61 min_length = min(len(signature), len(signature_sur))
62 signature_dist_complex = np.sqrt(np.sum(np.square(np.array(signature[:
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min_length]) - np.array(signature_sur[:min_length]))))
63 signature_dist = np.real(signature_dist_complex)
64

65 df = df.append({’Nom’: name, ’Euler Caract’: caract_sur, ’Wasserstein
Dist’: wasserstein_dist, ’Entropy’: entropy_sur, ’TotPers Dist’:
totperszero_sur, ’Sil Dist’: silhouette_dist, ’Rein dist 0.6’:
Rein_dist_06, ’Sign dist’: signature_dist}, ignore_index = True)

66 df.to_csv(’signhuman1_’+str(dim)+’.csv’, index=False)

Finally, the data is averaged for each dimension, and standard deviation is com-
puted. This is used to plot a comparison between the values for the 10 dimensions
and the original value. An example is provided here for the Euler characteristic.
The other descriptors are plotted analogously.

1 from google.colab import drive
2 drive.mount(’/content/drive’)
3

4 interval_size = 30 # Size of each interval
5 num_intervals = 10 # Number of intervals
6

7 for dim in range(1, 11):
8 df = pd.read_csv(’prova_cuc_’ + str(dim) + ’.csv’)
9

10 slices = []
11 for i in range(num_intervals):
12 start = i * interval_size
13 end = (i + 1) * interval_size
14 interval_slice = df.iloc[start:end]
15 slices.append(interval_slice)
16

17 euler_dim = []
18 euler_var_dim = []
19 entr_dim = []
20 entr_var_dim = []
21 perst_dim = []
22 perst_var_dim = []
23 sil_dist_dim = []
24 sil_dist_var_dim = []
25 rein_dist_dim = []
26 rein_dist_var_dim = []
27

28 for interval_slice in slices:
29 euler_dim.append(interval_slice[’Euler Caract’].mean())
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30 euler_var_dim.append(interval_slice[’Euler Caract’].std())
31 entr_dim.append(interval_slice[’Entropy’].mean())
32 entr_var_dim.append(interval_slice[’Entropy’].std())
33 perst_dim.append(interval_slice[’TotPers Dist’].mean())
34 perst_var_dim.append(interval_slice[’TotPers Dist’].std())
35 sil_dist_dim.append(interval_slice[’Sil Dist’].mean())
36 sil_dist_var_dim.append(interval_slice[’Sil Dist’].std())
37 rein_dist_dim.append(interval_slice[’Rein dist 0.6’].mean())
38 rein_dist_var_dim.append(interval_slice[’Rein dist 0.6’].std())
39

40 #Euler’s characteristic plot - 10 dimensions comparison to the original
value

41 fig, ax1 = plt.subplots(figsize=(6, 4))
42 ax1.errorbar(x = [i for i in range(1, 11)], y = euler_dim, yerr =

euler_var_dim, color=’blue’, fmt=’-o’)
43 ax1.axhline(caract, ls=’--’, color=’red’)
44 ax1.set_ylabel(’Euler Characteristic’)
45 ax1.set_xlabel(’Surrogate dimension’)
46 plt.grid(True)
47 plt.title("Euler Characteristic - Human1")
48 plt.show()

For H1, the code to compute topological descriptors is analogous. However, as
mentioned during the project, extended persistence is used in H1 to obtain more
information about the cycles. The following code computes extended persistence
and visualizes it.

1 #read edges from file and create an undirected graph G
2 G = nx.Graph()
3 with open(’Human1.edge’, ’r’) as f:
4 for line in f:
5 u, v = line.strip().split()
6 G.add_edge(u, v)
7

8 node_index_map = {node: i for i, node in enumerate(G.nodes())}
9

10 # Construct the simplex tree and assign filtration values
11 # The simplex tree st is constructed by inserting nodes and edges from the

graph G.
12 # Filtration values are assigned to nodes based on their degree in the

graph
13 st = gd.SimplexTree()
14 for (u, v) in G.edges():
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15 st.insert([node_index_map[u], node_index_map[v]])
16 for i, node in enumerate(G.nodes()):
17 st.insert([node_index_map[node]])
18 st.assign_filtration([node_index_map[node]], G.degree[node])
19

20 _ = st.make_filtration_non_decreasing()
21

22 nx.draw(G, with_labels=True, node_size = 70)
23 plt.show()
24

25 # Visualize the graph
26 pos = {}
27 for idxv, v in enumerate(G.nodes()):
28 y = st.filtration([node_index_map[v]])
29 x = random.uniform(-1, 1)
30 pos[v] = [x,y]
31 fig, ax = plt.subplots(figsize=(5,5))
32 nx.draw(G, pos=pos, node_size=70, ax=ax)
33 limits=plt.axis(’on’)
34 ax.tick_params(left=True, bottom=False, labelleft=True, labelbottom=False)
35 plt.show()
36

37

38 # Compute the extended persistence diagram and visualize it
39 st.extend_filtration()
40 dgms = st.extended_persistence(min_persistence=1e-5)
41

42 #make extended persistence for H1 symmetric respect the diagonal
43 invext_dgm = [np.array([p[1], p[0]]) for _, p in dgms[3] if np.isfinite(p

[1])]
44 invext_dgm_tuples = [tuple(p) for p in invext_dgm]
45

46 # Compute the extended persistence diagram and visualize it
47 fig, axs = plt.subplots(2, 2, figsize=(5,5))
48 plt.subplots_adjust(hspace=0.3, wspace=0.3)
49 axs[0,0].scatter([dgms[0][i][1][0] for i in range(len(dgms[0]))], [dgms[0][

i][1][1] for i in range(len(dgms[0]))])
50 axs[0,0].plot([0,5],[0,5])
51 axs[0,0].set_title("Ordinary PD", fontsize=10)
52 axs[0,1].scatter([dgms[1][i][1][0] for i in range(len(dgms[1]))], [dgms[1][

i][1][1] for i in range(len(dgms[1]))])
53 axs[0,1].plot([0,5],[0,5])
54 axs[0,1].set_title("Relative PD", fontsize=10)
55 axs[1,0].scatter([dgms[2][i][1][0] for i in range(len(dgms[2]))], [dgms[2][
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i][1][1] for i in range(len(dgms[2]))])
56 axs[1,0].plot([0,5],[0,5])
57 axs[1,0].set_title("Extended+ PD", fontsize=10)
58 invext_dgm_x = [p[0] for p in invext_dgm_tuples]
59 invext_dgm_y = [p[1] for p in invext_dgm_tuples]
60 axs[1,1].scatter(invext_dgm_x, invext_dgm_y)
61 axs[1,1].plot([0,5],[0,5])
62 axs[1,1].set_title("Extended Persistence Diagram", fontsize=10)
63 axs[1, 1].set_xlabel("Birth")
64 axs[1, 1].set_ylabel("Death")
65 plt.show()
66

67 arr = np.array(invext_dgm)
68 diagram = [(arr[i][0], arr[i][1]) for i in range(arr.shape[0])] # Convert

the array to a list of tuples
69 extended_diagram = [(1, (p[0], p[1])) for p in diagram]
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