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Abstract

The main goal of this master’s thesis is to study localizations in the setting of homotopy type
theory. In particular the special case of modalities, an object resembling the namesake notion in
classical logic that allows to qualify statements to express things as possibility or necessity.

In the first chapter we introduce the syntax of homotopy type theory and some motivating
examples for the study of modalities. Next, we study localizations and modalities as described in
[1; 2]. We focus on the fact that accessible modalities correspond to nullifications and work on the
existence of non-accessible modalities.

Finally we explore the use of Agda (a programming language for automatic proof verification)
towards implementing results about factorization systems and modalities.

Resum

L’objectiu d’aquest treball de final de màster és estudiar les localitzacions en el context de la
teoria homotòpica de tipus. En particular el cas de les modalitats, objectes semblants a la noció
homònima en lògica clàssica, que permet modificar expressions per a expressar característiques com
la possibilitat o la necessitat.

En la primera part de la memòria introduïm la sintaxi de la teoria homotòpica de tipus i al-
guns exemples motivadors per a l’estudi de les modalitats. Després estudiem les localitzacions i
les modalitats tal com es descriuen a [1; 2]. Ens centrem en el fet que les modalitats accessibles
corresponen a les nul·lificacions i en l’existència de les modalitats no accessibles.

Finalment explorem l’ús d’Agda (un llenguatge de programació per a la verificació automàtica de
demostracions) per a la implementació dels resultats sobre sistemes de factorització i modalitats.
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Chapter 1

Introduction

In general, we refer to localization as the procedure of adding inverses to some algebraic structure,
being the classical example the localization of a commutative ring at a set of its elements, making
those invertible. The extension of the concept to Category Theory has a long history, starting with
the work of Sullivan and Bousfield [3; 4] in Topology and classical Homotopy Theory during the
decade of the 1970s and playing a key role in the field.

It is then interesting to present a framework for the study of localization theories in the lan-
guage of ∞-categories as developed recently by Lurie [5]. In his book Higher Topos Theory, Lurie
devotes a chapter to the study of the theory of adjoint functors, which, if restricted to the case
when one of the functors is an inclusion of a (full) subcategory, it is also the theory of localiza-
tions of ∞-categories, and as we will see it is very closely related to the study of factorization systems.

Independently of mathematics, classical logic has extensively studied modal logic as a collec-
tion of formal systems that aim to represent statements qualifying ways in which they may be
considered to be true. As a sample, we might find the classic Alethic Modalities, regarding necessity
and possibility. These interact in different ways but the most relevant to us are the two implications :

P −→ ♢P

♢♢P −→ ♢P

Here we are expressing ♢ (the possibility modality) as an unary operation on the propositions,
namely that P implies possibly P and possibly possibly P implies possibly P. In category theory or
even computer science, we may identify this construction as a monad. Many modalities can also
take the form of comonads, but we will restrict our attention to the monadic ones.

In the first decade of the 20th century, Bertrand Russell proposed type theory as a solution
to certain paradoxes that emerged from naive set theory. Needless to say, set theory would get
improved with new formalizations and would get on to be the standard for mathematics since then.
However type theory would still get developed and worked on; in 1972 Per Martin Löf introduced
Intuitionistic Type Theory as an alternative foundation for mathematics based on the principles of
constructivism, which revived in many ways the interest and uses of such a formalism.

A type is a concept very similar to a set, as it represents something containing elements. Still, it
distances itself from the idea of a set by not allowing the elements (or terms) of a type to be shared
with other types or even for these elements to have sense without giving their type. So any element
will have one and only one associated type.

Another important difference with respect to set theory is the way to integrate logic. While
in set theory we build on first order logic, type theory plays at the same time the role of the sets
and the role of the associated logic, via the interpretations of certain types as propositions.
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2 CHAPTER 1. INTRODUCTION

In the late 90s and the first decade of the 21st century, there were many contributions on what the
models of such type theories could be. Hofmann and Streicher [6] showed that intuitionistic type
theory admitted a model in the category of groupoids. Awodey and Warren showed that Quillen
categories also modelled these sorts of type theories, and from this, the homotopy interpretation
was developed into a type theory that emerged around a decade ago from the work of Awodey and
Warren [7] from one side and Voevodsky [8] from another side. In this homotopic interpretation of
type theory, we think of types as spaces or ∞-groupoids. Their terms (or elements) are points in
those spaces and for any two points in a space there is a space of paths from one to the other. This
type theory makes also use of Voevodsky’s univalence axiom and higher inductive types, which we
will explore.

The theory of localizations can be developed with some interesting results in Homotopy Type Theory
via higher inductive types and, when restricted to propositions, the notion of a Σ-closed reflective
subuniverse in homotopy type theory will coincide with that of a localization in an ∞-topos and
the modalities as studied in classical logic.

One of the most relevant modalities in Homotopy Type Theory arises naturally from the n-truncation
of types, and it corresponds to the localization at the function from Sn+1 (the n+ 1-sphere) to the
unit type. More generally given a family of functions F : B(a) −→ C(a) indexed by the terms of a
type a : A, a type X is F -local if the map between the types of functions

(C(a) −→ X) −→ (B(a) −→ X)

induced by precomposition is an equivalence for all a : A indexing the family F . An F -localization
of a type X is a universal F -local type admitting a map from X, we will say that a modality is
accessible if it arises from an F -localization

When localizing at a family of maps a reflective subuniverse will arise, but it will not neces-
sarily be a modality. We can though impose a condition to make sure that we obtain a modality,
namely that the maps are constant. We call these localizations nullifications, following the usual
homotopical terminology, with n-truncation as an example. Every accessible modality can be
presented as a nullification.

Figure 1.1: Modalities and related structures, from [2]
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The non-accessible localizations are less known. In [2] the example of the double negation modality
is discussed:

P −→ ¬¬P.

Despite being accessible under the correct assumptions on the size of types, it does not seem to
always be. Another interesting result is that, again under size assumptions, we can construct
localizations whose accessibility is independent of ZFC, a construction that we can extend to
modalities.

The final chapter is dedicated to the formalization of Homotopy Type Theory, as it opens up a
new direction on the capabilities of foundations of mathematics and computation, allowing high
dimensional data types and an effective implementation into a programming language.

Its applications go from allowing us to work with the “right” notion of equality for mathematical
structures to expressing higher mathematical concepts as higher types The computational proof
assistants developed on this basis facilitate the large-scale formalization of logic and mathematics
into libraries, with great practical implications for mathematics.

Maybe the best examples are the Hott/Coq-HoTT library, based on the Coq proof assistant,
with around 60 contributors to it, and the Agda-Unimath library, based on the Agda language and
with 32 contributors. These two libraries are not as active or big as other projects (see for example
mathlib and the Xena project) but they formalize work done from a univalent point of view, that
is, using Homotopy Type Theory.





Chapter 2

Fundamentals of Homotopy Type
Theory

The objective of this chapter is to introduce the vocabulary and how-to’s of homotopy type theory
to someone who has not yet worked on it or attended a course. We will focus on the syntax of the
theory, which is its formal presentation as a logical system, rather than its interpretation in a given
model.

We will follow mainly the formalism of the book "Homotopy Type Theory: Univalent Foun-
dations of Mathematics" [9]. This book gives a great introduction to Homotopy Type Theory from
a "mathematical use" of it, in the same way we usually make use of set theory. Other options for
the reader to delve into Homotopy Type Theory are the recent "Introduction to Homotopy Theory"
[10] and the recorded lectures of the HoTTEST Summer School 2022

Intuitionistic Type Theory (or Dependent Type Theory) is a sort of type theory introduced
in the 70s by Per Martin Löf [11], which makes use of dependent types, constructive logic and
identity types. This kind of type theory together with the modelling of types as ∞-groupoids and
the introduction of Voevodsky’s univalence axiom and Higher Inductive Types is what is given the
name of Homotopy Type Theory.

2.1 Dependent Type Theory

Type theory is a deductive system and, as such, we have judgements and rules, that allow us to
introduce and construct new types and terms from what we already have. There is only a rather
small set of basic judgements:

A is a type A : Type

a is a term of type A a: A

A and B are equal types A≡ B: Type

a and b are equal terms of type A a≡ b: A

P(a) is a type for every a:A a:A ⊢ P(a) :Type

p(a): P(a) for every a:A a:A ⊢ p(a) :P(a)

5



6 CHAPTER 2. FUNDAMENTALS OF HOMOTOPY TYPE THEORY

Remark 1. "Type" is a universe, a type that has other types as terms. To avoid certain paradoxes
existing also in the set theoretic realm, it is usual to suppose a hierarchy of universes

U0 : U1 : U2 : U3 . . .

In practice, we only use the symbol U to denote a certain universe unless other universes are needed.
Therefore from now on we will write A : U or simply A for "let A be a type".

Note that we are considering two sorts of judgements, those of introduction of a term given its type
and those of definitional equality, that is, given a type A, and two terms x, y : A, it is valid to say
x = y : A which we can also write for example y :≡ x when we are giving an expression. This is
equality in its strongest form, but not the one we will use where we would use equality in the sense
of set theory or "usual mathematics". We will see later propositional equality, which we will denote
· =A · and is internal to the type theory. There are types IdA(x, y) and when an element of this
type can be constructed we say that x and y are propositionally equal.

A Martin-Löf dependent type theory makes use of propositional equality but also introduces
the two last judgements of the list. The types (and terms) introduced can be thought of as
analogous of indexed sets, which in type theory we will call dependent types. We can think of p in
the second judgement as a function taking an element a : A to p(a) : P (a). We call such function a
dependent function.

Here the part on the left of the turnstile ⊢ is the "context", the given premises for our judgement.
We will not make use of that language but an extended explanation for both context and judgements
can be found in [10].

Concerning the other part of the "system", rules characterize how a given type and its terms
behave. We will see plenty of examples since before using type theory we need to define basic types
and constructions. We will first give some types we consider part of the fundamentals of type
theory which we will make use of during the rest of this text. We will then jump to the homotopy
interpretation of type theory and its implications and axioms.

Function types

In set theory, we define a function as a set of pairs. This sort of definition allows us to deduce
certain properties that characterize functions and how we will work with them. In type theory they
are a primitive concept, so we will explain the type by giving the rules, defining functions from
what is expected from them rather than the other way around.

Definition 1. Let A,B : U be two types. We define the type of functions with domain A and
codomain B, denoted as A −→ B, as the one following the rules:

• Introduction: given a free variable and an expression θ which may contain x, such that for
any element a : A then θ[a/x] : B then the equation

f(x) :≡ θ

is a term f : A −→ B.

• Elimination: If a : A and f : A −→ B then we can apply the function f to the element a,
and we get f(a) : B, which we call the image of a.

• Computation: Given f(x) :≡ θ a term of A −→ B, for any a : A we have

f(a) ≡ θ[a/x] : B.

Example 1. Consider the function f : N −→ N defined by the equation f(x) :≡ x+ x. Then f(2) is
judgmentally equal to 2 + 2.
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A notation that we will use a lot and that allows us to not give names to functions is that of
λ-abstraction, given an expression θ of type B we write λ.(x : A).θ to refer to the same function
given in the introduction rule. Following the example above we would have

λ(n : N).x+ x : N −→ N

We will usually omit the type from the variable and give it implicitly.

2.1.1 Dependent type over a type

Let A : U , as we have already stated. a function taking each of the terms a : A to a type P (x) : U
is said to be a dependent type over A. These types are present in mathematics and we will make
abundant use of them, for example as a way of taking a family of types with some property. From
dependent types we can also form distinct and useful types:

Dependent function types

Let P : A −→ U be a dependent type over A. We can form the dependent function type Π(a:A)P (a)
also called Π-type. The terms of this type are functions whose codomain type varies depending on
the element applied to it. If P is a constant family, we recover the ordinary functions type:

Π(a:A)P ≡ (A −→ P )

Being more formal, we can give the rules which determine the behaviour of this type:

Definition 2. Let A be a type and P : A −→ U a dependent type over A. We define the type of
dependent function with domain A and codomain P , denoted Π(a:A)P (a), as the type obeying the
following rules:

• Introduction: We can introduce a dependent function explicitly, given a free variable x and
an expression θ that may contain x, if for every a : A, θ[a/x] : P (a) then

f(x) :≡ θ

introduces a dependent function f : Π(x:A)P (x).

• Elimination: As with usual functions, we can apply an argument a : A to f : Π(x:A)P (x),
and obtain an element f(a) : B(a). We will call f(a) the image of f for a.

• Computation: Given a function f : Π(x:A)P (x) defined as f(x) :≡ θ, for all a : A, we will
have

f(a) ≡ θ[a/x] : B(a).

Dependent pair types

In the same way that we generalized functions to dependent functions, we can generalize the
product, allowing the second component to vary along the first component. Dependent pair types
or Σ-types would correspond in set theory to an indexed sum over a given type. Given A : U and
P : A −→ U we will write Σ(a:A)P (a). As before with functions, if we take a constant family we
recover the usual product:

Σ(a:A)P ≡ A×B.

Definition 3. Let A be a type and P : A −→ U a dependent type over A. We define the type of
dependent pairs, denoted Σ(a:A)P (a) as the type obeying the following rules:

• Introduction: We construct elements of the type by pairing, that is, given a : A and p : P (a)
we have (a, p) : Σ(a:A)P (a).
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• Elimination: Given a pair (a, p), we have elements pr1((a, p)) : A and pr2((a, p)) : P (a).
Note that

pr1 : Σ(a:A)P (a) −→ A

and as the image of the projection on the second element depends on the element a, it is a
dependent function:

pr2 : Π(w:Σ(a:A)P (a))P (pr1(a, p)).

• Computation and Uniqueness: Given a : A and p : P (a),

pr1(a, p) = a : A

pr2(a, p) = p : P (a)

and given a pair (a, p), then (a, p) = (pr1(a, p), pr2(a, p)).

Remark 2. In both this definition and the previous one we have not introduced all the rules properly.
For example, the explicit formation rules that explain what we need to have a well-formed type,
but only what we need to work with the language both in concept and from a practical perspective.
We adopt this point of view in this thesis for brevity but also to not get lost in type theory, since in
most of the work we focus on it from a mathematical point of view rather than the formalism we
are using.

2.1.2 Other types
Coproduct type

One of the types we will make use of is the coproduct type, which would be in the place of the
disjoint union in set theory or the coproduct in category theory. Given any two types A,B : U , we
define A+B as their coproduct.

For this type we get two introduction rules. The first says that given a : A we can introduce a
term inl(a) : A+B. In the same way, the second says that given b : B we can introduce a term
inr(b) : A+B (inr and inl are short for left injection and right injection).

We can form also functions of type A+B −→ C, given functions f1 : A −→ C and f2 : B −→ C, let:

f(inl(a)) :≡ f1(a)

f(inr(b)) :≡ f2(b)

So we are defining the function by cases, in the same way we can construct a family a dependent
function of type Πx:A+BC(x) by taking g1 : Πx:AC(x) and g2 : Πx:BC(x):

g(inl(a)) :≡ g1(a)

g(inr(b)) :≡ g2(b).

Empty type

The empty type, which we denote ∅ or 0, is one that has many similitudes with initial objects in
category theory and obviously given the notation, with the empty set. Since it has no elements we
give no introduction rule (or any). We can nevertheless construct a function f : 0 −→ C for any C,
without an equation defining it since the type has no elements from which to define an image. In
the same way we can define a dependent function f : Πx:0C(x).

This is one of the types we will use under the propositions as types paradigm. For example,
the dependent function previously defined corresponds to the logical principle ex falso quodlibet.
Moreover, we use this type to define negation:
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Definition 4. For any type A : U we define its negation ¬A as

¬A :≡ A −→ ∅.

Since ¬A is the type of functions from A to ∅, a proof of ¬A is given by assuming that A holds,
and then constructing an element of the empty type. So we prove it by deriving a contradiction.
This proof technique is called proof of negation and it is different from a proof by contradiction,
where we would show that ¬A yields a contradiction, involving the step that ¬¬A implies A. Note
though that ¬¬A is the same as a function of type

(A −→ ∅) −→ ∅.

So we cannot assert without more information that this is the same as A, and therefore we might
not be able to construct ¬¬A −→ A. Therefore we are dealing with a deductive system where the
law of excluded middle does not hold.

Unit type

The unit type 1 is the type with only one element, which we denote ∗ : 1. Following with the
analogies to category theory, it would make the role of a final object. This type has only one
introduction rule, namely the one that allows the introduction of its only element, and given any
c : C we can define a function by f(∗) :≡ c. Then we can also construct

f : Πx:1C(x)

also given by the assignation f(∗) :≡ c.

Most of those last types we have seen are instances of inductive types, which we will discuss
in section 2.3. Before that, we will see the last component of a Martin Löf dependent type theory.

2.1.3 Propositions as types
As we mentioned in the Introduction, showing that a proposition is true in type theory is the same
as the construction of an element of the type that corresponds to this proposition. We regard the
elements of this type as a witness or proof. We can interpret any type as a proposition but this will
only make sense in part of them, as we will see.

The observation that gives rise to the types as propositions principle is the following correspondence
between logical operations on propositions and type theoretic operations.

Natural Language Type Theory
True 1

False 0

Not A A −→ 0

A and B A×B

A or B A+B

If A then B A −→ B

A iff B (A −→ B)× (B −→ A)

The point of the table above is that the rules for formation, and use of the terms of the type on the
right, correspond to the rules for reasoning with the proposition on the left, and from there the
witness of proof name. For instance given a witness of a function type f : A −→ B and a witness
a : A, we have "proof of A implies B" and "proof of A" from what we can deduce B. We can also
make use of the elimination rule of function types, and apply f to the witness a : A, producing
f(a) : B, a witness of B.
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We have in the table instances of propositional logic, if we want to add quantifiers, for all or there
exists. In this case, types are used both as propositions and also the domain we quantify over,
as usual types. A predicate over a type A is represented by a dependent family P : A −→ U that
assigns to every element a : A a type P (x) corresponding to the proposition that P holds for a.
Then we can extend the prior table:

Natural Language Type Theory
for all x : A, P (x) holds Π(x:A)P (x)

there exists x : A such that P (x) holds Σ(x:A)P (x)

The constructivity of type-theoretic logic means that we have some freedom to introduce axioms
to our context. For example, while by default we have no LEM in constructive logic, it is still
consistent with the existence of one (as we will see later). We might add it to our assumptions and
work with it. A formulation of the classical law of excluded middle∗ in a universe would be the
following:

LEM∞ :≡ Π(A:U)A+ ¬A.

We will make use of that when introducing other axioms such as the univalence axiom.

Moreover, we have described here a proof relevant logic which takes proofs as objects themselves
carrying information about the proof. For instance, in a witness of A×B, "A or B" we would know
whether the witness is a term of A or a term of B, or similarly in a proof of "there exists x : A such
that P (x)" written as a term (x, p) : Σ(x:A)P (x) we know which element x is by taking the projection.

As a consequence of this logic we might have constructions where the proposition exhibit very differ-
ent behaviours. For example taking "N ⇐⇒ 1", in type theoretical language (N −→ 1)× (1 −→ N).
This type is inhabited as it is easy to construct examples of both function types. What this
statement tells us is that when treated as propositions those two types are equivalent. We often refer
to this as logically equivalent, to distinguish it from the stronger notion of a type equivalence. In the
following chapter we will introduce a modification of this system by introducing mere propositions,
a class of types where logical equivalence and type equivalences are the same.

2.1.4 Equality: identity types
The use of types to interpret the logical features would suggest that there is also a natural way
to code the interpretations of equality into type theory. This interpretation comes as identity
types, introduced first by Per Martin Löf. According to our propositions as types paradigm,
the proposition that two elements a, b : A are equal has to correspond to a dependent family
IdA(−,−) : A −→ A −→ U dependent on two copies of A since it can vary for both elements.
Then we might write IdA(a, b) as the type representing the proposition that a equals b and we
will say that a and b are propositionally equal. For clarity we will write a =A b since the equal-
ity is given in an "ambient" type, but we can write it without the type if there is no risk of confusion.

Over the sets we can define equality to be the least reflexive relation on that set. We can
see that the idea is similar when dealing with types, since we only have an introduction rule. For
all types A and element a : A there is an element

refla : a =A a.

The elimination rule for identity types states (in a reduced form) that we can substitute equals:

Indiscernibility of equals: For every family

P : A −→ U
∗This formulation of the law of excluded middle is actually inconsistent with HoTT, for it would render all the

types trivial. See the link.
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there is a function
f : Π(x,y:A)Π(p:x=Ay)P (x) −→ P (y).

such that
f(x, x, reflx) = IdP (x).

However in order to fully characterize the behaviour of the identity type we have to consider
not only maps out of x = y but also families over the type. The path induction principle, named
that way referring to the homotopy interpretation, can be seen as the property of identity types
being freely generated by reflx.

Path induction: For every family

P : Πx,y:A(x =A y) −→ U
and function

p : Π(x:A)P (x, x, reflx)

there is a function
f : Π(x,y:A)Π(q:x=Ay)C(x, y, q)

such that f(x, x, reflx) :≡ c(x).

Note that if we have a definitional equality x ≡ y, it follows from path induction that x and
y are propositionally equal.

There is something that does not quite add in this definition of the identity types. Since a =A b is
a type given two elements a, b : A, there can be more than one identification a = b. This raises the
question of how we think of equalities when we have multiple identifications between two elements.
One helpful way to think about it is to imagine that types are spaces, and their elements are points
in those spaces. An identification is then a path in the space, connecting the two end points. This
idea lands into a concretion in the homotopy interpretation of homotopy type theory:

2.2 Homotopy Type Theory
As we have already stated, homotopy type theory is an extension of intuitionistic type theory, with
the principal difference being the treatment of types as spaces in the abstract homotopy setting,
more specifically as ∞-groupoids, the higher categorical vesrion of groupoids.

In topology a path in a topological space is a continuous map p : [0, 1] −→ X, taking p(0) = x
as the starting point and p(1) = y as its ending point. Since the point-wise identification of
paths is in many cases not useful for it is too fine, we take the relation given by homotopies, the
continuous maps α : [0, 1] −→ ([0, 1] −→ X) such that α(0) = p0 and α(1) = p1 where pi are paths
between the same starting and ending points. Here α is a path between paths, a homotopy. Since a
homotopy has also a path-like structure, we can take a homotopy between homotopies, and go on
to 3-homotopies, and define inductively n-homotopies for any n.

The base space X, the paths, and the n-homotopies for all n form an ∞-groupoid, called the
fundamental ∞-groupoid of X. An ∞-groupoid is an ∞-category ( with higher morphisms) where
all the morphisms are invertible. The theory of ∞-categories, although very useful when discussing
semantics of homotopy type theory and modalities, is way out of scope for this thesis so we will
only use the fundamental ∞-groupoid as our working example.

Let A : U , and recall that for any x, y : A we can take the identity type x =A y. Logically
we can think about terms of x =A y as witnesses of the equality, but type theory allows us to go
further and treat these proofs as objects allowing them to be subjects of other propositions such
as p =x=Ay q. We can iterate this construction further, and the object arising from this tower of
equalities corresponds to the fundamental ∞-groupoid on the space A.
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2.2.1 Types as spaces

All of the structure of an ∞-groupoid can be deduced from the induction principle on identity types.
We will show symmetry of identity, which in an ∞-groupoid would be the same as reversing paths,
and transitivity of equality, which corresponds to concatenation.

Lemma 1. For every type A and terms x, y : A there is a function

(x =A y) −→ (y =A x)

denoted by p 7→ p−1 and such that reflx ≡ refl−1
x for each x : A.

Proof. We want to get from x, y : A and p : x = y an element p−1 : y = x. By the induction principle
it is sufficient to show it for the case where y is x and p is reflx, but then both identity types are
x = x and we can take refl−1

x to be simply reflx. The general case follows by induction.

Remark 3. Recall that a proposition in type theory corresponds to a type, so the statement of a
lemma should be able to be translated into a type and its proof translated into an inhabitant of
that type, so the proof in a more formal language would be the obtention of a term of type:

ΠA:UΠx,y:A(x = y) −→ (y = x)

(the second part refl−1
x ≡ reflx is a separate proposition, but we can get it from the construction

of the witness). Then take a family C : Πx,y:A(x = y) −→ U defined by D(x, y, p) :≡ (y = x) and an
element d :≡ λx.reflx : ΠAD(x, x, reflx). Then the path induction principle allows us to construct
an element

ind=(D, d, x, y, p) : (x = y)

for each p, so we take the function to be λp.ind=(D, d, x, y, p).
We can even translate this into a "wordless" proof, but the use of natural language such as the one
used in the first proof is usually preferred.

Lemma 2. Let A be a type and x, y, z : A. Then there exists a function

(x = y) −→ (y = z) −→ (x = y)

written as p −→ q 7→ p ·q, such that reflx ·reflx ≡ reflx for any a : A. We call p ·q the concatenation
or composite of p and q.

Proof. We want to construct for every x, y, z : A and p : x = y, q : y = z an element of x = z.
By induction on p it is suficient to assume x ≡ y and p :≡ reflx, and doing induction again on q,
x ≡ y ≡ z and q ≡ p ≡ reflx, in this case we have reflx : x = z, and the general case follows by
path induction.

Then we have the following correspondences table:

Equalities Homotopy ∞-Groupoid
reflexivity constant path identity morphism
symmetry inversion of paths inverse morphism
transitivity concatenation composition morphism

From these three properties, we can also prove the following properties showing that our operations
are well behaved. Let A : U , x, y, z, w : A and p : x = y, q : y = z, r : z = w. Then:

i) p = p · refly and p = reflx · p

ii) p−1 · p = refly and p · p−1 = reflx
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iii) (p−1)−1 = p

iv) p · (q · r) = (p · q) · r

All the proofs for these properties follow again from the rules of the identity type.

2.2.2 Functions as functors
Given that we consider types to be ∞-groupoids, it is natural to think that function types should
correspond to functors between them and therefore act accordingly. In type theory this is the
statement that functions preserve equalities (and n-equalities for every n), that is, given an equality
we will have an image of such, being an equality of the images.

Lemma 3. Let f : A −→ B. For every x, y : A there is a function

ap : (x =A y) −→ f(x) =B f(y).

Moreover, for each x : A we have apf (reflx) = reflf(x).

Proof. Again by path induction it is enough to give it for the case where x ≡ y and p :≡ reflx,
and by the identity type introduction rule we know that there is reflf(x) : f(x) =B f(x), and
apf (reflx) :≡ reflf(x).

Now we need to check the rest of functoriality:
Lemma 4. Let f : A −→ B, g : B −→ C, p : x =A y and p : y =A z:

i) apf (p · q) = apf (p) · apf (q)

ii) apf (p
−1) = apf (p)

−1

iii) apg(apf (p)) = apg◦f (p)

iv) apid(p) = p

Proof. Again all the proofs follow from the path induction principle, so we only have to consider
the reflective case and the rest follows from definitions.

i) Here we have to do induction on both paths:

apf (reflx · reflx) ≡ apf (reflx) ≡ reflf(x) ≡ reflf(x) · reflf(x) ≡ apf (reflx) · apf (reflx).

ii) By induction with x ≡ y and reflx, we obtain

apf (refl
−1
x ) ≡ apf (reflx) ≡ reflf(x) ≡ refl−1

f(x) ≡ apf (reflx)
−1.

iii) By induction with x ≡ y and reflx, we obtain

apg(apf (reflx)) ≡ apg(reflf(x)) ≡ reflg(f(x)) ≡ apg◦f (reflx).

iv) By induction with x ≡ y and reflx, we obtain

apid(reflx) ≡ reflid(x) ≡ reflx.

Remark 4. If we follow with the comparisons and correspondences between homotopy type theory,
we can ask the same question about applying equality to functions when talking about dependent
functions. In such a case we would find out that a dependent function f over a family E corresponds
to the sections of a fibration defined by the family E in the associated ∞-groupoid.
Recall that the interpretation of types as spaces is not the only addition of Homotopy Type Theory
from a more standard dependent type theory. Later in this work we will get to see higher inductive
types and before that the univalence axiom.
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2.2.3 Type equivalences
Until now we have seen how equality between elements induces a structure on types. But we want
to see also the situation of equalities and equivalences between types and especially function types.
Usually, we consider the pointwise equality Πx:Af(x) = g(x) for two f, g : A −→ B. If the type is
inhabited then the two functions should be equal. More generally:

Definition 5. let f, g : Πx:AP (x) be two dependent functions of a type family P : A −→ U . A
homotopy from f to g is a dependent function type,

(f ≃ g) :≡ Πx:Af(x) = g(x).

These newly defined homotopies between functions correspond to the natural transformations in the
∞-groupoid setting.

Note that a pointwise identification (or homotopy) between two functions is not the same as
f =Πx:AP (x) g, but there is the following function.
Lemma 5. Let A,B : U and two functions f, g : A −→ B. There exists a function,

happly : (f = g) −→ (f ∼ g)

given by the proof.

Proof. We use induction by paths, assuming f ≡ g and reflf . In this case we have (f ≃ f) ≡
Πx:A(f(x) = f(x)) so we have a mapping x 7→ reflf(x) : f ≃ f . The general case follows by
induction.

Getting back to types, the concept of an isomorphism in the usual sense is having two f : A −→ B
and g : B −→ A such that both composites g ◦ f and f ◦ g are pointwise the identity, i.e. g ◦ f ∼ idA
and f ◦ g ∼ idB . This is the type that would code the concept of a homotopy equivalence in type
theory or a equivalence of higher groupoids.

Definition 6. For a function f : A −→ B, a quasi-inverse of a f is a triple (f, α, β) consisting
of a function g : B −→ A and homotopies α : f ◦ g ∼ idB and β : g ◦ f ∼ idA. Thus the type of
quasi-inverses is the following:

Σ(g:B−→A)(f ◦ g ∼ idB)× (g ◦ f ∼ idA).

But the type of quasi-inverses is not well-behaved, since we can have multiple inhabitants. So we
would want another definition of equality isEquiv, such that:

• qinv(f) −→ isEquiv(f)

• isEquiv(f) −→ quinv(f)

• isEquiv(f) has either none or one element (it is a mere proposition as we will see later).

Definition 7. Given f : A −→ B, we say that f is an equivalence if the following holds:

isequiv(f) : (Σ(g:A−→B)f ◦ g ∼ idB)× (Σ(h:B−→A)h ◦ f ∼ idA).

Definition 8. Given two types A,B, we define the type of equivalences between A and B

(A ≃ B) :≡ Σ(f :A−→B)isequiv(f),

Although this is the most direct instance of the equivalence notion we were looking for, we can use
other variations, like the following.

Definition 9. We say that f is path-split if we have an inhabitant of the following type:

pathsplit(f) :≡ rinv(f)×Πx,y:Arinv(ap
x,y
f )

where rinv(f) :≡ (Σ(g:A−→B)f ◦ g ∼ idB) and apx,yf : (x = y) −→ (f(x) = f(y)).
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Theorem 5. For any f , pathsplit(f) ≃ isEquiv(f).

Proof. If f is path-split, we have already the right inverse, so we have to show that its right inverse
g is also a left inverse, that is, g(f(x)) = x for all a : A, but fgf(x) = f(x) since f ◦ g = idB,
and apf : (gf(x) = x) −→ fgf(x) = f(x) has a right inverse so g(f(x)) = x. Thus we got a map
pathsplit(f) −→ isEquiv(f). The other direction follows from properties of contractibility that we
will see later.

We will make use of this definition of equivalence later on.

The Univalence Axiom

Given two types A,B : U we might consider them as elements of the type U and therefore form an
equality type A =U B. As we have done with homotopy and equalities applied to functions, we
want to investigate the relation between equalities and equivalences of types. We begin by showing
that there is a function between them:

Lemma 6. Let A,B : U . There is a function

idtoeqv : (A =U B) −→ (A ≃ B)

given in the proof.

Proof. Note that we can see idU : U −→ U as a family assigning every type to itself. Thus given a
path p : A = B we have a transport function p∗ : A −→ B. Our claim is that p∗ is an equivalence,
but then by induction we only have to asssume that p ≡ reflA in which case the induced function
is the identity, and is then an equivalence, so we define idtoeqv(p) as p∗ together with the proof
that it is an equivalence.

We would like for idtoeqv to be an equivalence, but the type theory we defined does not suffice to
guarantee this, so we include it as the univalence axiom:

Axiom 1. For any A,B : U , the function in Lemma 6 is an equivalence, that is,

(A =U B) ≃ (A ≃ B)

.

The axiom refers to the particular universe the types inhabit, so we will talk about U being an
univalent universe when this holds. The implications of this axiom are many and very different but
one that we will use in the rest of the work is the following

Theorem 6. (Function extensionality) Let A,B : U and f, g : A −→ B. There is an equivalence:

(f ∼ g) −→ (f = g).

Therefore two functions are equal if they coincide at every point.

2.2.4 Propositions as (some) types
We have seen that types behave as ∞-groupoids. We can find though certain subclasses of types
that do not have any meaningful information from a certain level of equalities and upwards.

We obtain these types by taking the equality level to be discrete. In particular we use the
following definition, which is related to the classical notion in topology:

Definition 10. We say that a type A : U is contractible if

isContr(A) :≡ Σa:AΠx:A(x = a),

this is, there exists a : A such that for every x : A we have a = x. We also call contractibel types
(−2)-types. We call a center of A, the projection pr1(A) given A : isContr(A).
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Another subclass we can define is the one of mere propositions. These types when interpreted as
propositions work as the propositions in set theory. Unlike the contractible types which are always
inhabited, mere propositions can be inhabited or not, but when they are all their elements are the
same one.

Definition 11. A type A is a mere proposition if for all x, y : A we have that x = y, that is,

isProp(A) :≡ Πx,y:A(x = y).

We also call mere propositions (−1)-types.

Lemma 7. If P and Q are mere propositions such that P −→ Q and Q −→ P , then P ≃ Q.

Proof. Suppose given f : P −→ Q and g : Q −→ P . Then for any x : P we have g(f(x)) = x since
P is a mere proposition, and the same goes for y : Q and f(g(y)) = y; therefore f and g are
quasi-inverses.

Corollary 1. If P is a mere proposition and it is inhabited (that is we have x : P ) then P ≃ 1.

Proof. Since 1 is a mere proposition, we can define for x : P the functions λ ∗ .x : 1 −→ P and
λx.∗ : P −→ 1.

The logic generated by the interpretation of propositions as types, does not match fully with the
logic we have in classsical set theory, to obtain a similar logic we can restrict us to interpreting as
propositions only those types being mere propositions. The logical connectors we have seen work
well with this interpretation.

Finally, we can define a type that behaves like a set, passing to the next step of the equality
ladder. Instead of discretizing the elements we will do the deed with the equalities of elements, this
is: a set will be a type such that an equality between two elements is unique.

Definition 12. We say that a type A is a set if

isSet(A) :≡ Πx,y:AΠp,q:x=y(p = q).

We also call sets 0-types.

We will see a generalization of this concept, n-types, in the following chapter.
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2.3 Inductive Types

As we have seen in the previous sections, the definition of a new type can require quite an amount
of work, since we have to specify all the rules it follows. But in some cases we can generate those
types from one or more constructors. We will call those types inductive types.

To talk about inductive types we first have to define what a constructor is. A constructor is
a function with codomain an inductive type X. This has into account functions with an empty
argument, which give simply elements of X. Note that when evaluated a constructor will always
give an element of the inductive type.

Example 2. The type of booleans 2 is inductively generated by the constructors

• 02 : 2

• 12 : 2

Another example where the constructor functions take arguments is the coproduct.

Example 3. The type A+B is inductively generated by the constructors

• inl : A −→ A+B

• inr : B −→ A+B

And more importantly we can take arguments of the constructors from the same inductive type.

Example 4. The type of natural numbers N is inductively generated by the constructors

• 0N : N

• succ : N −→ N

Then terms of inductive types are obtained by repeatedly applying the given constructors. In this
sense we would expect the terms of N to be either zero or an element obtained from applying the
successor function to a previously known term of N.

Together with the constructors, inductive types are also determined by their induction prin-
ciple and computation rule. The induction principle, also called dependent elimination rule, specifies
which data shoud be provided in order to be able to construct a section of a type family over the
inductive type. In order to define a dependent function f : Π(x:X)B(x), one has to specify the
behaviour of f at all the constructors of X.

So for example if we have a family B : 2 −→ U to build an f : Πx:2E(x)„ we have to choose
two elements e0 : E(02) and e1 : E(12) such that f(02) = e0 and f(12) = e1, so if E is a proposition
we get the usual proof by cases.

The computation rule asserts that the inductively obtained section agrees on the constructors.
So we get one for each of them. Following with the same example, the computation rules are

ind2(E, e0, e1, 02) ≡ e0

ind2(E, e0, e1, 12) ≡ e1.

Let us see a case with constructors with an argument.

Example 5. The most obvious example of an inductive type is the natural number type, N, as
defined before. We also have two constructors as in 2, but the case analysis is not enough. In the
case corresponding to the inductive step succ(n), we also want to presume that the statement we
want to prove has been shown already for n. We have then the induction principle:
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• A statement about natural numbers P : N −→ U can be proven showing it for 0N and for
"succ(n) given it holds for n", that is, we construct:

p : E(0N)

ps : Πn:NE(n) −→ E(succ(n))

and as we defined them, we have associated computation rules for the function indN(E, p, ps) :
Πx:NE(x),

• indN(E, p, ps, 0) ≡ p

• indN(E, p, ps, succ(n)) ≡ ps(n, indN(E, p, ps, n) (for any n : N).

The dependent function indN(E, p, ps) can be though as being defined recursively on the argument
x : N using p and ps. If x is zero then we simply get p, but when it is the successor of another number,
we take the recurrence ps and substitute the predecessor n and the recursive indN(E, p, ps, n)

2.3.1 Higher Inductive Types
A limitation that constructors in inductive types have is that they will only allow us to construct
terms of such types. Since we are working in the setting of homotopy type theory, we would
want to define a type specifying not only their elements or points, but also the paths that work
as identifications, both for points or with higher instances. This generalization of the inductive
types receives the name of a higher inductive type and it is one of the pillars of homotopy type theory.

The definition of a higher inductive type will be the same as that of an ordinary inductive
type, with the difference that we will allow constructors that generate elements in the types of
equalities above our constructed type. Therefore the constructors can have a codomain different
from the inductive type.

We will refer to the ordinary sort of constructors (such as the ones we have already used for
inductive types) as point constructors and to the others as path constructors or higher constructors.

Example 6. The S1 type is generated by a point constructor

• base : S1

and a path constructor

• loop : base =S1 base.

Propositional truncation

We have already seen what role mere propositions play in homotopy type theory. Propositional
truncation or squash or bracket type can be thought as an operation that truncates a type down to
being a mere proposition, leaving only the information about the type being inhabited or not. We
will introduce it as a first instance of higher inductive types in this work.

Definition 13. Let A be a type. We define its propositional truncation ∥A∥ to be the higher
inductive type generated by,

• A function ∥−∥ : A −→ ∥A∥,

• for each x, y : ∥A∥ a path x = y.

Note that the second constructor just means that ∥A∥ is a mere proposition. The recursion principle
for this higher inductive type is the following: given any type B together with

• a function g : A −→ B,

• for any x, y : B a path y =B x,



2.4. N-TRUNCATIONS 19

there exists a function f : ∥A∥ −→ B such that

• f(|a|) ≡ g(a) for all a : A, and

• for any x, y : ∥A∥, the function apf : x =A y −→ f(x) =B f(y) takes the specified path x = y
in ∥A∥ to the specified path in f(x) = f(y) in B.

The induction principle for propositional truncation says that given a family P : ∥A∥ −→ U together
with

• a function g : Π(a:A)B(|a|),

• for any x, y : ∥A∥ and p : P (x), p′ : P (y), a dependent path q : p =P
s(x,y) p

′ where s(x, y) is
the path given by the second constructor of ∥A∥,

there exists f : Πx:∥A∥P (x) such that f(|a|) ≡ g(a) for a : A.

Since there is only at most one function between two mere propositions, this induction prin-
ciple does not have much use, but we can extend this idea of propositional truncation to n-types,
as mere propositions are (−1)-types, i.e. types with trivial homotopy above the (−1) level.

2.4 n-truncations
The structure we obtain from the generalizations of propositional truncation and the factorizations
systems they induce will be a motivating example of the main object we will study in this thesis,
namely higher modalities.

The idea is to make use of the following facts about loop spaces and map spaces:

• A is an n-type if and only if Ωn+1(A, a), the type of loops based at a : A, is contractible for
all a : A.

• Ωn+1(A, a) ≃ Map∗(Sn+1, (A, a)), the type of loops with a basepoint is equivalent to the one
of maps from Sn+1 to the pointed type.

These two theorems and more detailed properties of the types given can be found in [9, Section 2.4
and 6.7]. Now we can give the definition of n-truncation:

Definition 14. For n ≥ −1 we take ∥A∥n to be the higher inductive type generated by

• a function ∥−∥n : A −→ ∥A∥n

• for each r : Sn+1 −→ ∥A∥n a point h(r) : ∥A∥n

• for each r : Sn+1 −→ ∥A∥n and each point x : Sn+1 a path sr : r(x) = h(r).

Lemma 8. ∥A∥n is an n-type.

Proof. It suffices to show that Ωn+1(∥A∥n, b) is contractible for any b : ∥A∥n, which is equivalent
to Map∗(Sn+1, (∥A∥n, b)). We choose the constant map at b, cb : Sn+1 −→ ∥A∥n, together wit h
reflb : cb(base) = b. An element of Map∗(Sn+1, (∥A∥n, b)) is a map r : Sn+1 −→ ∥A∥n with a path
p : r(base) = b. To show r = cb it suffices to get for any x : Sn+1 a path r(x) = cb(x) = b. We take
this to be sr(x) · sr(base)−1 · p. We have to show that when transported along this equality r = cb
the path p becomes reflb. Hence we need

(sr(x) · sr(base)−1 · p) · p−1 = reflb,

But this follows directly from path composition.

We get the inductive principle from the constructors, given a P : ∥A∥n −→ U together with
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• for each a : A an element g(a) : P (|a|n),

• for each r : Sn+1 −→ ∥A∥ and r′ : Π(x:Sn+1)P (r(x)), an element h′(r, r′) : P (h(r)),

• for each r : S1 −→ ∥A∥n and r′ : Π(x:Sn+1)P (r(x)), and each x : Sn+1, a path r′(x) =P
sr(x)

h′(r, r′),

then there is a section f : Πx:∥A∥n
P (x) with f(|a|n) ≡ g(a) for all a : A. We can reformulate the

induction principle as it follows:

Theorem 7. Given a P : ∥A∥n −→ U where every P (x) is an n-type, and any function g :
Π(a:A)P (|a|n), then there is a section f : Π(x:∥A∥n)

P (x) such that f(|a|n) ≡ g(a) for all a : A.

Proof. Since g is the same as the first bullet point in the data of the inductive principle, we only
need to build the other two. Given r : S1 −→ ∥A∥n and r′ : Π(x:Sn+1)P (r(x)), we have h(r) : ∥A∥n
and sr : Π(x:Sn+1)(r(x) = h(r)). Define t : Sn+1 −→ P (h(r)) by t(x) :≡ sr(x) ∗ (r′(x)), join.Then
since P (h(r)) is n-truncated there is a point u : P (h(r)) and a contraction v : Π(x:Sn+1)(t(x) = u).
We define h′(r, r′) :≡ u, getting the second point. Then v has the type of the third point.

The induction principle also implies a uniqueness principle for functions of this form. If E is an
n-type and g, g′ : ∥A∥n −→ E such that g(|a|n) = g′(|a|n) for every a : A then g(x) = g′(x) for all
x : ∥A∥n as ∥A∥n is an n-type. Therefore g = g′. This gives us the following universal property

Theorem 8 (Universal property of truncations). Let n ≥ −1, A : U and B : n-Type. Then there is
a map

(∥A∥n −→ B) −→ (A −→ B)

g 7→ g ◦ ∥−∥n

Proof. Given that B is n-truncated any f : A −→ B can be extended to a map ext(f) : ∥A∥n −→ B
and the map ext(f) ◦ ∥−∥n is equal to f , since for any a : A we have ext(f)(∥a∥n) = f(a) by
definition and the map ext(g ◦ ∥−∥n) is equal to g because they both send ∥a∥n to g(∥a∥a).

In the setting of category theory we would say that n-types form a reflective category, and in
particular the n-truncation is functorial. We have for example ∥f ◦ g∥n = ∥f∥n ◦ ∥g∥n and
∥IdA∥n = Id∥A∥n

, and also higher instances of functoriality on paths. Moreover we have the
following property:

Theorem 9. A type A : U is an n-type if and only if ∥−∥ : A −→ ∥A∥n is an equivalence.

Along many more properties that we will see in the next chapter on modalities.

2.5 Orthogonal Systems

In set theory we can factorize any map uniquely as a surjection followed by an injection. We will
see a natural generalization of injective and surjective maps in the setting of homotopy type theory,
and then the corresponding generalization of the unique factorization system of maps between sets.

2.5.1 n-connectedness

We can see n-types as types that do not have any information above the nth dimension. We can
also take an n-connected type as the one that has no information below dimension n. It is natural
to study this behaviour also for maps. We introduce first the fiber of a map over a point.

Definition 15. The fiber of a map f : A −→ B over a point y : B is

fibf (y) :≡ Σx:A(f(x) = y).

In homotopy theory we would call this the homotopy fiber of f .
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Definition 16. A function f : A −→ B is said to be n-connected if for all b the type ∥fibf (b)∥n is
contractible, that is,

connn(f) :≡ Πb:BisContr(∥fibf (b)∥)

A type is n-connected if the function A −→ 1 is n-connected, that is if ∥A∥n is contractible.

Therefore a function is n-connected if and only if the fiber at b is n-connected for every b : B.
Taking the (−1) level we will retrieve surjections, as f is surjective if ∥fibf (b)∥n is inhabited for all
b : B, but in a mere proposition inhabitation is the same as contractibility.

Therefore we can think of n-connectedness as a stronger or higher form of surjectivity.

Lemma 9. For any A : U , the function ∥−∥n : A −→ ∥A∥n is n-connected.

2.5.2 Orthogonal factorizations

Since we have seen n-connectedness as a generalization of surjection, the corresponding notion for
injective functions is the following.

Definition 17. A function f : A −→ B is n-truncated if the fiber fibf is an n-type for all b : B.

Lemma 10. For any n ≥ −2 a function f : A −→ B is (n+ 1)-truncated if and only if for all x, y : A,
the map apf : (x = y) −→ f(x) = f(y) is n-truncated. In particular f is (−1)-truncated if and only
if it is an embedding.

Proof. For any (x, p), (y, q) : fibf (b) we have

((x, p) = (y, q)) = Σr:x=y(p = apf (r) · q)
= Σr:x=y(apf (r) = p · q)
= fibapf

(p · q−1)

Thus, any path space in a fiber of f is a fiber of apf . On the other hand by choosing b :≡ f(y) and
q = reflf(y), we see that a fiber of apf is a path space in a fiber of f . As f is n-truncated if all
path spaces of their fibers are n-types.

We can now describe the factorization system:

Definition 18. Let f : A −→ B be a function. The n-image of f is defined as

imn(f) :≡ Σ(b:B)∥fibf (b)∥n.

When n = −1 we simply call it the image of f and write im(f).

Lemma 11. For any function f : A −→ B the function f : A −→ imn(f) is n-connected. As a
consequence any function factors as a composition of an n-connected and a n-truncated function.

Proof. Note that A ≃ Σb:Bfibf (b). Take the function f̃ on total spaces, induced by the fiberwise
transformation.

Π(b:B)fibf (b) −→ ∥fibb(f)∥.

We have fibf̃ ((b, v)) ≃ fibf(b)(v) for each b : B and v : ∥fibb(f)∥, hence
∥∥∥fibf̃ ((b, v))∥∥∥

n
is

contractible if and only if
∥∥fibf(b)(v)∥∥. Since fibf (b) −→ ∥fibb(f)∥ is n-connected this implies that

f̃ is n-connected. Finally the projection pr1 : imn(f) −→ B is n-truncated, since its fibers are
equivalent to the n-truncation of the fibers of f .
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It remains to see whether this factorization is unique as in the case of sets. But before we prove a
technical result.

Proposition 1. Given a commutative diagram

A X2

X2 B

g2

g1

h1

h2

with H : h1 ◦ g1 ∼ h2 ◦ g2 as a witness of commutativity, where the gi are n-connected and the hi

are n-truncated functions, there is an equivalence:

E(H, b) : fibh1
(b) ≃ fibh2

(b)

for any b : B, such that for any a : A we have an identification

Ē(H, b) : E(H,h1(g1(a))(g1(a), reflh1(g1(a)) = (g2(a), H(a)−1).

Proof. Let b : B, then we have the following equivalences:

fibh1(b) ≃ Σ(w:fibh1
(b))

∥∥fibg1(pr1(w))

∥∥
n

≃
∥∥∥Σ(w:fibh1

(b))fibg1(pr1(w))

∥∥∥
n

≃ ∥fibh1◦g1(b)∥n

with the first equivalence coming from g1 being n-connected, the second from h1 being n-truncated
and finally the last equivalence can be deduced from the properties of fibrations. We have likewise
equivalences for g2 and h2, and also as we have H : h1 ◦ g1 ∼ h2 ◦ g2 we have an equivalence

fibh1◦g1(b) ≃ fibh2◦g2(b).

Hence we get

fibh1
(b) ≃ fibh2

(b)

for any b : B. Now if we take an element (g1(a), reflh1(g1(a))), when taking the image of all the
equivalences that composed form E we obtain

(g1(a), reflh1(g1(a))) 7→ ((g1(a), reflh1(g1(a))),
∥∥(a, reflg1(a))∥∥n)

7→
∥∥((g1(a), reflh1(g1(a))), (a, reflg1(a))

∥∥
n

7→
∥∥(a, reflh1(g1(a)))

∥∥
n

7→
∥∥(a,H(a)−1)

∥∥
n

7→
∥∥((g2(a), H−1(a)), (a, reflg2(a)))

∥∥
n

7→ ((g2(a), H
−1(a)),

∥∥(a, reflg2(a))∥∥n)
7→ (g2, H(a)−1).
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With this proposition we can prove the following uniqueness theorem:

Theorem 10. For each f : A −→ B, the space factn(f) defined by

ΣX:UΣg:A−→XΣh:X−→B(h ◦ g ∼ f)× conn(f)× truncn(f)

is contractible. Its center of contraction is the term

(imn(f), f̂ , pr1, θ, φ, ς)

that is shown in Lemma 11, with θ : pr1 ◦ f̂ ∼ f the canonical homotopy, φ the proof of Lemma 11
and ς the proof of pr1 : Imn(f) −→ B having truncated fibers.

Proof. By the aforementioned lemma, we know that there is an element of the type factn(f). So
we only have to show that the type is a mere proposition. Take two factorizations:

(X1, g1, h1, H1, φ1, ϑ1)

and

(X2, g2, h2, H2, φ2, ϑ2)

Then we have the concatenated homotopy

H :≡ (λa.H1(a) ·H−1
2 (a)) : (h1 ◦ g1 ∼ h2 ◦ g2.

It is sufficient to show the following:

• There is an equivalence e : X1 ≃ X2.

• There is an homotopy ξ : e ◦ g1 ∼ g2.

• There is an homotopy η : h2 ◦ e ∼ h1.

• For any a : A we have aph2
(ξ(a))−1 · η(g1(a)) ·H1(a) = H2(a).

We will prove it in this order since each one depends on the previous data.

1. By the previous lemma we have a fiberwise equivalence

E(H) : Πb:Bfibh1(b) ≃ fibh2(b)

that in its turn induces an equivalence of total spaces, i.e.,

(Σb:Bfibh1
(b)) ≃ (Σb:Bfibh2

(b).

Since we also have equivalences X1 ≃ Σ(b:B)fibh1
(b) and X2 ≃ Σ(b:B)fibh2

(b), we get our e
explicitly:

e(x) :≡ pr1(E(H,h1))(x, reflh1(x)).

2. Using the previous lemma again we can choose ξ(a) :≡ appr1(Ē(H, a)) : e(g1(a)) = g2(a).

3. For every x : X1 we have

pr1(E(H,h1(x))(x, reflh1(x))) : h2(e(x)) = h1(x).

giving the homotopy η.

4. The path Ē(H, a) from the previous lemma gives us η(g1(a)) = aph2
(ξ(a)) · H(a)−1. By

substituting H with its definition and rearranging paths we end the proof.





Chapter 3

Localizations and Modalities in
Homotopy Type Theory

If we translate to type theory the concept of an idempotent monad on a universe we obtain
the notion of a reflective subuniverse. Some of those reflective subuniverses, as the n-truncation,
are also closed under the formation of Σ-types. The notion of a reflective subuniverse is enough
to model the concept of idempotent monad on U . Regardless of that, the condition of it being
Σ-closed is included in the definition of a modality. It is natural to include that condition as it is
equivalent to having a dependent elimination rule similar to the ones we can find in inductive types
and makes the different characterizations of modalities arise.

3.1 Reflective Subuniverses
Definition 19. A subuniverse is a predicate isLocal : U −→ Prop. If for a X : U the type
isLocalL(X) is inhabited we will say that X is L-local and we write UL for the subuniverse of
L-local types.

Definition 20. Given a subuniverse L and a type X, an L-localization of X consists of an L-local
type X ′ and a map g : X −→ X ′ such that for every L-local type Y the precomposition map

g∗ : (X ′ −→ Y ) −→ (X −→ Y )

Is an equivalence. We will call this the universal property of L-localization.

Lemma 12. Given a subuniverse L, the type of L-localizations of X is a mere proposition.

Proof. Our data consists of Y : UL, f : X −→ Y and I : Π(X′:U)IsEquivalence(λg.g ◦ f : (X ′ −→
Y ) −→ (X −→ Y )). To show that this triple is a mere proposition we have to show that if we have
another triple (Y ′, f ′, I ′), then (Y ′, f ′, I ′) = (Y, f, I).

As I, I ′ are terms of a mere proposition, if we show (Y, f) = (Y ′, f ′) we have this third equality for
free. To show the latter all we need is to find g : Y −→ Y ′ such that g ◦f ′ = f , with g an equivalence.

By I restricted to Y ′, we have that the type of pairs (g, h) where g : Y −→ Y ′ and such that
h : g ◦ f = f ′ is a contractible type. The same is true for the type of pairs (g′, h′) where g : Y ′ −→ Y
and h : g′ ◦ f ′ = f .

Now g′ ◦ g is such that g′ ◦ g ◦ f = g′ ◦ f ′ = f , and it follows by contractibility that g′ ◦ g = IdY .
With the same argument we get g ◦ g′ = IdY ′ , therefore g is an equivalence.

Definition 21. A reflective subuniverse L consists of a subuniverse isLocalL : U −→ Prop, a
reflector L : U −→ UL and a unit

η : Π(X:U)X −→ LX

such that for every X the map ηX : X −→ LX is an L-localization of X.

25
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Remark 11. The comparable object to a reflective subuniverse in category theory would be that
of a reflective subcategory, a full subcategory C′ of C such that the inclusion i has a left adjoint L
called the reflector. This is what we also call a localization.

Corollary 2 (Corollary to Lemma 12 ). Two reflective subuniverses with the same local types are
the same.

Proof. If we have the same local types, then for each of those types X : U , we have a triple (X, ηX , I)
such as the one in Lemma 12. Therefore by the lemma this triple forms a mere proposition.

Corollary 3. Given a reflective subuniverse, a type X : U is local if and only if ηX is an equivalence.

Proof. If the unit is an equivalence then X is local as it is equivalent to a local type. Conversely
if X is local we have (X, idX ,−) inhabiting the type from Lemma 12 which is also inhabited by
(LX, ηX ,−), but the type is a mere proposition, so both terms are equal and ηX is an equivalence.

3.1.1 Functorial and nice properties

We would want our localizations as in the traditional sense to behave in a functor-like manner. We
will also show that any reflective subuniverse is closed under pullbacks and identity types, contains
the unit type, and dependent products.

Lemma 13. Given f : A −→ B we have an induced Lf : LA −→ LB that preserves identity and
composition up to homotopy. Moreover for any f the square

A B

LA LB

η

f

η

Lf

commutes.

Proof. We take Lf to be the unique function such that Lf ◦ ηA = ηB ◦ f given by the universal
property of localization for ηA. We can use the same argument for the preservation of the identity
and composition.

Lemma 14. Any reflective subuniverse is closed under pullback.

Proof. Let X be a modal type and take two maps f : A −→ X and g : B −→ X. In the diagram

L(A×X B)

A×X B A

B X

ηA×XB

f

g

the outer square commutes as both morphisms extend A×X B −→ X along the unit, and by the
universal property of localizations this extension is unique. Therefore by the universal property of
the pullback, we get a f left inverse to ηA×XB . Then (ηA×XB ◦ f) ◦ ηA×XB = ηA×XB so ηA×XB ◦ f
is a factorization of ηA×XB through the same ηA×XB. By uniqueness of such factorizations,
ηA×XB ◦ f = IdL(A×XB). So the unit is an equivalence and therefore the pullback is L-local.

Corollary 4. For any reflective subuniverse, if X is local then so is the identity type x = y for any
two x, y : X.
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Proof. We can obtain the identity type x = y as the pullback of x : 1 −→ X and y : 1 −→ X for
any x, y : X. So if X is modal we also have the identity type for any two terms of the type to be
modal.

Lemma 15. Given a reflective subuniverse, if P (x) is local for all x : X, then so is Π(x:X)P (x).

Proof. By the same argument as the one we used before, it is suficient to define a left inverse to
the modal unit η : (Π(x:A)P (x)) −→ ⃝(Π(x:A)P (x)). Due to the universal property of the dependent
products, finding the dotted arrow in the diagram

Π(x:A)P (x) Π(x:A)P (x)

L(Π(x:A)P (x)) Π(x:A)LP (x)

η

id

θ:≡λf.λa.ηP (a)(f(a))

is the same as finding it in

Π(x:A)P (x) P (a)

L(Π(x:A)P (x)) LP (a)

η

eva

η

for any a : A, with eva(f) :≡ f(a) : (Π(x:A)P (x)) −→ P (x). Thus we take

f :≡ λm.λaL(eva)(m) : L(Π(x:A)P (x)) −→ Π(x:A)P (x)

as the solution to the first diagram. Now θ is an equivalence, since P (x) is modal for any x : A.
Therefore f ◦ η = Id and the unit for the dependent product is an equivalence.

Then we have that if A and B are local, following the construction of the product as a dependent
product A×B is also local. Moreover we have the following lemma.

Lemma 16. Every reflective subuniverse L is closed under finite cartesian products.

Proof. We have to show that the extension

X × Y

L(X × Y ) LX × LY

ηX×Y
φ

is an equivalence,where φ :≡ λ(x, y).(ηX(x), ηY (y)). As (L(X × Y ), ηX×Y ,−) is an inhabitant of
the type in Lemma 12, it is enough to show that we can extend (LX × LY, φ) to an element of the
type. Then the two elements will be equal inducing an equivalence that by uniqueness will be the
one above. Currying the functions and using the equivalences, we get from Z being a local type the
following equivalences:

(X × Y −→ Z) ≃ X −→ (Y −→ Z)

≃ X −→ (LY −→ Z)

≃ LX −→ (LY −→ Z) ( LY −→ Z is modal due to the previous lemma)

≃ LX × LY −→ Z

Since LX × LY is modal and the equivalence is given by the precomposition we have the last
element of the triple from the lemma and we have finished the proof.

Lemma 17. Every reflective subuniverse L contains all mere propositions
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Proof. It is almost direct to see that a type P is a mere proposition if and only if P −→ P × P is
an equivalence. And since any reflective subuniverse is closed under finite cartesian products, the
result follows.

Remark 12. Note that in general a reflective subuniverse will not be closed under Σ-types, not even
when the indexing type is in the reflective subuniverse. Precisely when a reflective subuniverse is
closed under dependent sums it has an induction principle and forms a modality,a property which
we will be able to characterize in many ways.

3.2 Modalities in Homotopy Type Theory
As we already said we will deal only with idempotent monadic modalities. For convenience we will
refer to those just as modalities. Modalities in homotopy type theory can be expressed as one of
the following equivalent notions:

• Higher modalities

• Uniquely eliminating modalities

• Σ-closed reflective subuniverses

• Stable orthogonal factorization systems

All of these structures except for stable orthogonal factorization systems have in common the
following: a modal operator ⃝ : U −→ U and a modal unit η⃝ : ΠA:UA −→ ⃝A. A type X : U
will be modal if the restriction ηX of the unit to the type, is an equivalence. We will also denote
U⃝ :≡ Σ(X:U)isModal(X), the subuniverse of modal types. The first of the definitions we will give
of a modality is the one closest to the localizations we have already seen.

Definition 22. A reflective subuniverse is a predicate isModal : U −→ Prop with a modal operator
and a modal unit such that isModal(⃝A) and that for every B : U satisfying isModal(B) then the
function

λf.f ◦ ηA : (⃝A −→ B) −→ (A −→ B)

is an equivalence. A reflective subuniverse is Σ-closed if whenever isModal(X) and isModal(P (x))
for all x : X then we have isModal(Σ(x:X)P (x)).

Definition 23. A higher modality is a modal operator and a modal unit together with:

1. For every type A : U and every dependent type P : ⃝A −→ U , a function

ind◦A : (Π(a:A) ⃝ P (η(a))) −→ (Π(z:⃝A) ⃝ (P (z)).

2. The identification
comp◦A(f, x) : ind

◦
A(f)(η(x)) = f(x)

for each, x : A and f : (Π(x:A) ⃝ (η(x))).

3. For any x, y : A, the modal unit ηx=y : x = y −→ ⃝(x = y) is an equivalence.

Definition 24. A uniquely eliminating modality is a modal operator with a modal unit such that

λf.f ◦ ηA : (Π(z:¬¬A)¬¬(P (z)) −→ (Π(x:A)¬¬P (η(x))).

The last of these equivalent definitions is a stable orthogonal factorization system.

Definition 25. An orthogonal factorization system consists of the predicates L,R : ΠA,B:U (A −→
B) −→ Prop such that
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1. L and R are closed under composition and contain all identities (therefore forming subcate-
gories of the category of types that contain all the objects);

2. the type factL,R(f) of factorizations of f

A B

imL,R(f)

fL

f

fR

is contractible. Being more precise, we define the type factL,R(f) as the one that has for
terms the tuples

(imL,R(f), (fL, p), (fR, q), h)

where fL : A −→ imL,R(f) and p : L(fL), fR : imL,R(f) −→ B and q : R(fR), and finally an
identification h : fL ◦ fR = f . We call imL,R(f) the L,R− image of f .

A type is said to be L,R-modal if the map !R : X −→ 1 is in R, making !L an equivalence ∗. We say
that an orthogonal factorization system is stable if L is closed under pullback.

Remark 13. In a stable orthogonal factorization system both L and R are closed under pullback,
but the later is closed indiferently of the property, as shown later in the section.

We have in each definition of a modality what it means for a type to be modal. As we have seen with
reflective subuniverses, although in our lemma we did not require Σ-closedness, modalities are com-
pletely determined by the subuniverse IsModal : U −→ Prop. These are Theorems 1.12,1.15,1.18,
and 1.53 of [2].

This convenient property tells us that it is sufficient to show that any modality of one type
determines one of the next type with the same modal types. We will begin by showing that a higher
modality forms a uniquely eliminating modality, which at its turn induces a Σ-closed reflective
universe. We will have to build up some theory for constrtucting of stable orthogonal factorization
systems from reflective subuniverses, and finally we will see that a stable orthogonal system induces
a higher modality.

3.2.1 Higher modalities

Theorem 14. Every higher modality determines a uniquely eliminating modality with the same
modal types.

Proof. Let ⃝ be a modality with ηA as modal units. Since we already got the modal operator and
unit, our goal is to show that the map

λf.f ◦ ηA : (Π(z:⃝A) ⃝ (P (z)) −→ (Π(x:A) ⃝ P (η(x)))

is an equivalence for A : U and P : ⃝A −→ U . The induction principle,ind◦A together with the
computation rule comp◦A give us a right inverse of the precomposition map. To show that ind◦A is
also a left inverse, consider a term s : Π(z:⃝A) ⃝ P (z). We need to find a homotopy

ind◦A(s ◦ ηA)(z) = Π(z:⃝A)s(z).

∗Since there is only one function to 1, the contractibility of the tuple implies the contractibility (and thus
equivalence) of the type in the left class.
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We know by assumption that P (x) is modal for each z : ⃝A, so it follows that s(z) = ind◦A(s◦ηA)(z)
for each z : ⃝A. Hence it is sufficient to find a function of type

ind◦A(s ◦ ηA)(ηA(a)) = Π(a:A)s(ηA(z))

which we have by the computation rule of higher modalities.

3.2.2 Uniquely eliminating modalities
Lemma 18. Given a uniquely eliminating modality, ⃝A is modal for any type A.

Proof. Using the equivalence given in the definition of a uniquely eliminating modality we can find
a function f : ⃝⃝X −→ ⃝X and an identification f ⃝ η⃝X = id⃝X . We also get that

(⃝⃝X −→ ⃝⃝X) −→ (⃝X −→ ⃝⃝X)

is an equivalence, hence its fiber over the unit η⃝X

Σ(g:⃝⃝X−→⃝⃝X)g ◦ η⃝X = η⃝X

is contractible. Since id⃝⃝X and η⃝X ◦ f are in the type, we get that f is also the right inverse of
the unit, showing that η⃝X is an equivalence and ⃝X is modal.

Theorem 15. Any uniquely eliminating modality determines a Σ-closed reflective subuniverse.

Proof. Fixing a constant P in the definition of uniquely eliminating modalities we can see that
every map f : A −→ B into a modal type B has a homotpy unique extension to ⃝A along the unit

A

⃝A B

f
η⃝A

f̃

Since the types ⃝X are modal by the previous lemma, we get a reflective subuniverse. Now we
have to check that the type Σz:⃝X ⃝ (P (z)) is modal for any type X and P : X −→ U . We have a
function

φ :≡ λm.(f(m), g(m)) : ⃝(σ(z:⃝X) ⃝ (P (z))) −→ Σ(z:⃝X) ⃝ (P (z))

where f and g also come defined by

f :≡ ind◦(λx.λu.x) : ⃝(Σz:⃝X) ⃝ (P (z))) −→ ⃝X

f :≡ ind◦(λx.λu.u) : Πw:⃝(Σz:⃝X)
⃝ (P (f(w))

We want to show that this φ is an inverse to the modal unit. Note that

φ(η(x, y)) = (f(η(x, y)), g(η(x, y))) = (x, y)

so that it is a left inverse of the unit is immediate. To show that φ is a right inverse of η, take the
type of functions h such that the following diagram commutes :

⃝(Σ(z:⃝X) ⃝ (P (z))) ⃝(Σ(z:⃝X) ⃝ (P (z)))

Σ(z:⃝X) ⃝ (P (z))

h

ηη

It is a fiber over η of a precomposition equivalence, and therefore it is contractible. Since it also
contains the identity, it is suficient to show that η ◦ φ ◦ η = η to see that it is a right inverse, but
since it is a left inverse we already know this, so φ is a left inverse of the modal unit.
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3.2.3 Σ-reflective subuniverses

Altough we have seen reflective subuniverses to have a modal operator and a modal unit, differently
to higher modalities and uniquely eliminating modalities in this case we had modal types as part of
the data given, we know though that a type X : U is L-local (in this case modal) if and only if the
unit ηX is an equivalence. In this part we will introduce some theory that will help us prove that a
Σ-closed reflective subuniverse produces a stable orthogonal factorization system. Namely we will
introduce ⃝-connectedness, a generalization of the n-connectedness we defined in n-truncations.

Definition 26. Let M : U −→ Prop be a reflective subuniverse with modal operator ⃝. We say
that a type X : U is ⃝-connected if ⃝X is contractible, and we say that a function f : X −→ Y is
⃝-connected if the fibers are. Similarly we will say that f is modal if every one of the fibers is
modal.

Theorem 16. Given a reflective subuniverse with modal operator ⃝, the following are equivalent:

(1) It is Σ-closed.

(2) It is uniquely eliminating.

(3) The modal units are ⃝-connected.

Proof. We will leave this theorem unproven. The theorem with a proof can be found in [2] as
Theorem 1.32 or in [9] as Lemma 7.5.7 and Theorem 7.7.4.

Theorem 17. Consider a Σ-closed reflective subuniverse with modal operator ⃝ and P : X −→ U
for some type X : U . Then the unique map for which the diagram

Σx:XP (x)

⃝(Σx:XP (x)) ⃝(Σx:X ⃝ (P (x)))

η
φ

with φ :≡ λ(x, y).η(x, η(y)) commutes is an equivalence.

Proof. Since both codomains are modal it suffices to show that φ has the universal property of
η(Σ(x:X)P (x)), i.e., that any map from Σx:XP (x) to a modal type Y : U will extend uniquely to
⃝(Σx:X ⃝ (P (x))).

Σx:XP (x) −→ Y ≃ Π(x:X)(P (x) −→ Y )∗

≃ Π(x:X) ⃝ (P (x)) −→ Y

≃ (Σ(x:X) ⃝ (P (x))) −→ Y

≃ ⃝(Σ(x:X) ⃝ (P (x))) −→ Y

so we have the desired map.

Theorem 18. Given f : A −→ B and g : B −→ C and a reflective subuniverse ⃝, if f is ⃝-connected,
then g is ⃝-connected if and only if g ◦ f is ⃝-connected.

Proof. We have fibg◦f (z) = Σp:fibg(z)fibf (pr1(p)). Then for any z : C we have:

⃝(fibg◦f (z)) ≃ ⃝(Σp:fibg(z)fibf (pr1(p)))

≃ ⃝(Σp:fibg(z) ⃝ (fibf (pr1(p))))

≃ ⃝(Σp:fibg(z)1)

≃ ⃝(fibg(z))

using the fact that f is ⃝-connected and the previous lemma. Therefore one is contractible if and
only if the other is.
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Remark 19. The properties we are seeing now resemble those of n-truncations since these are a
specific case of a Σ-closed reflective subuniverse. But most of what we have seen for modalities can
also be shown for reflective universes not necessarily closed for sigma types.

Example 7. Let P be a mere proposition. The closed modality determined by P is the one taking
A : U to ClP (A) :≡ A ∗ P (the pushout of Q and A under A×Q). We show that this is a Σ-closed
reflective subuniverse. First we define a type B to be modal if P −→ IsContr(B). Note that
P −→ IsContr(B ∗ P ) is always true. By the universal property of pushouts for a map P ∗A −→ B,
we have a map f : A −→ B and g : P −→ B together with an identification e : f(a) = g(p), but if
P −→ isContr(B), then g, e are uniquely determined and this data is just the map f : A −→ B. Thus

(ClPA −→ B) −→ (A −→ B)

is an equivalence. Moreover, the type of dependent pairs, of a contractible family indexed over a
contractible type is at its time contractible, so the reflective subuniverse is closed under Σ-types

Theorem 20. A Σ-closed reflective subuniverse determines a stable orthogonal factorization system
with the same modal types.

Proof. We will define L as the class of ⃝-connected maps and R as the class of modal maps. We first
show that both classes are closed under composition and contain all the identities, the first property
in the definition of stable orthogonal factorization systems. Since fibg◦f (z) = Σp:fibg(z)fibf (pr1(p)),
by the Σ-closedness of the reflective subuniverse, if f and g are in R, so is the composition g◦f . The
previous lemma says exactly that L, the class of ⃝-connected maps, is closed under composition.
Now, the fibers of an identity map are contractible, and contractible types are both modal and
⃝-connected so we have all the identities in both L and R.

It remains to show that the type of factorizations for any map f : X −→ Y is contractible.
Since

(X, f) =(ΣZ:UZ−→Y ) (Σ(y:Y )fibf (y), pr1)

it is suficient to show that factL,R(pr1) is contractible for any pr1 : Σ(y:Y )P (y) −→ Y . This factors as

Σ(y:Y )P (y) −−→
pL

Σ(y:Y ) ⃝ (P (y)) −−→
pR

Y

where pL :≡ total(ηP (−)) and pR :≡ pr1, where total(f) for a map f : Π(a:A)P (a) −→ Q(a) is the
induced map on total spaces:

total(f) :≡ λw.(pr1(w), f(pr1(w), pr2(w))) : Σa:AP (a) −→ Σ(a:A)Q(a).

The fibers of pR are of the form ⃝(P (−)), so it is clearly in R. Moreover fibtotal(η(−))((y, u)) =
fibηP (y)

(u) and each η is ⃝-connected, therefore pL is in L.

If we consider any other factorization (Im, fL, fR, h) of pr1 into fL : (Σ(y:Y )P (y)) −→ Im fol-
lowed by fR : IM −→ Y an R-map, since Im = Σ(y:Y )fibfR (y) we get the following square :

Σ(y:Y )P (y) Im

Σ(y:Y )fibfR(y) Y

total(γ)

fL

fR

pr1

where γ(y, u) :≡ (fL(y, u), h(y, u)). It follows then the equality

(Im, fL, fR, h) = (Σ(y:Y )fibfR (y), total(γ), pr1,−).
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Therefore it suffices to show that there is a triangle such that for any y : Y

Σ(y:Y )P (y)

⃝(P (y)) fibfR(y)

γyηP (y)

commutes. For this it is enough to show that ηP (y) and γy have the same universal property,
deriving a homotopy given by precomposition

(fibfR(Y ) −→ Z ≃ ((Σ(w:fibfR (y)) ⃝ (fibfL(pr1(w)))) −→ Z

≃ ((Σ(w:fibfR (y))(fibfL(pr1(w)))) −→ Z

≃ (fibfR◦fL(y)) −→ Z

≃ P (y) −→ Z.

Finally it remains to be shown that the orthogonal factorization system we have constructed is
stable. Take a pullback diagram

A′ A

B′ B

k

f

l

g

in which l is in L. By the pasting lemma for pullbacks, it follows that fibk(b) = fibl(g(b)) for each
b : B′. Therefore k is in L.

3.2.4 Orthogonal factorization systems
In this section we will develop some of the theory of orthogonal factorization systems for its use in
the definition and properties of stable orthogonal factorization systems. We will not give some of
the proofs in this chapter since they are long and require some technical tools. The proofs can be
found mostly in [12], in Chapter 7.

In category theory an orthogonal factorization system is characterized by an equivalent lifting
property. We will show now the analogue of it in our context.

Definition 27. Let (R,L) be an orthogonal factorization system and consider a commutative
square

A X

B Y

l

f

r

g

with l in L and r in R. We take fill(S) (with S : r ◦ f = g ◦ l) to be the type of diagonal fillers, the
tuple (j,Hf , Hg,K) where j : B −→ X, Hf : j ◦ l = f , Hg : r ◦ j = g and K : r ◦Hf = S · (Hg ◦ l).
The last equality is required for homotopy coherence, since the square and triangles commuting are
not mere propositions but homotopies inhabiting these types.

Lemma 19. Let (R,L) be an orthogonal factorization system, and let the commutative square

A X

B Y

l

f

r

g
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with l in L and r in R. Then the type fill(S) of diagonal fillers is contractible.

Definition 28. For a class C : ΠA,B:U (A −→ B) −→ Prop of maps we define:

1. ⊥C to be the class of maps with the unique lifting property with respect to all maps in C. The
mere proposition ⊥C(l) asserts that for every commutative square

A X

B Y

l

f

r

g

with r in C, the type fill(S) is contractible.

2. C⊥ to be the class of maps with the unique lifting property with respect to all maps in C.

3. l ⊥ r is the same as r ∈ l⊥.

Lemma 20. Let (R,L) be an orthogonal factorization system. Then L =⊥ R and L⊥ = R

Proof. We show that L =⊥ R, and the second equality can be proved the same way. Since for any
map f the implication L(f) −→⊥ R(f) follows from Lemma 19, we only need to prove ⊥R(f) −→ L(f).

Take a map f : A −→ B in ⊥R, and it’s factorization (fL, fR). Then the diagram

A ImL,R(f)

B B

f

fR

fR

id

commutes. Since f has the left lifting propert, the type of diagonall fillers of the diagram is
contractible and we have a section j of fR. The map j ◦ fR is a diagonal filler of the square

A ImL,R(f)

ImL,R(f) B

fL

fL

fR

fR

The identity map for the type ImL,R(f) is also a diagonal filler so since the type is contractible
j ◦ fR = Id thus j and fR are inverse equivalences and (B, f) = (ImL,R(f), fL), hence f is in L
since fL is.

Corollary 5. The data of two orthogonal factorization systems (R,L) and (R′,L′) are identical if
and only if R = R′.

Proof. The only if implication is trivial. If R = R′, by the previous lemma we have L and L′ to be
the class of maps with the unique right lifting property with respect to R = R′, so they are equal
and the rest of the data constituting an orthogonal factorization system is a mere proposition.

Lemma 21. Let (R,L) be an orthogonal factorization system. Then the class R is stable under
pullbacks.
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Proof. Consider the pullback
A X

B Y

k

g

h

f

with h : X −→ Y in R, and k = kR ◦ kL a factorization of k Then the outer rectangle in

A A X

ImL,R(k) B Y

kL k

g

h

g f

commutes, therefore there is a diagonal lift i : ImL,R(k) −→ X with i ◦ kL = g and h ◦ i = f ◦ kR.
Then by the universal property of the pullback we get j : ImL,R(k) −→ A with g ◦ j = i and
f ◦ j = kR. Then as we have

g ◦ j ◦ kL = i ◦ kL = g

k ◦ j ◦ kL = kR ◦ kL = k

we get by uniqueness that j ◦ kL = id. To show that kL is an equivalence it remains to show that
kL ◦ j = Id. Consider the square

A ImL,R(k)

ImL,R(k) B

kL

kL

kR

kR

for which the identity is the filler and the homotopies making the triangles commute are trivial.
Since we have the homotopies kL ◦ j ◦ kR ∼ kL and kR ◦ kL ◦ j ∼ kR we get another diagonal filler
kL ◦ j, since the type of diagonal fillers is contractible, kL ◦ j = Id .

Stable orthogonal factorization systems

Before proving that a stable orthogonal factorization system will induce a higher modality we
introduce some helping lemmas.

Lemma 22. Given l, r, f, g and a homotpy S : r ◦ f = g ◦ l, consider as b : B varies, all the diagrams
of the form

fibl(b) A X

1 B Y

!

pr1

l

f

r

b g

and write Sb : r ◦ (f ◦ pr1) = (g ◦ b)◦! for the induced commutative square. Then the map defined
by the precomposition with b

fill(S) −→ Π(b:B)fill(Sb)

is an equivalence.
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As corollary to this lemma we have the following two facts for any stable orthogonal factorization
system:

• If l is a map such that fibl(b) −→ 1 is in L for each b : B (with B the domain), then l is also
in L.

• if l ⊥ r for all maps l : A −→ 1, then r is in R. In particular for any modality ⃝, if
X −→ (A −→ X) is an equivalence for all ⃝-connected types then X is modal.

Lemma 23. Let (R,L) be a stable orthogonal factorization system. Then a map r : X −→ Y is in R
if and only if fibr(y) is (R,L)-modal for every y : Y .

Proof. It is sufficient to show that any map with modal fibers is in R, since we already know R is
closed under pullbacks. So let r : X −→ Y be a map whose fibers are modal. Since we have L =⊥ R
it suffices to show that r has the right lifting property with respect to L. Consider a diagram

A X

B Y

l

f

r

g

where l is in L. We would want to show then that the type of diagonal fillers is contractible. By
Lemma 22 the type of diagonal fillers is equivalent to the one of the product of the fiagonal fillers
indexed by b : B of the following squares:

fibl(b) X

1 Y

f◦ib

r

g(b)

Therefore it suffices to show contractibility for each b : B. Since the fillers factor through the
pullback 1×Y X which is fibl(g(b)), the type of the diagonal fillers of the previous diagram is

fibl(b) fibr(g(b))

1 Y

where the map above is the unique map into the pullback fibr(g(b)). Since by assumption we are
working in a stable orthogonal factorization system the left map down is in L by stability, and the
right map is in the right class by assumption, so the type of diagonal fillers is contractible.

Theorem 21. Any stable orthogonal factorization system determines a higher modality with the
same modal types.

Proof. For every type X we have the unique factorization X −→ ⃝X −→ 1 of the unique map X −→ 1.
This determines the modal unit η : X −→ ⃝X which is in L, and the unique map ⃝X −→ 1 is in R,
therefore ⃝X is (R,L)-modal.

To get the induction principle of the higher modality, let P : ⃝X −→ U and f : Πx:X ⃝ P (η(x))).
We have the square

X Σz:⃝XP (η(z))

⃝X ⃝X

f

η pr1
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Note that pr1 is in R because its fibers are modal and the modal unit η is in L. Therefore as
we have seen in the definition of the unique lifting properties, the type of fillers of this square is
contractible. So we get

X Σz:⃝XP (η(z))

⃝X ⃝X

f

η pr1

with s : X −→ Σz:⃝XP (η(z)) and homotopies making the two triangles commute, whose composite
is the following type:

Σ(s:⃝X−→Σ(z:⃝X)⃝(P (z)))Σ(H:Π(z:⃝X)pr1(s(z)=z))Σ(K:Π(x:X)s(η(x))=f(x))Π(x:X)pr1(K(x)) = H(η(x)).

We can decompose s,f and K and rewrite the type as,

Σ(s1:⃝X−→⃝XΣ(s2:Π(z:⃝X)⃝(P (z)))Σ(H:Π(z:⃝X)s(z)=z) Σ(K1:Π(x:X)s(η(x))=f1(x))

Σ(K2:Π(x:X)s(η(x))=K1(x)f2(x)) Π(x:X)K1(x) = H(η(x))

Finally we can contract s1, H and K1 :

Σ(s2:Π(z:⃝X)⃝(P (z)))Π(x:X)s2(η(x)) = f2(x)

getting the type of extensions of f along η, that is, the fiber of the precomposition by η. Thus, this
same precomposition is an equivalence so we have a uniquely eliminating modality, for which the
identity types for ⃝X are modal, so we get a higher modality.





Chapter 4

Accessible Reflective Subuniverses

In category theory localization is the action of adding formal inverses to a class of maps F in a
category C, obtaining a category C[F−1] and a functor C −→ C[F−1] characterized by a universal
property. We will give in this section an analogous of this construction, by giving reflective
subuniverses of F -local objects.

4.1 Localizing at maps
Definition 29. Given a family F : Π(a:A)B(a) −→ C(a) of maps, a type X : U is F -local if

λg.g ◦ Fa : (C(a) −→ X) −→ (B(a) −→ X)

is an equivalence for each a : A.

A recurrent instance of this definition in this section will be that of a family F : Π(a:A)B(a) −→ 1,
which we call a B-nullification.

Definition 30. For a family B : A −→ U , a type X : U is B-null if

λxλb.x : X −→ (B(a) −→ X)

is an equivalence for each a : A.

Remark 22. We can also think about F -local types as the ones that see each map in the family
F as equivalences, and, specializing to nullifications, B-null types are the ones that see B(a) as
contractible types.
Next we will introduce the localization operator and show that a reflective subuniverse arises from
it. We define the modal operator LF : U −→ U called the localization at F. The construction will be
as a higher inductive type, using one of the constructors as the modal unit and the rest to build the
data making the precompositions at Fa equivalences. Now let F : Π(a:A)B(a) −→ C(a) be a family
of maps and let JF (X) be the inductive type with the following constructors:

• αX : X −→ JF (X)

• ext : Π{a:A}(B(a) −→ JF (X)) −→ (C(a) −→ JF (X))

• isext : Π{a:A}Π(B(a)−→JF (X))Π(b:B(a))ext(f)(Fa(b)) = f(a)

Being the inductive principle of JF (X) is that for any family P : JF (X) −→ U ′ if there are types

N : Π(x:X)P (αX(x))

R : Π{a:A}Π(f :B(a)−→JF (X))(Πb:B(a)P (f(b))) −→ Π(c:C(a))P (ext(f, c))

S : Π{a:A}Π(f :B(a)−→JF (X))Πf ′:Πb:B(a)P (f(b))Πb:B(a)R(f ′)(Fa(b)) =
P
isext(f,b) f

′(b)

Then there is a section s : Π(x:JF (X)P (X) such that s ◦ αX = N . Note that the family P can land
in a universe U ′, not necessarily U . We will see that this higher inductive type behaves as we would
want for the localization at X.

39



40 CHAPTER 4. ACCESSIBLE REFLECTIVE SUBUNIVERSES

Lemma 24. If Y is F -local, then the precomposition with αX

(− ◦ αX) : (JF (X) −→ Y ) −→ (X −→ Y )

is an equivalence.

Proof. To show the equivalence we will show that this map is path-split. First we construct a right
inverse to it: given a g : X −→ Y we have to extend it to JF (X). We can apply the induction
principle using the constant family Y over JF (X) and N :≡ g, so that the computation rule shows
that what we get is an extension of g. To construct R and S, we take

f : B(a) −→ JF (X)

f : B(a) −→ Y

and we want to construct R(f, f ′) : C(a) −→ Y together with a witness S(f, f ′) of the following
triangle commuting

B(a)

C(a) Y

Fa
f ′

R

Since Y is F -local, the map

(− ◦ Fa) : (C(a) −→ Y ) −→ (B(a) −→ Y )

is an equivalence, and therefore it has a right inverse, which applied to f ′ gives R and S. The other
part of seeing that the map is path-split is to construct a right inverse to

ap(−◦αX) : (g = h) −→ g ◦ αX = h ◦ αX

given g, h : JF (X) −→ Y .

Suppose we have K : Π(x:X)g(αX(x)) = h(αX(x)). We have to extend K to a homotopy
K ′ : Π(j:JF (X))g(j) = h(j) such that K ′(αX(x)) = K(x). We will use the induction princi-
ple for the family given by P (z) :≡ (g(z) = h(z)) and N :≡ K. Again we have to construct
and, let f : B(a) −→ JF (X) and f ′ : Πb:B(a)g(f(b)) = h(f(b)). We want to get R(f, f ′) :
Πc:C(a)g(ext(f, c)) = h(ext(f, c)) and S(f, f ′) a witness of

R(f, f ′)(Fa(b)) = g(isext(f, b) · f ′(b) · h(isext(f, b))−1

for any b : B(a). Once again, since Y is F -local the map

(− ◦ Fa) : (C(a) −→ Y ) −→ (B(a) −→ Y )

is an equivalence and in particular

ap(−◦Fa) : (g ◦ ext(f, b) = h ◦ ext(f, b)) −→ (g ◦ ext(f, b) ◦ Fa = h ◦ ext(f, b) ◦ Fa)

has a right inverse, and since the right part of R(f, f ′)(Fa(b)) = g(isext(f, b) ·f ′(b) ·h(isext(f, b))−1

inhabits (g ◦ ext(f, b) ◦ Fa = h ◦ ext(f, b) ◦ Fa), applying the right inverse we get R and S.
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Since the constructors give a right inverse to the map

(− ◦ Fa) : (C(a) −→ Y ) −→ (B(a) −→ Y )

but do not make it an equivalence, in general JF (X) is not an F -local type.

Definition 31. Given any map f : A −→ B, let

△f : B −→ A×B A

▽f : B +A B −→ B

be respectively the diagonal and the codiagonal of f .

Lemma 25. For any f : B −→ C and any X, we have a commuting diagram

(C −→ X)

(C +B C −→ X) (C −→ X)×(B−→X) (C −→ X)

△(−◦f)(−◦▽f )

in which the bottom map is an equivalence.

Lemma 26. For any f : B −→ C we have the following equivalences:

isEquiv(f) ≃ pathsplit(f) ≃ rinv(f)× rinv(▽f ).

We can use these two properties of diagonal maps to devise a way in which we can make our
localization work:

Lemma 27. For f : B −→ C, a type Y is f -local if and only if both maps

(− ◦ f) : (C −→ Y ) −→ (B −→ Y )

(− ◦ ▽f ) : (C −→ Y ) −→ (C +B C −→ Y )

have right inverses and if and only if both of these maps are equivalences.

Proof. By 26, our Y is f -local if and only if both precomposition with f and △−◦f have a right
inverse. But the latter is equivalent to (− ◦ ▽f ) by 25. The second statement follows from the
diagonal of an equivalence being an equivalence.

Therefore to localize at F we only have to add the maps ▽Fa
to F .

Definition 32. For any X : U , the localization of X at a family F is LF (X) :≡ JF̂ (X) and
ηX : X −→ LF (X) is αF̂

X , where

F̂ : Π(a:A+A)B̂(a) −→ Ĉ(a)

and in the left we have

B̂(inl(a)) :≡ B(a) Ĉ(inl(a)) :≡ C(a) F̂ (inl(a)) :≡ fa

and in the right

B̂(inr(a)) :≡ C(a) +B(a) C(a) Ĉ(inr(a)) :≡ C(a) F̂ (inr(a)) :≡ ▽fa .

Theorem 23. The subuniverse of F -local types forms a reflective subuniverse.
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Proof. We first have to show that for any F : Π(a:A)B(a) −→ C(a), the types of the form LF (X) are
F -local. The constructors of the higher inductive type say that the maps

(− ◦ F̂a) : (Ĉ(a) −→ JF̂ (X)) −→ (B̂(a) −→ JF̂ (X))

have right inverses for all a : A+A. By definition of F̂ these maps are the precomposition with Fa

and ▽Fa therefore JF̂ (X) is F -local.

That the precomposition with ηX follows from the fact that any F -local type is also F̂ -local
and we have shown that then the precomposition with αX is an equivalence.

4.2 Accessible Modalities
We call a modality accessible if it can be generated by localization at a family of maps. Accessible
modalities include all the examples we have seen until now, and we can actually check that there is a
correspondence between modalities and a specific class of localizations which we called nullifications.

4.2.1 Nullification
Theorem 24. If F : Πa:AB(a) −→ C(a) is such that C(a) = 1 for each a : A, then the localization
at F is a modality, the nullification at B.

Proof. Since in the previous section we have seen that the localization at a family of maps forms
a reflective subuniverse, it is enough to see that for the family B : A −→ U , the B-null types are
Σ-closed. Then for any a : A we need an equivalence

Σ(x:X)Y (x) −→ (B(a) −→ Σ(x:X)Y (x)).

We have the following equivalences:

(B(a) −→ Σ(x:X)Y (x)) ≃ Σ(g:B(a)−→X)Π(b:B(a))Y (g(b))

≃ Σ(x:X)B(a) −→ Y (x)

≃ Σ(x:X)Y (x)

Thus Σ(x:X)Y (x) is B-null.

The converse is not true: if an F -localization is a modality the maps are not necessarily a null
family, but we have the following:

Theorem 25. If F : Π(a:A)B(a) −→ C(a) is such that LF is a modality, there is a family E : I −→ U
such that LF coincides with the E-nullification.

Proof. We write LF for the reflector and η for its modal unit. We define I = Σ(a:A)(LF (B(a)) +
LF (C(a))) and E by

E(a, inl(b)) = fibηB(a)
(b)

E(a, inl(c)) = fibηC(a)
(c)

Since η is LF -connected so is each E(i), therefore an F -local type is E-null. Suppose now that X
is an E-null type. Each ηB(a) and ηC(a) are LE-connected (since the fibers are LE-connected), thus
X is ηB(a)-local and ηC(a)-local. Then we have a commutative square

B(a) LF (B(a))

C(a) LF (C(a))

ηB(a)

Fa LF (Fa)

ηC(a)

and LF (Fa) is an equivalence so X is Fa-local.
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We can then give the following definitions :

Definition 33. A reflective subuniverse on U is said to be accessible if it is the localization at a
family of maps in U .

Definition 34. A modality ⃝ is said to be an accessible modality if it is the nullification at a
family B : A −→ U .

Definition 35. A presentation of a reflective subuniverse ⃝ is a family F : Π(a:A)B(a) −→ C(a)
with A : U B,C : A −→ U such that ⃝ :≡ LF . In the case of a modality the family C is constant at
the unit type.

Example 8. The closed modality at a mere propositon P from the example on Σ-closed reflective
subunivserses is presented by the nullification at the type family λx.0 : P −→ U . A type A is null for
this family if and only if A −→ (0 −→ A) is an equivalence for any p : P , but 0 −→ P is contractible,
so being A-null is the same as P −→ IsContr(A), which is the definition of modal types for the
closed modality.

4.2.2 Universe hierarchies and accessible extension

Recall that a universe is a type whose terms are itself types. As we would in set theory, we might
want a universe U that contains all types, including itself. But as it happens in set theory this is
not appropriate, as we can deduce from it that all types (including the empty type that represents
the proposition False), are inhabited. Furthermore, we could encode Russell’s paradox.
To avoid this we introduce a hierarchy of universes:

U0 : U1 : U2 : U3 : . . .

where every universe Un is a term of the next universe Un+1. We also assume that these universes
are cumulative, that is, the elements of the last universe are also elements of the next one. So when
we say that A is a type we mean that it inhabits some universe Ui. As we have been doing we omit
the level of the universes when stating a type, leaving the indices implicit. When some universe U
is assumed, we refer to types belonging to U as small.

One use of accessibility is moving modalities through universes. Although our definitions of
modalities and reflective subuniverses are bounded to a particular universe U , most of them are
"uniform" or "polymorphic" definitions, that is, they apply to types indifferently of their universe.
Accessibility will ensure that this holds and moreover that these modal operators in different
universes match in an appropriate way.

Theorem 26. If ⃝ is an accessible reflective subuniverse defined on a universe U and U ′ is a
universe such that U : U ′ then there is a reflective subuniverse ⃝′ on U ′ such that:

(i) If ⃝ is a modality so is ⃝′.

(ii) A type X : U is ⃝′-modal if and only if it is ⃝-modal.

(iii) For a type X : U the induced map ⃝′X −→ ⃝X is an equivalence.

(iv) A type X : U ′ is ⃝′-modal if and only if (− ◦ f) : (B −→ X) −→ (A −→ X) is an equivalence for
any map f : A −→ B in U such that ⃝(f) is an equivalence .

(v) ⃝′ depends only on ⃝, not on its presentation.

Proof. We know that ⃝ is generated by some family F : Π(a:A)B(a) −→ C(a). We define ⃝′ : U ′ −→
U ′ to be the higher inductive localization at the same family F which will be in U ′ since U : U ′ and
the bigger universe will contain the types of the previous ones.

(i) If ⃝ is a modality we can take the family with C(a) = 1, so ⃝′ will also be a modality.
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(ii) The notion of a type being F − local is independent of the universe the type inhabits, so we
get the second property

(iii) Since the induction principle given by the precomposition allows us to work in any type and
in any universe, the lemma 12 applies indifferently of the universe and both ⃝′X and ⃝X
have the same universal property, hence they are equivalent.

(iv) and (v) Note that ⃝(Fa) is an equivalence, so any X : U ′ with the property from (iv) is
F−local. Conversely if we have an X such that it is F -local and thus ⃝′-modal, then the
precomposition is an equivalence for any f such that ⃝′(f) is an equivalence, but since the
two modalities coincide in U we have the fourth property. Finally (v) arises from the fact that
reflective subuniverses are determined by the modal types.

4.3 Non accessible modalities

Now that we have seen how universes work in type theory, we can introduce propositional resizing
and with it the case of the double negation modality.

Propositional resizing

For any mere proposition P : PropUn
we will also have P : PropUn+1

since, as we stated, the
universes are cumulative. This property gives us a natural embedding which in general is not an
equivalence although it is consistent to assume that it is

Axiom 2 (Propositional resizing). The map Propi −→ Propi+1 is an equivalence.

The axiom is called this way because it means that any mere proposition in Un+1 can be "resized" as
an equivalent one in the universe Un and it is a form of impredicatibility ∗ for the mere propositions.

The double negation modality

In logic, the double negation is the operation that takes a proposition P to ¬¬P , which in the
classical setting is P itself. In intuitionistic logic though, this is not the case (recall that in general
the law of the excluded middle does not hold). We are in the latter case, since in homotopy type
theory the negation is

¬P :≡ (P −→ ∅)

where ∅ is the empty type. Then the double negation of a proposition P is

¬¬P :≡ (P −→ ∅) −→ ∅

which is not the same as P . As both are mere propositions we would only need to construct a map
¬¬P −→ P for them to be equivalent and consequently making us able to prove by contradiction.

Definition 36. We can define the double negation modality by its modal operator λP.((P −→ ∅) −→
∅) and η(p) :≡ λg.g(a). It forms a uniquely eliminating modality, that is,

λf.f ◦ λg.g(a) : (Π(z:¬¬A)¬¬(P (z)) −→ (Π(x:A)¬¬P (λg.g(x)))

is an equivalence for A : U and P : ¬¬A −→ U .

∗A definition is impredicative if it gives an object by pointing to a total that includes said object.
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Since both the domain and codomain of this map are mere propositions, it suffices to find a map
from the codomain (i.e. (Π(x:A)¬¬P (λg.g(x)))) to the domain (i.e., Π(z:¬¬A)¬¬(P (z))). Consider
f : Π(x:A)¬¬P (λg.g(x)) for a P : ¬¬A −→ U .

Then given z : ¬¬A we have to derive a contradiction from g : ¬P (z). Since we are proving
a contradiction we can take the double negation from z and assume a term a : A, and since ¬¬A
is a mere proposition we have z = λg.g(a), so we can transport f(a) to get a term of ¬¬P (z),
contradicting g.

Lemma 28. If propositional resizing holds, the double negation modality corresponds to the
nullification at 2. Moreover, it is the propositional truncation.

A type X is 2-null if and only if X is a mere proposition. A map 2 −→ X is given by two points in
X. If we take X to be 2-null and x, y : X, then it follows that there is a unique point z : X such
that x = z and y = z and in particular it follows that x = y, so X is a mere proposition. It is
straightforward then that || − ||-modal types are the 2-null types. To see that those are also all
the modal types for ¬¬ we have to see how are the modal types of the double negation modality.
Recall that the modal types are the ¬¬-stable ones, i.e. , those X such that

η¬¬
X : X −→ ¬¬X

is an equivalence. Since ¬¬X is already a mere proposition ¬¬-modal types are a family of mere
propositions. Then as we already have the X −→ ¬¬X from ηX we only need to find a map ¬¬ −→ X
to have an equivalence.

Propositional resizing implies the following version of the Law of the excluded middle only for the
propositions

LEM−1 :≡ ΠA:UIsProp(A) −→ A+ ¬A

which is logically equivalent to the Law of double negation

ΠA:UIsProp(A) −→ (¬¬A −→ A)

and therefore under these hypotheses the double negation is the 2-nullification.

Remark 27. in [13], Proposition 11.3, it is shown that in models for homotopy type theory based on
Grothendieck (∞, 1)-topoi propositional resizing as given in Axiom 2 holds. Although for example
in [12] they take propositional resizing as an extra hypothesis for some constructions, this view of
an ∞-topos as the model for HoTT is quite widespread.

4.4 Smallnes and non-accessible localizations

In [14] Christensen builds a localization at a family of maps whose accessibility is independent of
ZFC, by reproducing the example of [15], that shows that there is a reflective subcategory of the
∞-topos of spaces with accessibility independent from ZFC. We will first construct this localization
and then briefly discuss the accessibility of the object.

4.4.1 Smallness

Recall that we call a type A small or U-small if it is a term of U , or more precisely, if for some
B : U there is an equivalence A ≃ B. For this section, we will also use the following definition
involving the identity types.

Definition 37. A type is 0-locally small if it is small. We define a type to be (n+ 1)-locally small
if for any x, y : A the type x = y is n-locally small.
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Lemma 29. Let n ≥ −1. If f : A −→ X is (n − 1)-connected, A is small and X is (n+ 1)-locally
small, then X is small.

Proof. For n = −1 we have nothing to prove since 0-locally small types are just small types. In
[16], Theorem 4.6, it is shown that for A small and A −→ X (−1)-connected, then X is small.

Now let x, y : X, for a f : A −→ X (n − 1) connected, A small and X (n + 1)-locally small.
Since f is surjective we can take x :≡ f(a) and y :≡ f(a′) for some a, a′ : A. We have then
ap(f) : (a = a′) −→ (f(a) = f(a′)). Note that a = a′ is small, f(a) = f(a′) n-locally small and ap(f)
is (n− 2)-connected. Therefore by the induction hypothesis f(a) = f(a′) is small.

Lemma 30. Let n ≥ −1. If X is n-truncated, then X is (n+ 1)-locally small

Proof. We prove it by induction. For n = −1, this is just propositional resizing, which we assume
during all this section. Now let m ≥ 0 and assume that X is m-truncated. Then for x, y : X, the
identity type x = y is m-truncated. By the induction hypothesis applied to x = y, we see that each
x = y is m-locally small. That is, X is (m+ 1)-locally small, as required.

Lemma 31. Let U be a universe contained in a universe U+. Let L be a reflective subuniverse of
U+ such that for every X : U , LX is small. Then the subuniverse of L-local types in U is reflective.

Proof. We can replace the proposition isLocalL : U+ −→ PropU+ that defines the subuniverse with
an equivalent one landing in PropU , using propositional resizing. So we will write isLocalL̄ : U −→
PropU for the restriction of the new predicate to U .

We have is : ΠX:UΣX′:U (X
′ ≃ LX). For X : U we will define L̄X to be pr1(is(X)), so that

L̄X : U and L̄X ≃ LX.

We now define
η : X −→ L̄X

as the composite X −→ LX −→ L̄X, where the first map is the localization in U ′ and the second map
is the inverse of the equivalence. It is easy to check that this is a localization.

Theorem 28. Let n ≥ −1 and f : Πi:I(Ai −→ Bi a family of (n − 1)-connected maps, with no
smallness hypotheses on I, Ai or Bi. Then the subuniverse of n-truncated and f-local types in U is
reflective.

Proof. First of all, note that a type is n-truncated if it is local with respect to the map Sn+1 −→ 1.
Then we will consider the family f̄ as f together with said map and then take f̄ -local maps.

Let U+ be a universe containing U , I, and all Bi and Ai. Then f̄ -local types form a reflec-
tive subuniverse in U+. Then we ought to show that if X : U then Lf̄X is small. We know by
Lemma 30 that Lf̄X is (n− 1)-locally small. Now since all the maps in f̄ are (n− 1)-connected,
and those form the left class in an orthogonal factorization system, then η : X −→ Lf̄X is also in
the left class, and therefore (n− 1)-connected, then by Lemma 29 Lf̄X .

4.4.2 Localization at one function

We will see now that given the right conditions, we can present this localization with a single
function. This will collide with the theorem of [15], which asserts that we cannot prove the existence
of such a localization from ZFC.

Axiom 3. The axiom that sets cover states that for every type X we have a set S (recall we defined
sets as 0-types) and an epimorphism S −→ X. We will say that sets cover in U is this is true for
every X : U .

Remark 29. The simplicial model for HoTT satisfies a form of the axiom of choice which in turn
implies both that sets cover and law of excluded middle for propositions. Therefore it is not an
unreasonable idea to make use of these axioms in this part of the thesis.
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We can now state the main theorem of this section.

Theorem 30. If sets cover in U , the law of excluded middle holds and L is an accessible reflective
subuniverse such that the empty type is L-local, then L can merely be presented as localization with
respect to a single map.

We will separate the statement into three propositions that we will be able to prove:

Proposition 2. Assume that sets cover in U . Then any accessible subuniverse L of U can be
presented as a localization with respect to a family in U indexed by a set.

Proof. Suppose that L is presented as a localization with respect to a family f indexed by a type
I : U . Then we can choose an epimorphism s : S −→ I from a set S : U . Then L can be presented as
the localization at the family f ◦ s indexed by S. It is easy to see that an X : U is f -local if and
only if it is (f ◦ s)-local, given that s is an epimorphism.

Proposition 3. Let f : Πi:IAi −→ Bi be a family of maps. Then every f -local type is total(f)-local.
Moreover, if I is a set with decidable equality (this is, two elements are either equal or not) and X
is merely inhabited, then X is f-local if and only if it is total(f)-local.

Proof. Recall that for a family of maps f : Πi:IAi −→ Bi, we write total(f) for the induced map on
Σ-types:

total(f) : (Σi:IAi) −→ (Σi:IBi).

Then if we suppose X to be f -local, to show that it is also total(f)-local we must show that

((Σi:IBi) −→ X) −→ (Σi:IAi −→ X)

is an equivalence. But this map is equivalent to the map

Πi:IX
Bi −→ Πi:IX

Ai

which is an equivalence since every component is.

Now assume I to be a set with decidable equality,with X inhabited and total(f)-local. Then
the previous map is an equivalence, and we want to show that for i : I the map

XBi −→ XAi

is also an equivalence. But we can make use of our assumptions to show that this last function is a
retract of the previous one and thus we finish.

Proposition 4. Let f : Πi:IAi −→ Bi be a family of maps indexed by a set I and such that the empty
type is f -local. Assuming that the law of excluded middle holds for mere propositions LEM−1, the
f -local and total(f)-local types agree.

Proof. We have already shown that if X is f -local it will also be total(f)-local. We will prove
the converse. Assume X to be total(f)-local, using LEM−1 on the propositional truncation of
X, ∥X∥−1 we know that either X is merely inhabited, therefore being f -local by the previous
proposition, or ∥X∥−1 −→ ∅. In this last case we have X −→ ∅, therefore X = ∅ and since ∅ is
f -local we have what we wanted.

Remark 31. Note that the localization we have produced has for n ≥ 0 the property that ∅ and
in fact all propositions are Lf̄ -local. So if under the assumptions of the theorems we get to prove
accessibility, then the localization can be presented using a single map.
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4.4.3 Independence of ZFC
Theorem 6.4 in [15] reads as follows:

Theorem 32 (Theorem 6.4 of "Implications of large-cardinal principles in homotopical localization").
Suppose that all cardinals are nonmeasurable. Then there is a homotopy idempotent functor E on
simplicial sets that is not equivalent to f-localization for any map f.

The localization given in the proof of such theorem can be written in type theory by choosing
a family that gives the same conditions when interpreted in simplicial sets. The details of this
localization are given in [1].

Now, if the localization was accessible in Homotopy Type Theory (with sets cover and LEM ), then
it could be merely presented as a localization with respect to a single map. This is what Theorem
32 shows is not provable from ZFC, assuming its consistency, and so it follows that the localization
cannot be proven to be accessible.



Chapter 5

Formalization of mathematics

A formal verification of a computer program is a formalized proof that the program has specific
properties, for example, to give a specified input given another input, or what sort of data the
output is, or that the program will always terminate... This verification will often take form of
proof that a program is of a certain type.

Thus, programming languages based on type theories are a natural place to do verification. Exam-
ples are Coq and Agda. You can write the certification at the same time as the program and run it
or ignore it when running the code. There are also other program analysis tools that can produce
automated proofs of certain aspects of a computer program, such as safety, and of course, these
languages can be used for checking mathematics, by writing theorems as programs.

As already stated in the Introduction, one of the advantages of dependent type theory is that
it is a very adequate formalization in which to base a proof assistant. Modern software like
the aforementioned Coq and Agda are developed based on a Martin Löf Type Theory. In these
programming languages, we cannot only write programs but also express properties of programs
using types and write programs to express proofs of our programs being correct. As for why to
prefer dependent type theory to set theory when doing formal verification in a computer, see this
answer in MathOverflow from Andrej Bauer on the construction of proof assistants.

5.1 Agda

Agda is a dependently typed programming language, developed at Chalmers University of Technol-
ogy by the programming logic group. Because of its strongly typed nature and dependent types, it
can be used as a proof assistant allowing to run proofs as algorithms.

The following is an example of a simple Agda program: here we see that the program defines a
data type called Greeting and a constructor hello. Then the function greet of type Greeting will
return Hola.

Figure 5.1: Hello world program in Agda
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5.2 The Unimath Library

The reasons for formalizing mathematics can vary, but the principal one is that the actual peer
review process is not infallible: checking proofs can be hard and require a lot of time if you are not
an expert, and having a proof assistant to verify your proofs algorithmically can be very helpful.

It can also provide new insights on the mathematical structure or the process of the proof,
as it requires to build everything explicitly, and finally, it assures oneself that their arguments and
computations are correct.

But when doing mathematics on a proof assistant we might find ourselves overwhelmed by the actual
size of the proofs, since we start from the beginning and have to build up all the theory that precedes
our theorems. We would also want our software to be reusable and modular, being able for example
to change a proof and keep the rest behaving the same way. Here the use of a library plays a key role.

The Agda-Unimath project creators, Elisabeth Bonnevier, Jonathan Prieto-Cubides, and Eg-
bert Rijke describe it as follows:

a community-driven effort aimed at formalizing mathematics from a univalent point of view using
the dependently typed programming language Agda

The goal of the library is to create a sort of online encyclopedia of mathematics, formalized
from the univalent point of view, so the library is organized by mathematical subjects, with one
folder per subject, and the formalizations are made in literate agda, which combines the Agda
language with markdown. This allows the treating of files as pages of a mathematics wiki.

Each file is focused on a single topic, usually giving the definition of a new concept and its
basic properties or a theorem and its immediate corollaries. For instance, this is the view in the
Agda-Unimath page for the file regarding the 0-modality:

Figure 5.2: Screenshot from the agda-unimath webpage
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5.3 Modalities in the Agda Unimath Library
Most of the papers cited as references for the theory of localizations and modalities [1; 2; 14]

have been formalized by their authors either in their own repositories or in the Coq-Hott library.
At the start of this work none of it was formalized in Agda.

Since then there has been an effort to formalize the content of [2] in the Agda-Unimath library, by
one of its maintainers and significative advance has been made. In the folder Orthogonal factoriza-
tion systems one can find 33 different agda files, containing from examples of higher modalities to
the different definitions of a modality.

The author of the thesis has also started formalizing part of it, sometimes overlapping the already
formalized topics and sometimes building on them. The objective of this exercise is to formalize the
results on accessibility and in a future to be able construct the example from [15] in a type-theoretic
language. The progress will be posted in the personal repository of the author.

5.4 Conclusions
We have seen some very concrete examples of non-accessible modalities and localizations, but
the main question is still open: under what conditions can we say that modalities correspond to
nullifications? Our examples direct us to universes and resizing principles, such as the propositional
resizing axiom, as we have seen that the double negation becomes accessible if propositional resizing
is assumed. We have also proved that we can define modalities in higher universes that "fit" an
existing modality if this last is accessible.

The way of producing a non-accessible modality in [1], using the construction from [15] and
showing that it cannot be proven to be accessible, is not ideal since we are making these kind
of jumps between theories. A way to follow down this path might be to construct this family in
the HoTT language and assuming that it is accessible derive something that we expect not to be
provable. This would be only fully in homotopy type theory so it would avoid any subtlety in the
change of logics.

Finally on a more ambitious note, in [15] it is shown that Vopenka’s principle implies that
all localizations are accessible. The study of this behaviour in category theory and the study of
large cardinals and how they alter set theory could shed light on the topic in homotopy type theory.
Since types are not "collections of terms" we do not have an intuitive form of cardinals, but in
dependent type theory one can define finite types and in [12] the type of cardinal numbers is defined
as

Card :≡ ∥Set∥0,

the 0-truncation of the type Set of sets, and a cumulative hierarchy in a universe as a higher
inductive type. So maybe some similar principles could be derived.
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