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Abstract

The present research project aims to study the topology of time varying Car-
diovascular Magnetic Resonance images (CMR) for disease diagnosis. CMR
is a non-invasive technique that involves the acquisition of multiple 3D im-
ages at different cardiac phases throughout the cardiac cycle. Nonetheless,
conventional assessment of CMR images typically involves the quantifica-
tion of parameters related to the volumes, and more recently to the shape
and texture by means of radiomics (Raisi-Estabragh, 2020), of the cardiac
chambers at only two static time-point points: the end-systole and the end-
diastole. Therefore, potentially rich information regarding the cardiac func-
tion and structure from other phases of the cardiac cycle might be lost.

To overcome this limitation, we propose to leverage Topological Data
Analysis (TDA) to optimally exploit information from the entire cardiac
cycle, by measuring the variation of persistence descriptors. This approach
seems promising since a time series might not exhibit relevant geometrical
features in its respective point cloud embedding, but it may rather display
topological cyclic patterns and their respective variations that can be cap-
tured with the proposed machinery. Subsequently, the novel TDA-based
CMR descriptors encompassing the entire cardiac cycle are used to feed
supervised machine learning classifiers for cardiovascular disease diagnosis.

A full framework from data gathering, to image processing, mathemat-
ical modelling and classifier implementation is presented for this purpose.
The performance of the proposed approach based on TDA features and ML
is limited. Nonetheless, the approach could be easily adapted to other dis-
eases and scenario where the integration of ML and TDA could be more
beneficial.
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Chapter I

Introduction

I.1 Motivation

According to the World Health Organisation (WHO), cardiovascular disease
(CVD) remains the major cause of death. CVD is an overarching term for
diseases of the heart (heart disease) and vascular diseases (concerning blood
vessels). There are a number of factors which increase the risk of CVD, from
lifestyle habits such as smoking or physical inactivity to genetics.

I.2 Research Outline

The present research work aims to study the topology of time varying Car-
diovascular Magnetic Resonance images (CMR) for disease diagnosis. CMR
is a non-invasive technique that involves the acquisition of multiple 3D im-
ages at different cardiac phases throughout the cardiac cycle. Nonetheless,
conventional assessment of CMR images typically involves the quantifica-
tion of parameters related to the volumes, and more recently to the shape
and texture by means of radiomics [15], of the cardiac chambers at only two
static time-point points: the end-systole and the end-diastole. Therefore,
potentially rich information regarding the cardiac function and structure
from other phases of the cardiac cycle might be lost. To overcome this
limitation, we propose to leverage Topological Data Analysis to optimally
exploit information from the entire cardiac cycle, by measuring the varia-
tion of persistence descriptors. This approach seems promising since a time
series might not exhibit relevant geometrical features in its respective point
cloud embedding, it may rather display topological cyclic patterns and their
respective variations that can be captured with the proposed machinery. For
this same purpose it will be determined if TDA enhances a classifier based
on radiomics features. The ultimate goal of this work is to develop and
validate a novel approach for the diagnosis of cardiac diseases from CMR.
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I.2.1 General Objectives

• Evaluate whether TDA descriptors considering all time points of the
cardiac cycle outperform TDA descriptors extracted only from the end-
systole and end-diastole as predictors in ML models of CVD diagnosis.

• Measure the variation of persistence descriptors of CMR images.

• Design and implement a machine learning-based pipeline using TDA
features as predictors that can adequately characterise the texture of
CMR images.

I.2.2 Specific Objectives

• Model the cardiac cycle using persistence vineyards with appropriate
time-series descriptors.

• Determine if TDA enhances the performance of a classifier based on
radiomics features.

I.3 Context

I.4 Topology & Data Science

Today data is being generated in an unprecedented rate in a wide spectrum
of formats and in all the areas of mankind wisdom. A couple of problems
in the field are worth to be mentioned: it is a frequent scenario to have
high-dimensional, noisy data or to have a bigger proportion of missing data
or even a worse problem is in the fact that the ability for analyzing data is
a step back from the pace of data production.

For the latter problems described, geometry and topology are good can-
didates to approach a feasible solution since we deal with the study of dis-
tance functions on finite data sets, in short point clouds in the context of
topology.

The methodologies based on topology are powerful since they deal with
the extraction of qualitative geometric information by means of computing
topological characteristics such as connected components, loops or cavities
in space as a tool of qualitative study.

On the other hand, it does not depend on the choice of metric, but
it rather generalizes the concept of distance between points. Not being
sufficient with the latter arguments, the interpretation tools from topology
are delivered by summaries rather than from parameter choices and provide
all the information from invariants at once without loss of generality nor
loss of information. In this manner, a big portion of the information from
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topological spaces can be obtained by means of discrete diagram sets using
simplicial approximation.

The cornerstone of this theory is functorality, the common point of most
of the mathematical applications and the basis of algebraic topology as well,
since it allows one to compute the homological invariants from local infor-
mation. Note that this idea relies on the intention of understanding the
relationships between geometric objects constructed from data: in this par-
ticular case of topological spaces we are talking about continous maps, while
in the case of the category of groups they are homomorphisms. In this line
of reasoning, it can be stated at this stage that topological data analysis
aims to define functorial geometric constructions for analyzing behavior on
maps to get insights about point clouds.
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Chapter II

Elements of Topological Data
Analysis

II.1 Simplicial Complexes

To get a first taste of TDA one should start by thinking of an arbitrary data
set from which a point cloud can be constructed and a filtering function can
be defined. A filtered simplicial complex is constructed and by means of
applying persistent homology to it we get topological descriptors.

Definition II.1.1 (Abstract Simplicial Complex). An abstract simplicial
complex with vertex set V = {vi}i∈I is a collection K of nonempty finite
subsets {v0, . . . , vn} ⊆ V such that:

I {v} ∈ K ∀v ∈ V

II If S ∈ K and S′ ⊆ S with S′ 6= φ, then S′ ∈ K.

If the index set I of V is equipped with a total order, then K is called
ordered.

Definition II.1.2 (n-faces). The elements of K are called faces. For n > 0,
a face {v0, . . . , vn} of cardinality n + 1 is an n-face. The set of 0 -faces is
in bijective correspondence with V and its elements are called vertices. The
1-faces are called edges.

Definition II.1.3 (d-skeleton). The collection of all n-faces of K for 0 ≤
n ≤ d is an abstract simplicial complex for every d > 0, called the d-skeleton
of k. The 1 -skeleton of K is an undirected graph.

Note that every abstract simplicial complex is determined by its maximal
faces, that is, faces not contained in any larger one.
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Definition II.1.4 (n-simplex). An n-simplex of RN is the convex hull of
n+ 1 affinely independent points p0, . . . , pn in RN :

∆ (p0, . . . , pn) =
{
x0p0 + · · ·+ xnpn ∈ RN | x0 + · · ·+ xn = 1, xi > 0 ∀i

}
.

(II.1)

Intuitively speaking, every subset {pi0 , . . . , pik} ⊆ {p0, . . . , pn} spans a
k-simplex ∆ (pi0 , . . . , pik), which is called a k-face of ∆ (p0, . . . , pn).

Definition II.1.5 (Standard n-simplex). The standard n-simplex ∆n is the
convex hull of the coordinate unit points in Rn+1:

∆n := ∆(e1, ..., en+1) , ei = (0, ...,
i

1, ..., 0). (II.2)

Definition II.1.6 (Geometrical Simplicial Complex). A geometric simpli-
cial complex is a set X of simplices σ ⊂ RN for some N ∈ N such that

I Every face of X is in X.

II Any two simplices in X are either disjoint or intersect in one common
face.

From the last definition one can guess that for a finite dimensional geo-
metrical simplicial complex, its dimension is the maximum of the dimensions
of its simplices.

Note that this geometrical notion of a simplical complex has on its back-
stage a topological space |X| =

⋃
σ∈X σ endowed with the Euclidean topol-

ogy and therefore it is a polyhedron.

Definition II.1.7 (Geometric Realization). Let K be a finite ordered ab-
stract simplicial complex with vertex set V = {v1, . . . , vn}. The geometric
realization of K is the geometric simplicial complex XK with a k-face

∆ (ei0 , . . . , eik) ∈ Rn ∀ (i0 . . . ik) a k-face of k. (II.3)

For ease of notation, denote the topological spaces of the geometric re-
alization of K by |XK | = |K|.

Definition II.1.8 (Triangulation). If |K| ∼= Y then K is called a triangu-
lation of a topological space Y .
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One can think of simplicial complexes as space with a triangulation.

In this line of reasoning every abstract simplicial complex KX determines
a geometric simplicial complex X and the converse also holds. Note that any
geometric simplicial complex X determines the abstract simplicial complex
KX whose set of vertices are the 0-faces of X and with elements {vi0, ..., vin}
for each n-simplex ∆(vi0, ..., vin) of X. The order of KX is inherited by X.

There are face-preserving bijective correspondences

XKX
∼= X and KXK

∼= K (II.4)

which induce homeomorphisms |XKX
| ∼= |X| and |KXk

| ∼= |K|. They
can be polyhedra in different ambient spaces.

Definition II.1.9 (Graph (TDA)). In the context of TDA a graph is a
1-dimensional abstract simplicial complex. It is called a clique if it is fully
connected, that is, if every pair of vertices is joined by an edge. And a
weighted graph is a graph with a real number w > 0 attached to each of its
edges.

Definition II.1.10 (Point Cloud). A point cloud is a finite set of points
X = {xi}i∈I in RN with N > 2.

Just for the sake of illustration let define two popular simplicial com-
plexes.

Definition II.1.11 (Czech Complexes). Let X be a point cloud and fix
ε > 0. Denote the abstract simplicial complex Cε(X) named the Czech
complex such that it has vertices in the set X and a k-face for each collection
xi0 , . . . , xik such that

B̄ε/2 (xi0) ∩ . . . ∩ B̄ε/2 (xik) 6= ∅. (II.5)

Definition II.1.12 (Vietoris-Rips Complexes). Denote the Vietoris-Rips
abstract simplicial complex by Rε(X) with vertex set X and a k-face for
each collection xi0 , . . . , xik such that ‖xir − xis‖ 6 ε ∀r, s ∈ {0, . . . , k}:

Rε(X) has a k-face {xi0 , . . . , xik} ⇐⇒ diam ({xi0, . . . , xik}) ≤ ε (II.6)

where diam(A) = sup{‖a− b‖ : a, b ∈ A}.
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II.2 Cubical Complexes

Cubical complexes deserve a section since later in the methodology it will be
clear usefulness for image processing and mathematical modelling to obtain
topological features of the images.

Consider a grid with cells of all dimensions. The cubical complex aims
to represent this mathematical structure and hence it is a key tool for com-
putational mathematics. We start with some definitions.

Definition II.2.1 (Elementary Intervals). A non-degenerate elementary
interval is of the form [n, n + 1] and a degenerate interval is of the form
[n, n] ∀n ∈ Z.

Definition II.2.2 (Boundary of Elementary Interval). A boundary of an
elementary interval is ∂[n, n] = 0 in the degenerate case, and in the non-
degenerate case it is a chain of the form

∂[n, n+ 1] = [n+ 1, n+ 1]− [n, n]. (II.7)

Definition II.2.3 (Elementary Cube). An elementary cube is a product of
elementary intervals

C = I1 × · · · × In (II.8)

The embedding dimension of an elementary cube n is associated to the
number of elementary intervals without discriminating on degenerate or not.
The dimension of a cube is the number of non degenerate elementary inter-
vals in the product.

Definition II.2.4 (Boundary of a Cube). A boundary of an elementary
cube follows the formula,

∂C := (∂I1×· · ·×In)+(I1×∂I2×· · ·×In)+ · · ·+(I1×I2×· · ·×∂In) (II.9)

Definition II.2.5 (Cubical Complex). A cubical complex K is a collection
of cubes closed under the operation of taking boundaries.

Definition II.2.6 (Maximal Cube). A cube C in a cubical complex K is
maximal if it is not in a boundary of any other cube in K.

Definition II.2.7 (Filtered Cubical Complex). Filtered cubical complexes
are cubical complexes whose cubes are equipped with filtration values.
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The latter case of filtered cubical complexes is the one that concerns
us. Images are modeled as cubical complexes since the cubical structure is
inherited canonically from the pixel structure and their filtration values are
the pixels intensities associated.

Definition II.2.8. A support of a cube C is the set in Rn occupied by C,
where n is the embedding dimension of C.

At this stage one can think about the applications to image analysis
as follows. Consider a rectangular region in Rn. The cubical gives a rep-
resentation on the embedding space. With this machinery we can store
cubical complexes in bitmap form. Let K be a cubical complex and let
R = [b1, d1] × · · · × [bn, dn] where b1, ..., bn, d1, ..., dn ∈ Z and bi 6 di ∀i be
a rectangular region that is the support of K. The ordering described is
the base of the bitmap-based implementation where the cubical complex is
stored as vectors of the filtrations, and moreover describes all cubes in K.

II.3 Simplicial Homology

Let K be a finite ordered abstract simplicial complex with set of vertices
V = {v1, . . . , vN}. In this section the notation will have an slight change:
write (i0 . . . in) instead of {vi0 , . . . , vin} such that the order is strict among
the indexes i0 < . . . < in. If it is the case that the indexes i0, . . . , in are not
in order denote the even and odd permutations by

(i0 · · · in) = ε(σ)
(
iσ(0) · · · iσ(n)

)
where iσ(0) < . . . < iσ(n) (II.10)

and ε(σ) = 1 if σ is an even permutation while ε(σ) = −1 if σ is odd.

Let Cn(K) for n > 0 be the free abelian group on the set of n-faces of
K. Therefore the elements of Cn(K) are called n-chains in K. For instance
Cn(k) = 0 if n < 0 or if the set of n-faces of K is empty, since the free
abelian group on ∅ is the trivial group.

Let R be a field, so that an R-module is a vector space over R. The
choice of the field can be anyone of Q,R,C, F2, ..., but in this context think
particularly in R = Z with a further generalization to the real field R.

Definition II.3.1 (Boundary Operator). The n-th boundary is the group
homomorphism

∂n : Cn(K) −→ Cn−1(K) (II.11)

which is defined on the space of generators as

∂n (i0 . . . in) =
n∑
k=0

(−1)k
(
i0 . . . îk . . . in

)
(II.12)
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where îk means that the kth entry is deleted.

Theorem 1 (Fundamental Property of Boundary Operators).

∂n ◦ ∂n+1 = 0 ∀n. (II.13)

Consider the following remark.

Proposition 1.

∂n ◦ ∂n+1 = 0⇒ Im ∂n+1 ⊆ Ker ∂n. (II.14)

The latter remark means that ∀n ∈ N

Cn+1(K)
∂n+1−→ Cn(K)

∂n−→︸ ︷︷ ︸
0

Cn−1(K) (II.15)

Definition II.3.2 (n-th Homology of K). The n-th homology of K is de-
fined by

Hn(K) =
Zn(K)

Bn(K)
(II.16)

where Zn(K) = Ker ∂n and Bn(K) = Im ∂n+1

Note that Bn(K) ⊆ Zn(K) ∀n, makes sense since the elements of Zn(K)
and Bn(K) are n-cycles and n-boundaries, respectively. Therefore the def-
inition of the n-th homology of K takes the space of n-cycles and makes a
quotient by their n-boundaries so that two n-cycles are equivalent modulo
a boundary.

It is important to mention at this stage some subtleties about the struc-
ture of Hn(K,R). Note that if R is a ring Zn(K,R) is an R-submodule
of Cn(K,R) and Bn(K,R) is an R-submodule of Zn(K,R). Therefore
Hn(K,R) inherits an R-module structure. In this line of reasoning, if R
is a field then Hn(K,R) is an R-vector space.

In particular, if R = Z then Zn(K) and Bn(K) are free abelian groups,
since Cn(K) is free and every subgroup of a free abelian group is free.

If K is finite, then Zn(K) is finitely generated and so is Hn(K) and
therefore it can be decomposed as

Hn(K) ∼= Zr ⊕ Z/pα1
1 ⊕ . . .⊕ Z/pαm

m (II.17)

for some primes p1, . . . , pm and αi > 1 and where r = rankHn(K) =
dimQHn(K;Q).

More generally, if R is a principal ideal domain then Zn(K) is finitely
generated and free. According to the structure theorem for finitely generated
modules over a principal ideal domain we have the following isomomorphism:
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Hn(K;R) ∼= R/ (d1)⊕ . . .⊕R/ (dm) (II.18)

for ideals (di) of R with (di+1) ≤ (di) for all i, where indices with di = 0
correspond to the free part, so if R is a field, then di = 0 for all i, since all
R-modules are free. In general, the ideals (di) are uniquely determined by
Hn(K;R), but the isomorphism is not unique.

By computing by hand the homology groups with coefficients in Z. Fur-
thermore, some insight can be gained through connecting the computations
of homology groups with Betti numbers and the Euler characteristic.

Definition II.3.3 (Betti Numbers). Let K be a finite ordered abstract
simplicial complex and let F be a field. Define the Betti numbers of K by

βn(F) = rankHn(F) = dimFHn(K;F) for n > 0. (II.19)

Definition II.3.4 (Euler Characteristic). Let K be a finite ordered abstract
simplicial complex and let F be a field. The Euler characteristic is defined
by

χ(K) =
∞∑
n=0

(−1)nβn(K;F) (II.20)

It can be proved that the Euler characteristic does not depend on the
field F but will not be done here.

Instead what concerns us at this point is to note that for an abstract
simplicial complex K when computing its Euler characteristic for each of
their n-skeleta we get that the homology groups counts specific topological
features in K, being more specific:

• H0(K) counts connected components of K;

• H1(K) counts 1-dimensional cycles in K;

• H2(K) counts 2-dimensional cavities in K.

II.4 Persistent Homology

At this stage the discussion continues towards mappings between simplicial
complexes, that is the functiorality of homology.
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Definition II.4.1 (Simplicial Map). A function f : K → L between ab-
stract simplicial complexes is a simplicial map if it sends vertices of K to
vertices of L and f (vi0) , . . . , f (vin) form a face in L whenever {vi0 , . . . , vin}
is a face of K.

Every simplicial map f : K → L between finite ordered abstract sim-
plicial complexes induces a group homomorphism fn : Cn(K) −→ Cn(L),
in general an R-module homomorphism if the coefficients are elements of a
ring for all n > 0. From the later homomorphism one can deduce the fol-
lowing property for commuting diagrams between finite ordered simplicial
complexes.

Proposition 2.

fn−1 ◦ ∂Kn = ∂Ln ◦ fn ∀n > 0. (II.21)

As a Corollary f induces the homomorphisms,

f∗ : Hn(K)→ Hn(L) for all n > 0 (II.22)

defined as f∗([z]) = [fn(z)] for each n-cycle z ∈ Zn(k), which is well-
defined and satisfies the relations (g ◦ f)∗ = g∗ ◦ f∗ and id∗ = id.

Definition II.4.2 (Finite Filtration). A finite filtration of an abstract sim-
plicial complex K is a nested family of subcomplexes

K0 ⊆ K1 ⊆ . . . ⊆ Km−1 ⊆ Km = K. (II.23)

A basic example of a finite filtration is the family of skeleta of a finite
complex.

Fix the field F. Given a finite filtration of a finite ordered abstract
simplicial complex K such that

K0 ⊆ K1 ⊆ . . . ⊆ Km−1 ⊆ Km = K (II.24)

for all i ≤ j and every n > 0, consider the homomorphism

ϕi,jn : Hn (Ki) −→ Hn (Kj) (II.25)

which is an F-linear map and is induced by the inclusion Ki −→ Kj .

Definition II.4.3 (Persistent Homology Groups). • A nonzero homol-
ogy class α ∈ Hn (Kj) is born at Kj if α /∈ Imϕi,jn for any i < j.

• A nonzero homology class α ∈ Hn (Ki) dies or vanishes at Kj for j > i

if ϕi,jn (α) = 0 but ϕi,j−1n (α) 6= 0.
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• If α is born at Ki and dies at Kj with j > i, then j − i is called the
life or persistence of α.

• If α survives until Km = K, then α is called essential or permanent.

Define the persistent homology groups of K with respect to the filtra-
tion {Ki}0≤i≤m, in fact, F-vector spaces, denoted by

H i,j
n (K) = Im

(
ϕi,jn : Hn (Ki)→ Hn (Kj)

)
(II.26)

and denote its associated persistence Betti numbers by

βi,jn (K) = dimFH
i,j
n (K) (II.27)

II.5 Persistence Modules

Fix an arbitrary field F.

Definition II.5.1 (Persistence Module). A persistence module over F is a
pair (V, π) where V = {Vt} , t ∈ R, is a collection of F-vector spaces indexed
by the real numbers and π is a collection of F-linear maps

πs,t : vs −→ vt for s ≤ t (II.28)

such that πs,t ◦ πr,s = πr,t if r ≤ s ≤ t and πt,t = id for all t.

It can be thought (V, π) as a functor from R viewed as an ordered set to
the category of F-vector spaces.

Definition II.5.2 (Persistence Module of Finite Type). A persistence mod-
ule is of finite type or tame if:

• a) dimF vt is finite for all t.

• b) There is a finite set A = a0, . . . , an ⊂ R such that:

– For every x ∈ R\A there is a δ > 0 such that πs,t is an isomor-
phism for x− δ < s ≤ t < x+ δ.

– For every a ∈ A there is an ε > 0 such that if a ≤ t < a+ ε then
πa,t is an isomorphism while if a− ε < s < a then πs,a is not an
isomorphism.

– Vt = {0} if t < a0, assuming that a0 < a1 < . . . < an.

The set A = {∂0, . . . , an} is called the spectrum of (V, π)

Note from the previous definition that πs,t is an isomorphism whenever
an ≤ s ≤ t.
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Definition II.5.3 (Morphism). A morphism f : (V, π)→ (V ′, π′) of persis-
tence modules is an isomorphism if there is a morphism g : (V ′, π′)→ (V, π)
such that g ◦ f = idV and f ◦ g = idV .

It follows that f is an isomorphism if and only if ft is an isomorphism
of vector spaces for all t.

Definition II.5.4 (Interval Modules). For I = [a, b) or I = [a,∞), define
a persistence module F(I) as

F (I)t =

{
F if t ∈ I
0 otherwise

(II.29)

with πs,t = id if s, t ∈ I or πs,t = 0 otherwise.
These are persistence modules of finite type. The spectrum of F(I) is

{a, b} if I = [a, b) or {a} if I = [a,∞).

Definition II.5.5 (Direct Sum). If (V, π) and (V ′, π′) are persistence mod-
ules, their direct sum is the persistence module (V ⊕ V ′, π ⊕ π′ ) with

(V ⊕ V ′)t = Vt ⊕ V ′t
(π ⊕ π′)s,t = πs,t ⊕ π′s,t.

(II.30)

If V and V ′ are of finite type, then V ⊕ V ′ is also of finite type. If A is
the spectrum of V and A′ is the spectrum of V ′ then the spectrum of V ⊕V ′
is A ∪A′.

Theorem 2 (Normal Form Theorem). For every persistence module V of
finite type there is a finite collection of intervals {I1, . . . , IN} with Ii = [ai, bi)
or Ii = [ai,∞) for every i such that Ii 6= Ij if i 6= j and there is an
isomorphism of persistence modules

V ∼= F (I1)
m1 ⊕ . . .⊕ F (IN )mN (II.31)

with mi > 0 for all i. Moreover, the set {I1, . . . , IN} and the integers
m1, . . . ,mN are unique. As a consequence of this fact, every persistence
module of finite type yields a unique barcode (up to permutation of bars):

In general, if (V, π) is a persistence module of finite type, a nonzero
vector v ∈ Vt is born at t if v /∈ Imπs,t for any s < t. A nonzero vector
v ∈ Vs dies or vanishes at t > s if πs,t(v) = 0 and πs,r(v) 6= 0 for s ≤ r < t.

If v is born at t = b and dies at t = d, then d− b is its life or persistence.
If πb,t(v) 6= 0 for all t > b then v is permanent.

Definition II.5.6 (Shift Action). Let (V, π) be a persistence module of
finite type with spectrum A = {a0, . . . , an}.

Consider a graded vector space V∗ =
⊕∞

k=0 V (k), where
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V (k) =

{
Vak for 0 ≤ k ≤ n
Van if k > n.

(II.32)

We turn V∗ into a graded module over the graded polynomial ring F[t]
by defining, for v ∈ V (k),

t · v =

{
πak,ak+1

(v) if 0 ≤ k < n

v if k > n
(II.33)

Theorem 3 (Structure Theorem). Let M be a finitely generated graded
module over F[t], where F is a field. Then

M ∼=
m⊕
i=1

ΣpiF[t]⊕

 n⊕
j=1

ΣqjF[t]/ (tj)

 (II.34)

for some collection of integers pi > 0, qj > 0, rj > 1. Moreover, this
decomposition is unique up to a permutation of summands.

The Structure Theorem implies the Normal Form Theorem for persis-
tence modules of finite type using the shift action.

For a persistence module (V, π) of finite type with spectrum
A = a0, . . . , an, let V∗ be the corresponding graded F[t]-module.
Then V∗ is finitely generated as an F[t]-module and hence

V∗ ∼=
m⊕
i=1

ΣpiF[t]⊕

 n⊕
j=1

ΣqjF[t]/ (trj )

 . (II.35)

implies

V =
m⊕
i=1

F [∂pi,∞)⊕

 n⊕
j=1

F
[
∂qj , ∂qj+rj

) (II.36)

II.6 Persistence Diagrams

Let (V, π) be a persistence module of finite type over a field F, and let

n⊕
i=1

F [bi, di)⊕
m⊕
j=1

F [cj ,∞) (II.37)

be its normal form.

The persistence diagram D of (v, π) has a point (bi, di) for each i ∈
{1, . . . , n} and a point (cj , d∞) for each j ∈ {1, . . . ,m}, where d∞ is an
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arbitrary but fixed real number bigger than all values in the spectrum of V .
Multiplicities are depicted with labels on the points of D.

II.7 Persistence Descriptors

The persistence diagrams can be summarized in a wide variety of forms,
from a scalar summary such as total persistence or persistence entropy to a
2-dimensional summary such as a Betti curve, a landscape or a silhouette,
or even in a 3-dimensional form such as a persistence surface or persistence
image, where the role of kernels come into play with the aim of ”smoothing”
the persistence diagrams.

II.7.1 Numerical Summaries

Average Life

Definition II.7.1 (Average Life).

L :=
1

n

n∑
i=1

(di − bi) . (II.38)

Average Midlife

Definition II.7.2 (Average Midlife).

L̄ :=
1

n

n∑
i=1

bi + di
2

. (II.39)

p-norms

For the following, let D be a persistence diagram. We are interested in
computing summary statistics descriptors of the form S : D → R.

Definition II.7.3 (p-norm).

||D||p := p

√ ∑
x,y∈D

(bi − di)p (II.40)

The particular case when p = 1 is the respective total persistence mea-
sure that will be used as a topological feature descriptor in our modelling
phase.
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Persistence Entropy

Definition II.7.4.

E :=
n∑
i=1

di − bi
L

log2

(
di − bi
L

)
, where L =

n∑
i=1

(di − bi) . (II.41)

By looking at the latter equation it is clear that the persistence entropy
definition is motivated by the usual entropy defined in physics by Shannon.
In this context the persistence entropy of a random variable is the avarege
level of uncertainty inherent to its outcomes.

II.7.2 Vectorized Summaries

Persistence Landscapes

For real numbers b < d, consider the tent function

Λ(b,d)(t) = sup {0,min{t− b, d− t}}. (II.42)

The landscape of a persistence module (V, π) of finite type is a sequence
of piece wise linear functions λk : R→ R, k = 0, 1, 2, . . . defined as follows:

λk(t) = kmaxi∈I
{

Λ(bi,di)(t)
}
. (II.43)

If {(bi, di)}i∈I is the multiset of points in the persistence diagram of
(V, π) and kmax returns the kth largest value, or zero if there is no such.

Silhouettes

A silhouette of a persistence diagram D = {(bi, di)}i∈I is a weighted average
of tent functions from D:

φ(t) =

∑
iwiΛ(bi,di)(t)∑

iwi
(II.44)

where wi > 0 for all i.
A default choice is ωi = (di − bi)p where p is a parameter. Choosing

p small enhances low -persistence features while choosing p large enhances
highly persistent features.

Betti Curves

Definition II.7.5. For each k ≥ 0, let βk : R→ R be defined as

βk(t) = #{(b, d) | b ≤ t ≤ d} (II.45)

where (b, d) ranges over the points in a given persistence diagram for
homological dimension k.
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Persistence Surfaces and Persistence Images

Let D be a persistence diagram and consider a function

Φ(s, t) =
n∑
i=1

wiGi(s, t) (II.46)

for (s, t) in a square, where each wi is a weight and Gi is a 2-dimensional
distribution function centered at (bi, di). Note that the distribution func-
tion can be either a Gaussian, a Laplacian or a heat kernel, among other
possibilities.

Definition II.7.6 (Persistence Surface). The above equation gives the cor-
responding persistence surface associated to the underlying persistence dia-
gram.

The persistence surface is the smoothed version of the persistence di-
agram via the kernel function defined by K : X × X → R if and only if
there exist a Hilbert space H and a map Φ : X → H such that K(x, y) =
〈Φ(x),Φ(y)〉 ∀x, y, where the Hilbert space H is called feature space and the
map Φ is called feature map.

Definition II.7.7 (Persistence Image). It is the discretization of the map
(II.46) on a 2-dimensional grid.

II.8 Distances

Definition II.8.1 (Matchings). A matching between D and D′ is a bijective
function ϕ : D → D′ such that for every (x, x) ∈ ∆, either ϕ(x, x) = (x, x)
or ϕ(x, x) = (b, d) with b 6= d, where ∆ denotes the diagonal b = d.

Definition II.8.2 (l∞-distance). For each matching ϕ : D → D′, define

‖ϕ‖ = sup {d∞((x, y), ϕ(x, y)) | (x, y) ∈ D} . (II.47)

where d∞ is the l∞-distance on R2, namely

d∞
(
(x, y),

(
x′, y′

)))
= sup

{∣∣x− x′∣∣ , ∣∣y − y′∣∣} (II.48)

Definition II.8.3 (Bottleneck Distance). The bottleneck distance between
two persistence diagrams is defined as

W∞
(
D,D′

)
= min

{
‖ϕ‖ | ϕ : D → D′ matching

}
. (II.49)

Hence W∞ (D,D′) is the smallest ε > 0 for which there exists a matching
ϕ : D → D′ for which d∞((x, y), ϕ(x, y)) ≤ ε for αll(x, y) ∈ D.
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Definition II.8.4 (Wasserstein Distance). The Wasserstein distances are
defined for p, q > 1 as

Wp[q]
(
D,D′

)
= min

ϕ:D→D′

 ∑
(x,y)∈D

dq((x, y), ϕ(x, y))p

1/p

(II.50)

where dq ((x, y), (x′, y′)) = (|x− x′|q + |y − y′|q)1/q.

II.9 Sublevel Sets

Definition II.9.1. Let f : [a, b] → R be a continous function. For each
t ∈ R, define its sublevel sets by

Lt(f) = {x ∈ [a, b] | f(x) ≤ t}. (II.51)

Note that if s ≤ t then Ls(f) ⊆ Lt(f). From the definition Lt(f) = φ if
t < inf(f) and Lt(f) = [a, b] if t > sup(f).

The point x0 ∈ [a, b] is named a critical point if it is a local maximum
or a local minimum, including x0 = a and x0 = b with its associated critical
value f (x0).

Assume that f has finitely many critical points, therefore each critical
point is isolated, so that we can associate to f a persistence module Vt(f) =
H0 (Lt(f)) and we let πs,t : Vs(f) → Vt(f) be induced by the inclusion
Vs(f) ⊆ Vt(f) if s ≤ t. In this order of ideas, the spectrum of (V, π) is
contained in the set of critical values of f .

Theorem 4 (Stability Theorem).

W∞(V (f), V (g)) 6 ‖f − g‖∞ (II.52)

where ‖f − g‖∞ = sup{|f(x)− g(x)| : a ≤ x ≤ b}.

Theorem 5 (Hausdorff Theorem). Let M be a metric space. The diameter
of a subset X ≤M is diam(X) = sin{d(p, q) | p, q ∈ X}, recall that that X
is bounded if diam (X) is finite.

Suppose given two subsets X,Y of M . Define

d(p, y) = inf{d(p, y) | y ∈ Y },
d(x, y) = sup{d(p, y) | p ∈ X4.

(II.53)
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Definition II.9.2 (Hausdorff Distance). Let X and Y be compact sets.
The Hausdorff distance is defined by

dH(X,Y ) = sup {d(X,Y ), d(Y,X)} (II.54)

The Hausdorff distance is indeed a distance on the set of compact metric
spaces.

Note that for the Hausdorff distance d(X,Y ) 6= d(Y,X) in general, and
note also that Y ≤ X ⇒ d(Y,X) = 0

If X is compact, then d(y, x) = 0⇔ y ≤ X.

Definition II.9.3 (Gromov-Hausdorff Distance). Let X and Y be compact
metric spaces. The Gromov-Hausdorff distance between X and Y is defined
as

dGH(X,Y ) = ínf
{
dMH (f(X), g(Y )) | f : X ↪→M, g : Y ↪→M isometrically

}
(II.55)

where the infimum is taken over all isometric embeddings of X and Y
into metric spaces, and dMH denotes Hausdorff distance in M .

Note that dGH(X,Y ) = 0 if and only if X and Y are isometric.

Definition II.9.4 (Correspondence). A correspondence betweenX and Y is
a surjective multivalued function from X to Y . That is, a subset C ⊆ X×Y
such that for all x0 ∈ X there is some (x0, y) ∈ C and for all y0 ∈ Y there
is some (x, y0) ∈ C.

From the above definition we have that if C is a correspondence, then
C−1 = {(Y,X) ∈ Y ×X | (X,Y ) ∈ C}. Just to have in mind, the distortion
of a correspondence C ⊆ X×Y is defined as dis(c) = sup

{∣∣dX (x, x′)− dY (y, y′)
∣∣ : (x, y), (x′, y′) ∈ C

}
Theorem 6 (Kalton-Ostrovskii).

dGH(X,Y ) =
1

2
inf{dis(C) | C ⊆ X × Y (II.56)

Theorem 7 (Stability Theorem). Let X and Y be point clouds. If Vt(X) =
H∗ (Rt(X)) then

W∞(V (X), V (Y )) ≤ 2dGH(X,Y ) (II.57)



Chapter III

Time-Dependent Topological
Data Analysis

III.1 Persistence Diagram Bundles

Following the discussion on persistent diagrams, since a persistent diagram
summarizes the persistent homology of a filtration one can consider in much
more generality the notion of a persistence diagram bundle, which is the
space of the persistence diagrams associated to a fibered filtration function.
The underlying motivation relies in the fact that one would like to under-
stand the evolution in the topology of a point cloud over a multi parameter
set p0, p1, p2, ..., pn (i.e. time t or filtration parameter r) in the case of taking
a finite set of parameters one can compute a filtered complex of the form,

Kp0p1 ⊂ K
p0
p2 ⊂ ... ⊂ K

p0
pn . (III.1)

Formally we define the notions of persistent diagram bundles contributed
by [11].

Definition III.1.1. A fibered filtration function is a set

{ft : Kt → R}t∈T (III.2)

where T is a topological space and {Kt}t∈T is the set of simplicial com-
plexes parameterized by T and ft is a filtration function on Kt.

Definition III.1.2 (Persistence Diagram Bundle). Let {ft : Kt → R}t∈T
be a fibered filtration function. the base of the bundle is T . The p-th total
space of the bundle is defined by

E := {(t, z) | t ∈ T , z ∈ PDp(ft)} (III.3)

with the subspace topology inherited from the inclusion E ↪→ T × R̄2.
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The p-th persistent diagram bundle is the triple (E, T , π), where π :
E → T is the projection (t, z) 7→ t.

In the particular case when T ≡ R and Kt ≡ K the persistence diagram
reduces to a 1-parameter set of persistence diagrams for a 1-parameter set
of filtrations of K that we call a ”vineyard” which will be treated in the next
sections.

Some particular cases of this persistence diagram bundles including the
vineyards will be the main concern of the project modelling, among others
such as the persistent homology transform and fibered barcodes of multi-
parameter persistence modules. The more general cases regarding multi-
parameter sets that are not subsets of R will be left for a future research
project.

III.2 The space (Dp,Wp)

In order to construct the proper framework to treat the time-dependency of
persistence one prerequisite is to define a suitable space of persistence dia-
grams equipped with a distance. For this purpose, the persistence diagrams
will be defined in an abstract manner.

Definition III.2.1 (Abstract Persistence Diagram). An abstract persis-
tence diagram is a countable multi set of points along with the diagonal ∆,
where the diagonal points are considered to have countable infinite multi-
plicity.

The latter space will be equiped with the pth Wasserstein distance.

Definition III.2.2 (pth Wasserstein Distance). The pth Wasserstein dis-
tance between two persistence diagrams X and Y is given by

Wp[σ](X,Y ) := infϕ:X→Y

[∑
x∈X

σ(x, ϕ(x))p

]1/p
. (III.4)

where 1 ≤ p ≤ ∞, σ is a metric on the plane, and ϕ ranges over bijections
between X and Y .

In particular, the scenario treated is with σ = Lq. Note that for p =∞
we have,

W∞ [Lq] (X,Y ) := ínf ϕ:X→Y sup
x∈X
‖x− ϕ(x)‖q (III.5)

Note also that W∞ [L∞] is nothing else than the bottleneck distance.
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Definition III.2.3 (The Space of Persistence Diagrams Dp). The space of
persistence diagrams Dp consists of abstract persistence diagrams with finite
distance to the empty diagram D∅, which is the diagram consisting of only
the points on the diagonal:

Dp = {X |Wp (X,D∅) <∞} (III.6)

where, Wp = Wp[σ] is the pth-Wasserstein metric.

It is important to highlight the fact that (Dp,Wp [L∞]) is a complete and
separable (Polish) space.

III.3 Vineyards

The notion of time-dependent TDA comes from the concept of time-varying
persistence diagrams which we refer to by vineyards. In such a case we have
a timespan and for each time we have a persistent diagram which is going
to be stacked to each other in the order of time, and each off-diagonal point
of the diagram will vary continuously in time so that it forms a ”vine”. The
space of abstract vineyards is going to be the space of paths in the persistent
diagram space.

Definition III.3.1 (The Space of Abstract Vineyards). The space of ab-
stract vineyards is defined by

V2 := {v : [0, 1]→ D2} (III.7)

where v is W2-continuous and D2 the space of persistence diagrams as-
sociated to the metric in question.

But in terms of persistence bundles we can get an alternative and maybe
more useful definition for the vineyard structure as a particular case of
bundle when considering a filtered complex varying with time and some
additional parameter that gives place to a filtered complex as (III.1).

Definition III.3.2 (Vineyards Set). Let the vineyards represent a 1-parameter
set of filtrations obtained from a time-varying point-cloud

{Ktp1 ⊂ K
t
p2 ⊂ ... ⊂ K

t
pn}t∈R. (III.8)

For a fixed t ∈ R one can compute the persistent homology of the
corrsponding filtration (III.1) replacing the hyper parameters p0 ←→ t and
obtain the correspoding persistence diagram PD(t). Therefore it might seem
more familiar to understand the vineyards as follows:
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Definition III.3.3 (Persistence Vineyard). A persistence vineyard is a
continuously-varying stack of persistence diagrams

{PD(t)}t∈R ⊂ R3 (III.9)

where each vine corresponds to a homology class and the persistence
vineyard shows its evolution with time in the particular case of a 1-parameter
set.

Figure III.1: Persistence vineyard Plot for one patient



Chapter IV

About Wavelets

IV.1 Brief Introduction

Wavelets are motivated by the problem of non-localization in the Fourier
transform. One can think about the lack of sensitivity for these mappings
to capture abrupt changes on signals. To solve this, the approach was to
represent functions in L2(R) with a new class of well localised functions. In
short, wavelets are zero mean, rapidly decaying, wave-like functions which
by translation and dilation can represent any f ∈ L2(R).

To define properly this mathematical construction the discussion should
be directed towards multi-resolution analysis. Let f ∈ L2(R) and let j ∈ Z.
Denote (Djf) (t) = 2j/2f

(
2jt
)

, t ∈ R.

Definition IV.1.1 (Multi-Resolution Analysis). A multi-resolution analy-
sis (MRA) is an increasing sequence · · ·Vn ⊂ Vn+1 ⊂ · · · of closed subspaces
of L2(R) such that:

• There exists ϕ ∈ V0 such that the translates ϕ0,k(t) = ϕ(t− k), k ∈ Z,
form an orthonormal base of V0. The function ϕ is the scaling function
of the MRA.

• Vn+1 = D1 (Vn) for all n ∈ Z. Equivalently f(t) ∈ Vn if and only if
f(2t) ∈ Vn+1.

•
⋃
n∈Z Vn = L2(R).

•
⋂
n∈Z Vn = {0}.

From the latter definition, the scaling function plays the role of deter-
mining the MRA.

Consider an MRA {Vn}n∈Z as above, take the orthogonal complement
of Vn in Vn+1 and call it Wn; hence Vn+1 = Vn ⊕Wn. So at this stage we
have Vn+1 =

⊕
j≤nWj and L2(R) =

⊕
j∈ZWj .
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It is important to mention that associated to the MRA we have two
types of orthogonal projections:

Pnf =
∑
k∈Z
〈f, ϕn,k〉ϕn,k (IV.1)

which represents the resolution n for a given function and

Qnf = Pn+1f − Pnf (IV.2)

which can be interpreted as the detail that has to be added to an or-
thogonal projection to get the next level of detail.

Two important theorems will be mentioned without proof to have in
mind for the development of this theory.

Theorem 8. If ψ is a wavelet of the MRA {Vn}n∈Z, then the system
{ψn,k}n,k∈Z, where ψn,k = Dn (ψ0,k), is an orthonormal basis of L2(R) (called

the wavelet basis of the MRA ).

Theorem 9 (Mallat’s Theorem). Let {Vn}n∈Z be a MRA with scaling func-
tion ϕ. Then

•
∑

k∈Z |〈ϕ,ϕ1,k〉|2 = 1 and
∑

k∈Z 〈ϕ,ϕ1,k〉 〈ϕ,ϕ1,k−2l〉 = 0 for all
l ∈ Z\{0}

• ψ =
∑

k∈Z(−1)k〈ϕ,ϕ1,1−k〉ϕ1,k is a wavelet for the MRA.

In this line of reasoning, take into account a sketch about the construc-
tion of an MRA:

• Determine a ϕ ∈ L2(R) (scaling function) such that {ϕ0,k}k∈Z is an

orthonormal system and define V0 = 〈ϕ0,k〉k∈Z.

• Check that Vn := Dn (V0) is an increasing sequence of closed subspaces
in L2(R) and that

⋃
n∈Z Vn = L2(R).

• Find, using Mallat’s theorem, the associated wavelet ψ, so that {ψ0,k}k∈Z
is an orthonormal basis of W0 = V1 ⊕ V0.

The construction of a scaling function ϕ of an MRA can be made in
terms of its Fourier transform ϕ̂. The following affirmation deals with the
possibility to construct the associated wavelet ψ using Fourier analysis. De-
veloping the scaling function in terms of the basis {ϕ1,k}k of V1 one sees
that there exists a 1-periodic function H(ξ) such that ϕ̂(ξ) = H(ξ/2)ϕ̂(ξ/2)
named the refinement mask or low pass filter of the MRA.
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Theorem 10 (Main Lemma). A function f ∈ L2(R) is in the detail space
W0 if and only if there exists a 1-periodic function v such that

f̂(ξ) = eiπξv(ξ)H

(
ξ +

1

2

)
ϕ̂(ξ/2). (IV.3)

To close this technical introduction it is important to highlight the
fact that Mallatâs theorem provides thus an algorithm for constructing the
wavelet from the MRA and the scaling function via the Fourier coefficients of
the 1-periodic refinement mask. This can be implemented numerically in the
so-called cascade algorithm, that has the following steps: scaling function,
low pass, high pass and finally Mallat’s wavelet.

IV.2 Continuous Wavelet Transform

The Wavelet transform can be thought of as a generalization of the Fourier
transform. In fact the idea is similar to that of the Short-Time Fourier
Transform, but instead of using a sliding window we rather allow translations
and dilations.

Let ψ ∈ L2(R) (mother wavelet) and assume it has some regularity, at
least continuous or continuously differentiable such that,

• ‖ψ‖2 = 1,

• ψ is compactly supported, or very rapidly decaying,

•
∫
ψ(t)dt = 0.

There exist a whole spectrum of wavelets, despite all of the ones that
one can think of.

Now proceed with the definition of the continuous wavelet transform in
a similar way that we define the continuous Fourier transform.

Definition IV.2.1 (Inverse Wavelet Transform). The continuous wavelet
transform of f ∈ L2(R) associated to a wavelet ψ is

Wf(a, b) = 〈f, ψa,b〉 =
1√
a

∫
R
f(t)ψ

(
t− b
a

)
dt. (IV.4)

The wavelet transform in fact contains enough information to reconstruct
the underlying function f . For completeness it remains to mention the
inverse wavelet transfom.
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Definition IV.2.2. If ψ ∈ L1(R)∩L2(R) is a real valued function satisfying
the admissibility condition

cψ :=

∫ ∞
0

|ψ̂(ξ)|2

|ξ|
dξ <∞ (IV.5)

then, for f ∈ L2(R),

f(t) =
1

cψ

∫
R

∫ ∞
0

Wf(a, b)ψa,b(t)
da

a2
db (IV.6)

IV.3 Scaleograms

This is the key part for the application of the wavelets into the research
project. Since wavelets capture frequencies over time but wihtout compro-
mising on the precision of the time information or on the detected range
of frequencies, they can be visualized with a scaleogram. The procedure
relies on multiplying the original signal with a wavelet. It is important to
have in mind that small-scale wavelets allow us to capture high frequencies
within precise time intervals, and large-scale wavelets allow us to capture
low frequencies across longer time intervals and wavelets achieve this since
they can be translated in time and scaled in width.

To illustrate this process we may have in mind the operations that are
happening at the backstage:

• Scale the wavelet according to the parameter and center it at time.

• We multiply the wavelet and signal together, to get a filtered signal.
We compute the integral (or the sum, in the discrete case) of the
filtered signal to output a scalar.

Regarding the scaleogram representation, the computations are per-
formed for n translations and n scales with a scalar output, so that it can be
represented as an n× n matrix where the entries are the scalars mentioned
above and hence it can be represented as a 2D image. Here the vertical
axis corresponds to wavelet’s scales and the horizontal axis to time, in con-
trast with spectrogram representations associated to the Gabor transform
where they correspond to frequencies and time, respectively. Intuitively the
wavelet scale can be interpreted on an inverse relationship to frequency. In
fact scaleograms are better to detect low frequencies and to localize high
frequencies than spectrograms since they have widths that vary with scale.
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Figure IV.1: Scaleogram
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V.1 Classical Machine Learning

V.1.1 Support Vector Machines

As mentioned before, classification is one of the main purposes of mathe-
matical modelling, and Support Vector Machines (SVM) is one of the most
popular algorithms to achieve this task. The description of this procedure
will begin by focusing in the linear case and afterwards extending to the
non-linear one.

For the simplest case consider a databasis S whose datapoint records
are X = {x1, . . . ,xn} ⊂ Rd and the target is the set of labels Y = {−1, 1},
assume it is linearly separable. By assumption, there exists an affine hyper-
plane (V.1)

h(x) = w>x+ b such that h (xi) > 0 if yi = 1 and h (xj) < 0 if yj = −1.
(V.1)

Finding such a hyperplane can be approached as a linear programming
problem (V.2) where we have to search for the weights w and bias b:

yi

(
w>xi + b

)
− 1 ≥ 0. (V.2)

Note that the hyperplane in question is not unique. In fact it is equiv-
alent modulo the selected margin for classification which turns to be an
additional degree of freedom decided by computing the distance separating
the hyperplane to the closest positive and closest negative points denoted
by δ+ and δ−, respectively. Now define the quantity δ = δ+ + δ− which
is nothing more than the margin of the classifier which one would like to
maximize. Just for a matter of notation, the closest point to the hyperplane,
that is when we have equality in (V.2) is called the support vector.

Note that the margin for the separating hyperplane must satisfy δ =
2/‖w‖2 by geometrical arguments. With this in mind we only need to find
the hyperplane with the largest margin, stated as a quadratic optimization
problem (V.3):

minimize
w,b

1

2
‖w‖2

subject to yi

(
w>xi + b

)
− 1 ≥ 0, 1 ≤ i ≤ n.

(V.3)

This can be approached with the Lagrangian multipliers method. For
a matter of completeness on this section it is mentioned the outline of the
resolution to the problem with this methodology. The Lagrangian expression
(V.4),
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L(w, b,λ) =
1

2
‖w‖2 −

m∑
i=1

λiyiw
>xi − λiyib+ λi

=
1

2
w>w − λ>Xw − bλ>y +

m∑
i=1

λi

(V.4)

where X ≡ yix>i and it is subject to the conditions,

∇wL(w, b,λ) = w −X>λ = 0

∂L
∂b

(w, b,λ) = y>λ = 0.
(V.5)

and finally we get the expression for the dual optimization problem (V.6):

minimize
1

2
λ>XX>λ− λ>e subject to λ ≥ 0. (V.6)

The optimal value of the separating hyperplane can be found by solving
the dual problem (V.6), since there is a one to one correspondence between
dual variables λi and data points xi the weights can be found by computing
w = X>λ and the bias by the Karush Kuhn Tucker conditions for this
particular problem. This can be re written by combining the restrictions of
the initial and the gradient of the Lagrangian as follows:

Xw + by − e ≥ 0

λ ≥ 0

λi

(
1− yi

(
w>xi + b

))
= 0 for 1 ≤ i ≤ n

w −X>λ = 0

y>λ = 0.

(V.7)

Now regarding real world applications the latter description only holds
for particular cases when both classes are binary, with the points well sep-
arated by an affine hyperplane. But in practice the situation described is
ideal. In this section, some details about not-exact separation and non-linear
separation will be discussed, since the multiple classes case can be thought
as an extension of several binary classifiers.

For non-exact separation the constraints mentioned before are not sat-
isfied, therefore there is non-feasible solution of the optimization problem.
So we proceed by adding a set of additional slack variables s1, . . . , sn and re
write the constraints as

w>xi + b ≥ 1− si, for yi = 1, w>xj + b ≤ −1 + sj , for yj = −1, si ≥ 0
(V.8)
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and allowing the possibility for the number of errors to not be bounded
by
∑n

i=1 si and there is a second problem that arises, namely minimizing
the upper bound of the number of errors, stated as

minimize
1

2
‖w‖2 + µ

n∑
j=1

sj

subject to yi

(
w>xi + b

)
− 1 + si ≥ 0, 1 ≤ i ≤ n

si ≥ 0, 1 ≤ i ≤ n.

(V.9)

On the other hand, for the non-linear case the key is that the dual
formulation of the optimization problem is dependent on the dot products
of the form 〈xi,xj〉. We proceed by mapping the data base into a higher
dimensional space

ϕ : Rp → H (V.10)

now we can apply SVM to the representation in the higher dimensional
space depending only on the dot products of the form,

K (xi,xj) = 〈ϕ (xi) , ϕ (xj)〉 (V.11)

where K is the kernel function. There is a full spectrum of choices of
kernels (radial, Gaussian, etc).

It is important to highlight the fact that we are not concerned with
the form of the function ϕ since in the equations for the hyperplane w>x
terms are to be replaced with K(w,x) so that we get a non-linear decision
boundary as expected.

V.1.2 K Nearest Neighbors

The present classifier is characterized because it memorizes the training
dataset rather than learning a discrminative function. Take a look to the
algorithm which is very intuitive. It is based on the assumption that similar
inputs have similar outputs based on the following classification rule; for
a test input x, assign the most common label amongst its k most similar
training inputs.

1. Choose a number k and a distance metric

2. For each sample, find the k-nearest neighbors

3. Assign the class label by majority vote

We define formally this method (V.1.1).

Definition V.1.1 (KNN Method). Let x be a test point and let D be a
domain.
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Define the set of the k nearest neighbors of x as Sx. Formally Sx is
defined as Sx ⊆ D such that |Sx| = k and define

dist
(
x,x′

)
≥ sup (x′′,y′′)∈Sx

dist
(
x,x′′

)
, ∀
(
x′, y′

)
∈ D\Sx (V.12)

Define the KNN classifier by KNN(·),

KNN(x) = mode
({
y′′ :

(
x′′, y′′

)
∈ Sx

})
(V.13)

where mode (·) means to select the label of the highest occurrence.

Note that the classifier’s performance relies deeply in the distance metric
used which can be selected from a variety of distance functions such as:
Manhattan, Minkowski, Euclinean and so on.

It is flexible under the choice of the number k of clusters and the choice
of distance function, for the former one can tune the number k over a range
to evaluate performance.

One important aspect to choose the present algorithm relies on the fact
that it adapts to new training data. On the other hand, one has to take
into account that the computational complexity for classifying new samples
grows linearly with the number of samples on the training data set, but a
bigger challenge occurs with the storage capacity for large data sets.
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V.2 Deep Learning

V.2.1 Neural Networks

Deep neural networks have been gaining popularity lately since they have
been achieving breakthroughs in several fields. Despite the latter they still
are not well understood, it is still really challenging to understand the rea-
soning behind these objects. It has to be taken into account that the degree
of complexity grows directly proportional with the dimensionality of the
network, in fact we can build some intuition over low dimensional neural
networks by using topological arguments. Additionally, the other mystery
that arises is in understanding how does data go from one layer to another.

If one considers the simplest case of a neural network with just an input,
one hidden layer and an output one would obtain something similar to the
linear case. If hidden layers continue to be added the data will be trans-
formed from one another by creating each time a new representation that
is not linear in general. It has to be mentioned the variety of layers used
for this purpose, they take weight matrices W which is point-wise applied
to elements of the domain x ∈ D and a translation vector is added b. For a
concrete example consider the tanh layer tanh(Wx+ b).

Note that each of the layers preserves topological properties since it
deforms the space of the corresponding domain by stretching or squishing
but never breaks, cuts or folds the space. For instance, connected sets are
invariant to the application of NNs layers. In other words, the layers play
the role of homeomorphisms.

Theorem 11. Layers with N inputs and N outputs are homeomorphisms,
if the weight matrix, W , is non-singular. Moreover, the result remains valid
for an arbitrary number of layers.

The result will not be proven here, but the main idea will be mentioned.
Multiplying by an invertible matrix W is a homeomorphism, and so do
the translations and applying continous functions such as tanh, sigmoid or
softplu (but for instance not ReLU) is still an homeomorphism.

Continuing the discussion from the point that neural networks achieve
non-linear performance, it is important to take into account the manifold
hypothesis: data forms lower-dimensional manifolds in its embedding space,
which makes a lot of sense from the theoretical and experimental perspec-
tives. Therefore, the real job of the NNs is to separate tangled manifolds.
In short, low dimensional networks fail on separating manifolds regardless
of their depth which is resolved by considering wider layers.
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V.2.2 Recurrent Neural Networks

Our human reasoning does not produce thoughts from scratch. The under-
standing of everything that surround is been understood by our empirical
knowledge, in other words the thoughts have persistence. In terms of neural
networks the traditional architectures do not follow the persistence when
processing information, but recurrent neural networks aim to address such a
problem with architectures that have internal loops that allow information
to persist. The way they work is by receiving some input and producing an
output after passing through the loop that if we think of it as the unrolled
version of the network it would look like a linear network with several copies
of the same network passing information from one another.

The discussion will now follow for a particular case of recurrent neural
networks named the long-short term memory type. These are based on the
idea to connect information in the past to draw conclusions in the present.
There is a full spectrum of examples to take into account in different ar-
eas such as speech generation in natural language processing, time-series
prediction, among other successful applications of LSTMs.

V.2.3 Long-Short Term Memory

Digging deeper on the LSTMs architecture, in contrast to RNNs which have
the form of a chain repeating modules of a naural network with a simple
structure of possibly s single layer (i.e. tanh layer), LSTMs have this same
chain structure form of repeating modules but instead of having a single
layer they have four of them that are constanly interacting.

The important detail behind these mysterious network modules relies on
a cell state which crosses the complete module side to side with some linear
interactions that have the ability to remove or add information that has
been transported in the cell state regulated by gates, which are structures
that are composed by sigmoid functions as well as point wise operations to
let information in and out. Their output is a measure between 0 and 1 that
can be interpreted as the relevance of the information to be let in, where
0 means completely get rid of the information and 1 means to keep it all.
The LSTMs have three of these structures to have in control the information
that goes to the cell state.

At this stage we have an idea of the internal structures of the network
module. Now we will follow the reasoning process made by the module. The
process starts with a forget layer to control which information will be thrown
away from the cell state by looking at the input xt, the previous time step
output ht−1, and mapping the sigmoid function, it looks like (V.14).

ft = σ (Wf · [ht−1, xt] + bf ) . (V.14)
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In the following step the module decides which information is going to
be added into the cell state. For this job we have an input layer (V.15) and
a new candidate layer (V.16), which play the role on deciding which values
to update and create a vector with new candidates values, respectively:

it = σ (Wi · [ht−1, xt] + bi) (V.15)

C̄t = tanh (WC · [ht−1, xt] + bC) . (V.16)

With this setup we now need to transform the cell state from Ct−1 to
Ct. We do so by applying the forget layer to the previous cell state and
adding the new candidate values weighted by the degree of need to update
each state value, that is (V.19).

Ct = ft ∗ Ct−1 + it ∗ C̄t. (V.17)

Finally the output is computed by filtering a last time the cell state. It
consists of creating an output layer (V.20) and multiplying by the cell state
mapped by a tanh layer for re scaling purposes.

ot = σ (Wo · [ht−1, xt] + bo) (V.18)

ht = ot ∗ tanhCt. (V.19)

Finally the output is computed by filtering a last time the cell state. It
consists of creating an output layer (V.20) and multiplying by the cell state
mapped by a tanh layer for re scaling purposes.

ot = σ (Wo · [ht−1, xt] + bo) (V.20)

ht = ot ∗ tanhCt. (V.21)

Despite the success of the LSTMs in a wide range of applications there
is a further step of improvementthat is to consider attention. By attention
it is meant to pick information at each step of the RNN from a pool of infor-
mation. There exist a whole range of variations of this type of architectures

V.2.4 Convolutional Neural Networks

The convolutional neural networks (CNN) can be thought as a type of neural
network that has many identical copies of the same neuron. This allows it to
have a great number of them and in consequence process computationally
large models with a small error cost since each of the neurons runs their
processes in parallel.
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Their architecture is composed by an input layer that passes information
into an identical group of neurons A which compute convolutional features, it
is composed by several neurons connected in parallel and pass them straight
to a fully-connected layer F . The later was just the simplest case, but it has
to be taken into account that in fact one can connect several convolutional
layers A,B,C, ... inputing the next layer the output from the former, this
may have an advantage since the network would be able to detect more
abstract and complex features.

It is a common practice to intertwine pooling layers between convolu-
tional layers, in particular ”max-pooling” layers are oftenly used. They
behave as a ”zoom-out” perspective which associates a small region of the
data to the surroundings it belongs.

In particular, the CNNs are very useful for image analysis. Therefore
the context where they are more useful is for a 2-dimensional CNN. Their
architecture is quite similar to the 1-dimensional ones with the difference
that they look into patches instead of segments. Another possible higher-
dimensional version are the 3-dimensional CNNs that work well for analyzing
volumetric data such as videos or medical scans, but they are used just for
those particular cases, they are not as succesful as the 2-dimensional CNNs
and they are difficult to visualize.

To formalize these class of networks, let x be the inputs and y the out-
puts, therefore one express their relation as

y = A(x) , A(x) = σ(Wx+ b) (V.22)

where W is the weights matrix, b the bias and σ some activation function.

The former argument is neat but is not how we would like to formalize
the convolutional layers. Since we are concerned with image analysis, the
2-dimensional case will be treated. Define the 2-dimensional convolutional
layers in the context of image analysis as follows:

Definition V.2.1 (Convolutional Layers 2-dim). Let x = {xi,j}16i,j6n be
the pixels associated to an image and let g : {1, 2, ..., n}2 → R an arbitrary
function. Define the convolution between x and g as

(x ∗ g)i,j :=
∑
t6N

∑
t6N

(xi−s,j−tg(s, t)) . (V.23)

The matrix (x ∗ g)i,j will be named the feature map and the function g
the kernel.

Some of the relevant properties of this operation for the underlying con-
text rely on the commutativity and associativity of the image and the kernel.
In addition, if one thinks about the convolution in the context of the Fourier
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transform this operation inherits the property of invariance under transla-
tion, that is, the outputs are stable under input translation.

It is important to mention that one can interpret such a convolution as
a regularization, because by applying the underlying operation the number
of parameters being reduced.
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V.3 Evaluation Metrics

In the context of classification problems there is a very wide range of metrics
that can be used to evaluate performance they can be partitioned into the
following classes:

• Threshold metrics

Quantify the classification prediction errors.

• Ranking metrics

Evaluate classifiers on how effective they are on separating classes.

• Probability metrics

Quantify the uncertainty in a classifier’s predictions.

For the purpose of this project we will be dealing with the first two
classes of metrics.

V.3.1 Threshold Metrics

In general this class of metrics summarize the between prediction and vali-
dation sets.

Definition V.3.1 (Accuracy).

Accuracy :=
CP

TP
(V.24)

where, CP denotes the correct predictions and TP the total number of
predictions.

The error can be thought of as the complement to the accuracy, see the
following definition.

Definition V.3.2 (Error).

Error :=
IP

TP
(V.25)

where, IP denotes the incorrect predictions and TP the total number of
predictions.

At this stage it can be seen the need of new metrics. Both of the latter
metrics are used very often in the field of applied machine learning, but
they are inappropriate for imbalanced classification problems, since a high
accuracy or low error are achieved by a no skill model that only predicts the
majority class.

For the following metrics it is appropriate to define the confusion matrix
which provides a greater insight on the possible errors performed.
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Definition V.3.3 (Confusion Matrix). Let C ∈ MN×N (R) be a matrix
with entries in the real field. The rows correspond to the real classes and
the columns to the predicted classes for an N -class classification problem.
Hence its entries Ci,j are equal to the number of observations to be of the
class i and predicted class j for all i ∈ 1, 2, ..., N and for all j ∈ 1, 2, ..., N .

In the case of a binary classification problem the confusion matrix looks
like the following one:

Predicted
Negative Positive Total

Real Negative TN FN TN + FN
Positive FP TP FP + TP

Total TN + FP FN + TP N

Where TN stands for true negatives, TP for true positives, FN for false
negatives and FP for false positives. With this machinery we can proceed
to define the rest of metrics that will be helpful for us.

The true positive rate which gives insights of how well is the positive
class been predicted.

Definition V.3.4 (Sensitivity).

Sensitivity :=
TP

TP + FN
(V.26)

with its respective complement, that is the measure of how well is the
negative class been predicted.

Definition V.3.5 (Specificity).

Specificity :=
TN

FP + TN
(V.27)

In an analogous we have the measure of the positive samples that have
been correctly classified into the positive class.

Definition V.3.6 (Precision).

Precision :=
TP

TP + FP
(V.28)

and the recall which is the same as sensitivity,
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Definition V.3.7 (Recall).

Recall :=
TP

TP + FN
(V.29)

One can create an additional measure that summarizes both precision
and recall,

Definition V.3.8 (F1-Score).

F1 := 2
PR

P +R
(V.30)

where P and R denote precision and recall, respectively.

The last measure is often used for imbalanced classification purposes,
and we can generalize it for gauging the trade-off between precision and
recall.

Definition V.3.9 (Fβ-Score).

Fβ := (1 + β2)
PR

β2P +R
(V.31)

where P and R denote precision and recall, respectively.

Note that the Fβ measure represents the precision to recall importance.
For instance if β > 1 it gives more weight to recall, while β < 1 favors
precision and β = 1 gets back the F1 measure.

Another useful metric to use for the imbalanced classification case is
known as the balanced accuracy.

Definition V.3.10 (Balanced Accuracy).

BalancedAccuracy :=
1

2
(Sensitivty + Specificity). (V.32)

The latter score identifies the positives predicted by the classifier even
if they are true or false and is more reliable than accuracy since the later
gives the same weight to both classes.

With the machinery of the threshold metrics it is important to mention
its side backs. There is a big limitation for these class of metrics since they
assume same class distributions in training, validation and prediction sets.
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V.3.2 Ranking Measures

The advantage of this class of distributions relies on the fact that they do
not make assumptions about class distribution. They are designed for a
classifier that predicts a score or a probability of an element belonging to a
class, from the underlying score some thresholds can be studied to test its
effectiveness. By ranging the thresholds through the spectrum of thresholds
maintaining a good score will perform better in class separation and hence
will rank higher.

The receiving operating characteristic ROC curve gives the necessary
and sufficient information for evaluating the ability to discriminate classes.
To dig into it we will define two important quantities.

Definition V.3.11 (True Positive Rate).

TruePositiveRate :=
TP

TP + FN
(V.33)

Definition V.3.12 (False Positive Rate).

FalsePositiveRate :=
FP

FP + TN
(V.34)

Each point on the curve has an associated threshold. The diagonal
dashed line represents a no skill classifier below that line it is classified
to perform worse than no skill, the light blue curve represents a skillful
classifier and the dark clue one a perfect classifier.
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A useful metric for imbalanced classification is the area under the ROC
curve, named by ROC AUC. It is the probability for a classifier to assign a
random sample to be of the positive class more likely than for the negative
class which can be very optmistic for imbalanced classification problems.

In a similar way a precision-recall curve can be constructed which fo-
cuses particularly on the minority class, hence more useful for imbalanced
classification problems and in a similar way that before one can summarize
the curve in a quantity named the PR AUC (precision-recall area under the
curve).
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VI.1 UK Biobank

The UK Biobank is a large-scale biomedical database and research resource
that contains in-depth genetic and health information from half a million
UK participants, which is periodically augmented. Moreover it is open-
access for researchers in the field and in fact it has had a positive impact
in scientific discoveries and understanding of the most threatening diseases,
consequently the advance of modern medicine by enabling better predictive
models for early diagnosis and the development of therapeutic interventions.

UK Biobank provides an open-access resource for global scientists to
further our understanding of the most common and life-threatening diseases
including cardiovascular disease. The imaging, health, genetic and lifestyle
data generously donated by our 500, 000 participants is enabling better pre-
dictive models of disease for earlier diagnosis, and developing therapeutic
interventions.

Figure VI.1: UKBB Patient Images

The images of the UK Biobank database are stored in .nifti files format
which was initially an initiative from the Neuroimaging Informatics Tech-
nology which overcomes the downfalls from the precedent file formats used
for storing medical images. In the UK Biobank there were around ∼ 40k
patients with images available for research.

On the other hand, the data points are labeled with the International
Classification of Diseases Tenth Revision (ICD-10) system, which is used
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Figure VI.2: Heart Image

by physicians to classify and code all diagnoses, symptoms and procedures
for claims processing. It was designed by the World Health Organization
in company with the National Center for Health Statistics to have a better
alignment. For the cardiovascular study purposes the following diseases are
of interest:

• Ischaemic heart disease

• Valvular heart disease

• Non-ischaemic cardiomyopathies

• Heart failure

• Cardiac arrhythmia

From all the patients of the UK Bio bank data base there were ∼ 90k
properly labeled.
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In the present section details are given on the project methodology, from
the database construction phase, through modelling, data preparation, topo-
logical feature extraction and finally data processing to the selected classi-
fiers.

VII.1 Data Bases

The project database was constructed in parallel by gathering the images
from the UK Biobank by means of the VPN direct access of the UB, from
the list of all the patient IDs, where 10231 of them where chosen at random
to have a sample of the real data base. Once the patients were selected,
the process continued with image processing, data preparation and further
with the topological feature extraction to have the topological summary of
all the images. In parallel, the ID labels were obtained by means of a tool
designed for this purpose on an external TFG. Part of the data preparation
phase was to match the patients IDs from both the labels and topological
feature data frames.

VII.1.1 Unbalance Degree

For the Ischemic Heart Disease study, the data base is composed of 10231
patients, where 1202 of them were tagged with the disease and 9029 where
healthy. That means an imbalance degree of 11.75% and 88.25%, respec-
tively. Which gives place to an imbalance ratio of 7.51. This measure
indicates a significant unbalance of the data set. Therefore the situation
from now on will be different and hence with a higher degree of complexity.

Figure VII.1: Wrong Segmentation

VII.1.2 Train & Test Split

The train/test split was performed initially before proceeding with the data
preparation phases for the different experiments in order to guarantee com-
parability among them. From a bag of the whole list of patients IDs. An
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stratified train/test split was performed in a random state with a test size of
0.3 and respective train size of 0.7. We are talking about a train size of 7161
patients distributed as 6320 healthy and 841 with the disease and a test size
of 3070 patients distributed as 2709 healthy and 361 with the disease. Both
lists of train and test ids where saved into a .pkl file for ease of partitioning
the subsequent data sets used in a further data preparation stage.

VII.1.3 Baseline Database

The frames for the end systole and end diastole define a filter over the time
steps of the time-topological database to get two different data sets tagged
with ”ES” and ”ED”, respectively. With the purpose of having baseline
results with the classical machine learning algorithms with out taking into
account the time dependence and also for being able to reproduce the state
of art results.

VII.1.4 Control Database

Dynamic Collapse

Following the reasoning of the baseline database, the control database is
also considered to in some sense compare the time dependent classification
to a static case, this time by collapsing the time series corresponding to each
patient to a single point by applying the mean map over all the time steps
of each patient. This database is tagged as ”dynamic collapse” and it is
labeled in results with ”DC”.

Dynamic Frames

On the other hand, we also have the dynamic frames database that works
as a control by giving a time dependence to the end-systole and end-diastole
frames by considering it as a two-time series. It is labeled by DF in the
results.

VII.2 Data Preparation

VII.2.1 Image Processing

In the UK Bio bank database one could find a folder named with the respec-
tive patients id with two files ”la4ch.nii.gz” and ”la4chaseg.nii.gz” which
are the real long axis image and its associated segmentation, respectively.

Quality Filter

From the full list of ids a first quality filter was applied to discard patients
with at least more than one incomplete images. The patients who had a
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single incomplete image where let into the study but this time point infor-
mation was droped out of the registers. In all of the cases the time point
t = 6 had a null image in the segmentation, therefore attributed to some
error in the segmentation processing phase.

Figure VII.2: Incomplete Segmentation

Zoom-In

Despite the fact that persistence is invariant respect on the zoom to an
image, that is, the persistence features are the same for any chosen zoom,
for image visualization purposes both the real image and the segmentations
where applied a zoom-in mapping for visualisation purposes (see Figure
VII.4).

Split Structures

Since the aim is to study the five different cardiac structures, the segmented
images are really useful but used independently therefore the split structures
mapping returns an specific segmented structure provided the segmentation
image and the identifier (color number) of the desired structure (Figure
VII.4).
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Figure VII.3: Wrong Segmentation

Hadamard Mask

With the five different structures isolated one proceeds to compute the real
image with a fixed segmentation mask in front and the application of a pixel-
wise Hadamard product (VII.2.1) between both, to provide the detailed
version of each of the five structures (Figure VII.4).

Definition VII.2.1 (Hadamard Product). Define the Hadamard product as
an element-wise bilinear operation over the space of matrices MN×d over an
arbitrary field K. Let A,B ∈MN×d be two matrices of the same dimension
with entries in an arbitrary field. Then their Hadamard product is given by

A�B := (a · b)ij = aij · bij ∀i ∈ {1, 2, ..., N}∀j ∈ {1, 2, ..., d} (VII.1)

VII.2.2 Time-Database

To conclude the image processing phase, the images were stored in arrays
for each structure and each time point in an individual patients data frame
of size 48 × 7, where the two additional dimensions correspond to the id
identifier and the time point see (Table VII.7).

To conclude the image processing phase, the image information of each
of the patients was stored in a data frame with the columns corresponding to
each of the cardiac structures plus an id identifier and an ordered time label
variable, where each entry has the detailed image of its corresponding cardiac
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structure in a determined time stored in an array. That is a 48 × 7 data
frame with the name of the patients id and stored in a .pkl format. Latter
all of the individual data frames in individual .pkl files where concatenated
to a big data frame of all images.

VII.3 Modelling

At this stage we have achieved to transform the images .nifti file format to
an structured pandas data frame were instead of having a folder of two .nifti
files with the real and segmented images we transformed it to a big data
frame were each sub data frame associated to an individual patient consists
of the time point records and the variable associated to its id identifier, its
time point labels and the column variables corresponding to each of the five
structures under the study, where each entry of the matrix corresponds to
the image stored in an array. As a crucial point in the research process the
modelling is presented.

VII.3.1 2-Dimensional Time-Persistence

For a single patient of the study, as mentioned previously we have a se-
quence of time ordered images for each of the five cardiac structures. The
explanation will proceed in general so let s be the arbitrary identifier of a
cardiac structure fix a time t ∈ [0, 48] ⊂ R and then we have the image of
a patient’s cardiac structure s at some time t denoted by Img(s, t) ⊂ R2

which is a 2-dimensional array where each matrix entry corresponds to a
voxel, which therefore creates the sublevel sets of a function determined by
the color code in the heat map. Formally, we are dealing with some activa-
tion function of the form f : V × T → R over a bounded voxel area V ⊂ R2

and a set of ordered time steps T .

The pixels of the 2-dimensional array are the just 2-dimensional voxels
which have the natural structure of a bi dimensional cubical complex in the
case of image processing since each voxel corresponds precisely to one cubical
simplex, otherwise using a simplicial complex would involve interpolation
schemes [16]. Therefore, proceed by computing the cubical complex of the
image.

Having computed the cubical complexes it remains to perform the filtra-
tion calculation, that is an ordering of the elements in the cubical complexes
which it is going to be done for each of the time steps. We will use the sub-
level set filtration and superlevel set filtration, in the following the former
will be described and the latter it is equivalent modulo the inverse direction.
Let fi : Vi × T → R be the activation function in the direction of the time
steps. Now use the canonical way of assigning values to fi(·, t), fix tj and
let Ci be the cubical complex associated to a voxel Vi, each vertex voxel of
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Ci receives the activation value at time tj and for the higher dimensional el-
ement of the complex σ it is assigned the value fi(σ, tj) := sup v∈|(σ)fi(c, tj)
and sort the cubical complexes Ci in ascending order, where in case of a tie
we will take the ascending order in the homology dimension resulting in a
nested sequence of simplicial complexes.

Once we have a sequence of cubical complexes properly filtered, the
persistent homology of the underlying sequence can be computed. It results
in a set of time-varying persistence diagrams ordered by time for each of the
structures. In technical terms we obtain a persistence vineyard for each of
the cardiac structures.

To summarize the topological phenomenon numerical persistence sum-
maries will be used such as total persistence and persistence entropy com-
puted over every single persistent diagram, thus providing each of both
measures for each time and each structure for all of the patients.

See the image processing details for the 2-persistence model in the fol-
lowing diagram (Figure VII.4) in the next page.
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Figure VII.4: Persistence vineyard Plot for one patient
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VII.3.2 (2 + 1)-Dimensional Time-Persistence

Recall the structure of the images for each of the patients:we have a stack of
2-dimensional images of cardiac long axis along the time dimension. There-
fore we do not have a 3-dimensional image but rather we have a third di-
mension that determines the time evolution of the bi dimensional image.
Therefore we can think of the stack of images as a (2+1)-dimensional image
(the notation is the same used in general relativity to distinguish between
the space and time dimensions). In this line of reasoning each patient has a
(2 + 1)-dimensional image.

Since in this case the neighboring pixels form voxels that can be canon-
ically associated to bi dimensional cubes we follow a similar reasoning from
the previous section, namely we proceed with computing the cubical com-
plex of each of the (2 + 1)-dimensional images.

In this case we are dealing with activation functions of the form f :
V×T → R over a bounded voxel area V ⊂ R2 and a set of ordered time steps
T but in this case it differs with the previous approach in the subtlety of the
assignment of the activation function values, each fi(·, ·) will be assigned the
activation function values corresponding to each cubical complex Ci while
the higher dimensional element will be assigned fi(σ, ·) := sup v∈|(σ)fi(c, ·)
for the sublevel sets filtration and recall that the super level set filtration
is equivalent modulo reversing the filtration order respect to the activation
function.

Note that with the present approach we will still get connected paths
and loops from the images and additionally we will be getting cavities that
are generated by the dimension of time. Therefore we are now dealing with
three homology groups. In that line of reasoning we get a single persistence
diagram for each structure and each direction.

See the following diagram (Figure VII.5) to make clear the obtention
of the persistence diagrams from the stack of bi dimensional images via
considering cubical persistence and including time as an additional variable.
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Figure VII.5: Persistence vineyard Plot for one patient
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VII.3.3 Time Series Wavelets

The data base used for the time series wavelets has the same structure as
the one used for the 3-Persistence model (Figure tab: 3-persistence) but
with the slight difference that instead of having scalars on its entries, it has
N ×N arrays corresponding to the scaleograms.

The results from the 2-persistence model were nothing else than time se-
ries of topological features. Taking into account the underlying use case, one
would be interested in having detailed information about the frequencies and
the time where they occurred in between the cardiac cycle. As mentioned
before the continuous wavelet transform provides us with this information
by performing a projection into a chosen multi-resolution analysis basis, in
some sense as a generalization of the Fourier transform. for this case the
Mexican hat wavelet was used.

Therefore by fixing a patient of the study one obtains a single scaleogram
for each structure and each direction which has associated scaleogram (Fig-
ure VII.6).

Figure VII.6: Persistence Time Series to Scaleograms
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VII.3.4 Time-Topological Database

For each patient the five cardiac structures were considered. In the case
of considering 2-dimensional homology groups the individual patients data
frame was composed from 48 time points for each filtration direction and
for each cardiac structures two homology groups, in addition to the time
label and the id identifier, that is for an individual patient a data frame of
size 96× 24 (Table VII.7). Where the column variables are named with an
encoding of the type (structure) − H(hdimension) − (fdirection), where
structure is the integer associated to each of the cardiac structures in the
range {0, 1, 2, 3, 4}, hdimension is the homology group dimension in this
case in {0, 1} and fdirection is the filtration direction that could either be
up or down.

Figure VII.7: Table 2-Persistence

On the other hand, when considering the (2+1)-dimensional persistence,
for an individual patient there was a single time record, but 3 homology
groups for each of the structures and also two directions of the filtration.
Therefore for an individual patient the data corresponds to 1 × 32 (Table
VII.8). In this case the variable columns maintain the same convention,
but considering three homology group dimensions in the range {0, 1, 2}.
This time the advantage of considering three homology groups relies on the
fact that additionally to connected paths and loops the topological features
capture cavities.

In the case of the wavelet model data base we got the same structure from
the (2 + 1)-dimensional persistence database but instead of having scalars
as entries of the matrix we had N ×N arrays associated to the scaleogram
images.
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Figure VII.8: Table 3-Persistence

It is important to highlight the existence of the two independent databases
for each persistence metric considered. That is the database with the total
persistence measure was treated by separate from the database with the per-
sistence entropy. Although their structure is the same, to avoid confusions
the measure label was always present in the .pkl file name.

VII.4 Classifiers

This section should begin by mentioning the following quote ”a classifier is
only as good as the metric used to evaluate it”. With this said by choosing
the wrong evaluation metric the selected model will not be the correct one
and the performance will not be the expected. Therefore this is a crucial
and challenging decision for applied machine learning and the situation is
even worse in the case of an imbalanced database basically because most
of the metrics assume a balanced class distribution and in general not all
prediction errors are equal for imbalanced classification.

VII.4.1 Classical Machine Learning

Classical Machine Learning algorithms do not take into account the time
dependency these class of models are applied for the control case of starting
baseline results for the classification of end systole and end diastole data
and also serve as a control of the time dependent data respect to classical
methods by taking the average of the persistence measures of all the time
points for each of the patients. The models considered for this study where
KNN and SVM.

For each data set and each model a grid search was performed by using a
pipeline on a grid search with cross validation with at least 3-folds, because
of computational capacity and refit parameter. This procedure was applied
to the train data set, for a following evaluation on the test dataset.
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The evaluation metrics selected were the confusion matrix entries, in
addition to the balanced accuracy and F1 score for the imbalanced situation
we have and also the Fβ score with β = 0.5, 2 which is a measure widely used
for imbalanced classification and may give us some trade-off of precision-
recall.

VII.4.2 LSTM Neural Networks

The LSTM fits canonically to the time dependent data structure we are
passing to the model an array of the form (n samples, n timesteps, n fea-
tures). The LSTM architecture considered is one of the simplest cases of
this class of models:

• LSTM(20, input shape=(n timesteps, n features))

• Dropout(0.2)

• Dense(1, activation=’sigmoid’)

The compiler was built with an adam optimizer and binary cross entropy
loss as it is done in the case of binary classification problems.

Taking into account the underlying situation of the imbalanced data
set the evaluation metrics used are the confusion matrix entries in addition
to the F1 score, balanced accuracy and the AUC indicator. The latter is
reported in the literature as over optimistic on imbalanced data sets.

VII.4.3 Convolutional Neural Networks

The CNN architecture selected is a commonly used architecture for binary
image classification as a standing point for future modifications, it consists
of four blocks as follows:

• Block One

– Conv 2D (filters=32, kernel size=3, activation=’relu’, padding=’same’,
input shape=[49, 49, 20])

– MaxPool2D

• Block Two

– Conv2D(filters=64, kernel size=3, activation=’relu’, padding=’same’)

– MaxPool2D

• Block Three

– Conv2D(filters=128, kernel size=3, activation=’relu’, padding=’same’)
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– Conv2D(filters=128, kernel size=3, activation=’relu’, padding=’same’)

– MaxPool2D

• Head

– Flatten

– Dense(6, activation=’relu’)

– Dropout(0.2)

– Dense(1, activation=’sigmoid’)

With the same compiler used for the LSTM case and considered the
same evaluation metrics. It is important to mention that each of the neural
network models was optimized on an individual basis of the data sets to
gauge the parameters of the architecture such as epochs, batches, learning
rate and drop rate, the space of hyper-parameters could not be as big because
of computational capacity.
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VIII.1 Classical ML

Recall that the data sets used for classification with classical machine learn-
ing algorithms KNN and SVM where the static framed data sets such as
end systole and end-diastole (”ES”, ”ED”) and the control cases regarding
dynamic collapse by taking the mean of the 2-persistence time series ”DC”
for the topological features total persistence and persistence entropy. In ad-
dition, the 3-persistence also enters into these class of single point data sets
that can be applied to ML algorithms.

Model Data balanced accuracy f1 tn fp fn tp precision recall sensitivity specificity

KNN 2PE(ES) 0.53 0.20 1256 629 152 95 0.13 0.38 0.38 0.67

KNN 2PE(ED) 0.52 0.20 1786 923 221 140 0.13 0.39 0.39 0.66

KNN 2TP(ES) 0.53 0.20 1256 629 152 95 0.13 0.38 0.38 0.67

KNN 2TP(ED) 0.52 0.20 1786 923 221 140 0.13 0.39 0.39 0.66

KNN 2PE(DC) 0.54 0.21 1880 829 222 139 0.14 0.39 0.39 0.70

KNN 2TP(DC) 0.54 0.21 1880 829 222 139 0.14 0.39 0.39 0.70

KNN 3TP 0.58 0.25 1880 829 194 167 0.17 0.46 0.46 0.70

Table VIII.1: KNN results

model data balanced accuracy f1 tn fp fn tp precision recall sensitivity specificity

SVC 2PE(ES) 0.53 0.17 1628 257 200 47 0.15 0.19 0.19 0.86

SVC 2PE(ED) 0.52 0.15 2443 266 310 51 0.16 0.14 0.14 0.90

SVC 2TP(ES) 0.53 0.17 1628 257 200 47 0.15 0.19 0.19 0.86

SVC 2TP(ED) 0.52 0.15 2443 266 310 51 0.16 0.14 0.14 0.90

SVC 2PE(DC) 0.53 0.17 2394 315 300 61 0.16 0.17 0.17 0.88

SVC 2TP(DC) 0.53 0.17 2394 315 300 61 0.16 0.17 0.17 0.88

SVC 3PE 0.58 0.25 1992 717 210 151 0.17 0.42 0.43 0.74

SVC 3TP 0.62 0.30 2099 610 190 171 0.22 0.47 0.47 0.77

Table VIII.2: SVC results

Whereas the control case of the dynamic collapse is consistent with the
static frames results. Moreover, (2+1)-persistence shows an advantage upon
the static frames.
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VIII.2 TDA & LSTM

In this application of the model the time dimension is already been taken
into account.

Data tp fp tn fn accuracy precision recall auc prc spec balanced accuracy

2TP 31 55 2654 330 0.87 0.36 0.09 0.73 0.27 0.97 0.53

2PE 23 29 2680 338 0.88 0.44 0.06 0.73 0.26 0.98 0.52

2PE(DF) 5 11 1874 242 0.88 0.31 0.02 0.65 0.21 0.99 0.51

2TP(DF) 0 0 1885 247 0.88 0 0.00 0.62 0.20 1 0.5

Table VIII.3: TDA & LSTM results

Unfortunately, it follows from the evaluation metrics that the perfor-
mance of the classifier is very low. Despite its performance by taking into
account the AUC metric, which as reported in the literature is a good in-
dicator for imbalanced problems, there is an advantage for considering the
time dimension in the persistent homology framework and morevoer it shows
that taking the full heart beat cycle has better results than considering only
a two-point time series including the end-systole and end-diastole.

VIII.3 TDA, Wavelets & Convolutional Neural
Networks

As a last attempt to achieve better results for the classification the wavelets
processing phase was motivated by the applied harmonic analysis course.
Since it generates scaleograms it is a suitable input for a 2-dim CNN model.

Data tp fp tn fn accuracy precision recall auc sensitivity specificity balanced accuracy f1 score

2PE 294.0 1380.0 1329.0 67.0 0.53 0.18 0.81 0.70 0.81 0.49 0.65 0.29

2TP 294.0 1557.0 1152.0 67.0 0.47 0.16 0.81 0.68 0.81 0.43 0.62 0.27

Table VIII.4: TDA, Wavelets & CNN results

This time also has to be mentioned the lack of expected results for the
classifiers. But taking into account the optimistic case of the AUC metric
this classifier also has comparable results to the LSTM case that takes the
full heart beat cycle. Therefore it is worth to continue exploring this model.
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To conclude the research project, a framework for measuring the vari-
ation of the descriptors of CMR images was designed from scratch with
an initial strong computational component for the data preparation phase,
followed by a robust mathematical modelling phase based on algebraic topol-
ogy and harmonic analysis to be the input of a machine learning classifier.
The underlying framework was able to achieve the modeling of a cardiac cy-
cle using the approach of persistence vineyards. Moreover, the constructed
framework achieved to evaluate the potential improvement offered by the
TDA descriptors that consider all the time points of a cardiac cycle against
considering a few of them.

In particular, there are two promising approaches that worked better in
the use of all the time points: the LSTM for time series classification, which
is a traditional tool for this purpose, and on the other hand the wavelet
processing and CNN classification with a balanced accuracy over 0.6. In the
future, there is potential for improvement by integrating with other types of
features such as demographic variables (i.e. age, sex and BMI). For a future
research project it is worth to explore the mentioned approaches taking care
on every detail in the data gathering and processing phases which could be
a source of potential errors.
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