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ABSTRACT

Since its first steps at the hands of Euler, graph theory has gradually become

a field of great interest and innovation for the mathematical community.

From its surprising capability to simplify the formulation of applied problems

to the rich complexity that some of its natural problems contain, even in finite

settings (being the field to see the first computer-assisted proof in mathemat-

ics), the list of its merits and uses seems to only grow in length, keeping the

promise of attracting research for the times to come.

For the untrained eye, however, it could appear as a branch with few theoret-

ically rich connections to other fields of mathematics aside from topology (via

graph embeddings), which is a misconception. In a certain way, disproving

this thought is the main focus of this project, as the aim is to show the con-

nections between graph theory and abstract algebra (semigroup and monoid

theory specifically), hoping to put both in a more interesting light.

Specifically, we introduce and talk about the basic tools of the field (mainly the

Cayley graph construction, and a fairly young generalization of it by Yongwen

Zhu as seen in [10]), introduce some recent interesting results in the literature

by many authors, mostly by K.Knauer and coauthors (as in references [5], [7],

[6]) and try to put together a comprehensive guide to try and understand the

main difficulties and ideas used in one of the main lines of work in the field.

This can be exemplified in our in-depth study of some families of outerplanar

graphs as monoid graphs, or our brief study of K4 ⊔ C5 as a non monoid but

possibly semigroup graph. Both questions were originally raised by K.Knauer

and Puig i Surroca in their work referenced in [5].
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1. Introduction

As discussed in the abstract, the fundamental aim of this work is to show

the ways in which graph theory is directly related to semigroup theory, and

how different graph properties can be deduced from semigroup properties and

vice versa. In particular, we are interested in families of graphs that can be

generated by either semigroups or monoids or that can give us all monoids of

a given class as endomorphism monoids of some of its members.

As is often the case in mathematics, the way in which these two topics relate

is via a convenient construction. On the one hand, we have a natural way to

assign a semigroup to any given graph (a monoid, specifically) considering the

algebraic structure constituted by its set of endomorphisms with respect to

usual function composition.

On the other hand, the construction that assigns a graph to a given semigroup,

the so-called Cayley graph, is, perhaps, not so direct, but also quite natural

and simple to consider. In both cases, however, appearances can be deceiving,

as they can be quite complex structures to work with.

In this section, in order to be able to properly work with these concepts, we

proceed to lay down the fundamental definitions used in this work.

Definition 1.1. Given graphs G snd H with vertices V (G), V (H) and edges

E(G), E(H); a function ϕ : V (G) 7−→ V (H) is called a graph morphism if,

for every (x, y) ∈ E(G), (ϕ(x), ϕ(y)) ∈ E(H)

If G = H, we call such a function an endomorphism of the graph in question

and, if it is also a bijective function, it is called an automorphism. The corre-

sponding sets of functions, which are monoids with the identity function and

the usual function composition, are denoted as End(G) and Aut(G), respec-

tively.

Definition 1.2. Given a graph G, we say it is a digraph when we allow edges

to be directed (that is (x, y) and (y, x) define different edges), and we say it

is a multigraph when they can be multiple (there can be more than one edge

adjacent to the same pair of vertices) or loops (vertices where both endpoints

coincide).
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Definition 1.3. We say that G is colored (by edges or by vertices) when we

consider it with a coloring C, which is, essentially, a partition of either V (G)

or E(G) where every set that is part of it is called a color. If it is a partition

of the set of vertices, we call it a coloring of the vertices, and the same applies

to the edges.

Definition 1.4. Given a set S, we say that it is a semigroup with a given

operation ∗ : S × S 7−→ S (of course, we denote ∗((x, y)) as x ∗ y) if it is

associative, that is, if for every x, y, z ∈ S, (x ∗ y) ∗ z = x ∗ (y ∗ z)

We use the ∗ in order to make emphasis on the operation in this first defini-

tion, but usually we will omit the sign (multiplicative notation) or use additive

notation if the given semigroup we are working with happens to be commuta-

tive.

Definition 1.5. A semigroup S is called a monoid iff it has a neutral element,

that is, if there is e ∈ S such that, for every x ∈ S satisfies ex = xe = x

It is useful to make the observation that every semigroup can be made into

a monoid by attaching to it a new element which acts as a neutral one, as

such an element will not conflict with the associativity of the operations in the

original set.

In some contexts, this way to look at a semigroup can be advantageous, which

motivates the following notation:

Definition 1.6. Given a semigroup S, we denote by S1 the following associ-

ated monoid:

S1 :=

S if S is already a monoid

S ∪ {1} otherwise

where 1 is the aforementioned, new neutral element.

Having introduced the most basic definitions, it is now our objective to in-

troduce the construction that allows us to assign a graph to a given semigroup:

the Cayley graph of a semigroup, and explore some of its properties.

Definition 1.7. Let S be a semigroup (which we will normally take to be finite,

although the definition does not need it), and consider a nonempty set C ⊆ S
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which we will call the connection set of the graph.

Then, we call the Cayley graph of S with connection set C, which we will

denote as Cay(S,C), the graph defined by taking S as its set of vertices and

E := {(s, sc)| s ∈ S, c ∈ C} as its set of (directed) edges.

Although simple at first view, this definition requires some caveats to be

made clear before using it: first off, it is obvious that the same type of con-

struction could be made by taking the edges to be the pairs (s, cs) in the same

conditions as specified above, that is, that operations could be reversed.

As it is often the case when talking semigroups, the ”right translation” defini-

tion is the standard one, but the left would be equally valid, considering that

it could change the resulting graph.

The second one is to observe that, in order to preserve the maximum amount

of algebraic information possible, this graph finds its most natural realization

as an edge colored digraph, where edges are directed, possibly multiple or loops

and have a color indicated by the element c of the connection set that spawns

it. This colored version is usually denoted as Caycol(S,C)

0

1

2

3 4

Figure 1. A simple picture of Caycol(Z/5Z, {1})

In some occasions, however, it might be convenient to go the opposite route:

taking the colored Cayley digraph of a semigroup and getting rid of all multi-

ple edges, loops and colors. This way, we obtain what is called the underlying

simple Cayley graph which, given a connection set C, is denoted as Cay(S,C)

Looking at the figure above, for instance, we see directly that

Cay(Z/5Z, {1}) = C5, the cycle with five vertices. It follows immediately
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from the described way of obtaining the graph that we lose relevant algebraic

information when taking this step, but we gain from a graph theoretical per-

spective, as it is sometimes convenient to consider the simplest version of a

graph. The underlying graph also plays an important role for part of this

work.

2. Semigroups and Cayley graphs

2.1. Basic semigroup theory. The definition presented in the preceding sec-

tion is the classic definition of a Cayley graph as it was first presented in 1878

and, in practice, will be the one we will use in order to classify families of

graphs as what we will refer to as monoid graphs, but there exist modern,

more abstract versions of the concept that generalize it and enrich its mean-

ing. We will focus on one of such generalizations, particularly the one found

in detail in [10].

Before that, though, we need to see some basic concepts from semigroup the-

ory. They can be found, sometimes in more detail, in references [1] and [4]:

Let S,R be semigroups. A function f : S 7−→ T is called a semigroup mor-

phism if, of course, it is compatible with the respective operations in the usual

way.

If it is injective, it is called a monomorphism; if it is surjective an epimorphism

and, in case of both, we are dealing with an isomorphism. The only remark-

able difference to note in this more general, noncommutative case, is that we

also consider two semigroups essentially equal if there is a bijective function

between them that just flips the order of the operation.

Definition 2.1. Let S,R be semigroups.

A bijective function f : S 7−→ R is called an anti-isomorphism iff

f(ab) = f(b)f(a) for every a, b in A and B, respectively.

We say that two semigroups related in such a way are anti-isomorphic.

Definition 2.2. Let A and B be nonempty subsets of a semigroup S. We can

now define an operation of subsets of S as folllows:

AB := {ab| a ∈ A, b ∈ B}, which we call the product set of A and B
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Definition 2.3. Let S be a semigroup, T ⊆ S such that it is nonempty.

Then, if T is closed with respect to the operation defined in S, that is, xy ∈ T

∀x, y ∈ T , we say T is a subsemigroup of S.

An equivalent way to see it is that T must satisfy TT ⊆ T in the terminology

we have just introduced.

This operation might not seem so interesting at first glance, as it has no

special properties to speak of: even if A and B were to be subsemigroups of

S, AB would not have to be a subsemigroup at all.

The only immediate, interesting property of it is that it directly inherits asso-

ciativity from the fact that the operation defined in S is.

Where this operation finds its theoretical meaning, besides making some defi-

nitions and arguments more direct, is in the concept of semigroup ideal.

Definition 2.4. Let S be a semigroup, T a nonempty subset of S. We then

say T is a left ideal of S iff TS ⊆ T Analogously, we can also define the

concept of right ideal of a semigroup.

If a given set T is both a left and right ideal, we call it a two-sided ideal.

Remark 1. Of course, these distinctions become superfluous when dealing with

commutative semigroups, a context where we recover the very familiar concept

of ideal.

In general, any ideal in the usual sense used in ring theory, whether right or

left sided, is first and foremost a left or right ideal in the semigroup sense with

respect to the ”multiplicative” ring operation.

This notion of ideal also allows us to consider a definition of a quotient

semigroup, as tends to be the norm in abstract algebra.

Definition 2.5. Let S be a semigroup, I one of its ideals. We can then define

the following relation in S:

Given two elements x, y, then x ∼ y iff either x = y or both x, y ∈ I. This

relation is easily checked to be an equivalence relation, but, even more impor-

tantly, is also a congruence, that is: given x, y, z, t ∈ S,

x ∼ y and z ∼ t =⇒ xz ∼ yt This property basically means that the rela-

tion is compatible with the semigroup operation, making the quotient set also
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a semigroup.

Therefore, we can consider S/ ∼:= S/I (for short) the quotient semigroup of

S by I with the following operation:

x ∗ y :=

xy if x, y is are not elements of I

0 otherwise
, where 0 refers to the class of

S/ ∼ shared by all the elements of I.

This construction is called the Rees quotient semigroup of S by I, or the Rees

factor semigroup.

Having introduced the principal notion that will allow us to generalize Cay-

ley graphs (the notion of ideal), we define some basic, sought-after properties

in semigroup theory which we may encounter when dealing with them.

Definition 2.6. Let S be a semigroup. Then, we say that S is left-cancellative

if, for every triple of elements a, x, y ∈ S, ax = ay =⇒ x = y

Of course, this same definition can be formulated transposing the order of

operations, which gives us the definition of a right-cancellative semigroup.

When a given semigroup is both left-cancellative and right-cancellative, we

refer to it simply as cancellative.

Definition 2.7. Let S be a semigroup. We say that S is idempotent, or

a band, if a2 = a for every a ∈ S. If the semigroup also happens to be

commutative, we refer to it as a semilattice.

Definition 2.8. Let S be a semigroup. Then, we say that it is regular if, for

every element a ∈ S, there is an element x satisfying axa = a, which we call

a pseudoinverse of a. This is equivalent to stating that every element a of S

has at least one pseudoinverse b in the following sense: b satisfies aba = a and

bab = b

When, for every element a, this inverse element is unique, we say that S is

an inverse semigroup.

Finally, we show some basic results that relate these general properties be-

tween them and to the most well-known class of semigroups of all: groups.

They can be found in [4].
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Proposition 2.1. Let S be semigroup. Then, S is an inverse semigroup iff it

is regular and idempotent elements commute in S.

Proof. We begin the proof in the usual order. Of course, if S is an inverse

semigroup, in particular, it is regular. A particular thing that is useful to

note is that, given an element a and its pseudoinverse b, both ab and ba are

idempotent elements. This is direct, as:

(ab)(ab) = (aba)b = ab, and the proof for the other mentioned element is

analogous. That these special kind of idempotents commute is not obvious,

however, so we must prove it before. Take a pair of elements x, y, and de-

note xxs = e and yys = f , where xs denotes the unique pseudoinverse of x.

Let us now take the unique pseudoinverse of ef , call it z. Then, we have

that (ef)(fze)(ef) = efzef = ef and (fze)(ef)(fze) = f(zefz)e = fze, so

(ef)s = fze, which means that z = fze. This means that z is an idempotent,

as (fze)2 = f(zefz)e = fze It then follows that z is its own pseudoinverse

as well and, by uniqueness, ef = z. Similarly, we have that fe is idempo-

tent as well (making the correspondent analogous arguments for it), and as

(ef)(fe)(ef) = efef = (ef)2 = ef and (fe)(ef)(fe) = fefe = (fe)2 = fe,

which means that fe and ef are pseudoinverses of ef , by uniqueness, it follows

immediately that ef = fe.

Therefore, it would be enough to prove that every idempotent element of

S is of this form, a product of an element and its pseudoinverse. So, con-

sider an element e of S that is idempotent. By definition, we know that

there is a unique pseudoinverse for e, call it es, which satisfies e = eese

and such that e is the pseudoinverse of es as well. Hence, we have that

es = esees = es(ees) = es(ese) = (es)
2e = ese, since we know ees is an idempo-

tent (and thus its own pseudoinverse) and also (ees)(ese)(ees) = (eese)es = ees,

so ese is also its pseudoinverse and, then, ese = ees. So, this immediately

means that es is of the desired form, and applying the same treatment to e

grants us the equality e = eese = e(ese) = e(ees) = e2es = ees, which finishes

the proof of this first part by showing that all idempotents are of this special

form and must, in turn, commute.

For the converse result, we suppose that S is regular and all idempotent ele-

ments commute. We have to show that pseudoinverses are unique. So, let a
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be some element in S, and suppose that it has two different pseudoinverses,

b, c, so aba = a, bab = b, aca = a, cac = c and ab, ba, ac, ca are all idempotent

elements as previously shown.

Then, we have b = bab = b(aca)b = (ba)(ca)b = (ca)(ba)b = cabab = c(abab) =

c(ab)2 = c because idempotents commute by hypothesis. Therefore, pseudoin-

verses are unique and S is an inverse semigroup. □

Inverse semigroups are notorious for being quite common among special

families of semigroups and pseudoinverses having some of the properties we

are used to expect from inverse elements in group theory, mainly due to their

uniqueness. These facts make them one of the most natural generalizations of

groups one can work with, although the definition of a pseudoinverse in itself

is not so natural to grasp at first.

Proposition 2.2. Let S be a finite semigroup. If it is both cancellative and a

monoid, it is a group.

Proof. The only thing we need to do is reformulate cancellative properties in

terms of set operations and functions: S is cancellative iff it is both right and

left cancellative, which is equivalent to the functions La : S 7−→ S and Ra :

S 7−→ S, defined term by term as La(x) = ax and Ra(x) = xa, respectively,

being injective. Due to S being finite and this fact, we can make a counting

argument directly to obtain the equations aS = S and Sa = S for every

element a of S. In particular, this means that, for the neutral element e,

there are elements b1 and b2 such that ab1 = e and b2a = e, and, of course,

playing a little bit with these equations, one can quickly see that it follows

that b1 = eb1 = (b2a)b1 = b2(ab1) = b2. □

Proposition 2.3. Let S be a monoid. Then, S is a group iff it is both can-

cellative and regular.

Proof. If S is a group, it is clear that its inverse obviously plays the part of a

pseudoinverse and more (hence the name) and it is cancellative.

The converse is also quickly verifiable, as, if we consider an element a of S

and its corresponding pseudoinverse, say x, then it is clear from axa = a and



9

cancellative properties that ax = e and xa = e, which makes x the inverse of

a in the usual sense. This, of course, implies that S is a group. □

Definition 2.9. Let S, T be a pair of semigroups. If S ⊆ T , we say that T is

an extension of S if S is a subsemigroup of T . When S is an ideal of T , we

say that it is an ideal extension 2.

Regular monoids Cancellative monoids

GroupsInverse

Figure 2. A simple diagram depicting relations between ex-

posed properties for monoids.

2.2. General properties of generalized Cayley graphs. With all these

concepts on the table, we can now introduce the generalized definition of a

Cayley graph and see some of is most notorious properties:

Definition 2.10. Let S be a semigroup, and T an ideal extension of S in the

sense previously stated. Then, if we consider the monoid T 1 and a relation

ρ ⊆ T 1 × T 1 (nonempty), we define the generalized Cayley graph of S with

respect to the relation ρ, denoted by Cay(S, ρ) as the graph described by having

set of vertices V (Cay(S, ρ)) = S and set of edges defined the following way:

E(Cay(S, ρ)) := {(a, b)| there is (x, y) ∈ ρ such that xay = b}

So, the main addition we can observe is that this version of a Cayley graph

extends the classical definition basically in the sense that it allows us to add

more edges than was previously possible, all while preserving the original set

of vertices. Of course, taking some specific choices of ρ allows us to recover

special graphs: for T = S and ρ = ω := S1 × S1, we obtain what we call the

2Alternative definitions of ideal extensions make use of the Rees factor semigroup and a

semigroup Q which is disjoint to S, and say that T is an ideal extension of S by Q if the

condition marked above is met and also T/S ∼= Q
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universal Cayley graph for the chosen ideal extension, for ρ = {1} × C for a

nonempty subset of S we obtain the classic Cayley graph as we introduced

before (given that we choose the right action one) and for ρ = C × {1} the

left action one. For the special relations ωl := S1×{1} and ωr := {1}×S1 we

obtain what we call the left-universal and right-universal generalized Cayley

graphs of S, respectively.

As before, we note that the defined construction makes the most sense when

considered as a colored digraph, but even the underlying simple graph gets

extended with respect to the original definition. Let us try to illustrate it by

way of an example, as exposed in [10]: let N the semigroup of all natural

numbers with the usual multiplication, and take S to be the subsemigroup

of all even numbers. Then, for every nonempty subset T of S, the graph

Cay(S, T ) in the classic sense will only contain edges (a, b) such that 4|b.
With the extended definition, as we can consider relations in a bigger pool

of elements and S is an ideal of N , we can take Cay(S,N × N), where it is

obvious the previous observation does not apply. For example, (1, 3) belongs

to the relation and so (2, 6) ∈ E(Cay(S,N ×N)).

This main tool being introduced, let us explore some of the main ways in

which it can transform graph properties into algebraic ones, and the other

way around.

Let a be an element of a semigroup S. As it is usual in these settings, it is easy

to note that the intersection of any family of (left or right) ideals of S is also

a (left or right) ideal of S; that semigroup ideals are closed by intersection.

This property immediately leads to the natural definition of ”least left, right or

both sided ideal containing a” as the intersection of all such sets that contain

it. Let us denote them by L(a), R(a) and J(a) for the minimal (by inclusion)

left, right and both sided ideals respectively.

Proposition 2.4. Let a be an element of a semigroup S.

Then, L(a) = S1a, R(a) = aS1, J(a) = S1aS1

Proof. First thing of interest to observe is that it is immediate to see that

L(a), R(a) and J(a) are left, right and both sided ideals of S respectively,

giving directly one of the desired inclusions for each set. For the other ones,
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we work it by hand: let LI be a left sided ideal of S containing a. Then, by

its stated properties, it will contain a = 1a and sa for every element s ∈ S,

and thus it will contain the whole L(a) as well. The same argument can be

made in order to prove the inclusions for R(a) and J(a). We show the result

as found in [10]. □

Proposition 2.5. Let S be a regular semigroup, T an ideal extension of S

and ρ ⊆ T 1 × T 1 a nonempty relation.

Then, the following statements hold:

(1) If a, b are such that (a, b) ∈ E(Cay(S, ρ)), then J(b) ⊆ J(a);

(2) There is a relation ρ0 ⊆ S × S such that Cay(S, ρ) is a subgraph of

Cay(S, ρ0);

Proof. (1): If a, b are such that (a, b) is in E(Cay(S, ρ)), there is, by definition,

(x, y) ∈ ρ such that xay = b. In consequence, given an element z ∈ J(b), it is

of the form s1bs2 for s1, s2 ∈ S, so z = s1bs2 = s1xays2 = (s1x)a(ys2) and, as

S is an ideal of T , s1x and ys2 are both in S, so z ∈ J(a)

(2): Let ρ be a nonempty relation T 1 × T 1, and let us consider Cay(S, ρ). We

want to find a relation ρ0 ⊆ S × S such that G := Cay(S, ρ) is a subgraph

of H := Cay(S, ρ0). As their sets of vertices are both S, this is equivalent to

stating that every edge of G is an edge of H. Knowing this, let us consider

(a, b) ∈ E(Cay(S, ρ)). Once again, by definition, we have that there is (x, y) ∈
ρ such that xay = b. At this point, we use that S is a regular semigroup: we

know there is at least one element c ∈ S satisfying aca = a and cac = c, so we

obtain that b = xay = xacay = (xa)c(ay) = (xa)cac(ay) = (xac)a(cay).

As both a, c are in S and it is an ideal of T , we have that xac and cay are

elements of S. In consequence, given an edge of G (a, b), xa
b, ya

b the elements

in T 1 such that xa
baya

b = b and ca its pseudoinverse, we only need the set

inclusion

RG := {(xa
baca, caaya

b)|a ∈ S s.t ∃b with (a, b) ∈ E(Cay(S, ρ)} ⊆ ρ0

to be true in order for ρ0 to be a relation with the desired property. Of course,

such a thing can be forced, as we could even choose RG = ρ0, and, clearly,

RG ⊆ S × S; making the proof complete. □
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This first property is interesting insofar as it allows us to simplify any re-

lation ρ to one about elements of S in exchange of a reasonable property to

be found in practical settings, as many semigroups naturally encountered are

regular.

Definition 2.11. Let S be a semigroup, T an ideal extension of S and ρ ⊆
T 1 × T 1 a nonempty relation. Given an element a of S, we can define the

following sets: ρ(a) := {xay| (x, y) ∈ ρ}, ρ(a)1 := ρ(a) ∪ {a}, and we call the

latter the ρ−class of a

Remark 2. Given a directed graph G, and a vertex a of V (G), we can consider

the sets:
−→a := {b ∈ V (G)| (a, b) ∈ E(G)} , ←−a := {b ∈ V (G)| (b, a) ∈ V (G)}
If the graph G is of the form Cay(S, ρ) for a semigroup S and ρ as stated

before, it is clear that (a, b) ∈ E(Cay(S, ρ)) ⇐⇒ b ∈ −→a
Therefore, in this context, it is easy to note that ρ(a) = −→a

The following result further relates the edges of the generalized Cayley graph

to the ρ−class:

Proposition 2.6. Let T be an ideal extension of a semigroup S, ρ a nonempty

subset of the cartesian product of T 1 with itself. Let a, b be elements of S: if

a ̸= b and ρ1(b) ⊆ ρ1(a), then (a, b) ∈ E(Cay(S, ρ))

Proof. Let a, b be elements as described in the statement.

As ρ1(b) ⊆ ρ1(a) and a ̸= b, it must be that b ∈ ρ(a), so, by definition, there

is (x, y) ∈ ρ such that b = xay. Of course, by construction of Cay(S, ρ), this

means that (a, b) ∈ E(Cay(S, ρ)) □

Introducing some special but somewhat reasonable properties for ρ to satisfy,

we can obtain far stronger restrictions for the Cayley graph associated to it.

We now present some of the most common:

Definition 2.12. Let S be a semigroup, ρ ⊆ S × S a nonempty relation.

If, given elements a, b, c, d of S, (a, b) ∈ ρ , (c, d) ∈ ρ always implies that

(ca, bd) ∈ ρ, we say that ρ is an inversely compatible relation, or I−compatible,

for short.
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This first property is just the condition of being compatible with the semi-

group operation, but changing the order of the first component. We can see

how strong of a condition this already is for the corresponding generalized

Cayley graph in the next pair of results:

Definition 2.13. Let G be a graph. We say that G is edge-transitive if, for

every a, b, c ∈ V (G), (a, b), (b, c) ∈ E(G) implies that (a, c) ∈ E(G)

Proposition 2.7. Let S be a semigroup, T an ideal extension of it and ρ a

nonempty subset of T 1 × T 1 as usual. If ρ is I−compatible, then Cay(S, ρ) is

edge-transitive.

Proof. The argument is fairly straightforward: let us consider a pair of edges

of Cay(S, ρ) of the desired form (a, b) (b, c) and see that (a, c) has to be an edge

as well. By definition of the generalized Cayley graph, (a, b), (b, c) being edges

of it means that there are (x, y), (z, t) ∈ ρ such that xay = b and zbt = c,

respectively, which immediately means that c = zxayt = (zx)a(yt) As ρ is

I−compatible, it is clear that (zx, yt) ∈ ρ and, in consequence, (a, c) is also

an edge of Cay(S, ρ) □

As strong as this result is, it is also reasonable enough to encounter, as

there are some egregious examples of I−compatible relations. For instance, it

is clear that, given A,B ⊆ S subsemigroups of S, ρ = A × B is a subset of

T 1×T 1 for any ideal extension T of S that is clearly I−compatible. This also

happens for the usual relations S1 × S1, S × S, {1} × S, S × {1}, S1 × {1}
and {1} × S1 and even {1} × C if C is a subsemigroup of S.

In a way, Cayley graphs that are not edge transitive basically come from

connection sets that do not inherit algebraic structure from S.

I−compatibility also offers us a converse version of Prop.2.6.

Proposition 2.8. Let S be a semigroup, T an ideal extension of it and ρ a

relation with the usual properties which is also I−compatible. Then,

(a, b) ∈ E(Cay(S, ρ)) for elements a, b of S implies ρ(a) ⊆ ρ(b) and

ρ(b)1 ⊆ ρ(a)1.

Proof. By definition, (a, b) being an edge of Cay(S, ρ) means that there is

(x, y) ∈ ρ such that xay = b, so we know that b ∈ ρ(a)1 already. Let us
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now consider an element c ∈ ρ(b)1 such that c ̸= b. By the remark we made

previously, c is in ρ(b) and ρ(b) =
−→
b for Cay(S, ρ), so (b, c) ∈ E(Cay(S, ρ)).

By the previous result, as we know that ρ is I−compatible, it is clear that the

Cayley graph associated to ρ is edge-transitive, from which it quickly follows

that (a, c) ∈ E(Cay(S, ρ)) and, so, c ∈ ρ(a) ⊆ ρ(a)1

Of course, this also means that ρ(b) ⊆ ρ(a) □

In order to reach a context in which these two conditions are completely

equivalent, however, we would have to ask one last property to be satisfied.

Definition 2.14. Let T be an ideal extension of a semigroup S and ρ ⊆ T 1×T 1

which is nonempty. Given an element a of S, we say that a is stable under ρ

if a ∈ ρ(a), that is, iff ρ(a) = ρ(a)1

If this is satisfied for every element, we say that S is stable under ρ.

Of course, one could consider the question of how much of a natural property

this really is, but it turns out to be quite reasonable. For example, given S

that is regular, if we take T = S and ρ is such that

D ⊆ ρ, where D := {(a, a)| a ∈ S}, S is clearly stable under ρ.

As a consequence of these two results and this definition, we can finally state:

Corollary 2.1. Let S be a semigroup, T an ideal extension of it. If ρ ⊆ T 1×T 1

is a nonempty relation which is I−compatible and such that S is stable under

ρ, the following are equivalent for any pair a, b of elements of S:

(1) (a, b) ∈ E(Cay(S, ρ));

(2) ρ(b) ⊆ ρ(a);

(3) ρ(b)1 ⊆ ρ(a)1;

Proof. (1) =⇒ (2) is Prop.2.8, (2) =⇒ (3) is ensured by the property of S

being stable under ρ and (3) =⇒ (1) is Prop.2.6. □

Before ending this subsection, we return to the relations that define classic

Cayley graphs as seen at the introductory section, ρ = {1} × C for C a

nonempty subset of the semigroup S, which we will denote just as C, and

prove some important results about the endomorphism monoid of a Cayley

graph in relation to the original semigroup used to span it.

In order to state and prove them, we need a relevant definition:
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Definition 2.15. Let S be a semigroup, C ⊆ S a nonempty connection set,

and let ϕ : S 7−→ S be a function such that ϕ(xc) = ϕ(x)c, for all x ∈ S,

c ∈ C. Then, it is clear that ϕ is a graph endomorphism of Cay(S,C), and we

say that it is a graph endomorphism that preserves colors, or a color morphism

of the Cayley graph. If ϕ is bijective, we say that it is a color automorphism of

Cay(S,C). We denote the sets of all color morphisms of a given Cayley graph

as ColEnd(Cay(S,C)) and ColAut(Cay(S,C)), respectively.

Remark 3. Although this definition corresponds to the classical setting, it is

clear that it is an easy concept to extend to generalized Cayley graphs. Given

S a semigroup, T an ideal extension of it and ϕ : T 1 7−→ T 1 a function,

for it to induce a color morphism of Cay(S, ρ) (its restriction to S) for a

nonempty ρ ⊆ T 1 × T 1, it would suffice that ϕ(xay) = xϕ(a)y for all a ∈ S

and all (x, y) ∈ ρ. We could denote the corresponding sets of color morphisms

and bijective color morphisms as ColEnd(S, ρ) and ColAut(S, ρ), following the

notation seen in the definition.

We now see the main two results for the classic construction as stated in [5],

[7] that solidify Cayley graphs as tools to represent monoids as endomorphism

groups of graphs:

Proposition 2.9. Let S be a semigroup, C ⊆ S a nonempty connection set.

Then, the function defined by mapping every s ∈ S to the monoid morphism

ϕs : S 7−→ S defined by ϕs(t) = st for every t ∈ S is a homomorphism from S

to End(Caycol(S,C)) = ColEnd(Cay(S,C))

Proof. We can begin by proving the equation End(Caycol(S,C)) = ColEnd(Cay(S,C)).

Let f ∈ End(Caycol(S,C)). Then, by definition of the set, f is a graph mor-

phism that preserves colors. Therefore, for (a, b) ∈ E(Caycol(S,C)), (f(a), f(b))

must also be an edge of Cay(C, S). If the color of (a, b) was c ∈ C, then we

have that ac = b and it must be that f(a)c = f(b). As this argument is

true for every c ∈ C and a ∈ S, given that (a, ac) will always be an edge

of the Cayley graph, it follows that f ∈ ColEnd(S,C). The other inclusion

follows quickly, as, given f ∈ ColEnd(Cay(S,C)), f(ac) = f(a)c for every a

in S and c in the connection set. Then, if we consider an edge (a, b) of the
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colored Cayley graph, there is c ∈ C such that ac = b and, in consequence,

f(ac) = f(b) ⇐⇒ f(a)c = f(b), making (f(a), f(b)) an edge of the Cayley

graph with the same color, which means that f ∈ End(Caycol(S,C))

Let us now tackle the main content of the proposition: left-multiplication mor-

phisms as endomorphisms of the corresponding colored Cayley graph, and the

mapping that assigns them as a semigroup morphism.

Take s ∈ S, and consider ϕs : S 7−→ S as defined. We only have to see that it

is a morphism that assigns edges to edges and preserves colors. If we consider

(a, b) ∈ E(Cay(S,C)), we have, once again, that there is c ∈ C such that

ac = b. Then, ϕs(ac) = ϕs(b) ⇐⇒ sac = sb, so (sa, sb) is also an edge of

Caycol(S,C) with the same color c, so ϕs ∈ End(Caycol(S,C))

Finally, seeing that Φ : S 7−→ End(Caycol(S,C)) defined by Φ(s) = ϕs is a

semigroup morphism is immediate, as the operation in the endomorphism set

of the Cayley graph is function composition and it is clear that ϕst = ϕs ◦ ϕt

for any pair of elements s, t of S. □

This result admits a sort of a strengthened converse, in the sense that we

have to ask a bit more of the connection set and S for it to be true: specifically,

we need that C is such that < C >= S, a set of generators of S. Although

we have not defined this concept in the context of semigroup theory, it can

be easily done using the same idea as when working with groups: for a given

subset A of S, < A > is defined as the intersection of all subsemigroups of

S that contain A, or the least subsemigroup of S in the inclusion sense that

contains it. We need to impose that S is a monoid as well.

Proposition 2.10. Let S be a monoid, C ⊆ S such that < C >= S. Then,

the mapping Φ : S 7−→ End(Caycol(S,C)) defined as before, by the equation

Φ(s) = ϕs ∀s ∈ S, is a monoid isomorphism.

Proof. It is clear that we can use the previous proposition as a lemma of

sorts for a considerable part of the proof. We already know that ϕs is a color

morphism of Cay(S,C) for every s ∈ S, and that Φ is a mapping that preserves

operations from S to End(Caycol(S,C)), so it suffices to check that it maps the

neutral element of S to the identity graph endomorphism and its bijectivity.

Let us proceed: let 1 be the neutral element of S, then Φ(1) = ϕ1; the function
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that maps any element t ∈ S to 1t = t, so, of course, ϕ1 = Id and we have

a monoid morphism. To check injectivity, we need only consider a pair s, t of

elements satisfying that s ̸= t. If it were the case that ϕs = ϕt, then sa = ta

∀a ∈ S and, in particular, for a = 1, s1 = t1 ⇐⇒ s = t

Finally, we tackle surjectivity, where the fact that C is a generating subset

of S plays an important role. Let f ∈ End(Caycol(S,C)), and let us consider

e = f(1). Given a ∈ S, as < C >= S, there are elements c1, ..., cn ∈ C for

a nonzero n ∈ N such that a =
∏n

i=1 ci. For us to use this property to prove

that f = ϕe, we only need to consider the equation given by

Φ(e)(a) = ϕe(a) = ea = f(1)a = f(1)
∏n

i=1 ci = f(1
∏n

i=1 ci) = f(a), where

the second to last step is justified by the fact that ci is in C for every i ∈
{1, 2, ...n} and f ∈ End(Caycol(S,C)) □

In the general case, for T an ideal extension of S and ρ some nonempty

relation as usual, we lose this direct link between the semigroup operation

and the set of color endomorphisms of the corresponding Cayley graph, as,

no matter if we try it with left or right multiplication, the element s ∈ S

we choose will need special properties for edges to be sent to edges and for

colors to be preserved. For example, a naive condition to ask for that would

be sufficient is the following:

Proposition 2.11. Let S be a semigroup, T an ideal extension of it; ρ a

relation as we have defined before. Then, if ρ := lρ×rρ for some pair of subsets

of T 1, if s ∈ S is such that sx = xs ∀x ∈ lρ, then ϕs ∈ ColEnd(Cay(S, ρ))

Proof. Of course, ϕs defines a mapping from S to S, we only have to see

that it sends edges to edges preserving colors. But this is obvious, as, if

(a, b) ∈ E(Cay(S,C)), b = xay for (x, y) ∈ ρ, then ϕs(b) = sb = sxay =

xsay = x(sa)y, sending (a, b) to (sa, sb) and preserving the color (x, y) □

In order to end the subsection, we see one last relation between a common

graph property and an important one in semigroup theory. Let us state the

necessary definition and prove it:

Definition 2.16. Let G be a directed graph. We say that it is strongly-

connected if, for every pair of vertices x, y, there is a directed path joining
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x to y; that is, a finite set of directed edges with starting point x and ending

point y.

Proposition 2.12. Let S be a finite semigroup, Cay(S,C) its Cayley graph

corresponding to some empty subset C. Then, if Cay(S,C) is strongly-connected,

S is left-cancellative.

Proof. Let s be an element of S. Since it is clear that SC ⊆ S, then sSC ⊆ sS

by associativity of the subset operation. This means that, if sS ̸= S, there are

no edges in Cay(S,C) that go from a vertex in sS to S \ sS, thus creating a

contradiction with the fact that every pair of vertices x, y should be connected

by a directed path, as we could choose x ∈ sS and y ∈ S \ sS in order to

disprove it. In consequence, it must be that sS = S. As this implies |sS| = |S|
and they are both finite, it must be that, for a, b ∈ S such that a ̸= b, then

sa ̸= sb; which is equivalent to say that sa = sb =⇒ a = b, as we wanted to

show. □

2.3. Categorical properties of Cayley graphs. Let us now tackle general-

ized Cayley graphs with a categorical mindset for a bit, so as to mathematically

justify its good properties as a way to obtain a graph from a semigroup.

Let us remind the reader for context that a category (usually denoted in gen-

eral as C) is a pair given by a class (in the set-theory sense) of objects, which

we usually denote by Obj(C) and, for every pair of objects A,B ∈ Obj(C),
a class Hom(A,B) of morphisms equipped with an associative composition

rule Hom(A,B)×Hom(B,C) 7−→ Hom(B,C) for any three objects A,B,C

which also has an identity element in Hom(A,A) for every A. In the usual

language of category theory, we want to prove that the Cayley graph construc-

tion assigns graphs to semigroups somewhat reasonably, preserving categoric

structure. Such special mappings are described by the notion of a functor,

which is a categorical mapping F connecting a pair of categories C,D; send-
ing objects of C to objects of D and morphisms of Hom(A,B) to morphisms

Hom(F (A), F (B)), sending the identity elements to identity elements and

preserving the composition law in the original sense (a covariant functor) or

reversing it (contravariant).

We first take T = S as the ideal extension for simplicity.
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Let Gdir be the category of directed graphs, with directed graphs as objects

and directed graph morphisms filling the homonymous role. In the same way,

we refer to the category of semigroups as S. We assess the basic categorical

properties of the two main constructions we have mentioned in this work:

Proposition 2.13. Let Gdir, S be the previously mentioned categories. Then,

if we consider ω := S1 × S1, ωl := S1 × {1} and ωr := {1} × S1, then the

mappings from S to Gdir given by the assignation of Cayley graphs Cay(S1, ω),

Cay(S1, ωl), Cay(S
1, ωr), which we will name as Cω, Cωl

and Cωr , respectively,

are covariant, faithful functors.

Proof. Given a semigroup S, it is clear that Cω(S), Cωl
(S) and Cωr(S) are

directed graphs by construction, so we only have to check that the mapping

works for morphisms and respects composition. Let N,L be semigroups, and

let us consider the maps f : M 7−→ N , g : N 7−→ L, being semigroup

morphisms, and let Cρ refer to any of the aforementioned mappings, while

ρM is the symbol used to refer to any of the previously stated relations as

a subset of M ×M . Then, Cρ(f) is the function that takes every vertex of

Cay(M,ρM) to its image by f in Cay(N, ρN). As f is a semigroup morphism,

if (a, b) is an edge of Cay(N, ρN), as this means that xay = b for (x, y) ∈ ρN ,

then f(b) = f(x)f(a)f(y) and, of course, f(ρM) ⊆ ρN for any of the defined

values of ρ, so (f(a), f(b)) is an edge of Cay(N, ρN), making Cρ(f) a directed

graph morphism.

Finally, as for morphism composition, Cρ(g ◦ f) is the graph morphism that

maps a of M to g(f(a)) of L, while mapping every edge (a, b) of Cay(M,ρM)

to (g(f(a)), g(f(b))) of Cay(L, ρL), and so it is direct to note that

Cρ(g ◦ f) = Cρ(g) ◦ Cρ(f), as we wanted to see.

Concerning faithfulness, it follows directly when one notes that, if f, g are

semigroup morphisms such that Cρ(f) = Cρ(g), in particular they must induce

the same functions over the corresponding sets of vertices, and so f = g □

In fact, more generally, we could imitate the categorical construction pre-

sented in [7] and repeat the same arguments (taking a small modification into

account) so that we obtain a version of this proposition which is as general as

possible.
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Let us consider the category Sgρ, with its objects being the pairs (S, ρ), ρ a

relation defined for the fixed ideal extension T = S of S and its morphisms

being the subset of all semigroup morphisms f : S 7−→ R defined by the ex-

tra property {(f(x), f(y))| (x, y) ∈ ρ1} ⊆ ρ2 for (R, ρ2) ∈ Obj(Sgρ). Then,

using similar arguments as before (with the additional hypothesis for the cor-

responding morphisms guaranteeing that edges go to edges), it follows easily

that the following statement holds:

Corollary 2.2. Cay : Sgρ 7−→ Gdir defined by Cay((S, ρ1)) := Cay(S, ρ1)

and Cay(f) the corresponding induced graph morphism as before for f ∈
Hom((S, ρ1), (R, ρ2)) for a given pair of objects, is also a faithful, covariant

functor.

It could be tempting to try and treat our second object, the mapping from

G to M (the subcategory of S corresponding to monoids and monoid mor-

phisms) defined by taking a graph G to its endomoprhism monoid (or even

to its automorphism monoid) in the same way, but this has remarkably worse

categorical properties due to the difficulties of assigning a monoid morphism

between End(G) and End(H) to a graph morphism f : G 7−→ H.

In fact, no matter what assignment we use for morphisms, there is no functor

F : Gdir 7−→M such that takes object G to monoid End(G). We now present

a proof of this fact due to Keith Kearnes, as seen in his answer here. The

example sparked from a question made by the author in the posted page when

trying to test the functoriality of such mappings.

Proposition 2.14. Let Gdir be the category of directed graphs. There is no

functor F : Gdir 7−→ M such that sends every G ∈ Obj(Gdir) either to the

monoid End(G) or the group Aut(G).

Proof. This proof is based in the concept of a retract. Given objects A,B

in a category, we say that A is a retract of B if there exist morphisms i ∈
Hom(A,B) (which we call a section) and r ∈ Hom(B,A) (which we call a

retraction) such that r ◦ i = idA. As we are working with categories where

morphisms are set functions, this also implies that such an i must be injective

and such an r surjective. Let us suppose that some functor F as specified

https://mathoverflow.net/questions/453460/is-end-a-functor-from-the-category-of-directed-graphs-to-the-category-of-monoi


21

existed, and let us consider the discrete graphs in 3 and 5 vertices, respectively

(the graphs of three and five vertices with no edges), which we can note as

D3 and D5. We can now make two important observations. Due to a functor

preserving category morphism composition (except the order of the operation),

retracts are either preserved (for covariant functors) or inverted, in the sense

that now F (B) is a retract of F (A) (for contravariant functors). Moreover, as

a functor will send a directed graph morphism f ∈ Hom(D3, D5) to a monoid

morphism F (f) : End(D3) 7−→ End(D5), F (f) will send invertible elements

to invertible elements, inducing also a morphism

F (f) : Aut(D3) 7−→ Aut(D5) taking the restriction. Therefore, as in both

graphs any vertex can be interchanged by every other bijectively as a graph

morphism (there are no edges to preserve), we have that Aut(D3) = S3 and

Aut(D5) = S5. Due to all these observations, as D3 is a retract of D5 trivially,

if our functor were to be covariant, S3 should also be a retract of S5, but this is

not possible. The reason why is the following: S3 can be seen as a subgroup of

S5 but, for it to be a group retract, it would have to have a normal complement,

a normal subgroup K of S5 such that S3K = S5 and S3∩K = {Id}. But there
are only three normal subgroups of S5, which are S5 itself, A5 and < Id >.

The first two cases have an obviously non trivial intersection with S3, and

the last one does not satisfy the property of being a complement. If F were

contravariant, it would be even quicker to disprove: it would mean that S5 is

a retract of S3, which is clearly not the case just by cardinals alone. □

We also prove the auxiliary result from group theory we used:

Proposition 2.15. Let G,H be groups. Then, G is a retract of H in the group

category iff H ∼= GK, for K a complement of G which is a normal subgroup

of G.

Proof. We begin with the easiest implication: if H ∼= GK in these conditions,

we can take i : G 7−→ H to be the inclusion of G in GK, and we take as r

the function such that r|G = Id and r(k) = e, the neutral element of G, for

every k ∈ K. This, of course, respects operations, and so is a group morphism,

clearly meaning that G is a retract of H, as r ◦ i = IdG.

As for the other implication, it is clear that, if G is a retract of H, G is
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isomorphic to i(G), and thus can be seen as a subgroup of H. We then propose

the most obvious candidate to provide a decomposition: we want to prove that

H ∼= GKer(r). It is also clear that, as r ◦ i = IdG, any g ∈ G not being the

neutral element cannot belong to Ker(r), and, so, their intersection is just the

neutral element. Moreover, the equation G((H \G)∪{e}) = H holds with the

product of subsets, as any element of H belongs to it. We have to see, though,

that K := (H \ G) ∪ {e} has group structure. As we have observed before,

elements that are not e in G do not go to it through r, so Ker(r) ⊆ K. For the

other inclusion, it suffices to observe that H
Ker(r)

∼= G by the first isomorphism

theorem. Then, if h ∈ K were not in Ker(r), it would be such that [h] = [g]

for an element of G which is not the neutral, and so hg−1 ∈ G, which would

mean h ∈ G and then h = e, a contradiction. Therefore, K ⊆ Ker(r) and we

have that H ∼= GK. Of course, due to being the kernel of a morphism, K is a

normal subgroup of H. □

This, in a way, albeit being a bit intuition-defying, confirms that the Cayley

graph assignments are natural and more well-behaved than assigning a monoid

to a graph thorugh its endomorphisms, even if it would appear to be the other

way around from a more naive perspective.

3. Semigroup and Monoid (di)graphs

3.1. Semigroup and monoid digraphs. Up to this point, we have become

familiarized with the Cayley graph constructions (both normal and general-

ized) and semigroups, and the most basic ways in which they are correlated.

We now want to see some of the direct applications of the construction, and

explore, among the different classes of graphs, which special ones that can be

obtained via the Cayley construction from a semigroup or a monoid and what

conditions they must fulfill, as well as reviewing some special examples that

do not admit such representations. We will work with the (different) concepts

of semigroup or monoid digraphs and semigroup and monoid graphs.

In order to begin properly, we first lay down some basic definitions relevant to

the context.
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Definition 3.1. Let G be a directed graph. We say that it is a monoid di-

graph (respectively a semigroup digraph) when it can be obtained from some

monoid (respectively, semigroup) S and some connection set C via the Cayley

construction, that is Cay(S,C) = G

As we have observed before, this is another case of a concept fairly easy to

extrapolate to the context of generalized Cayley graphs.

Definition 3.2. Let G be a directed graph. We say that G is a generalized

monoid (resp. semigroup) digraph if there are S a monoid (resp. a semigroup),

T an ideal extension of S and ρ ⊆ T 1 × T 1 nonempty such that G can be ob-

tained using the generalized Cayley graph construction; that is, G = Cay(S, ρ)

As we can see, these definitions follow the general trend of this work, mainly

talking about properties of directed graphs. In contexts when directions and

colors are negligible, as in many topological applications, we can restrict our-

selves to working with simple graphs, which makes it natural to adopt the

notion of a monoid or semigroup (simple) graph.

Definition 3.3. Let G be a simple graph. We say that it is a monoid graph

(respectively semigroup) if there is S a monoid or semigroup and a nonempty

connection set C such that G is obtainable as the result of taking the un-

derlying simple graph of the corresponding Cayley directed graph; that is,

G = Cay(S,C)

Apart from the obvious name similarity, these conditions are quite different:

not only for the fact that they refer to different classes of graphs, but also in the

magnitude of what they ask for; in mathematical ”strength”. It is quite easier

to obtain contradicitions that make a directed graph not representable as a

Cayley graph of a monoid or a semigroup than to ask for a simple graph to not

admit any of the many directed representations available. So, in this sense,

one can say that a simple graph not being either a monoid or a semigroup

graph is quite a remarkable property, it must be structurally incompatible

with the corresponding operation somehow. We will assess this topic again in

more formal terms in future parts of this section.
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As before, this second definition is also easy to expand to a more general

setting:

Definition 3.4. Let G be a simple graph. We say that G is a generalized

monoid (resp. semigroup) graph if there are S a monoid (resp. a semigroup),

T an ideal extension of S and ρ ⊆ T 1 × T 1 nonempty such that G can be

obtained as the underlying simple graph of the corresponding generalized Cayley

graph; that is, G = Cay(S, ρ)

In order to begin exploring these concepts, we will see in which conditions

some simple families of graphs satisfy the property of being generalized semi-

group digraphs, using results found in [10], and we see what properties the

semigroups that produce them need to have.

The first class of graphs we want to review is that of linear graphs, which, in

essence, are directed graphs that can be easily drawn as a representation of

a total order. We introduce them in a more rigorous sense: let (Y,≤) be a

partially ordered set (also called a poset), a set where we can define some order

relation. We say that two given elements a, b ∈ Y are comparable iff either

a ≤ b or b ≤ a, and we say that the order relation is a total order if every pair

of elements is comparable. We can also define the following relevant sets:

Definition 3.5. Let (Y,≤) be a poset, a an element of Y . Let us consider the

sets:

a ↑:= {b ∈ Y | b ≥ a}; a ↓:= {b ∈ Y | b ≤ a}, which are sometimes refered to

as the lower closure and upper closure of a, respectively.

In this context, we have tools to properly define linear graphs. As we have

just said in an informal way, linear graphs are relation (directed) graphs as-

sociated to total orders, which essentially means they are constructed via the

order relation in the following way: GY and V (GY ) := Y ,

E(GY ) := {(a, b) ∈ Y × Y | a ≥ b}
Due to the properties of a total order, we can characterize them in terms of

graph theoretical properties in the following way:

Proposition 3.1. Let G be a directed graph. Then, G is a linear graph iff the

following properties are satisfied:
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(1) G has no multiple edges;

(2) For any a ∈ V (G), (a, a) is an edge of G;

(3) Given vertices a, b, then either (a, b) ∈ E(G) or (b, a) ∈ E(G);

(4) If a pair of vertices a, b are such that a ̸= b, then (a, b) ∈ E(G) implies

(b, a) /∈ E(G);

(5) G is edge-transitive;

Proof. We prove the characterization in the usual order. TakeG a linear graph.

(1) is satisfied precisely because of antisymmetry, as two different a, b elements

will not be such that a ≤ b and b ≤ a at the same time. (2) is direct because

of the defintion of total order relation, and (3) is just symmetry. Finally, (4)

is again due to antisymmetry of the order relation and (5) is just transitivity

translated into the graph theoretical context.

Conversely, if we have such a graph G, we can take define the following relation

over the set of vertices of G: given a, b ∈ V (G), a ≥ b ⇐⇒ (a, b) ∈ E(G)

This is an order relation thanks to the properties that G satisfies, and it is a

total order due to property (3). Obviously, with this order constructed ad hoc,

G is its relation graph and, in consequence, is a linear graph. □

This is an interesting characterization in terms of practical use of the con-

cept, and it will serve as a useful lemma in order to prove the result that tells

us in which circumstances exactly a linear graph can be represented via the

generalized Cayley construction. Let us see it, as presented in [10]:

Proposition 3.2. Let S be a semigroup, T an ideal extension of it and

ρ ⊆ T 1×T 1 which is nonempty. If ρ is I−compatible and such that S is stable

under ρ, the following conditions are equivalent:

(1) Cay(S, ρ) is a linear graph;

(2) There exists a linear order defined over S such that ρ(a) = a ↓ for a ∈ S;

(3) There exists a linear order defined over S such that, for every a ∈ S,

ρ(a)1 = a ↓;

Proof. To begin the proof, let us remark a pair of properties we have thanks

to our special hypotheses: thanks to Prop.2.7, we know that Cay(S, ρ) is edge-

transitive and, due to Corollary 3.1, that ρ(a) = ρ1(a) for every a ∈ S. With

that being said, let us now tackle the implications themselves: (1) =⇒ (2)
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can be proven using the same trick as before: we define the relation in S × S,

which we name ≥, such that a ≥ b ⇐⇒ (a, b) ∈ E(Cay(S, ρ)). Once

again, due to the Cayley graph being linear, we have that ≥ is a total order

relation, and then, by construction, for a given element a ∈ S, it follows that

a ↓= −→a = ρ(a), where this second equation is a fact noted in the beginning of

the generalized Cayley graph section.

As for (2) =⇒ (1), making the same observation as before, if we take this

relation ≥ behaving as hypothesized, we have that a ↓= −→a = ρ(a) for any

a ∈ S again, which means that a ≥ b iff (a, b) is an edge of the Cayley graph.

Due to this being an order relation by hypothesis, it is clear that Cay(S, ρ)

must be a linear graph.

(2)⇐⇒ (3) follows immediately from the hypothesis that S is stable under ρ,

as noted in the beginning of the proof. □

Reinterpreting this result gives us the desired characterization:

Corollary 3.1. Let G be a linear graph. Then, G is a generalized semigroup

digraph iff the following objects exist: a semigroup S, T an ideal extension of

it and a relation ρ ⊆ T 1 × T 1 such that ρ is I−compatible, S is stable under

ρ and S admits a total order relation compatible with the relation in the way

we have seen before, satisfying ρ(a) = a ↓ for any a ∈ S

If we restrict ourselves to the classic case, that is, if we take ρ = {1}×C for

some subset of S, we can use what we know to see how the characterization

looks in this setting: we know that ρ is I−compatible iff C is a subsemigroup

of S, and S is stable under ρ iff a ∈ aC for every a ∈ S, which means that, for

a linear graph to be a semigroup digraph in specific, we need S,C semigroups

with these special properties and a total order such that aC = a ↓ for any

element. The second special family of directed graphs we want to study in

this sense are directed complete graphs with loops, that is, graphs G such that

E(G) = {(x, y)| x, y ∈ V (G)}. In order to prove the characterization of these

types of graphs, though, we have to introduce a new, albeit simple, condition.

Definition 3.6. Let S be a semigroup. We say that S is left-simple if, for

every element a ∈ S, aS = S. Analogously, we can define the notion of a
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right-simple semigroup. These conditions are equivalent to the statement that

S has no proper left-ideals (resp. right ideals).

Definition 3.7. Let S be a semigroup. We say that S is simple if S has no

proper ideals. This is equivalent to stating that SaS = S for every a ∈ S.

Remark 4. Let us note that, contrary to usual intuition in semigroup matters,

being a simple semigroup is a weaker condition to either being left-simple or

right-simple, as a semigroup could have both left-ideals and right-ideals that

are proper but that were not both-sided.

In the context of generalized Cayley graphs, we can introduce a generalized

notion of simplicity in close relation to a given ρ ⊆ T 1 × T 1

Definition 3.8. Let S be a semigroup, T an ideal extension of it and ρ ⊆
T 1×T 1 a nonempty relation. Then, we say that S is ρ−simple iff ρ1(a) = ρ1(b)

for every a, b ∈ S. It follows directly from this definition that it is equivalent

to ρ1(a) = S ∀a ∈ S

Remark 5. Choosing ρ ∈ {ωl, ωr, ω} allows us to recover the previous defini-

tions of left-simple, right-simple and simple semigroup, respectively. Of course,

this means that this definition generalizes the classic semigroup property.

This concept directly characterizes generalized Cayley graphs that are com-

plete graphs with loops, as we can see in the following result:

Proposition 3.3. Let S be a semigroup, T an ideal extension of it and

ρ ⊆ T 1×T 1 a nonempty relation Then, the following conditions are equivalent:

(1) Cay(S, ρ) is a complete graph with loops;

(2) S is ρ-simple;

Proof. The implication (1) =⇒ (2) is immediate, as, if the generalized Cayley

graph is complete with loops, there has to be an edge for every pair of vertices,

which means that, for every a, b ∈ S, there is (x, y) ∈ ρ such that xay = b,

including the case a = b. Therefore, it is clear that ρ(a) = S for every element

a, making the semigroup ρ-simple.

The converse implication follows the same, almost-trivial reasoning, as S being
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ρ-simple quickly implies that (a, b) ∈ E(Cay(S, ρ)) for every a, b ∈ S, making

it a complete graph with loops with vertice set S. □

Once again, thinking in terms of the classic construction, this is equivalent

to the also intuitive conclusion that Cay(S,C) is a complete graph with loops

iff aC = S for every a ∈ S.

Following our line of work for this section, we continue by seeing when another

simple, this time more general class of graphs are monoid or semigroup di-

graphs in the sense of the classic Cayley construction: the class of 1-outregular

graphs. From now on, we will consider only finite graphs.

In order to know what we are referring to, we recover some concepts of previous

sections. In introductory graph theory (that which deals with simple graphs),

we define the degree of a vertex as the number of different edges that have it

as an endpoint. In the context of directed graphs, then, we can obtain two

different concepts following the same idea, those of indegree and outdegree.

Given a directed graph G and a vertex a, we define the outdegree of a (usually

denoted as deg(a)+ as the number (or cardinal, if dealing with infinite graphs)

of directed edges coming out of a, that is, having this element as its starting

point. The indegree is defined analogously (and denoted as Deg(a)−) taking

the directed edges that have a as their endpoint. In the same vein, we can

define the directed graph equivalents of the minimal degree δ and the maxi-

mum degree D, which we usually denote as δ+, D+ and δ−, D− for outdegree

and indegree, respectively. This also leads us naturally to similar concepts for

regularity (outregularity and inregularity), which quickly gives us the meaning

of the term 1-outregular: a directed graph is 1-outregular iff the outdegree of

every vertex is 1.

Before tackling the properties of this graph family, though, we see a charac-

terization of monoid digraphs which will be useful from now on. The results

of this part are due to K.Knauer and Puig i Surroca and can be found in [5].

Proposition 3.4. Let G be a directed graph. Then, G is monoid digraph if,

and only if, there is some vertex e ∈ V (G) and a submonoid M ≤ End(G)

such that satisfy the following property: for every x ∈ V (G), there is a unique
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ϕx ∈ M such that ϕx(e) = x and, for every edge (x, y), there is an edge (e, c)

such that ϕx(c) = y.

Proof. Let us begin with the first implication. If G is a monoid digraph, then

G = Cay(S,C) for some monoid S and some connection set C. Then, it is

clear that the neutral element of S, e, will play the special part that we need

to be played. As for the monoid M , using Prop.2.9, we know that we can take

M := {ϕs| s ∈ S} where the functions are the monoid morphisms defined by

left multiplication by s. Then, it is clear that for every x ∈ S, ϕx(e) = xe = x

and that ϕx is the only morphism in M satisfying this. Moreover, for every

edge (a, b) of G, we must have that there is an element c ∈ C that satisfies

ac = b, and so ϕa(c) = b by definition.

The converse implication is where the difficulty lies, as we now have to see

that, what appears to be a technical condition for G to satisfy, is sufficient

for it to be a monoid digraph. Let us consider M the submonoid we have

by hypothesis, and e the special vertex. By the property of e with respect to

edges in G, it is clear that the connection set we have to choose is

C := {ϕ ∈ M | (e, ϕ(e)) ∈ E(G)}, and we want to see that G ∼= Cay(M,C),

via the function f : V (G) 7−→ M defined by f(x) = ϕx. By hypothesis, this

function is injective, and it is also surjective, as, given ϕ ∈ M , ϕ = ϕϕ(e)

because of the aforementioned properties. We only have to check that (x, y) ∈
E(G) iff (ϕx, ϕy) ∈ E(Cay(M,C)). In order to prove it, let us consider (x, y)

an edge of G. By hypothesis, there is some edge (e, c) such that ϕx(c) =

y = ϕx(ϕc(e)), so ϕy = ϕx ◦ ϕc by uniqueness, and ϕc ∈ C by construction

of C, so (ϕx, ϕy) ∈ E(Cay(M,C)). Conversely, if (ϕx, ϕy) is an edge of the

corresponding Cayley graph, there is ϕ ∈ C such that ϕx ◦ ϕ = ϕy. As ϕ ∈ C

and ϕϕ(e) = ϕ for every element of M , we have that (e, ϕ(e)) is in E(G). As

(e, ϕ(e)) is sent to (x, ϕx(ϕ(e))) = (x, y) by ϕx, and it is a graph endomorphism,

we have that (x, y) must also be in E(G), completing the proof. □

With this important characterization as a tool, we are prepared to study

the family of 1-outregular graphs. In order to simplify our arguments, we first

note the observation that, if a 1-outregular digraph is a semigroup digraph of

the form Cay(S,C), then we can reduce C to any of its elements.



30

Remark 6. Let S be a semigroup, G = Cay(S,C) its Cayley graph for some

connection set C. Then, G is 1-outregular iff G = Cay(S, {a}) for some a ∈ C.

The result is direct and does not require an in-depth proof. It is clear that

a Cayley graph of this form will be 1-outregular, and that a Cayley graph, in

order to be 1-outregular, needs to have a singleton as its connection set.

Another useful information when dealing with these families of graphs is that,

as the ones we are going to deal with are finite, every connected component C
of them must have exactly one cycle Z (a path with starting point coincident

with its ending point), which could be a loop (if it were not a unique cycle,

there would be at least one element with outdegree greater than 1 in C),
which, when they are semigroup graphs, will correspond to the property that

any element of a finite semigroup has finite order, that is, for every s ∈ S,

there are i, j, i ̸= j positive integers such that si = sj. It is clear as well

that, if every finite, strongly-connected 1-outregular digraph has exactly one

cycle, that every vertex will have a directed path (a sequence of directed edges)

which eventually ends on a vertex of the cycle, and a unique shortest one. If

we denote for v ∈ V (G) the length of this shortest directed path to the cycle

as l(v) and, in the context of a general 1-outregular digraph, we define for a

connected component C the quantities l(C) := max{l(v)| v ∈ C} and Z(C) the
length of the corresponding cycle, we obtain an important characterization of

monoid 1-outregular graphs in terms of these parameters. Let us see it:

Theorem 3.1. Let G a 1-outregular digraph. Then, G is a monoid digraph if,

and only if, there is a connected component C of G such that Z(D)|Z(C) and
l(D) ≤ l(C) for every other connected component D of G.

Proof. In order to prove the first implication, let us suppose that G is a monoid

digraph. Then, by the previous remark, G = Cay(S, {a}) for some element

a ∈ S. Let us name as C the connected component of G where the neutral

element, e, is. As we have noted before, as G is finite, a will have finite order,

which is essentially equivalent to say that there is a minimal pair of positive

integers k, h such that ak+h = ak, that is, that makes the set of elements

e, a, ..., ak, ak+h−1 different pairwise. In consequence, it is clear that l(C) ≥ k

and Z(C) = h. Let us now consider another connected component D of G. If
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Z(D) := q did not divide h, we would have that k and k+h would be different

modulo q, and so, for x ∈ D, it would happen that xak ̸= xak+h, which, of

course, would be a contradiction.

As for the other condition, if there were x ∈ D such that l(D) = l(x) = p,

with p ≥ k + 1, we would have that xak is not an element of the cycle of

D. Meanwhile, we know that h = nq for some positive integer n, and we can

consider the natural number g := min{m ∈ N| xak+mq is in the cycle of D},
which must exist, as the defined set of positive integers is nonempty. If g ≥ n,

it is clear that either xak+h is not in the cycle of D yet (and then they are

different because of the different exponent) or it is a point of the cycle, while

xak is a point out of it. In consequence, xak ̸= xak+h, obtaining a contradic-

tion. If g < n, then xak+gq = xak+h are the same element in the cycle, as the

difference of their exponents is divisible by q. In any case, we have that xak is

not in the cycle while xak+h is, so we have again that they must be different

elements. Therefore, l(D) ≤ k ≤ l(C).
The converse implication requires more work in comparison, and is the part

where Zelinka’s original proof found its troubles. Let us consider that G is a

1-outregular graph with a special, connected component satisfying the men-

tioned properties. Given x, y vertices of G, consider d(x, y) the length of the

shortest directed part from x to y, if it exists. Also, if x ∈ D a connected com-

ponent, take the notation z(D) := z(x). Moreover, in the special connected

component C, taking a vertex such that its distance to the cycle coincides with

the maximum possible, we call the vertex e and its only out-neighbour a; as

they are our best candidates to fulfill these roles.

To make notation more simple, we also define the following term: given

x ∈ V (G) and k > 0 an integer, we define x + k as the endpoint of the

unique directed path of length k starting at x. It quickly follows from all the

definitions that, for k, l positive integers, x+k = x+l iff d(x, x+k) = d(x, x+l)

We now want to prove the following auxiliar result in order to complete the

proof: Claim: given k a nonzero natural number and x a vertex,

d(x, x+ k) = d(x, x+ d(e, e+ k))

Claim proof : one can quickly note that, for k a positive integer, it holds that
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d(x, x+ k) :=

k if k < l(x)

l(x) + ((k − l(x)) mod z(x)) otherwise

where mod z(x) is in reference to the residue of the division of k − l(x)

by z(x), and this quantity defines the length of the cycle that is located in

the same connected component as x. Let us split the proof in two cases: if

k < l(e), then d(e, e + k) = k and the claim is obviously true. If k ≥ l(e),

we can then use euclidean division in order to obtain an expression of the

form l(e) − k = qkz(e) + rk, with rk < z(e), and, as Z(D)|z(e), it is clear

that l(e) − k ≡ rk(mod zx), and so the equation d(x, x + d(e, e + k)) =

d(x, x + l(e) + rk) = d(x, x + qkz(e) + rk) = d(x, x + k), which proves the

claim. We now proceed with the proof of the general proposition: let us con-

sider the element ω = e+ (l(C) + Z(C)− 1). It is clear that ω ∈ Z (the cycle

of the connected component), so, given what we have pointed out before, any

vertex v ∈ C must reach the point eventually through a unique directed path.

This means we can define the value r(v) := d(e, ω) − d(v, ω) for any such v,

as both quantities are defined and, as e is the element in C that is the fur-

thest away from the cycle, the difference must be non-negative. Note that

d(v, ω) = d(e+r(v), ω), and so, d(v+k, ω) = d(e+r(v)+k, ω) for any positive

integer k, which means that r(v+ k) = r(e+ r(v) + k) = d(e, e+ r(v) + k) for

any k as seen and any vertex v ∈ C. With these properties in mind, we can

now regard V (G) as a magma (a set which is closed with respect to a binary

operation) with the following operation:

∀y ∈ V (G), we define ey = y;

and, for every x ̸= e in V (G), y in V (G), we define it as

xy :=

x+ r(v) If y ∈ C

y otherwise

By definition of the operation, e is already a left-neutral element, but we also

have that ye = y + r(e) = y for every y, and so it is a full-fledged neutral

element. We only need to check that it is associative for V (G) to be naturally

interpreted as a monoid. Let us see it: let x, y, z be three different vertices in

the graph, and let us divide the proof by cases. Suppose that y /∈ C, then yz

will not be in C either, as it will be either equal to z if it is not an element of C
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or it will be equal to y+ r(z), remaining in the same connected component as

y. Then, x(yz) = yz = (xy)z by definition. Now suppose that z /∈ C. In this

case, we will have that (xy)z = z = yz = x(yz), using what we know about

the operation. Then, only the case when both y, z are in C remains. Then, we

have that (xy)z = (x+ r(y))z = x+ (r(y) + r(z)) = x+ d(x, x+ r(y) + r(z))

x+d(e, e+r(y)+r(z)) = x+d(e, y+r(z)) = x+r(y+r(z)) = x+r(yz) = x(yz)

thanks to the previously proven claim, and, therefore, the operation is asso-

ciative and we obtain a monoid. Moreover, we have that (x, y) ∈ E(G) iff

y = x+1 ⇐⇒ y = xa, which clearly means that G = Cay(V (G), {a}), as we
wanted to show. □

By relaxing a bit the specified conditions that we ask of this special con-

nected component and the cycles of every one of them, we can also obtain a

characterization for when a 1-outregular graph G is a semigroup digraph. This

result was originally due to Zelinka, as presented in his paper referenced in [9].

The construction of the semigroup he claimed to represent the graph correctly,

however, contained a mistake, making this proof (a corollary of thm.3.1) a fix

to the original. This was first proved in [5]. Let us see this version:

Corollary 3.2 (Zelinka’s theorem). Let G be a 1-outregular directed graph.

Then, G is a semigroup graph if and only if G has a connected component C

such that Z(D)|Z(C) and l(D) ≤ l(C)+1 for every other connected component

D of G.

Proof. Let us begin by proving the left to right implication. Assume G is a

semigroup digraph that is 1-outregular. Then, we have that G = Cay(S, {a})
for some semigroup S, as we pointed out in the remark before. The strategy

in simple: we want to use the preceding proposition as a lemma in order to

obtain most of the properties immediately. The reference to do this is to

consider the trivial monoid associated to any semigroup S, S1, and we now

see how the components of Cay(S1, {a}) relate to the original. If we take as

C the connected component which contains a, in the Cayley graph for S1,

the corresponding connected component, call it C ′, is equal to C in everything

but in the fact that we add to it the vertex 1 and the edge (1, a), while the

rest of connected components stay the same. In consequence, we have that
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Z(D) = Z(D′) and l(D) = l(D′) for every connected component D′ of the

graph that is not C ′, Z(C ′) = Z(C) and l(C ′) ≤ l(C) + 1 because of the only

edge addition we have pointed out. Of course, as the Cayley graph of S1 keeps

being 1-outregular and is that of a monoid, we have that Z(D′)|Z(C ′) for any
connected component and l(D′) ≤ l(C ′). By the equalities we have seen just

prior to this, we see that, clearly, Z(D)|Z(C) and l(D) ≤ l(C) + 1 for the

corresponding connected components of G as well.

Conversely, suppose we have a graph G which satisfies these properties. If

we take v the vertex in C such that l(v) = l(C), we can create a new graph

attaching a vertex to v (let us call it u) and the edge (u, v), and this new

graph, call it H, will continue to be 1-outregular, as v must have indegree zero

in order to satisfy the property of being the furthest away from the cycle. For

this new graph and the corresponding connected component CH (the modified

C), CH satisfies the hypotheses of the last proposition with respect to how it

relates to other connected components D, and so, it is a monoid graph taking

the construction we have introduced in Thm.3.1, and u is the neutral element.

Now, if we consider vertices of G with this operation, xy, we see that either

xy = y or xy = x + r(y), so either xy is y ̸= u for x, y ̸= u or xy = x + r(v),

which is a vertex that must have indegree one, as it forms part of the directed

path x, x + 1, ...x + r(y), but, as we have just said before, a vertex such as

u that has the property of being the furthest away from the cycle among all

vertices in C must have indegree 0, and , thus, u ̸= x + r(y) either, making

the operation closed over V (G). As we have proved associativity before, we

have that clearly V (G) is a semigroup with it, and G ∼= Cay(V (G), {v}), as
r(v) = 1 in the graph H where we originally defined the operation. □

In consequence, we have the immediate corollary, which has as a consequence

that any tree (a connected, simple graph with no loops) is a monoid graph:

Corollary 3.3. Let G be a connected, 1-outregular digraph. Then, G is a

monoid digraph.

In a sense, this is the best we can get in terms of characterizing families

of outregular digraphs as either monoid or semigroup digraphs, as, for any

other k ≥ 2 that is a positive integer, it is possible to construct k-outregular
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digraphs such that they cannot be semigroup digraphs. An in-depth look at

these graphs can be found in [5].

In the next result, we take a look at a smallest (in terms of vertices) possible

outregular graph (which is 2-outregular) and provide an original proof of why

it cannot be a semigroup digraph:

Proposition 3.5. Let G be the following directed graph: V (G) = {x, y, z},
E(G) = {(x, x), (x, y), (y, x), (y, z), (z, y), (z, z)}. Then, G is not a semigroup

digraph.

Proof. Let us begin by remarking that G is clearly 2-outregular, as loops add

one to both the indegree and the outdegree of a vertex. As a second obser-

vation, an important one, we see that G is strongly-connected, as any pair of

vertices is joined by a directed path. In account of this, and, of course, V (G)

being finite, by Prop.2.12, we know that, if G = Cay(S,C) for a semigroup

S and its corresponding connection set, S must be left-cancellative, which es-

sentially means that uS = S for any u ∈ V (G). Let us now proceed to prove

the result by reduction to the absurd. Suppose that G = Cay(S,C) in these

conditions. Our goal is to find a contradiction for every case possible. In order

to make observations simpler, we begin by noting that C ̸= S, the connection

set cannot be the whole semigroup. If that were the case, as every vertex has

outdegree 2, there would have to be two different values, say a, b ∈ S such that

they satisfy xa = xb, for example. As S must be left-cancellative, we would

have that a = b, generating a contradiction. On account of this very same

observation about the outdegree, the connection set C cannot be a singleton,

either, so it must be some two-element subset of S, of which there are just

three. Let us find inconsistencies for every possible choice of C:

C = {x, y}: The trick here is simple. By the fact that S must be left-

cancellative, we can deduce that the only element of S not in C must send

every element to the only other element of V (G) that is not edge-adjacent to

them. In this case, this means that xz = z, zz = x, yz = y. Now, imposing the

associativity we suppose for S, we should have that (zx)z = z(xz) = zz = x,

so zx must be an element that is sent to x by z, and this cannot be either x or

y, because xz = z, and yz = y already. Therefore, it should be zx = z, which
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implies that zy = y. We can then consider the equation (xz)y = x(zy), but

(xz)y = zy = y, and x(zy) = xy, so it must be xy = y and xx = x. Finally, if

we consider the equation y(xz) = (yx)z, we obtain that yz = y must be equal

to (yx)z. Therefore, the only thing that can happen is that yx = y and, in

consequence, yy = x. This causes a contradiction, as yz = yx would mean

that z = x.

C = {z, y}: We use the same argument as before. In this case, we know that

xx = z, yx = y and zx = x. We can now proceed analogously: (xz)x =

x(zx) = xx = z mean that xz = x and xy = y, and from (zx)y = z(xy),

we deduce that zy = y and zz = z as well. Finally, once again, we can take

the equation y(zx) = (yz)x to derive that yx = y = (yz)x, and so it must be

yz = y and yy = x. Because of the same reasons as before, yx = yz and we

have a contradiction.

This case can be summed up by saying that f : S 7−→ S defined as f(x) = z,

f(y) = y, f(z) = x is a graph isomorphism for G preserving the operations in

S.

C = {x, z}: As in this case y is the odd one out, we know that xy = z, zy = x

and y2 = y by the left-cancellative property. But then, by associativity of the

operation in S, we would need that (xy)y = x(yy) is satisfied, when we already

know that (xy)y = zy = x and x(yy) = xy = z, making this case impossible

as well and completing the proof. □

1

x
2

y
3

z

Figure 3. A simple drawing of a smallest outregular digraph

G that is not a semigroup digraph.

The reason why we say it is a smallest non semigroup digraph is that there

are no such graphs with less than three vertices, and it is not the unique

graph satisfying this property having three vertices. The reason why there are

no such graphs with less than two vertices is because of the results we have

seen: any graph that is 0-outregular is a monoid digraph (represented by a
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monoid with as many elements as vertices of the graph and with C = {e}, the
corresponding neutral element) and any 1-outregular digraph of two vertices

must be a monoid graph if it is connected. That only leaves 2-outregular

digraphs and 1-outregular digraphs that are disconnected. But these are easily

identifiable, as there are only two: the digraph consisting of two vertices with

a loop for each and the complete graph with loops of two vertices. The first is

isomorphic to Cay(Z/2Z, {0}), and the second to Cay(Z/2Z, {0, 1}).

3.2. Monoid and semigroup graphs. So far, we were specifically concerned

about digraphs admitting some monoid or semigroup representation via the

Cayley construction. In this section, we tackle more general questions, as

we set our sights in the aforementioned concept of monoid and semigroup

graphs. Therefore, we use this section to talk about some special families of

simple graphs that can or cannot be represented in this way, with an special

focus on monoid graphs. As, in this new context, we do not care about the

specific direction that edges take, we can afford some supositions to make

things simpler. First, when S is a monoid, the underlying graph is not affected

by whether e ∈ C or not, so, in general, we will assume that e /∈ C. The most

important simplication, though, is a part of the content of the following result:

Proposition 3.6. Let G a simple graph, and suppose that it is a monoid graph,

so there are M a monoid, C a connection set of M such that G = Cay(M,C).

Then, if we define N(e) to be the set of neighbours of e (the neutral element

of M , we have that G = Cay(M,N(e)) as well.

Proof. As it is clear that, of course, the set of vertices remains the same and all

edges of the form (x, xc) for c ∈ C are in E2 := E(Cay(M,N(e))) by definition

of the Cayley graph (C ⊆ N(e)), we only have to see that every edge of E2

is an edge of E1 := Cay(M,C). So, suppose that (w, v) is an edge in E2 such

that wx = v for x ∈ N(e) but not in C. Then, by definition of N(e), there

is some u ∈ C such that xu = e, which means that wu = vxu = v(xu) = v,

so (v, w) is in E1. Of course, this completes the proof only because we are

working with simple graphs and we consider the two directed edges to be the

same. □
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Another thing we can do almost immediately is to use the results we showed

in the preceding section, obtaining relevant examples of monoid graphs. If we

take any tree T (a connected, simple graph without loops), we can give to

them a 1-outregular representation in a way which allows us to apply Thm.3.1

the following way: we can take any vertex of T and add a loop to it, which

will represent the cycle C that we know every connected, 1-outregular digraph

has. Then, we pick the leaf that is the furthest away from our ”cycle” and

make it play the part of e, laying out directed paths that go from every leaf in

the tree directly to the cycle via the shortest directed path. Of, course, this

gives us as a consequence that:

Corollary 3.4. Every finite tree T is a monoid graph.

In fact, doing this for every corresponding connected component makes this

true as well for forests (graphs where every connected component is a tree,

graphs with no cycles) by Thm.3.1 and, by the same result, even some fami-

lies of pseudoforests, which are graphs with at most one cycle per connected

component. (exactly the ones satisfying the conditions exposed in the theo-

rem). Another family of graphs of interest are threshold graphs, which can be

defined as graphs that can be constructed from a starting vertex the following

way: if the final graph has n ∈ N \ {0} vertices, for each of the n − 1 corre-

sponding steps, we add a new vertex which either remains disconnected or has

edges to all the ones already present at the beginning of the step. This rather

simple pattern of construction allows to quickly prove them as monoid graphs

via this simple result.

Proposition 3.7. Let G be a monoid graph. Then, the graphs

G1 := (V (G)∪{x}, E(G)) and G2 := (V (G)∪{x}, E(G)∪{(x, u)| u ∈ V (G)})
are also monoid graphs.

Proof. So, suppose that G = Cay(M,C) for some monoid and some connection

set. Let us now consider the new monoid M ′ = M ∪ {x}, with the following

operation for any pair a, b of its elements: a ∗ b := ab if both a, b are already

elements of M and x ∗ a = a ∗ x = x for any element in M ′. Essentially, what

we are doing is adding a zero element to M . Let us see that this preserves
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associativity, making M ′ a semigroup: consider a, b, c ∈ M ′. If the three of

them are elements of M , we know that (ab)c = a(bc) because M is a monoid

and, if any of the three equals x, then a(bc) = x = (ab)c because it absorbs

every element. Now, if we consider the digraph given by Cay(M ′, C), it is

clear that there are no edges in it connecting to x, as xC = {x} and the

rest of products are confined to M by closure preserving the original graph.

Then, we already have that G1 = Cay(M ′, C). As for G2, we just have to take

C ′ = C ∪ {x}. The Cayley digraph corresponding to M ′, C ′ will be equal to

the one that corresponds to M,C, except for the new vertex x which has edges

connecting every element to it and only loops caused by left-multiplication.

Therefore, G2 = Cay(M ′, C ′). □

Graph powers of paths are also an interesting example of monoid graphs.

By path of n vertices, we mean the graph Pn defined by V (Pn) = {1, 2, ..., n}
and E(Pn) = {(i, i + 1)| i ∈ {1, ..., n − 1}}, and by kth power of a graph G,

we mean Gk s.t its vertices are equal to those of G and

E(Gk) = E(G)∪ {(x, y)| there is a path of length at most k joining x, y}. We

show it before finishing the section.

Proposition 3.8. Let P be a finite path. Then, for every positive integer such

that 1 ≤ k ≤ |V (P )|, P k is a monoid graph.

Proof. For k = 1, the proof is immediate. Any path P is a type of tree, and we

know those admit the 1-outregular representation we discussed in-depth, as a

directed path starting at one leaf of the path and ending in a loop at the other

end. For k > 1 in the defined range, if P = Cay(M, {a}) for some monoid M

that gives this representation, we say that P k = Cay(M, {a, a2, ..., ak}) The

set of vertices are obviously the same, so we only have to see that they have

the same edges. But, (x, y) is an edge of P k if, and only if, there is a path

λ = xv1(...)vmy of length at most k joining x and y, for v1, ..., vm non repeating

vertices. As there are m of them, the length of λ must be m + 1 ≤ k. But

this is equivalent to the equations xa = v1, via = vi+1 for 1 ≤ i ≤ m − 1

and vma = y in the chosen representation of P as a digraph. If we use those

equations and substitute values from the last to the first one, we obtain that

xam+1 = y, and so (x, y) is an edge of our candidate underlying Cayley graph.
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As for the converse implication, we have that (x, y) ∈ Cay(M, {a, a2, ..., ak})
iff there is some m ≤ k such that xam = y. But this means they are connected

by the path of length m + 1 {x, xa, xa2, ..., xam = y}, and so it is an edge of

P k as well. □

3.3. Infinite families of outerplanar monoid graphs. Having seen some

interesting families of monoid graphs due to preliminary and already reviewed

results, we dedicate this section to a little more focused study of families of

monoid graphs that are outerplanar. Via a couple of results due to K.Knauer

in collaboration with the author, we are able to provide an infinite family of

such graphs. Let us see how. First, though, we introduce the definition of this

concept.

Definition 3.9. Let G be a graph. We say that it is planar if, colloquially, it

can be drawn in the plane in such a way that no pair of edges intersect in any

point that is not one of their endpoints. Formally, we define it as a graph that

is embeddable in the plane, that is, if the graph admits a graph embedding that

takes it to R2, a function f : G 7−→ R2 which is injective, takes vertices of G

to points in the plane and edges (x, y) to continuous paths

(f(x,y) : [0, 1] 7−→ R2 s.t f(x,y)(0) = f(x) and f(x,y)(1) = f(y)) in such a way

that two edge representations only intersect if it is at one of their endpoints.

When a graph is planar, its representation in the plane divides it in regions

delimited by the edges of the graph, which we refer to as faces. We say that a

planar graph is also outerplanar when all its vertices are located in the outer-

most face it defines in R2 (the face that is unbounded).

A simple example of an outerplanar graph might be C5, as the drawing we

did in Figure 1 can easily show. The strategy to obtain an infinite family of

outerplanar graphs such that are monoid graphs is composed of two simple

parts: to obtain a way to construct an infinite number of outerplanar graphs

easily, and to at least be able to represent with monoids an infinite subfamily

of it. We begin by describing the process to obtain infinite outerplanar graphs

that will make it possible: let us consider the family of graphs called 2-trees,

and consider those that can be constructed in a finite number of steps following

this process: take the smallest 2-tree, the triangle C3, as the starting graph
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and let us consider the following technique: from a given 2-tree, it is possible

to obtain another one with exactly one more triangular face as follows: we

add a new vertex u to the chosen 2−tree, and we make it adjacent to a pair of

vertices v, w such that (v, w) was already an edge of the 2-tree. This is called

tackling the vertex u to the edge (v, w). Any 2-tree will be outerplanar as long

as only one vertex is tackled to a given edge during the construction.

We will refer to the outerplanar graphs obtained in this manner as triangular

graphs. It is worth noting that they are also maximal outerplanar graphs, in

the sense that adding any other edge would cause the loss of the property.

This method is not without its faults, though, as this ”assignment” is not a

function from the set of trees satisfying these hypotheses to triangular graphs.

Even for paths, if they have six vertices or more, there are more than one ways

to follow the method in order to obtain essentially different graphs, depending

of what common side we choose the triangles to share for every edge. Let us

see a simple example for the path of four vertices P6:

Figure 4. Different triangular graphs built using P6. The first

one depicts a triangular path with 4 triangular faces, which we

will see is always of the form P 2 for a path P , and the second

is a ”bend”, which we could describe as a path with an apex

vertex P+

The reason this begins to happen at exactly n = 6 for the number of ver-

tices is because paths up to 5 vertices cannot represent triangular graphs with

vertices of degree larger than 4. From 6 vertices on, if we join the triangles
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in a way that they ”bend”, we can obtain vertices of greater degree, while

making paths with triangles as in the first example always leaves maximum

degree equal to 4. This example features two different families of triangular

graphs obtained this way. In the first case, the chosen sides where the triangles

are joined are chosen in a way that the triangles form a path again, and, in

the second one, they bend. Triangular paths, bends and bifurcations (which is

when a triangle has other triangles glued to every one of its faces, coming from

a bifurcation in the tree) are the main types of simple, regular (in the sense of

shape, not referring to the graph notion) graphs that we can build this way,

and they are the pieces we could use to build every possible triangular graph

through the union set operation. The main problem, though, is that union is

not that good of an operation when it comes to preserving semigroup struc-

ture, or not adding unwanted edges in Cayley constructions. Before returning

to these difficulties, though, let us set our sights in the types of triangular

graphs we can prove that are monoid graphs. Those are triangular paths and

bends.

3.3.1. Triangular paths. As we have just mentioned before, triangular paths

are the subfamily of triangular graphs where triangles are glued in a straight-

line fashion, preserving the path structure somewhat. They are also called

this way because they always come from paths when built using the vertex-

to-triangle construction, and admit a fairly easy representation inherited from

the results of the preceding section.

Proposition 3.9. Let Tn be a triangular path, where n ≥ 1 is its number of

triangles. Then, Tn = (Pn+2)
2, for Pn+2 the path of n+ 2 vertices, making Tn

always a monoid graph by Prop.3.8.

Proof. Suppose we have a triangular path composed by n triangles, for some

positive integer n. If n = 1, we can take P3 and, taking the graph power,

P 2
3
∼= C3. This gives us an initial case we can use to fuel a proof by induction:

suppose now n > 1 is such that n − 1 satisfies the property. The triangular

path in n − 1 vertices (Tn−1) is now, by hypothesis, the square graph of a

path, say Pn+1. We can then obtain the triangular path of n vertices (Tn)

simply by adding a new vertex to Pn+1 and adding an edge that joins it to an
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endpoint of it (a leaf), call it P ′ = Pn+2, and then taking the square power of

it, Tn = (P ′)2. The reason why this happens is that, for this P ′, taking the

described graph power only adds the edge representing a length two path from

P to the new vertex, and so it only adds a triangle to Tn−1. □

Remark 7. Let us note that this equation can be also read in the opposite

direction: for n ≥ 3, (Pn)
2 = Tn−2.

Given that this case is pretty simple, we can do even more, we can find

explicit monoid representations for the triangular paths Tn, for every natural

n equal or greater than 1. It is worth noting that this is just a particular case

of the Zelinka construction, representing the path as a directed path that ends

in a loop.

We construct such suiting monoids from the natural numbers in the following

way: let N refer to the natural numbers as usual, zero included. For a fixed

n > 1 natural as well, we define the following relation: given x, y ∈ N, we have

that x ∼ y ⇐⇒

x = y If x, y satisfy that x < n and y < n

x, y ≥ n

It is almost immediate to see that this relation is an equivalence relation. It is

obviously reflexive and symmetric, and transitivity is easily seen with a little

thought: given a, b, c s.t a ∼ b and b ∼ c, either it is because a, b are equal or

because they are both greater than n. In the first case, b ∼ c only if c is equal

to the other two, and in the second case, it must be that c is also greater or

equal than n, giving the wanted property. We can now take N∞,n := N
∼ , and

define the operation [a] + [b] := [a + b], which is well-defined by construction

of the relation (either a, b < n and their classes have unique representatives

or one of them is bigger than n or equal to it, and the sum will always be the

same for any other representative of its class (due to how the order relation of

the naturals behaves). So, we have a magma so far. We now see it possesses

useful structure:

Proposition 3.10. Let n be a natural number. Then, N∞,n is a monoid with

the described operation.

Proof. The class of 0 is obviously a neutral element, and [n] :=∞ is clearly a

zero element in the sense of being absorbent. Moreover, the operation is always
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commutative. Therefore, it suffices to see that the operation is associative.

Let [x], [y], [z] be elements of our set. Then, if x + y + z < n, the operation

behaves exactly as that of the normal naturals, and is clearly associative. If

x+ y+ z ≥ n, though, no matter in which order we do the operations, we will

end up obtaining∞ as our result, which means the operation is associative. □

Remark 8. It is worthy to note that the associativity of the operation and the

whole construction of the set does not use 0 at all, and so, if we did the same

for N \ {0}, we would still obtain a semigroup.

Finally, we use the monoids we have built to represent triangular paths.

Proposition 3.11. Let n > 1 be a natural number. Then, Tn = Cay(N∞,n+1, {1, 2})

Proof. The reason why we need 3 + (n − 1) total vertices for n triangles is

related to the proof of the preceding big result. 3 vertices are needed to

represent the first triangle, and, from then on, every vertex we add makes

it possible to represent another extra triangle. Therefore, making a total of

3 + (n− 1) vertices for n triangles. But, as N∞,n has n+ 1 elements, we have

to choose the monoid for 3 + (n − 1) − 1 = 3 + (n − 2) = n + 1. Now, for

the Cayley representation, we have that, as Tn = P 2 for some path, the color

1 will give the 1-outregular representation of the path P , 2 will cover the rest

of the edges and ∞ being the last vertex will just transform into loops any

inputs from the connection set. For n, both elements take it to ∞, making a

multiple edge. □

0
2 4 6 8

1 3 5 7
∞

Figure 5. A drawing representing T8 by N∞,9, where color red

represents the element 2 and blue represents element 1.
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3.3.2. Bends. In the realm of possibilities given by the construction of trian-

gular graphs from trees as we have established, bends are on the opposite end

with respect to triangular paths: they are outerplanar graphs that are built

by gluing together triangles in a way that increases the degree of a given ver-

tex, say the center of the bend, as much as possible for any given number

of triangles n. They can be represented in the plane as ”almost-polygons”,

a decomposition of a regular polygon in equilateral triangles where there is

one missing. In this case, given that we have already introduced the monoids

N∞,n, the proof to them being monoid graphs is much more straightforward.

We first remind the result from Prop.3.7, which tells us in the first case that

adding a zero element to a semigroup (an element such that the result of every

operation that has it as one of the operands is equal to it) creates another

semigroup. We can use this result and the preceding ones in order to see:

Proposition 3.12. Let n ≥ 1 denote the number of triangles of the graph.

Let us refer to the bend of n ≥ 1 triangles as Bn. Then,

Bn = Cay(N∞,n ∪ {x}, {1, x}), for x a zero element added to N∞,n

Proof. By the aforementioned result, we know that N∞,n ∪ {x} is a monoid,

and the number of vertices n = 3 + (n− 3) is for the following reason. It will

take a total of 3 + (n − 1) total vertices to make the graph Bn, but in this

representation, one spot is taken by x, so we need the corresponding ”natural

infitity” monoid for 3 + (n− 2) elements, which is N∞,3+(n−3) on account of it

having the element 0 as well. As for the Cayley representation this provides,

we note that 1 will represent as an 1-outregular path digraph the perimeter

of the ”almost-polygon”, ending in a loop at ∞. As for x, it just acts as the

center of the bend, absorbing every other element. □

Let us note that, as Bn = Tn for 1 ≤ n ≤ 3, they admit both Cayley rep-

resentations. As we can easily see, examples described until now are clearly

connected graphs. Our objective is now to see that there are also infinite ex-

amples of outerplanar monoid graphs that are not connected, see how to give

explicit Cayley representations to some of them and prove an interesting char-

acterization for families of outerplanar graphs that admit the Cay(M, {a, a2})
representation.
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Figure 6. A drawing of the representation of B4 by N∞,4∪{x},
where the color blue refers to 1 and the grey color to x. Clearly,

the element with the loop is ∞.

In order to see this first point, we recover our discussion about unions of graphs.

As we have briefly discussed above, in general, set theoretical union as usual

is bad at preserving the semigroup structure of its components if we bestow it

with some associative global operation, and the corresponding Cayley graphs

tend to gain undesired edges. When it comes to disjoint union, though, things

tend to be easier, as we have no intersections where two possibly very different

operations have to agree. A very general approach to building semigroups as

disjoint union of families of other semigroups can be seen in this result, found

in [10]

Proposition 3.13. Let (Y,≥) be a semigroup-partially-ordered set (any pair

of elements α, β are such that α, β ≤ αβ), {Sα}α∈Y a family of semigroups.

If, for any pair of elements α ≥ β in Y there are semigroup morphisms

ϕα,β : Sα 7−→ Sβ such that ϕα,α = Idα and ϕα,λ = ϕα,β ◦ϕβ,λ for every triple of

elements in Y such that α ≥ β ≥ λ, then S :=
⊔

α∈Y Sα is a semigroup with

the following operation: a ∗ b = ϕα,αβ(a)ϕβ,αβ(b) for a ∈ Sα and b ∈ Sβ.

Proof. Let a, b, c be elements in SA, SB, SC for A,B,C ∈ Y , respectively. Then,

we have that (a ∗ b) ∗ c = (ϕA,AB(a)ϕB,AB(b)) ∗ c
= ϕAB,ABC((ϕA,AB(a)ϕB,AB(b)))ϕC,ABC(c) = ϕA,ABC(a)ϕB,ABC(b)ϕC,ABC(c)

= a ∗ (b ∗ c) rearranging the second operation analogously. □
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This is a very general construction quite possibly based around the concept

of limit in category theory which can be applied in a myriad of practical set-

tings, specially for finite families, making it a very useful algebraic solution,

but is clearly not suitable for our needs. Although we have a semigroup struc-

ture that will preserve the original structure of Sα ⇐⇒ α is an idempotent

element of Y , it is clear that it will never provide Cayley graphs of the dis-

joint union that respect the original edges, as it takes operations from different

semigroups in the family to one of them in particular, always creating cross

edges between them. So, we need special ways of bestowing disjoint unions of

semigroups with a semigroup structure that respects and keeps separated the

respective Cayley graphs. With these needs in mind, K.Knauer proposed an

idea that works for special cases of semigroups and choices of connected sets

for the purposes of this work. Let us introduce it:

Proposition 3.14. Let S, T be two semigroups, which we assume to be disjoint

without loss of generality for our purposes. Then, if there exist special elements

a ∈ S, b ∈ T such that as = a for all s ∈ S and bt = b for all t ∈ T (they

are left-zeros in their respective semigroups), and if we consider the function

ϕ : S ⊔ T :7−→ {a, b} defined as ϕ(s) = b for every s ∈ S, ϕ(t) = a for every

t ∈ T , S ⊔ T is a semigroup with the operation defined as

x ∗ y :=

xy if either s, t are both in S or in T

xϕ(y) if they are in different semigroups of the union.

If a ∈ C and b ∈ D for C,D the connection subsets of S and T , respectively,

then we also have that Cay(S ⊔ T,C ⊔D) = Cay(S, T ) ⊔ Cay(T,D).

Proof. Let us see that the proposed operation works. As the result of the

operation of any two elements falls in S ⊔ T again, we only have to check

associativity. Take, s, t, u elements in S ⊔ T . Then, if all of them are in S or

in T , this follows directly from the respective semigroup structures. So, let us

suppose that there is at least one element that is in a different component than

the others, suppose s, u ∈ S, t ∈ T . Then, for the three possible positions of

t, we have : (s ∗ u) ∗ t = (su)ϕ(t) = (su)a = s(ua) = s(uϕ(t)) = s ∗ (u ∗ t);
(s ∗ t) ∗ u = (sa)u = s(au) = sa = s ∗ (tb) = s ∗ (t ∗ u);
t ∗ (s ∗ u) = t ∗ (su) = tb = tbb = (tb)b = (tb) ∗ u = (t ∗ s) ∗ u. The case
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where two elements are in T and one is in S is solved the very same way,

as the only argument used is the property of a, b being left-zeros in order for

the operations to coincide when the element is in the middle, and so we have

ourselves a semigroup. As for the last part, it is clear that if both a ∈ C,

b ∈ D for the corresponding connection sets of two Cayley graphs over S and

T , the operation defined does not generate any cross edges by construction,

but it does not even add new edges inside of any of the graphs separately, as

t ∗ c = tb for every c ∈ C and t ∈ T . Analogously, s ∗ d = sa for every d ∈ D

and s ∈ S, and we impose by hypothesis that these edges are already in the

corresponding Cayley graphs. □

The first thing we can apply this result to is the classes of basic outerpla-

nar graphs we know explicit monoid representations of: bends and triangular

paths. Triangular paths do not have the unique left-zero of the monoid that

represents them in the connection set, and, thus, are not suited to apply the

result to them, except for the range of n where they are the same as bends.

As for bends, a zero element is in the connection set for the representations of

Bn for every n ≥ 1, which gives us the following result directly as a corollary:

Corollary 3.5. Let m,n be natural numbers bigger or equal than 1. Then,

Bn ⊔ Bm (the disjoint union of bends with n and m triangular faces, respec-

tively) is a semigroup graph.

Proof. Take the corresponding representations as monoid graphs for Bm and

Bn as described in Prop.3.12 Then, as they satisfy the hypotheses of Prop.3.14,

the disjoint union of both can be represented by the Cayley graph of the

presented disjoint union semigroup. □

Of course, there are infinite examples of such disjoint unions, and all of

them are examples of outerplanar, disconnected graphs that are semigroup.

(the disjoint union of outerplanar graphs is outerplanar, as they do not share

vertices nor form any new faces that are not already in one of the graphs by

themselves). But this is not all that we can say in this respect; there are more

ambitious goals we can use to test the tools we have introduced. In order to

end this part of the work, we want to present an original research (although
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heavily reliant in Thm.3.1 by K.Knauer and Puig i Surroca) for a character-

ization of outerplanar graphs that admit the simplest Cayley representation

that we know of, that which works for triangular paths: Cay(M, {a, a2}))
for some monoid M and some element a ∈ M , which will provide infinite

examples of outerplanar, disconnected monoid graphs. The strategy is the

following: we want to see exactly how these graphs are related to the corre-

sponding subgraphs Cay(M, {a}), which are clearly monoid and 1-outregular,

and, by Thm.3.1, directed pseudoforests as described. Then, we want to study

how outerplanarity affects the options that are valid, and then recover which

classes of outerplanar graphs admit the desired representation. We divide the

process in different lemmas: the first one takes care of the relation between

Cay(M, {a, a2}) and Cay(M, {a}):

Lemma 3.1. Let M be a semigroup, a ∈M . Then, we have that

Cay(M, {a, a2}) = (Cay(M, {a}))2, where by this exponent we mean the graph

power in the directed sense, that is, (x, y) ∈ E(G2) for G a directed graph iff

there is a directed path from x to y of length at most 2.

Proof. Clearly the set of vertices of the two directed graphs is the same, so it

suffices to see that they have the same (directed) edges. Let x, y be elements

in M , then (x, y) ∈ Cay(M, {a, a2}) if, and only if, either xa = y or xa2 = y.

In the first case, clearly (x, y) is already an edge of Cay(M, {a}), and, in the

second, the path {x, xa, xa2 = y} is a path of at most length 2 from x to y.

(it could be less, for example if a is an idempotent).

Conversely, (x, y) is an edge of (Cay(M, {a}))2 if there is a directed path of

at most length 2 from x to y. If it is of length 1, it is an edge of the Cayley

graph and xa = y. If it is of length 2, it must be the unique directed path

{x, xa, xa2} that can be achieved for this Cayley graph, with xa ̸= xa2, which

excludes the previously considered case of a being an idempotent. In any case,

it is clear that (x, y) is an edge of Cay(M, {a, a2}) □

This gives us a clear path to study representations of the form Cay(M, {a, a2})
from their subgraphs defined by just a, as we wanted. We now want to see how

strong of a condition outerplanarity really is in this context. In order to be

able to study this impact comfortably, we need to introduce a little machinery
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from minor theory, an important tool for almost any result in graph theory.

We first introduce the notion of a minor.

Definition 3.10. Let G be a simple, finite graph. Then, we say that H is a

minor of G if it can obtained from G applying finitely many times one of more

of these steps:

(1) Erasing edges from G, that is, considering the same graph with a particular

edge remove; (2) Removing isolated vertices, that is, those with degree 0.

(3) Contracting edges, that is, for an edge e = (v, w), the graph resulting from

contracting e is defined as a the graph where the vertices v, w are made into

the same vertex, and this vertex inherits adjacency to all the other vertices that

were adjacent to either v or w.; It is worth making the remark that is does not

matter in which order this steps are applied in order to determine whether H

is a minor of G or not.

The notion is specially potent since the work from N. Robertson and P.

Seymour cited in [8] proved that some families of graphs satisfying a series of

properties could be characterized in terms of excluded minors: that is, a graph

G is in the family if and only if a given special graph cannot be obtained from

G using the previously described process of obtaining minors.

For our case, we only need to know that there exists such an excluded minor

characterization for outerplanar graphs, which we will cite as a lemma, but we

will not prove.

Lemma 3.2. Let G be a simple graph. Then, G is outerplanar iff neither K4

or K2,3 are minors of it.

A complete proof of this result can be found in [2].

Lemma 3.3. Let G be an outerplanar graph such that G = Cay(M, {a, a2})
for a monoid M and an element a. Then, G′ = Cay(M, {a}) does not contain
any cycle Cn with n ≥ 4

Proof. Let V (Cn) := {v0, ..., vn−1}.Suppose any connected component of G′

contained such a cycle. As a first observation, let us note that the only di-

rected 1-outregular representation of a cycle is that of a directed path with
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equal endpoints, that is, any directed representation where two edges ”collide”

(have opposite directions) is not 1-outregular. If that were the case, and vk for

k ∈ {0, 1, ..., n − 1} was the first vertex going out from v0 in a directed path

that encountered an edge in an opposite direction, say, the edge (vk+1, vk),

by 1-outregularity and the need to represent every edge in the cycle, the fol-

lowing edge should have the same direction, so (vk+2, vk+1) is the edge in this

directed representation. This argument can be iterated until the moment we

arrive to v0 again. Then, we have that (v0, v1) is an edge in the representa-

tion by hypothesis, and (v0, vn−1) as well by iterating the observation we just

made. But that would make v0 have outdegree 2, causing a contradiction. The

same argument applies if we assume that the directed cycle follows the path

v0, vn−1, ...v0, and we can just rename the vertices without loss of generality in

that case. Therefore, such a k cannot exist and the only possible representa-

tion is a directed n-cycle.

Having seen this, let us denote as C = v0, ...., vn−1, v0 the directed cycle in

question. As n ≥ 4, we can take four different vertices v0, ..., v3, and then

consider C2. By applying the described steps for obtaining minors, we could

clearly delete all edges belonging to length two paths in C2 that are not con-

tained in the subgraph induced by the selected four elements, and contract the

rest of length one edges, obtaining a graph with K4 as its underlying graph,

which clearly makes the graph not outerplanar. □

Therefore, if G = Cay(M{a, a2}) is to be outerplanar, we have that any

connected component of Cay(M, {a}) can only have a 1-cycle (loop), a 2-cycle

or a 3-cycle (triangle). Let us now see how outerplanarity restricts in which

ways bifurcations in the connected components of the pseudotree Cay(M, {a})
can be found.

Lemma 3.4. Let G′ = Cay(M, {a}) be such that the underlying graph of

Cay(M, {a, a2}) is outerplanar. Then, if a connected component of G′ contains

a bifurcation (a directed representation of the simple graph S3), the unique

cycle of the connected component has all its vertices in this subgraph.

Proof. The most direct way to translate the intuition of what a bifurcation

is to graph theory is the graph S3 = K1,3, the star of three vertices. It is
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clear that any bifurcation in a tree contains this simple graph as a subgraph.

Let us take the following notations: V (S3) = {0, 1, 2, 3}, where 0 refers to the

degree 3 vertex. Out of all 8 ways to represent the edges (0, i), i ∈ {1, 2, 3}
as directed edges, the only 1-outregular ones are isomorphic to one of these

three cases:
−→
S3,1, with set of edges {(1, 0), (2, 0), (3, 0)}, where the vertex 0

has indegree 3. As the graph must be 1-outregular, another edge has to come

out of 0. If it goes to 0, it will form a 1-cycle, and, if it goes to 1, 2, or 3, a

2-cycle. If we supposed that 0 goes to another vertex of G′ v that is not in

the bifurcation, when we take G′2 we would have that the induced subgraph

cannot be outerplanar. The situation is depicted in detail in Figure9, where

we will prove this fact rigorously. In conclusion, there must be a 1 or 2-cycle

in a 1-outerplanar version of this digraph.
−→
S3,2 is the one defined by the set of edges {(2, 0), (3, 0), (0, 1)} In this case, as

this must be part of a digraph that is 1-outregular, 1 is the vertex that has

en edge left to define. It it goes to itself or to other vertex of the triple 0, 2, 3,

it will generate a 1-cycle (loop), a 2-cycle or a 3-cycle. If it went to another

vertex v of G′ outside of the bifurcation, the length 2 paths λi : i01 for i = 2, 3

would generate edges (i, 1) in G′2 that would not allow for the edge (0, v) to

be represented in the plane in a way that G′2 were outerplanar. Once again,

the exact situation is depicted and shown after Figure10. Therefore, by our

hypothesis, this case must also have a cycle in one of its vertices.

Finally, for
−→
S3,3 with set of edges {(0, 2), (3, 0), (1, 0)}, we have that the vertex

that still needs to have another edge for because of the 1-outregularity of G′ is

2. If it goes to any of the vertices already in S3, once again, we have 1-cycle,

a 2-cycle or a 3-cycle. And, if it went to another vertex v of G′, once again,

we would induce edges in G′2 of the form (1, 2), (3, 2) and (0, v). Once again,

representing these as continuous paths in the plane, as well as the preexisting

edges, will give no possibilities of an outerplanar representation. A completely

rigorous way of seeing this is given after this statement when showing Figure11.

In any case, this directed representation of S3 must also have a cycle in its

vertices, and all the rest are isomorphic to one of these by permuting the degree

1 vertices. □
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Figure 7. The three cases depicted in figures, 9, 10 and 11

have underlying simple graph isomorphic to the one depicted

here, G.

We now repay what is due from the cases of the preceding lemma. We want

to use 3.2 in order to prove that the squares of the digraphs considered in the

figures do not represent outerplanar graphs. But G obviously has K2,3 as a

minor if we remove the diagonal from its square, so none of them can represent

outerplanar graphs.

Figure 8. The three directed representations of S3 that can be

part of a 1-outregular graph, as seen in the last lemma.

Figure 9. An example of a representation of
−→
S3,1 with an extra

vertex v and edge (0, v) which exemplifies that adding the edges

for paths of length 2 (black in the picture) cannot result in an

outerplanar graph.
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Figure 10. Drawing exemplifying the situation for
−→
S3,2 when

we add to it a vertex v and take the square directed graph.

Figure 11. A drawing which depicts the situation for
−→
S3,3 and

an extra vertex v

So far, we have seen that outerplanarity restricts in a great way the con-

texts in which ”bifurcations” S3 can present themselves: they only present

themselves with the corresponding unique cycle of the connected component,

which means, as cycles in every connected component are unique because of

1-outregularity, that they do not appear outside of them. Therefore, we have

that connected components of Cay(M, {a}) must be collections of paths con-

verging to points of a 3-cycle, a 2-cycle or a 1-cycle.

We now study how a connected graph satisfying this properties can be, de-

pending on the length of its unique cycle.

Proposition 3.15. Let G be an outerplanar connected graph satisfying

G = Cay(M, {a, a2}) for a monoid M and a an element of it, and Z the length

of the cycle in Cay(M, {a}). If Z = 3, then up to three different directed paths

go to Z, arriving in different vertices of the cycle. If Z = 2, then there are

up to two directed paths going to Z. If Z = 1, G′ is a finite collection of an

unspecified amount of directed paths that intersect only at the 1-cycle, with also

the possibility of bifurcations arriving at this point, having as a subgraph
−→
S3,2.

Proof. We do the proof in reverse order as to how we have presented the facts:

1-cycles pose no problem to outerplanarity other than the subgraphs of the
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form
−→
S3,2, as squares of directed paths are known to be triangular paths, which

we know to be outerplanar.

Bifurcations not containing the loop will not cause outerplanar graphs when

taking the underlying graph of the graph square as seen in lemma 3.3, so,

except for these bifurcations, there are none in these connected digraphs.

If Z = 2, then, having more than two paths arriving at any given point of the

2-cycle causes the directed power graph of exponent 2 to not be outerplanar,

and, if two paths arrive at one point of the 2-cycle and one arrives to the other,

the graph power of two is also never outerplanar. We check this facts in-depth

when we depict them in Figures 12 and 13. In consequence, we are left with

only the options presented in the statement of the proposition.

Finally, for Z = 3, we have that there can be no more than one directed path

arriving to the same point of the 3-cycle. If there were at least two, then

G′ would have a subgraph isomorphic to
−→
S3,2 with the added vertex v as in

the preceding proposition, and, as taking graph powers respects inclusions,

we would have that G′2 cannot be outerplanar. Therefore, the directed trees

arriving at the 3-cycle contain no bifurcations, no cycles and, then, can only

be directed paths. Because of what we have just argued, there can only be a

path arriving per point, and so there can be up to three. □

Figure 12. The subgraph induced by a 2-cycle with more than

two directed paths meeting at one point and its corresponding

graph square.
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Figure 13. Drawing of the graph square for the second ex-

cluded case of the 2-cycle, when two paths arrive to one end and

one to the other.

We can now note quickly that, in this case, the digraphs that appear in Fig-

ures 12 and 13 also define underlying graphs isomorphic to G as depicted in

Figure 7, and so they cannot represent outerplanar graphs either, completing

the proof.

So, the only thing to check for it to be a characterization of connected out-

erplanar graphs admitting this representation is that the explained types of

directed pseudotrees give underlying outerplanar graphs after taking the di-

rected graph square. But this is clear for some cases: if Z is a 1-cycle and

the connected component contains no bifurcations, only connected paths con-

verging to the loop, taking graph square will give, for every directed path,

a triangular path, all of them meeting at the vertex which is a loop in the

directed representation. This, we know to be outerplanar. If Z is a two cycle

and there is only one directed path arriving to one point of the cycle, then the

underlying graph of the graph directed power of two will also be a triangular

path, and the same in the case where there are two directed paths, each ar-

riving to a different point of the two cycle. For Z = 3, if there are up to two

different directed paths arriving each to a different point of the 3-cycle, the

underlying graph of Cay(M, {a, a2}) will also be isomorphic to a triangular

path.

Therefore, there are really only three new cases uncovered by our lemmas.

Outerplanar graphs associated to bifurcations, either in a 1-cycle or a 2-cycle,

and outerplanar graphs given by the case of a 3-cycle attached to exactly three

directed paths. We now represent them in an outerplanar way, making effec-

tive that all of them are outerplanar. The reason we can affirm this is that,
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for the whole family of graphs to be outerplanar in every case, we only have to

check what happens around the corresponding cycle. From that point on, the

only changes in the graph are given by the length of the directed paths that

arrive to it, but they always give triangular paths when taking their directed

graph square and then taking the underlying simple graph, which is a process

we know well.

In other words, these families of graphs follow predictable patterns we know

can be made outerplanar, except around their corresponding cycles. Moreover,

we have enough checking for every case individually, as when multiple directed

paths and ”bifurcations” of the form
−→
S3,2 coincide in the same 1-cycle, they

do not add any directed paths of length up to 2 to each other. It is enough to

study whether they are outerplanar or not separately.

In fact, bifurcations that end up in a 2-cycle give underlying graphs isomorphic

to those given by bifurcations that end in a 1-cycle. Therefore, we only have

to represent the case for the 3-cycle with three directed paths and one out of

the two we have mentioned, and see that they are indeed outerplanar. We see

it for a bifurcation
−→
S3,2 that ends in a 1-cycle:

Figure 14. Underlying graph of the directed graph power of

two of a bifurcation ending in a 1-cycle. We will call these

graphs, clearly outerplanar, arrowheads. Note that it contains a

subgraph isomorphic to B4
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Figure 15. The underlying simple graph given by the de-

scribed process by taking the 3-cycle with three directed paths

of three vertices each. This is what we call a triangular bifurca-

tion.

And, so, we can conclude that all graphs that are given by directed graph

squares of pseudotrees as described in Prop.3.15 define underlying graphs that

are outerplanar, and Prop.3.15 is, in fact, a characterization of the connected

outerplanar graphs of this form, as all of them are monoid with a represen-

tation of the needed form, by lemma3.1 and the fact that we know that the

pseudotrees that represent them are monoid.

We can finally state the complete characterization, as a corollary of all other

results:

Corollary 3.6. Let G be graph of the form G = Cay(M, {a, a2}) for a monoid

M and an element a ∈ M . Then, G is outerplanar if and only if the directed

pseudoforest Cay(M, {a}) satisfies that, given C its connected component with

maximum length (l(C) ≥ l(D) and Z(D)|Z(C) for every other connected com-

ponent D), one of these three cases must hold:

Either Z(C) = 3 (and then Z(D) = 3 or 1 for any other connected compo-

nent), Z(C) = 2 and every other component has cycle length 2 or 1 as well

or Z(C) = 1 and every connected component is of the same type, having only
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1-cycles.

In all cases, the corresponding connected components are as described in 3.15.

Proof. The implication from left to right is a direct consequence of everything

we have proved until now, 3.1, 3.3, 3.15.

The converse implication is also direct, as every of the forms allowed for a graph

of the form Cay(M, {a, a2}) satisfying these restrictions for its connected com-

ponents defines outerplanar underlying graphs. If every connected component

is outerplanar, so is the whole of G. □

3.4. Non-monoid graphs. As we have briefly discussed before, being a monoid

graph, or at least a semigroup graph, at least intuitively, should be more com-

mon that its opposite, as that would imply that the given graph admits no

Cayley representation. This seems to be the case when checking the litera-

ture as well, as the only examples produced to date (to the knowledge of the

author) are found in [5]. We now show the proof for the family of graphs

K4 ⊔Cl, for l > 1 positive integer satisfying that 2, 3 do not divide it found in

the referenced work, and discuss some of its consequences.

Proposition 3.16. Let us consider the family of graphs of the form

Gl := K4 ⊔ Cl, for l > 1 positive integers satisfying that 2, 3 do not divide l.

Then, Gl is not a monoid graph.

Proof. We want a proof by contradiction. Assume that Gl = Cay(M,C), for

some monoid M and some connection set C. Let us now denote as
−→
K4 and

−→
Cl

the corresponding components of the directed graph Cay(M,C), with possibly

loops and some anti-parallel arcs. We know see that, as l is an odd number,

there must be a pair of consecutive edges in
−→
Cl , which, as it is a Cayley

graph, must translate to a path of different vertices {u, uc, ucc′}, for u ∈ M ,

c, c′ ∈ C, and u, ucc′ not adjacent. If this were not the case, it would need

to happen that every pair of consecutive edges representing the cycle are in

opposite directions: but, since there are an odd number of vertices, this means

there are an odd number of edges in the cycle as well, and so, this process

means that the edge joining the last point in the directed cycle to the first

must form a length two directed path with the directed edge going from the
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first to the second vertex, and so this cannot happen. Now, if we have our three

consecutive vertices as described, and we supposed that the neutral element

is in the
−→
K4 component of Gl, we would have that e, ec, ecc′ must satisfy that

either a pair of them are equal or that they are neighbours (adjacent by a

directed edge), which would cause a contradiction with what we know about

them by hypothesis, as any of these cases would imply that
−→
Cl would not

describe an underlying graph that is a cycle. In any case, if our graph is to

be represented by a monoid via the Cayley construction, the neutral element

cannot be in the directed component corresponding to the complete graph. So,

we have that e ∈
−→
Cl. Of course this means that N(e) = {c, c′} for two different

elements, and, by Prop.3.6, we can restrict ourselves to C = N(e). The periods

of c, c′ can only be 1, 2 or l, and, so, Cay(M, {c}) and Cay(M, {c′}) must be

pseudoforests where the unique cycles in each of them cannot have length 3 or

4. Therefore, if we look at the Cayley graph generated by c and c′ in the
−→
K4

directed component, they can generate at most three of the edges in K4. This

can be checked case by case, exhausting all possible directed representations,

which we omit for the sake of brevity. (process would go as follows: starting

in any vertex of the connected component, and checking every possible case

for c ∈ C: it forms a loop or goes to another vertex, then goes to a third

vertex or forms a 2-cycle, and so on, imposing that no length 3 or 4 cycles

can be achieved). So, as K4 has six edges, this implies that the only way it

can be represented is if both directed graphs represent 3 non-loop edges each,

and then there is no edge corresponding to both c and c′, and, if we group

the edges in K4 in function of whether they come from c or c′, we obtain two

copies of the path P4. We can now consider two cases: if there is some edge in
−→
Cl corresponding to both c, c′, as we can consider an endomorphism taking e

to some vertex in
−→
K4 (they must exist, as we know left-multiplication by any

element defines an endomorphism of the Cayley graph), then we have that

there must be an element in this connected component that has a loop.(this

is because such a morphism will take the elements in Cl to K4, and, as we

have seen that the Cayley graphs there induced by c, c′ are disjoint, the only

way an edge is shared there if it is a loop). So, we can suppose that every

edge in Cl is represented by either c or c′, and then, as l is odd, there must
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be a loop in
−→
Cl. Let us say this element causing the loop is c without loss of

generality. By the same argument as before, this implies there is a loop in
−→
K4

once again. In order for the proof to be over, we show that this fact produces

a contradiction. So, suppose x is the vertex with this loop, and we have that

it will be in the copy of P4 induced by c. This means it is the only cycle of

this copy, as the corresponding Cayley graph is 1-outregular and, of course,

monoid. Therefore, there must be v, w such that they are different and vc = v,

wc = x, no matter which is the directed representation of the underlying path.

This implies that the elements e, c, c2 are all different. By this fact and the

hypothesis that all edges correspond either to c or c′ but not both, it is easy to

see that cc′ ∈ {e, c, c2}. Then, xc′ = xcc′ = x, and so, there are no more loops

in
−→
K4. Then, we have that wc′ = vcc′ ∈ {v, w, x}, which is a contradiction,

since, with everything we know, it could only be wc′ = vcc′ = x, and then the

c′-path could not possibly cover three different non-loop edges. □

Figure 16. K4 ⊔ C4, the smallest example we know of a non

nonoid graph.

Although we know that these graphs are not monoid, we do not know as of

now whether or not they admit semigroup representations. Even though they

are far from conclusive, we dedicate the rest of the section to provide a couple

of results that show that K4⊔C5, the smallest possible graph of the family, if it

is a semigroup graph, does not admit some ”naive” or simple representations.

Let us see it.
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Proposition 3.17. Let G = K4⊔C5. Then, G does not admit any semigroup

Cayley representation such that the elements in K4 form a 4 element semigroup

S and C5 is represented by Z/5Z with 1 : a ∈ C. (and thus the semigroup that

represents G is equal to S ⊔ Z/5Z with an associative operation that respects

the corresponding restrictions):

Proof. First, we notice that, as all edges in K4 must be represented, there

must be at least two elements of S ∈ C for C the connection set, as any

other element of Z/5Z in C would cause extra edges to appear in the cycle or

just add loops if it is the neutral element of the group. Let us first consider

connection sets without the neutral element of the field of 5 elements. For any

element s ∈ S in the connection set, we must have that as stays in
−→
C5. It also

is impossible that C contains the whole S, as ari can only have three values

that respect the cycle if ri ∈ C, and then there would be some different values,

ri, rj with ari = arj. As a is cancellative because it has an inverse, we would

have that both elements must be the same. Therefore, the connection set must

be either equal to a and two elements of S or to a with three of them. For an

element ri ∈ C, it is clear that the only possible values the operation can take

are ari = a, ari = a+a or ari = a−a = 0. If the first case were true, then, by

associativity, a(riri) = (ari)ri = 3a, and, then, riri is an element that brings a

to a+2, so riri must not be in the connection set, say it is some other rk with

k different form i and j. But then, making the same assumption, we have that

rirk must be an element that sends a to a+3, so it has to be the only element

remaining in S, call it s, given that it cannot be in the connection set. But

then, ris sends a to a+ 4, which is different from all other results and cannot

be in the connection set, and so we should have some value in S sending a

to two different values, a clear contradiction. The same argument could be

made from an element ri that sends a to a− a operating from the right, and

so, every element of the connection set from S must fix a when operating

from the right. This implies that, if our connection set has two elements of S,

C = {a, ri, rj}, then s(ari) = (sa)ri = sa for any element s ∈ S (and for rj as

well), and then, the vertex sa, clearly in
−→
K4 because a ∈ C, is only given loops

by ri, rj. But a is also right-cancellative, so Sa = S, and, then, every element

in S can be written as sa for some other element. In conclusion, this means
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that all edges of the connected component of K4 should be covered just with a,

1-outregularly, which is clearly impossible. Therefore, only the case with three

elements of S remains, but the same happens again. Any element from S in

the connection set fixes a from the right, and then only adds loops to every

vertex of S, leaving the six edges of the connected component to be covered

just by the color a. Therefore, this representation is impossible. Finally, if the

neutral element of Z/5Z e were to be in the connection set as well, we would

have that rie = (rja)e = rj(ae) = rja = ri for every i from 1 to 4, because of

aS = S and e being a neutral element, and then it would just add loops, not

contributing to the representation. □

So, if Gl admits semigroup representations of this form, they must work in

unusual ways, with the cycle being represented by elements in the connection

set that are in S.

The second idea that one would have in terms of intuition, while gradually

increasing the complexity of the representation, would be to apply previously

seen results to make semigroups from disjoint unions of them, such as the one

given in Prop.3.15 K4 poses no problem for such a representation, as we can

just pick the group Z/3Z with a zero element attached to it, let us call it x,

and take the connection set C = {1, x}. As for C5, however, we can see that

it does not admit the simplest possible representation of this form:

Proposition 3.18. Let G = C5, S = {b, c1, a1, a2, c2} such that b is a left-

zero element. Then, G does not admit any Cayley representation such that

b ∈ C with c1b = b and c2b = b. (we will refer to the ci with i being 1 or 2 as

extremes) and aib = ai for any i ∈ {1, 2}

Proof. Let us prove it directly imposing associativity:

If we have that a1b = a1, a2b = a2, then we can deduce that:

aiaj = (aib)aj = ai(baj) = aj, and then A = {a1, a2} is the left-zero semigroup.

Moreover, then aicj = (aib)cj = ai(bcj) = ai, and so there is no way that the

edge between a1, a2 needed in the representation of the cycle can be drawn,

making this case impossible. □



64

c1 a1 a2 c2

b

Figure 17. A diagram depicting how the type of representa-

tion of C5 proved to not work in Prop.3.18 would go, with the

action of b represented by color pink.

Other options have been found to be in contradiction with associativity

under some extra assumptions, but not in all cases, and so, they could still

be a way to obtain semigroup representations of the graph with this method.

We have also checked some semigroup Cayley tables of 5 element semigroups,

covering most of them that are inverse, but to no avail. Checking all other

possibilities computationally could be a promising way of attacking the prob-

lem, as this seems to be as far as the pure deductive reasoning from the few

properties we have imposed seems to go.
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4. Conclusions

In this work, we have tackled mainly two questions which were originally

posed in [5] by K.Knauer and Puig i Surroca, with diverse degrees of success.

For question 6.3, asking whether every graph is a semigroup graph or not, we

have studied the smallest candidate to be a negative example, the graph we

already know that is not monoid, K4 ⊔ C5, with limited success. We have

ruled out with original results representations that could be thought of as the

most intuitive, but we recognize that our work has limited value to add in that

direction and that computational methods should be applied. As for question

6.2, one of its parts asking whether or not there are outerplanar graphs that

are monoid, we have found a caracterization of when graphs that admit a very

particular Cayley representation, those of the form Cay(M, {a, a2}), can be

outerplanar, obtaining infinite families that are both monoid and outerplanar.

For very simple cases of 2-trees, we have also been able to provide explicit

monoid representations.
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