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function can be written in terms of a Vandermonde determinant. We compute
and plot the one-body density matrix and the pair correlation function for sys-
tems of 2 to 5 particles using two different analytical methods to check that
both provide the same results. Moreover, we derive closed expressions for these
functions in terms of polynomials for a general number of particles. These
polynomials, in turn, can be expressed using Vandermonde vectors and square
matrices. To complement the mathematical study of the systems, we reproduce
and validate the analytical results using a Machine Learning approach. We use
a Neural Quantum State as an ansatz for the ground-state wavefunction and
a Variational Monte-Carlo method to find the best neural network parame-
ters. Both the energies and the density matrices are correctly reproduced using
Machine Learning.
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1 Introduction
The study of a collection of many particles can be remarkably complex when interactions
are taken into account. The exploration of these many-body interacting systems lies within
the domain of quantum many-body physics, with the objective of understanding emergent
phenomena that appear due to the collective behavior [Col16].

The field of many-body physics has seen significant evolution and advancement over
the past years, driven by both theoretical developments and technological progress. In
particular, Machine Learning (ML) methods have been increasingly used to tackle the
challenges of simulating and understanding complex quantum many-body systems. The
first use of a variational representation of quantum states based on Artificial Neural Net-
works (ANNs) in the many-body context appears in [CT17]. These variational quantum
states parametrized in terms of an ANN receive the name of Neural Network Quantum
States or simply Neural Quantum States (NQS).

In this work we focus on non-interacting, one-dimensional, spinless (fully polarized)
fermionic systems trapped in a potential well. Fermions have the peculiarity that they
obey the Pauli exclusion principle, which states that no two fermions can occupy the same
quantum state simultaneously, which determines how energy levels are filled. Although
in our study fermions do not interact, the results we find in our work can be used as a
tool in more complex many-body studies with interactions. Our investigation is structured
around the analysis of three N -body quantum systems, the harmonic oscillator (HO), the
infinite well (IW) and the Morse oscillator (MO), each characterized by a different well
potential.

The work is divided into two main sections, one in which we present an extensive math-
ematical analysis of the systems under examination (Sec. 2) and another one where we
benchmark the obtained results using ML techniques (Sec. 3). We start Sec. 2 by introduc-
ing the key concepts and the main mathematical tools we employ in our analysis, which
comprise the definitions of VD, one-body density matrix (OBDM) and pair correlation
function (PCF). Then we focus on each system to find its ground-state wavefunction in
terms of a VD and we compute and plot the OBDM and the PCF using both integral for-
mulae and uncorrelated formulae to corroborate that they give identical results. We finally
find closed expressions for them in terms of polynomials, which can be represented as a
matrix product involving Vandermonde vectors and square matrices. We find these matri-
ces for N = 2, 3, 4, 5 and recalculate the OBDM and PCF using them to validate both the
closed formulae and the obtained matrices. The original derivations and analytical findings
are extensively discussed in the appendices.

In Sec. 3 we firstly provide a brief overview of the theoretical foundation underlying the
computational analysis employing ML techniques. This is followed by the description of
the methodology and the presentation of the results, which are compared to the analytical
ones. We conclude the work with a summary of the obtained results and we also provide
possible future lines of research.
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2 Mathematical study of one-dimensional quantum systems
2.1 Vandermonde determinants
The Vandermonde matrix, mostly known for its determinant, is usually introduced in the
interpolation domain when we want to interpolate n points (x1, y1), . . . , (xn, yn) by means
of a polynomial of degree n − 1, P (x) = a0 + a1x + a2x2 + · · · + an−1xn−1 [Kal18]. To
determine the coefficients ai of such polynomial, we can think of solving the following
system of n equations:

P (x1) = a0 + a1x1 + a2x2
1 + · · · + an−1xn−1

1 = y1

P (x2) = a0 + a1x2 + a2x2
2 + · · · + an−1xn−1

2 = y2
...

...

P (xn) = a0 + a1xn + a2x2
n + · · · + an−1xn−1

n = yn

. (1)

If we write it in matrix form, we have
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n




a0
a1
...

an−1

 =


y1
y2
...

yn

 . (2)

The matrix that appears is called a Vandermonde matrix. In general, a Vandermonde
matrix is an n × m matrix that contains the terms of a geometric progression in each row
[Mey10]:

Vm(x1, . . . , xn) = [xj−1
i ]n,m

i,j=1 =


1 x1 x2

1 · · · xm−1
1

1 x2 x2
2 · · · xm−1

2
...

...
...

. . .
...

1 xn x2
n · · · xm−1

n

 . (3)

Although this definition is commonly used, we can also find literature where a Vandermonde
matrix is defined as the transpose of the above matrix [Muh20]. If the matrix is square (n =
m), as in Eq. (2), we can define its determinant, the so called Vandermonde determinant,
Vandermonde polynomial or Vandermondian [Muh20]:

det V (x1, ..., xn) =

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
. (4)

Returning to the interpolation case, the system has a solution if the VD is different
from zero. It happens that its value can be easily calculated by means of the following
expression, which we prove in Appendix [A.1]:

det V (x1, ..., xn) =
∏

1≤i<j≤n

(xj − xi). (5)

One of the main advantages of this result is the reduction of the computational cost it
represents. Calculating the VD using this formula has a time complexity of approximately
O(n2), which is significantly better than the O(n3) complexity of standard determinant
calculation methods [HLL+21].

The VD is primarily important in the context of quantum mechanics to satisfy the
antisymmetry requirements for wavefunctions of indistinguishable fermions.

4



2.2 Many-body density matrices
2.2.1 Integral formulae for the density matrices

Many-body density matrices are a powerful tool in quantum mechanics that provide valu-
able information about the distribution and correlations of particles in a given state [Lö55].
In particular, in this dissertation we compute the OBDM and the PCF for the quantum
systems under consideration. The latter is directly related to the two-body density matrix
(TBDM), as we will now see.

The OBDM for a system of N particles describes the probability distribution of a
particle’s position and the correlations between different positions in the system [KQM22].
It is defined as

ρ(N)(x, x′) = N

∫
dx2 · · · dxN Ψ∗(x, x2, . . . , xN )Ψ(x′, x2, . . . , xN ), (6)

where Ψ(x1, . . . , xN ) is the normalized many-body wavefunction and x and x′ are two
different positions of the same particle. If x = x′, we recover the expression for the density,
n(N)(x):

ρ(N)(x, x) = n(N)(x) = N

∫
dx2 · · · dxN |Ψ(x, x2, . . . , xN )|2. (7)

On the other hand, the TBDM describes the probability distribution and correlations
of two particles in a quantum system. It is defined as the following N − 2 integral:

Γ(N)(x1, x2; x′
1, x′

2) =
(

N
2

)∫
dx3 · · · dxN Ψ∗(x1, x2, . . . , xN )Ψ(x′

1, x′
2, . . . , xN ). (8)

Similarly, the three-body density matrix extends this concept to three particles, capturing
the correlations and probability distribution among them. Higher-order density matrices
continue this pattern for systems with more particles, providing insights into the corre-
lations and statistics of multiple particles within a quantum system [Lö55]. The general
formula for the k-body density matrix is given by

Γ(N)
k (x1, x2, . . . , xk; x′

1, x′
2, . . . , x′

k)

=
(

N
k

)∫
dxk+1 . . . dxN Ψ∗(x1, x2, . . . , xk, . . . , xN )Ψ(x′

1, x′
2, . . . , x′

k, . . . , xN ), (9)

from which we can retrieve Eqs. (6) and (8) by putting k = 1 and k = 2, respectively, i.e.,
Γ(N)

1 (x1; x′
1) = ρ(N)(x1, x′

1) and Γ(N)
2 (x1, x2; x′

1, x′
2) = Γ(N)(x1, x2; x′

1, x′
2). Note that for

k = N we have no integrals left:

Γ(N)
N (x1, x2, . . . , xN ; x′

1, x′
2, . . . , x′

N ) = Ψ∗(x1, x2, . . . , xN )Ψ(x′
1, x′

2, . . . , x′
N ). (10)

The expression for the PCF can be obtained from the TBDM by setting x′
1 = x1 and

x′
2 = x2, which corresponds to the diagonal elements

g(N)(x1, x2) = Γ(N)(x1, x2; x1, x2). (11)

Therefore, the PCF can be computed as

g(N)(x1, x2) =
(

N
2

)∫
dx3 · · · dxN |Ψ(x1, x2, . . . , xN )|2. (12)

We can see that g(N)(x1, x2) ≥ 0. The PCF is the probability of finding one particle at x1
and another at x2 in an N -body system [Lö55].
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2.2.2 Uncorrelated formulae for the OBDM and the PCF

So far, we have shown integral expressions for the OBDM and the PCF. However, for the
ground state of non-interacting systems and in the Hartree-Fock approximation (where
the many-body wavefunction of a system is approximated as a single Slater determinant),
we can find simplified formulae, which we refer to as uncorrelated formulae. In these two
scenarios, the OBDM and the PCF can be calculated by sums of products of single-particle
wavefunctions ϕn(x) that are solution of the one-body Schrödinger equation of the system
under study. If the single-particle quantum number n takes the values 1, 2, 3, . . ., these
formulae are:

ρ(N)(x, x′) =
N∑

n=1
ϕ∗

n(x)ϕn(x′), (13)

g(N)(x1, x2) = 1
2

N∑
n,m=1

Φn,m(x1, x2), (14)

with
Φn,m(x1, x2) = ϕ∗

n(x1)ϕ∗
m(x2) [ϕn(x1)ϕm(x2) − ϕm(x1)ϕn(x2)] . (15)

We derive these expressions analytically in [A.2] starting from Eqs. (6) and (12). If the
single-particle quantum number n starts from 0, we can use the same Eqs. (13) and (14)
doing the sums from 0 to N − 1.

With these formulae we do not require the full expression of the ground-state wave-
function, we just need the single-particle wavefunctions. Besides, the computational cost
is greatly reduced by avoiding the calculation of integrals and determinants.

Combining Eqs. (13) and (14), we obtain a useful formula for the PCF in terms of the
OBDM, as we discuss with detail at the end of Appendix [A.2],

g(N)(x1, x2) = 1
2
(
ρ(N)(x1, x1)ρ(N)(x2, x2) − ρ(N)(x1, x2)ρ(N)(x2, x1)

)
. (16)

This expression will make calculations easier when we find closed expressions for the PCF.

2.3 Harmonic oscillator
2.3.1 Description and ground-state wavefunction

We begin by considering N identical non-interacting spinless fermions of mass m trapped
in a HO well of frequency ω. The Hamiltonian of the system can be written as

H = − ℏ2

2m

N∑
i=1

d2

dx2
i

+ 1
2mω2

N∑
i=1

x2
i =

N∑
i=1

hi, (17)

where hi is the single-particle Hamiltonian,

hi = − ℏ2

2m

d2

dx2
i

+ 1
2mω2x2

i . (18)

The analytical solutions of the eigenvalue problem hiϕn(xi) = ϵnϕn(xi) are well known:

ϕn(x) = Nne
− x2

2a2
ho Hn

(
x

aho

)
, ϵn = ℏω

(
n + 1

2

)
, (19)

with n = 0, 1, 2, . . . the quantum number that characterizes both the single-particle energy
level ϵn and the single-particle wavefunction ϕn(x). Here aho =

√
ℏ

mω is the oscillator
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length, Nn = 1√
2nn!aho

√
π

is a normalization constant and Hn(x) is the Hermite polynomial

of order n, which is a polynomial of degree n.
The Rodrigues’ formula for the Hermite polynomials is

Hn(x) = (−1)nex2 dn

dxn
e−x2

, (20)

and, in particular, H0(x) = 1 and H1(x) = 2x. Additionally, these polynomials satisfy the
recurrence relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x), (21)

a property that we need in order to express the ground-state wavefunction compactly.
Due to the Pauli exclusion principle, fermions fill the lowest available energy states

ensuring that no two fermions occupy the same quantum state simultaneously. Thus, since
we have fully polarized fermions, the ground-state energy is simply the sum of single-
particle energies:

E(N) =
N−1∑
n=0

ϵn = ℏω
N2

2 , (22)

where the intermediate step is detailed in [E.1]. Besides, the ground-state wavefunction is
a Slater determinant owing to the Pauli exclusion principle, ensuring anti-symmetry under
the exchange of particle positions, as required for fermions.

Our objective is to find a general formula for the ground-state wavefunction. Before
this, we analyze the 2-body case. It is not difficult to find that

Ψ(x1, x2) = 1√
2

∣∣∣∣∣ϕ0(x1) ϕ1(x1)
ϕ0(x2) ϕ1(x2)

∣∣∣∣∣ = 1
a2

ho

√
π

e
−

x2
1+x2

2
2a2

ho (x2 − x1)

= 1
a2

ho

√
π

e
−

x2
1+x2

2
2a2

ho

∏
1≤i<j≤2

(xj − xi) = 1
a2

ho

√
π

e
−

x2
1+x2

2
2a2

ho det V (x1, x2), (23)

where in the last step we have identified x2 − x1 as a VD, Eq. (5). If we repeat the
calculations for N = 3, we find that a VD appears again. This suggests that for the
general N -particle case we should be able to express the ground-state wavefunction in
terms of a VD. For the N -body case we obtain:

Ψ(x1, . . . , xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ0(x1) ϕ1(x1) · · · ϕN−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕN−1(x2)

...
...

. . .
...

ϕ0(xN ) ϕ1(xN ) · · · ϕN−1(xN )

∣∣∣∣∣∣∣∣∣∣

= 1√
N !

(
N−1∏
n=0

Nn

)
e

−
∑N

i=1 x2
i

2a2
ho

∣∣∣∣∣∣∣∣∣∣∣∣

H0
(

x1
aho

)
H1
(

x1
aho

)
· · · HN−1

(
x1
aho

)
H0
(

x2
aho

)
H1
(

x2
aho

)
· · · HN−1

(
x2
aho

)
...

...
. . .

...
H0
(

xN
aho

)
H1
(

xN
aho

)
· · · HN−1

(
xN
aho

)

∣∣∣∣∣∣∣∣∣∣∣∣
. (24)

In [B.1] we prove the hypothesis that this determinant of Hermite polynomials can be
written in terms of a VD. We obtain the following result:

det
[
Hj−1

(
xi

aho

)]
i,j=1,...,N

=
[

N−1∏
i=1

( 2
aho

)i
]

det V (x1, . . . , xN ). (25)
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Therefore, the N -body wavefunction is

Ψ(x1, . . . , xN ) = 1√
N !

[
N−1∏
n=0

( 2
aho

)n

Nn

]
e

−
∑N

i=1 x2
i

2a2
ho det V (x1, . . . , xN )

= 1√
N !

[
N−1∏
n=0

( 2
aho

)n

Nn

]
e

−
∑N

i=1 x2
i

2a2
ho

∏
1≤i<j≤N

(xj − xi). (26)

We have thus proven that the ground-state wavefunction in a harmonic trap can be written
in terms of a VD.

2.3.2 Plots of the OBDM and the PCF

Having found the general expression for the ground-state wavefunction of the HO, Eq. (26),
we can now use it to compute and plot the OBDM and the PCF with the integral formulae
(6) and (12) using the SymPy library in Python. In Figs. 1, 2 we show the plots for
N = 2, 3, 4, 5. We work with HO units, with which lengths are measured in terms of
aho = 1. We also repeat the calculations using the uncorrelated formulae (13) and (14),
and as expected the obtained plots are identical to Figs. 1, 2. We postpone the discussion
of the plots to Sec. 2.6, where we will analyze them together with those of other systems.

Figure 1: OBDM ρ(N)(x, x′) in terms of the positions x and x′ for N = 2 to 5 particles in a HO well
We use HO units.
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Figure 2: PCF g(N)(x1, x2) in terms of the positions x1 and x2 for N = 2 to 5 particles in a HO well.
We use HO units.

2.3.3 Closed expressions for the OBDM and the PCF

After computing the integrals of Eq. (6), we see that the OBDM can be compactly expressed
as

ρ(N)(x, x′) = 1
aho

√
π

e
− x2+x′2

2a2
ho R(N)(x, x′), (27)

where R(N)(x, x′) is a polynomial of order N − 1 in both x and x′. This polynomial can
be represented in terms of the so called Vandermonde vector x(N) = (1, x, x2, . . . , xN−1)T

and an N × N matrix R(N):

R(N)(x, x′) = x(N),T R(N)x′(N). (28)

These N × N matrices can be easily found looking at the coefficients of the expressions of
ρ(N)(x, x′) obtained by integration, Eq. (6). For example, for N = 3 we obtain

ρ(3)(x, x′) = 1
aho

√
π

e
− x2+x′2

2a2
ho

(
2x2x′2 − x2 + 2xx′ − x′2 + 3

2

)
. (29)

Comparing with the expression of R(3)(x, x′), with unknown coefficients aij ,

R(3)(x, x′) =
(
1 x x2

)a11 a12 a13
a21 a22 a23
a31 a32 a33


 1

x′

x′2

 = a11 + x′a12 + x′2a13

+ xa21 + xx′a22 + xx′2a23 + x2a31 + x2x′a32 + x2x′2a33, (30)
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we see that the coefficients of the first row are multiplied by x0, the ones of the second
row are multiplied by x and the ones in the third row are multiplied by x2, adding in each
row x′0, x′ and x′2 from the left column to the right one. Knowing this, it is immediate to
write Eq. (29) using Eq. (28) with the matrix

R(3) =

3/2 0 −1
0 2 0

−1 0 2

 . (31)

We can do the same for all N . For example, the results for N = 2, 4 are:

R(2) =
(

1 0
0 2

)
, R(4) =


3/2 0 −1 0
0 5 0 −2

−1 0 2 0
0 −2 0 4/3

 . (32)

Similarly, after computing the integrals in Eq. (12) we find that the PCF can be ex-
pressed as

g(N)(x1, x2) = 1
2a2

hoπ
e

−
x2

1+x2
2

a2
ho

(x1 − x2)2

a2
ho

G(N)(x1, x2), (33)

where G(N)(x1, x2) is a polynomial of order 2(N − 2) in both x1 and x2 that can be
represented in terms of matrix products,

G(N)(x1, x2) = x
(2N−3),T
1 G(2N−3)x

(2N−3)
2 . (34)

Here, G(2N−3) is a (2N − 3) × (2N − 3) matrix. Following the same procedure as before,
we find these matrices identifying the coefficients obtained by integration. For N = 2, 3, 4,
for example, we obtain:

G(1) =
(
2
)

, G(3) =

3 0 2
0 8 0
2 0 4

 , G(5) = 1
6


45 0 −24 0 12
0 48 0 0 0

−24 0 96 0 0
0 0 0 64 0
12 0 0 0 16

 . (35)

Note that, up to this point, we have derived the closed expressions for the OBDM and
the PCF by generalizing from some particular cases. However, these closed expressions
can also be derived mathematically by using the uncorrelated formulae, Eqs. (13) and (14).
We do this with all detail in [B.2]. For the OBDM, we arrive at the same result that we
have found by generalization, Eq. (27), and additionally we obtain an analytical expression
of R(N)(x, x′) in terms of Hermite polynomials,

R(N)(x, x′) =
N−1∑
n=0

1
2nn!Hn

(
x

aho

)
Hn

(
x′

aho

)
. (36)

Once obtained the closed expression for the OBDM, we can find that of the PCF
from Eq. (16). In this manner, not only do we retrieve the formula we have obtained
by generalization, Eq. (33), but we also find an analytical expression for the polynomial
G(N)(x1, x2),

G(N)(x1, x2) = a2
ho

(x1 − x2)2

N−1∑
n,m=0

1
2n+mn!m!

[
H2

n

(
x1
aho

)
H2

m

(
x2
aho

)

−Hn

(
x1
aho

)
Hn

(
x2
aho

)
Hm

(
x2
aho

)
Hm

(
x1
aho

)]
. (37)
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In [B.2] we prove that this is indeed a polynomial and not just a rational fraction, as it
could seem at first glance. Also, in [B.2] we show the matrices R(N) and G(2N−3) for N = 5,
which are too large to include here. We have repeated the plots of the OBDM and the
PCF for N = 2, 3, 4, 5 using their closed expressions and have obtained the same results,
Figs. 1 and 2, as expected.

2.4 Infinite well
2.4.1 Description and ground-state wavefunction

In this section, we proceed to study a system of N identical, non-interacting, spinless
fermions trapped in an infinite square well potential. Colloquially, it is said that the
particles are trapped in a box, since this potential reminds us of a box of size L:

V (x) =
{

0 0 ≤ x ≤ L

∞ otherwise
. (38)

The Hamiltonian of the system is thus

H = − ℏ2

2m

N∑
i=1

d2

dx2
i

+
N∑

i=1
V (xi) =

N∑
i=1

hi, (39)

with hi the single-particle Hamiltonian. The single-particle energies and wavefunctions
can be found by solving the eigenvalue problem hiϕn(xi) = ϵnϕn(xi) inside the box, where
there is no potential and the single-particle Hamiltonian is just the kinetic term. We then
impose the boundary conditions, ϕn(0) = ϕn(L) = 0. We obtain

ϕn(x) =
√

2
L

sin
(

nπx

L

)
, ϵn = ℏ2π2

2mL2 n2, (40)

with n = 1, 2, 3... With the single-particle energies we can compute the ground-state energy
of the system,

E(N) =
N∑

n=1
ϵn = ℏ2π2

12mL2 N(N + 1)(2N + 1), (41)

as discussed in [E.1].
To compute the ground-state wavefunction, we proceed as in the HO case, first com-

puting the Slater determinant for a particular case to see if we can write it in terms of a
VD. For the two-body case, we obtain the result

Ψ(x1, x2) = 1√
2

∣∣∣∣∣ϕ1(x1) ϕ2(x1)
ϕ1(x2) ϕ2(x2)

∣∣∣∣∣ = 4√
2L

sin πx1
L

sin πx2
L

(
cos πx2

L
− cos πx1

L

)
, (42)

where we have used the sine double angle formula, sin 2α = 2 sin α cos α. Notice that we
can indeed detect the presence of a VD of the variables cos πxi

L (i = 1, 2),

cos πx2
L

− cos πx1
L

=
∏

1≤i<j≤2

(
cos πxj

L
− cos πxi

L

)
= det V

(
cos πx1

L
, cos πx2

L

)
. (43)

This suggests that we should be able to write the general expression of the ground-state
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wavefunction in terms of a VD of cosines. Starting from the definition,

Ψ(x1, ..., xN ) = 1√
N !

det[ϕm(xn)]n,m=1,...,N

= 1√
N !

det
[√

2
L

sin mπxn

L

]
n,m=1,...,N

=
( 1

2i

)N 1√
N !

(√
2
L

)N

det
[
e

imπxn
L − e− imπxn

L

]
n,m=1,...,N

, (44)

where we have used that sin α = eiα−e−iα

2i . Using the so called Vandermonde formula [Pro88],

det
[
zk

j − z−k
j

]
j,k=1,...,N

=
N∏

l=1
(zl − z−1

l )
∏

1≤j<k≤N

(zk − zj)
(

1 − 1
zjzk

)
, (45)

we can transform the determinant in Eq. (44) to

det
[(

e
iπxn

L

)m
−
(
e

iπxn
L

)−m
]

n,m=1,...,N

=
N∏

l=1

(
e

iπxl
L − e− iπxl

L

) ∏
1≤j<k≤N

(
e

iπxk
L − e

iπxj
L

)(
1 − e−

iπ(xj +xk)
L

)

=
N∏

l=1
2i sin πxl

L

∏
1≤j<k≤N

(
e

iπxk
L − e

iπxj
L − e−

iπxj
L + e− iπxk

L

)

=
N∏

l=1
2i sin πxl

L

∏
1≤j<k≤N

2
(

cos πxk

L
− cos πxj

L

)
. (46)

The general expression for the ground-state wavefunction is then

Ψ(x1, ..., xN ) =
( 1

2i

)N 1√
N !

(√
2
L

)N N∏
l=1

2i sin πxl

L

∏
1≤j<k≤N

2
(

cos πxk

L
− cos πxj

L

)

= 1√
N !

2
N(N−1)

2

(√
2
L

)N N∏
l=1

sin πxl

L

∏
1≤j<k≤N

(
cos πxk

L
− cos πxj

L

)
, (47)

where we have used that there are

(
N
2

)
= N(N−1)

2 terms in the second product. Thus, for

the IW, a VD appears in the ground-state wavefunction:

Ψ(x1, ..., xN ) = 1√
N !

2
N(N−1)

2

(√
2
L

)N [ N∏
l=1

sin πxl

L

]
det V

(
cos πx1

L
, . . . , cos πxN

L

)
. (48)

2.4.2 Plots of the OBDM and the PCF

In the same way as we did with the HO case, we have computed and plotted the OBDM
and the PCF for N = 2, 3, 4, 5 with both the integral formulae, Eqs. (6) and (12), and the
uncorrelated formulae, (13) and (14), and we have found the same results. The plots are
shown below (Figs. 3, 4), with the range of the particle positions going from 0 to 1 in the
natural units of this system (lengths measured in units of L = 1).
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Figure 3: OBDM ρ(N)(x, x′) in terms of the positions x and x′ for N = 2 to 5 particles in an IW. We
use IW natural units.

Figure 4: PCF g(N)(x1, x2) in terms of the positions x1 and x2 for N = 2 to 5 particles in an IW. We
use IW natural units.
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2.4.3 Closed expressions for the OBDM and the PCF

Similarly as we have done in the HO case, we can find a closed expression for the OBDM
and the PCF in terms of polynomials, which in turn can be found from a matrix product
involving Vandermonde vectors. The detailed mathematical procedure is discussed in [C],
here we summarize and gather the obtained results. To find the closed expression for the
OBDM, we use the following identity [SLL14],

sin nA = sin A

⌊ n+1
2 ⌋∑

i=1
(−1)i+1

(
n − i
i − 1

)
(2 cos A)n−(2i−1)

= sin A

{
(2 cos A)n−1 −

(
n − 2

1

)
(2 cos A)n−3 +

(
n − 3

2

)
(2 cos A)n−5 − · · ·

}
, (49)

where the notation ⌊x⌋ denotes the largest integer N such that N ≤ x. After some
calculations, starting from the uncorrelated formula of the OBDM, Eq. (13), we find that

ρ(N)(x, x′) = 2
L

sin πx

L
sin πx′

L
R(N) (y, y′) , (50)

where y = cos πx
L , y′ = cos πx′

L and

R(N) (y, y′) =
N∑

n=1

⌊ n+1
2 ⌋∑

i,j=1
(−1)i+j

(
n − i
i − 1

)(
n − j
j − 1

)
(2y)n−(2i−1) (2y′)n−(2j−1) (51)

is a polynomial of order N −1 in both y and y′ that can be written in terms of Vandermonde
vectors and an N × N matrix, R(N):

R(N)(y, y′) = y(N),T R(N)y′(N). (52)

These matrices can be easily found computing the polynomial in Eq. (51) and recogniz-
ing the coefficients in a similar fashion as we did in Sec. 2.3.3. As an example, for N = 2, 3
we obtain

R(2) =
(

1 0
0 4

)
, R(3) =

 2 0 −4
0 4 0

−4 0 16

 . (53)

The closed expression of the PCF can be found from Eqs. (16) and (50):

g(N)(x1, x2) = 2
L2 sin2 πx1

L
sin2 πx2

L
G(N)(y1, y2), (54)

where
G(N)(y1, y2) = R(N)(y1, y1)R(N)(y2, y2) − R(N)(y1, y2)R(N)(y2, y1) (55)

is a polynomial of order 2(N − 1) in both y1 and y2 that can also be represented as a
matrix product,

G(N)(y1, y2) = y
(2N−1),T
1 G(2N−1)y

(2N−1)
2 , (56)

with G(2N−1) a (2N − 1) × (2N − 1) matrix. These matrices can be found computing the
polynomial in Eq. (55) and identifying the coefficients. As an example, for N = 2, 3, we
have

G(3) =

0 0 4
0 −8 0
4 0 0

 , G(5) =


0 0 8 0 16
0 −16 0 32 0
8 0 −96 0 64
0 32 0 −128 0
16 0 64 0 0

 . (57)
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All the matrices R(N) and G(2N−1) for N = 2, 3, 4, 5 are found in [C] from Eqs. (51)
and (55). To facilitate the calculations, we have used a Python code that receives the not
simplified polynomials, makes the pertinent simplifications and groupings, and returns the
desired matrices.

Using the obtained matrices to plot the OBDM and the PCF with Eqs. (50) and (54),
we obtain the same figures as in Sec. 2.4.2 (Figs. 3, 4), thus validating that the matrices
are correct.

2.5 Morse oscillator
2.5.1 Description and ground-state wavefunction

The last system we study consists of N identical non-interacting spinless fermions in a
Morse oscillator well. The Morse potential is a model for the potential energy of a vibrating
diatomic molecule. It takes into account the effects of bond breaking and includes the
anharmonicity of real bonds, thus becoming a better approximation of the vibrational
motion of a molecule than the HO [Fid16]. The Morse potential is represented as:

V (x) = D
(
1 − e−ax)2 , −∞ < x < ∞, (58)

where D is the dissociation energy (or equivalently, the depth of the potential well), a is a
positive parameter that controls the width of the well, and x = r − re, with r the distance
between the two atoms (or internuclear separation) and re the equilibrium separation
between atoms, the choice of which is arbitrary. The actual domain of x is from −re to
∞, but it has been found that the physical effects of changing −re for −∞ are completely
negligible [Mor29, Haa46]. Notice that this potential is not parity symmetric, so it is
different from the HO or the IW.

The effective force constant of the bond, ke, is given by the second derivative of the
potential (58) at the minimum of the well (x = 0): ke =

(
d2V/dx2)

x=0 = 2a2D, from where
we can also find the effective oscillator frequency of a particle with mass m by comparison
with a HO:

ωe =

√
ke

m
= a

√
2D

m
. (59)

For our system of N particles, the Hamiltonian can be written as

H = − ℏ2

2m

N∑
i=1

d2

dx2
i

+ D
N∑

i=1

(
1 − e−axi

)2 =
N∑

i=1
hi, (60)

where hi is the single-particle Hamiltonian. Thus, the Schrödinger equation for the single-
particle states of the MO is[

− ℏ2

2m

d2

dx2 + D
(
1 − e−ax)2]ϕn(x) = ϵnϕn(x). (61)

Defining a new dimensionless variable, y = ax, we obtain[
−ℏ2a2

2m

d2

dy2 + D
(
1 − e−y)2]ϕn(y) = ϵnϕn(y). (62)

Dividing the equation by D and defining εn = ϵn
D and λ2 = 2mD

ℏ2a2 , we get the equation

d2ϕn(y)
dy2 + λ2

[
εn − (1 − e−y)2

]
ϕn(y) = 0, (63)

15



which can be solved exactly, giving the following normalized states and energies [DS88]:

ϕn(z) = Nnzλ−n− 1
2 e−z/2L2λ−2n−1

n (z), ϵn =
[(

n + 1
2

)
− 1

2λ

(
n + 1

2

)2
]
ℏωe, (64)

where we have defined

z = 2λe−y, Nn =
√

n!(2λ − 2n − 1)a
Γ(2λ − n) . (65)

In [DS88] there is a mistake and a is missing in the numerator of Nn.
If we consider bound states, the quantum number n can only take values n = 0, 1, 2 . . . , ⌊λ−

1
2⌋. On the other hand, the functions Lα

n(x) are the associated (or generalized) Laguerre
polynomials. The Rodrigues’ formula for these polynomials of degree n is

Lα
n(x) = x−αex

n!
dn

dxn
(xn+αe−x), (66)

where α > −1. The closed form for these polynomials can be derived from the Rodrigues’
formula [SHP16]:

Lα
n(x) =

n∑
i=0

(−1)i

(
n + α
n − i

)
xi

i! ≡
n∑

i=0
Cα

n,ix
i, (67)

with (
δ
m

)
= 1

m!

m−1∏
k=0

(δ − k) = 1
m!δ(δ − 1)(δ − 2) · · · (δ − m + 1) (68)

a binomial coefficient for m ∈ N and δ ∈ R. In particular, the first two associated Laguerre
polynomials are Lα

0 (x) = 1 and Lα
1 (x) = 1 + α − x.

From Eq. (64) we can find the ground-state energy of the system. This is done in detail
in Appendix [E.1]. The result is

E(N) =
N−1∑
n=0

ϵn =
[

N2

2 − 1
24λ

N
(
4N2 − 1

)]
ℏωe. (69)

To compute the ground-state wavefunction and see if it can be written in terms of a
VD, we define for simplicity β = λ − 1

2 , obtaining ϕn(x) = Nnzβe− z
2 z−nL2β−2n

n (z), where
z = z(x) = 2λe−ax. Thus, we have

Ψ(x1, . . . , xN ) = 1√
N !

det[ϕj−1(xi)]i,j=1,...,N

= 1√
N !

[
N−1∏
i=0

Niz
β
i+1

]
e−
∑N

i=1 zi

2 det
[
z

−(j−1)
i L

2β−2(j−1)
j−1 (zi)

]
i,j=1,...,N

. (70)

In [D.1] we find the non trivial mathematical relation:

det
[
z

−(j−1)
i L

2β−2(j−1)
j−1 (zi)

]
i,j=1,...,N

=
[

N−1∏
i=1

(
2β − i

i

)]
det V

( 1
z1

, . . . ,
1

zN

)
. (71)

This enables us to write the ground-state wavefunction in terms of a VD, as we wanted:

Ψ(x1, . . . , xN ) = 1√
N !

[
N−1∏
i=0

Niz
β
i+1

]
e−
∑N

i=1 zi

2

[
N−1∏
i=1

(
2β − i

i

)] ∏
1≤i<j≤N

(
1
zj

− 1
zi

)
. (72)
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2.5.2 Plots of the OBDM and PCF

As we did with the other systems, we have computed and plotted the OBDM and the PCF
for N = 2, 3, 4, 5 with both the integral formulae, Eqs (6) and (12), and the uncorrelated
formulae, Eqs. (13) and (14), obtaining identical results. The plots are shown below (Figs. 5,
6), with the range of the particle positions going from −1 to 2 in the natural units of this
system (lengths in units of 1

a = 1). We use λ = 11.5, which corresponds to 12 bound states.
We discuss this choice in Sec. 2.6.

Figure 5: OBDM ρ(N)(x, x′) in terms of the positions x and x′ for N = 2 to 5 particles in a MO, with
λ = 11.5. We use MO natural units.

Figure 6: PCF g(N)(x1, x2) in terms of the positions x1 and x2 for N = 2 to 5 particles in a MO, with
λ = 11.5. We use MO natural units.
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2.5.3 Closed expressions for the OBDM and the PCF

In this section, we want to find a closed expression for the OBDM and the PCF in a MO.
The analytical calculations are found in detail in [D.2]. We find that the OBDM can be
written as

ρ(N)(z, z′) = (zz′)β−N+1e− z+z′
2 R(N)(z, z′), (73)

where

R(N)(z, z′) =
N−1∑
n=0

N2
n(zz′)N−1−n

n∑
i,j=0

C2β−2n
n,i C2β−2n

n,j ziz′j (74)

is a polynomial of order N −1 in both z and z′ that can be written in terms of Vandermonde
vectors and an N × N matrix R(N) as

R(N)(z, z′) = z(N),T R(N)z′(N). (75)

From Eqs. (73) and (16), it follows that the closed expression of the PCF is

g(N)(z1, z2) = 1
2(z1z2)2β−2N+2e−(z1+z2)G(N)(z1, z2), (76)

where G(N)(z1, z2) is simply

G(N)(z1, z2) = R(N)(z1, z1)R(N)(z2, z2) − R(N)(z1, z2)R(N)(z2, z1), (77)

that is, a polynomial of order 2(N − 1) in both z1 and z2 that can be represented in terms
of matrix products as

G(N)(z1, z2) = z
(2N−1),T
1 G(2N−1)z

(2N−1)
2 , (78)

with G(2N−1) a (2N − 1) × (2N − 1) matrix. In contrast to the HO or the IW, where the
elements of the matrices were rational numbers, here the matrices contain real numbers.
For example, for N = 2, we have

R(2) =

 N2
1

(
C2β−2

1,0

)2
N2

1 C2β−2
1,0 C2β−2

1,1

N2
1 C2β−2

1,1 C2β−2
1,0 N2

0 + N2
1

(
C2β−2

1,1

)2

 , G(3) = N2
0 N2

1

(
C2β−2

1,0

)2
0 0 1

0 −2 0
1 0 0

 . (79)

In [D.2] we compute all the matrices R(N) and G(2N−1) for N = 2, 3, 4, 5 and use them
to calculate and plot the OBDM and the PCF with the closed expressions. The results
obtained are the identical to Figs. 5, 6, thus validating the formulae we have found.

2.6 Discussion and comparison of the different plots
Now that we have obtained the plots of the OBDM and the PCF for all the systems
(Figs. 1, 2, 3, 4, 5, 6), we examine them together and discuss their similarities and differ-
ences. Starting for the OBDM, all the plots show that the diagonal x = x′ and its near
surroundings present positive values. This is because ρ(N)(x, x) = n(N)(x) is the density,
which is positive definite, Eq. (7). In the diagonal we find as many peaks as particles.
We observe a clear localization of the single-particle states. For the HO, the peaks in
the diagonal are more intense at the central part, and as we move away from the center,
they become less intense. In contrast, for the IW, the most intense peaks are the ones
further from the center. For the MO, the most intense peak is located near the origin of
coordinates x = x′ = 0, as expected from Eq. (64). Moreover, as we move away from the
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diagonal, in all three systems there start to appear undulate areas with alternating sign.
This pattern of alternating positive and negative values arises from the nodal structure of
the single-particle states [E.2]. In particular, there are 2(N − 1) changes of sign along the
off-diagonal direction as reflected in Eq. (13).

If we now examine the plots of the PCF, we see at first glance that g(N)(x1, x2) is a
non-negative function, as we already knew, and also that in the diagonal region, where
x1 and x2 take close values, the PCF vanishes. This characteristic is a result of the Pauli
exclusion principle, and we can also see it in Eq. (16), where clearly g(N)(x1, x1) = 0.
We see that the PCF is squared-shape, formed by two triangular parts separated by the
diagonal. Similarly as it happens with the OBDM, for the HO the peaks are more intense
in the internal part of the triangles, while for the IW the most intense peaks are those in
the borders of the square. For the MO, the two most intense peaks are found when x or
x′ are near to zero.

Finally, while for the HO and the IW the OBDM and the PCF are symmetric with
respect to the off-diagonal, thit is not the case for the MO. This stems from the anhar-
monicity of the Morse potential, which breaks the parity symmetry, making it less likely
to find particles away from the minimum of the potential.

Overall, we see that the OBDM is similar for all the systems regardless of the potential,
and the same happens with the PFC. This suggests some kind of universality for non-
interacting 1D systems of confined spinless fermions.

Note that the plots for the MO depend on the dimensionless parameter λ. We have
chosen λ = 11.5 arbitrarily, bearing in mind that λ ≥ 4.5, since we do the plots for N = 2 to
5, so at least we need 5 bound states (recall that the quantum number goes from nmin = 0
to nmax = ⌊λ− 1

2⌋). In our case we have 12 bound states, so it is enough. We have repeated
the plots for other values of lambda (λ = 4.5, λ = 8, λ = 16.2, etc.) and we obtain the
same patterns. The difference is that as λ increases, the absolute values of the OBDM and
the PCF increase while the range of particle positions decrease.

3 Study of the ground state using Machine Learning
In the preceding sections, our investigation has been exclusively focused on analytical
methods to derive all pertinent outcomes. However, now we take a different approach by
incorporating ML to reproduce and validate these findings. This approach will not only
strengthen our results, but also show that ML techniques are capable of solving the three
quantum systems under examination.

In particular, in this section, we will use an ANN as an ansatz for the ground-state
wavefunction (i.e. a NQS) and apply ML techniques to variationally minimize the energy
of the quantum systems, thus obtaining appropriate parameters for the ANN. Once we
obtain the wavefunction, we will compute the OBDM and the PCF of the systems for
N = 2, 3, 4, 5 and check if the results agree with the analytical ones.

3.1 Artificial Neural Networks
An ANN is a ML algorithm inspired by networks of biological neurons that consists of
interconnected nodes, called neurons, arranged in layers [JTR10]. In a similar way as
neurons in our nervous system can learn from data, an ANN can learn from input data
and produce an output. The input layer is the first layer of an ANN, and is the one that
receives the raw input data. In the middle of the ANN there can be one or more hidden
layers, where each neuron performs a weighted sum of the inputs (from the previous layer
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Figure 7: Architecture of a one-layer ANN with two neurons in the input layer, five neurons in the
hidden layer and one neuron in the output layer (i.e. this ANN will produce one output).There is only
one hidden layer, and the weights and biases are represented by the matrices W (1) = [w(1)

i,j ]1≤i≤5,1≤j≤2,
W (2) = [w(2)

i,j ]i=1,1≤j≤5 and B = [bi,j ]1≤1≤5,j=1. In this case the formula for the output would be
y =

∑Nhid

i=1 w
(2)
1,i σ

(∑Ninp

j=1 w
(1)
i,j xj + bi,1

)
, where Ninp and Nhid are the number of neurons in the input

layer and the hidden layer, respectively, and σ(x) is the activation function.

or directly from the input layer), adds an additional parameter called bias (associated
with each neuron) and applies an activation function to produce an output. These weights
represent the connections between two neurons, and the activation function introduces
non-linearity to the network. Common choices of nonlinear activation functions are the
sigmoid function or the hyperbolic tangent [Bon11]. Finally, the outputs from the last
hidden layer are passed to the output layer, which produces the final outputs. The number
of neurons in the output layer corresponds to the number of possible outputs. Fig. 7 shows
an example of ANN to better understand its structure.

An important property of ANNs is that they are universal function approximators, in
the sense that with a sufficient number of neurons and appropriate parameters (weights
and biases), they can approximate any continuous function to arbitrary accuracy [GC12].
This statement is known as the Universal Approximation Theorem.

We use an ANN as the trial ground-state wavefunction in a variational method. In our
case, the input to our ANN are the positions of the N fermions {xi}i=1,...,N and the output
is the ground-state wavefunction, ΨW(x1, . . . , xN ), where W is a multidimensional variable
containing the weights and biases1. The ANN needs to be trained by adjusting its weights
and biases in such a way that the ANN output becomes closer to the desired output. One
of the most widely used training methods is back-propagation, which involves computing
the gradient of a chosen loss function (LF) with respect to the ANN parameters so that
the parameters can be adjusted in such a way to minimize the LF.

We use the ANN elaborated by J. W. T. Keeble ([Kee19], [KDRF+23], [Kee22]), which
has two hidden layers with 64 hidden neurons per layer and uses the hyperbolic tangent
as the activation function. To impose anti-symmetry of the wavefunction, permutation
equivariance is maintained throughout the ANN. The library used to implement this ANN
is PyTorch, an open-source machine learning library.

3.2 Methodology
Now that we have an ansatz for the ground-state wavefunction, we solve the Schrödinger
equation for each system using a Variational Monte-Carlo approach with two phases. The

1In fact, we obtain the sign of the wavefunction, sgn(ΨW) and the logarithm of the absolute value of
the wavefunction, log(|ΨW |). This is done for numerical stability.
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first one is the pre-training phase, which is designed to obtain a first ANN that reproduces
the HO single-particle wavefunctions. After this phase, we have a physical state that
bears some resemblance to the targeted ground-state wavefunction. This step, although
expendable, helps to avoid beginning the energy-minimization phase from scratch. In this
phase, we minimize the expectation value of the energy to adapt the weights and biases of
the ANN in order to find the ground-state wavefunction. This expectation value can be
expressed as a statistical average over local energies, as it is usually done in Monte-Carlo
approaches:

E = ⟨ΨW | H |ΨW⟩
⟨ΨW |ΨW⟩

= EX∼|ΨW |2
[
ΨW(X)−1 H ΨW(X)

]
, (80)

where EL(X) = ΨW(X)−1 H ΨW(X) is the local energy and X = (x1, . . . , xN ) is an
N -dimensional random variable (or walker) that follows the Born probability distribu-
tion, |ΨW |2. To obtain variables distributed in such a way, we do a sampling using the
Metropolis-Hastings algorithm [Miy23]. During this second phase, we use back-propagation
to minimize the energy LF until our NQS converges to the ground-state wavefunction. How-
ever, for numerical stability and precision, instead of directly implementing Eq. (80), we
use an auxiliary LF [KDRF+23].

Both phases use Nw = 4096 walkers and are iterated a determined number of epochs,
the second phase needing more epochs than the first one (here we talk about pre-epochs).
For the HO, we need much less epochs than with the IW or the MO because we start the
energy-minimization phase with an ansatz that is already close to the HO wavefunction.
Nevertheless, the epochs needed in all cases stay in the order of 104, and the pre-epochs
are around 103. The potentials are implemented according to the theory, but for the IW
we cannot put a well of infinite height. Instead, we use a finite well of height V0 = 1000.

3.3 Comparison with the analytical results
To compare the obtained ground-state energies with the analytical ones [Eqs. (22), (41) and
(69)], we have made a summary table for N = 2, 3, 4, 5 (Tab. 1). To do all the numerical
computations we have used the natural units of each system, so the theoretical values also
need to be in these units. The formulae in natural units are gathered in [E.1]. Energies
are written with an error of δE

(N)
ML = 2σ, where σ is the standard deviation, computed as

σ =

√√√√ 1
Nw − 1

Nw−1∑
i=0

(ELi − ⟨EL⟩)2, (81)

where we have included the Bessel correction. We can see in Tab. 1 that the results for the
HO and the MO are in agreement with the theoretical values, since they satisfy∣∣∣E(N)

ML − E
(N)
theory

∣∣∣ < 2δE
(N)
ML . (82)

However, for the IW we find discrepancies, which may be a consequence of the finite
height of the well. To quantify these discrepancies, we compute the relative errors as
ϵ
(N)
r =

(∣∣∣E(N)
theory − E

(N)
ML

∣∣∣ /E
(N)
theory

)
· 100. We find ϵ

(2)
r = 7.2%, ϵ

(3)
r = 5.7%, ϵ

(4)
r = 2.0%

and ϵ
(5)
r = 2.5%. We obtain relative errors below 10%, so we can say that, although

the discrepancies are significant (because Eq. (82) is not satisfied), we have not obtained
excessively large values in the relative errors. Thus, we conclude that the IW results are
improvable but still acceptable. We investigated if the differences could be attributed to
the discontinuity of the potential, so we tried to reproduce this potential using the Fermi-
Dirac function, but we obtained worse results. Thus, the discrepancies may be a natural
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HO IW MO
N ML Theory ML Theory ML Theory
2 1.99997 ± 0.00002 2 (2.32 ± 0.08) π2 (5/2)π2 21.746 ± 0.004 21.75
3 4.49996 ± 0.00004 4.5 (6.6 ± 0.1) π2 7π2 47.38 ± 0.02 47.375
4 8.0001 ± 0.0003 8 (14.7 ± 0.2) π2 15π2 81.52 ± 0.02 81.5
5 12.4998 ± 0.0002 12.5 (26.8 ± 0.3) π2 (55/2)π2 123.13 ± 0.01 123.125

Table 1: Comparison of the ML results with the theoretical values of the ground-state energy for the
HO, IW and MO (N = 2, 3, 4, 5).

consequence of the potential approximation. Also, we have to take into account that if we
plot the energy as a function of the epochs, we see that it is continuously oscillating, so it
is unsurprising to encounter slight discrepancies.

Additionally, we have calculated the OBDM and the PCF with the obtained ground-
state wavefunction. We obtain similar plots as the ones found analytically in the first part
of the work [F]. They present the same pattern and intensities, although we can find minor
differences that can be attributed to the limitations of any approximation method. Overall,
we conclude that a NQS is able to reproduce the ground-state wavefunction of the systems
quite accurately.

4 Conclusions
In this work we have studied the ground-state properties of three confined 1D fermionic
systems totally polarized with no interactions (HO, IW and MO). In the first place we
have done this exploration from an analytical point of view. We have proven our initial
hypothesis that all the systems under consideration have a ground-state wavefunction that
can be expressed in terms of a VD. We have provided their analytical formulae, as well as
the ones for the ground-state energy, taking into account the Fermi exclusion principle. We
have also computed and plotted the OBDM and the PCF of the systems for N = 2, 3, 4, 5
with both the integral and the uncorrelated formulae and validated that they lead to the
same results. Finally, we have found closed expressions of the OBDM and the PCF in
terms of polynomials for a general number N of particles and we have also computed the
associated matrices for N = 2, 3, 4, 5. Computing and plotting the OBDM and the PCF
for a third time, we have checked the veracity of the closed expressions and matrices.

In the second part of the work, we have used ML techniques to validate our results and
see if they are capable to solve the systems. We have used a NQS to find an approximate
representation of the ground-state wavefunction by minimizing the variational energy of
the systems, thus finding the neural network weights and biases. The obtained energies of
the HO and the MO are compatible with the theoretical values, but for the IW, although
the ML values are very close to the theoretical ones, we obtain significant discrepancy.
This could be attributed to the use of a finite (but still high) well or to energy oscillations
during the minimization process. Apart from this, the plots of the OBDM and the PCF
computed using our NQS are in line with our analytical results with minor differences.
Overall, we can conclude that ML is able to solve these systems with good accuracy.

Further studies could include interactions between particles to find differences with
respect to the non-interacting case. It could also be investigated if in these cases the many-
body wavefunction can still be written in terms of VDs. A more complex study could even
incorporate spin. Another path to follow would be to analyze other 1D systems such as the
double well potential or the Pöschl–Teller potential, or even consider 2D or 3D systems.
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A Derivation of useful formulae
A.1 Vandermonde determinant formula
Here we provide a proof by induction of the VD formula, given by

det V (x1, ..., xn) =

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xj − xi). (83)

Following the steps of an induction proof, we first prove the formula for n = 2:

det V (x1, x2) =
∣∣∣∣∣1 x1
1 x2

∣∣∣∣∣ = x2 − x1 =
∏

1≤i<j≤2
(xj − xi). (84)

Having seen that the formula is true for this case, we assume (induction hypothesis) that
it is true for an arbitrary n ∈ Z+, and we verify if it is true for n + 1. That is, we want to
prove that

det V (x1, . . . , xn+1) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xn−1

1 xn
1

1 x2 x2
2 · · · xn−1

2 xn
2

...
...

...
. . .

...
...

1 xn x2
n · · · xn−1

n xn
n

1 xn+1 x2
n+1 · · · xn−1

n+1 xn
n+1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n+1

(xj − xi). (85)

If we subtract to each column the previous column multiplied by x1 (starting from the right
side of the determinant and moving to the left), i.e., Ci → Ci−x1Ci−1, with i = 2, . . . , n+1,
we obtain:

det V (x1, . . . , xn+1) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0
1 x2 − x1 x2(x2 − x1) · · · xn−2

2 (x2 − x1) xn−1
2 (x2 − x1)

...
...

...
. . .

...
...

1 xn − x1 xn(xn − x1) · · · xn−2
n (xn − x1) xn−1

n (xn − x1)
1 xn+1 − x1 xn+1(xn+1 − x1) · · · xn−2

n+1(xn+1 − x1) xn−1
n+1(xn+1 − x1)

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
x2 − x1 x2(x2 − x1) · · · xn−2

2 (x2 − x1) xn−1
2 (x2 − x1)

...
...

. . .
...

...
xn − x1 xn(xn − x1) · · · xn−2

n (xn − x1) xn−1
n (xn − x1)

xn+1 − x1 xn+1(xn+1 − x1) · · · xn−2
n+1(xn+1 − x1) xn−1

n+1(xn+1 − x1)

∣∣∣∣∣∣∣∣∣∣
, (86)

where we have developed the determinant by the first row. Putting the repeated factors
in each row outside of the determinant and then using the induction hypothesis, we have:

det V (x1, . . . , xn+1) = (x2 − x1) · · · (xn − x1)(xn+1 − x1)

∣∣∣∣∣∣∣∣∣∣
1 x2 x2

2 · · · xn−1
2

1 x3 x2
3 · · · xn−1

3
...

...
...

. . .
...

1 xn+1 x2
n+1 · · · xn−1

n+1

∣∣∣∣∣∣∣∣∣∣
= (x2 − x1) · · · (xn − x1)(xn+1 − x1)

∏
2≤i<j≤n+1

(xj − xi) =
∏

1≤i<j≤n+1
(xj − xi). (87)

Thus, it is true for n + 1, thereby proving the formula true ∀ n ∈ Z+.
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A.2 Uncorrelated formulae for the OBDM and the PCF
In this section we derive the uncorrelated formulae for the OBDM and the PCF. We start
for the OBDM and then we proceed with the PCF.

First of all, we want to show that, for the ground state of non-interacting systems and
in the Hartree-Fock approximation, the integral expression of the OBDM,

ρ(N)(x, x′) = N

∫
dx2 . . . dxN Ψ∗(x, x2, . . . , xN )Ψ(x′, x2, . . . , xN ), (88)

can be written as a sum of products of the single-particle wavefunctions ϕn(x), for n =
1, 2, 3 . . ., that are solution of the one-body Schrödinger equation of the system under study
(for example, N particles in an IW):

ρ(N)(x, x′) =
N∑

n=1
ϕ∗

n(x)ϕn(x′). (89)

The first step is to write the many-body wavefunction as a Slater determinant using the
Leibniz formula2

Ψ(x1, . . . , xN ) = 1√
N !

∑
P

(−1)P ϕP 1(x1) · · · ϕP N (xN ), (90)

where P is a permutation, P1, P2, . . . , PN are its labels and (−1)P is its sign, i.e.

(−1)P =
{

1 for an even number of transpositions
−1 for an odd number of transpositions

. (91)

Thus,

ρ(N)(x, x′) = N

N !

∫
dx2 . . . dxN

∑
P

(−1)P ϕ∗
P 1(x) · · · ϕ∗

P N (xN )
∑
Q

(−1)QϕQ1(x′) · · · ϕQN (xN )

= N

N !
∑
P,Q

(−1)P (−1)Qϕ∗
P 1(x)ϕQ1(x′)

∫
ϕ∗

P 2(x2)ϕQ2(x2)dx2 · · ·
∫

ϕ∗
P N (xN )ϕQN (xN )dxN

= N

N !
∑
P,Q

(−1)P (−1)Qϕ∗
P 1(x)ϕQ1(x′)δP 2,Q2 · · · δP N,QN = N

N ! (N − 1)!
N∑

n=1
ϕ∗

n(x)ϕn(x′)

= N !
N !

N∑
n=1

ϕ∗
n(x)ϕn(x′) =

N∑
n=1

ϕ∗
n(x)ϕn(x′), (92)

where we have used the orthonormality condition of the single-particle wavefunctions,∫
ϕ∗

n(x)ϕm(x) dx = δn,m, (93)

and also that

∑
P,Q

(−1)P (−1)Qϕ∗
P 1(x)ϕQ1(x′)δP 2,Q2 · · · δP N,QN = (N − 1)!

N∑
n=1

ϕ∗
n(x)ϕn(x′). (94)

2The Leibniz formula expresses the determinant of an n × n matrix A in terms of permutations of its
elements aij as det A =

∑
P

(−1)P a1,P 1a2,P 2 · · · an,P n.
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This may not be immediate to see, but here we put an example for N = 3 to see it clearer.
Since in this case P = {123, 132, 213, 231, 312, 321}, we have:∑

P,Q

(−1)P (−1)Qϕ∗
P 1(x)ϕQ1(x′)δP 2,Q2δP 3,Q3 =

∑
Q

(−1)Q [ϕ∗
1(x)ϕQ1(x′)δ2,Q2δ3,Q3

− ϕ∗
1(x)ϕQ1(x′)δ3,Q2δ2,Q3 − ϕ∗

2(x)ϕQ1(x′)δ1,Q2δ3,Q3 + ϕ∗
2(x)ϕQ1(x′)δ3,Q2δ1,Q3

+ϕ∗
3(x)ϕQ1(x′)δ1,Q2δ2,Q3 − ϕ∗

3(x)ϕQ1(x′)δ2,Q2δ1,Q3
]

= 2ϕ∗
1(x)ϕ1(x′) + 2ϕ∗

2(x)ϕ2(x′) + 2ϕ∗
3(x)ϕ3(x′) = (3 − 1)!

3∑
n=1

ϕ∗
n(x)ϕn(x′). (95)

The generalization of the multiplying factor (N − 1)! can be better understood if we focus
on the term ϕ∗

1(x)ϕ1(x′). If we had had N = 4, the multiplying term would have been 3!
instead of 2!, because these are the number of times that number 1 is in the first position
(1234, 1243, 1324, 1342, 1423, 1432), i.e., the number of permutations of three elements
(2,3,4), which is 3!.

In case n starts from 0, as it happens with the HO or the MO, none of the calcula-
tions would have changed, except that instead of writing 1, . . . , N we would have written
0, . . . , N − 1 throughout all the derivation. Thus, the result is the same as in Eq. (92) but
with the change nmin = 0 and nmax = N − 1.

Following a similar procedure, now we want to show that, for the ground state of non-
interacting systems and in the Hartree-Fock approximation, the integral expression of the
PCF,

g(N)(x1, x2) =
(

N
2

)∫
dx3 . . . dxN Ψ∗(x1, x2, . . . , xN )Ψ(x1, x2, . . . , xN ), (96)

can be written as

g(N)(x1, x2) = 1
2

N∑
n,m=1

Φn,m(x1, x2), (97)

thus avoiding to compute an N − 2 integral. Here,

Φn,m(x1, x2) = ϕ∗
n(x1)ϕ∗

m(x2) [ϕn(x1)ϕm(x2) − ϕm(x1)ϕn(x2)] . (98)

The first step is to write the many-body wavefunction as a Slater determinant, Eq. (90).
Substituting it in Eq. (96), we obtain:

g(N)(x1, x2) =
(

N
2

)
1

N !

∫
dx3 . . . dxN

∑
P,Q

(−1)P +Qϕ∗
P 1(x1) · · · ϕ∗

P N (xN )ϕQ1(x1) · · · ϕQN (xN )

=
(

N
2

)
1

N !
∑
P,Q

(−1)P +Qϕ∗
P 1(x1)ϕ∗

P 2(x2)ϕQ1(x1)ϕQ2(x2)
N∏

i=3

∫
dxiϕ

∗
P i(xi)ϕQi(xi)

=
(

N
2

)
1

N !
∑
P,Q

(−1)P +Qϕ∗
P 1(x1)ϕ∗

P 2(x2)ϕQ1(x1)ϕQ2(x2)δP 3,Q3 · · · δP N,QN . (99)

To see that this can be expressed as in Eq. (97), we derive a specific case with N = 3 and
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then explain it for a general N . For N = 3,

g(3)(x1, x2) =
(

3
2

)
1
3!
∑
P,Q

(−1)Q(−1)P ϕ∗
P 1(x1)ϕ∗

P 2(x2)ϕQ1(x1)ϕQ2(x2)δP 3,Q3

=
(

3
2

)
1
3!
∑
Q

(−1)Q [ϕ∗
1(x1)ϕ∗

2(x2)ϕQ1(x1)ϕQ2(x2)δ3,Q3

− ϕ∗
1(x1)ϕ∗

3(x2)ϕQ1(x1)ϕQ2(x2)δ2,Q3 − ϕ∗
2(x1)ϕ∗

1(x2)ϕQ1(x1)ϕQ2(x2)δ3,Q3

+ ϕ∗
2(x1)ϕ∗

3(x2)ϕQ1(x1)ϕQ2(x2)δ1,Q3 + ϕ∗
3(x1)ϕ∗

1(x2)ϕQ1(x1)ϕQ2(x2)δ2,Q3

−ϕ∗
3(x1)ϕ∗

1(x2)ϕQ1(x1)ϕQ2(x2)δ2,Q3] = 1
2 {ϕ∗

1(x1)ϕ∗
2(x2) [ϕ1(x1)ϕ2(x2) − ϕ2(x1)ϕ1(x2)]

− ϕ∗
1(x1)ϕ∗

3(x2) [−ϕ1(x1)ϕ3(x2) + ϕ3(x1)ϕ1(x2)] − ϕ∗
2(x1)ϕ∗

1(x2) [−ϕ2(x1)ϕ1(x2) + ϕ1(x1)ϕ2(x2)]
+ ϕ∗

2(x1)ϕ∗
3(x2) [ϕ2(x1)ϕ3(x2) − ϕ3(x1)ϕ2(x2)] + ϕ∗

3(x1)ϕ∗
1(x2) [ϕ3(x1)ϕ1(x2) − ϕ1(x1)ϕ3(x2)]

−ϕ∗
3(x1)ϕ∗

2(x2) [−ϕ3(x1)ϕ2(x2) + ϕ2(x1)ϕ3(x2)]} = 1
2

3∑
n,m=1

Φn,m(x1, x2). (100)

For N ≥ 4 it is easier if we classify the permutations in N sets GN determined by the
initial number, that is, the permutations that start with 1 belong to the first set, the ones
that start with 2 belong to the second one, and so on:

G1 = ({12P (34 . . . N)}; {13P (24 . . . N)}; {14P (23 . . . N)}, ...)
G2 = ({21P (34 . . . N)}; {23P (14 . . . N)}; {24P (13 . . . N)}, ...)

...
GN = ({N1P (23 . . . N)}; {N2P (13 . . . N)}; {N3P (12 . . . N)}, ...)

(101)

The elements of each set are separated by a semicolon and are all the permutations with
fixed first and second position, as we can see. For example, the first element of G1 is the
set of permutations {12P (34 . . . N)}, where P (i . . . j) are all the permutations of i, . . . , j.

Due to the product of Kronecker deltas, each element of Gi only combines with itself
and with its opposite element (anti-element), i.e., the permutations that have the first
two numbers exchanged. For example, the second element of G1 starts with 1, 3, so it only
combines with itself and also with the first element of G3, which starts by 3, 1, and any other
combination is zero. Note that each element consists of (N −2)! permutations, so from each
group we obtain (N − 2)! equal terms, ϕ∗

n(x1)ϕ∗
m(x2)[ϕn(x1)ϕm(x2) − ϕm(x1)ϕn(x2)]. The

positive sign appears when the permutation of each element combines with itself, because
(−1)P = (−1)Q so (−1)P (−1)Q = 1, and the negative sign appears when it combines with
the same permutation of the anti-element (thus differing just from the transposition of the
first two numbers, e.g. 12 instead of 21), so if (−1)P = 1, (−1)Q = −1, and vice versa.

As an example, for N = 5, the first element of G1 is {12345; 12354; 12435; 12453; 12534;
12543}, and it only combines with the first element of G2, that is {21345; 21354; 21435;
21453; 21534; 21543}. In particular, 12345 only combines with 12345 and with 21345
(because the permutation of 3,4,5 is the same), thus giving ϕ∗

1(x1)ϕ∗
2(x2)[ϕ1(x1)ϕ2(x2) −

ϕ2(x1)ϕ1(x2)]. Similarly, 12354 only combines with itself and 21354, again giving as a result
ϕ∗

1(x1)ϕ∗
2(x2)[ϕ1(x1)ϕ2(x2) − ϕ2(x1)ϕ1(x2)]. At the end, we have (N − 2)! = 3! = 6 times

the same result, thus, (N − 2)!ϕ∗
1(x1)ϕ∗

2(x2)[ϕ1(x1)ϕ2(x2) − ϕ2(x1)ϕ1(x2)]. The process is
repeated for each element of each group, and since for each element there always appear
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(N − 2)! equal terms Φn,m, we have that, in general,

g(N)(x1, x2) =
(

N
2

)
1

N ! (N − 2)!
N∑

n,m=1
Φn,m(x1, x2) = N !

2!(N − 2)!(N − 2)!
N∑

n,m=1
Φn,m(x1, x2)

= 1
2

N∑
n,m=1

Φn,m(x1, x2), (102)

as we wanted to show.
In case n starts from 0, as it happens with the HO or the MO, the result is the same

but with the change nmin = mmin = 0 and nmax = mmax = N − 1.
Note that Eq. (97) can also be written in terms of the OBDM:

g(N)(x1, x2) = 1
2

N∑
n=1

ϕ∗
n(x1)ϕn(x1)

N∑
m=1

ϕ∗
m(x2)ϕm(x2) −

N∑
n=1

ϕ∗
n(x1)ϕn(x2)

N∑
m=1

ϕ∗
m(x2)ϕm(x1)

= 1
2
(
ρ(N)(x1, x1)ρ(N)(x2, x2) − ρ(N)(x1, x2)ρ(N)(x2, x1)

)
. (103)
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B Derivations for the harmonic oscillator
B.1 Slater determinant of Hermite polynomials as a VD
Here we prove that the Slater determinant of Hermite polynomials is proportional to a VD.
In particular,∣∣∣∣∣∣∣∣∣∣∣∣

H0
(

x1
aho

)
H1
(

x1
aho

)
· · · HN−1

(
x1
aho

)
H0
(

x2
aho

)
H1
(

x2
aho

)
· · · HN−1

(
x2
aho

)
...

...
. . .

...
H0
(

xN
aho

)
H1
(

xN
aho

)
· · · HN−1

(
xN
aho

)

∣∣∣∣∣∣∣∣∣∣∣∣
=

N−1∏
i=1

( 2
aho

)i

det V (x1, . . . , xN ). (104)

For this proof, we need the recurrence relation of the Hermite polynomials,

Hn+1(x) = 2xHn(x) − 2nHn−1(x), (105)

and the property of the determinants that says that if the elements of a row or a column
are expressed as a sum of two terms, then the determinant can be expressed as the sum of
two determinants: ∣∣∣∣∣a b + x

c d + y

∣∣∣∣∣ =
∣∣∣∣∣a b
c d

∣∣∣∣∣+
∣∣∣∣∣a x
c y

∣∣∣∣∣ . (106)

This can be interpolated to cases with more sums.
First of all, we do the demonstration for N = 3 to facilitate the understanding of

the N -particle case3. For the 3-particle case, we have the following Slater determinant of
Hermite polynomials: ∣∣∣∣∣∣∣

H0(x1) H1(x1) H2(x1)
H0(x2) H1(x2) H2(x2)
H0(x3) H1(x3) H2(x3)

∣∣∣∣∣∣∣ . (107)

Using the recurrence relation for n = 1 (H2(x) = 2xH1(x) − 2H0(x)) and the aforemen-
tioned property of the determinants, we can write∣∣∣∣∣∣∣

H0(x1) H1(x1) H2(x1)
H0(x2) H1(x2) H2(x2)
H0(x3) H1(x3) H2(x3)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
H0(x1) H1(x1) 2x1H1(x1) − 2H0(x1)
H0(x2) H1(x2) 2x2H1(x2) − 2H0(x2)
H0(x3) H1(x3) 2x3H1(x3) − 2H0(x3)

∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣
H0(x1) H1(x1) x1H1(x1)
H0(x2) H1(x2) x2H1(x2)
H0(x3) H1(x3) x3H1(x3)

∣∣∣∣∣∣∣− 2

∣∣∣∣∣∣∣
H0(x1) H1(x1) H0(x1)
H0(x2) H1(x2) H0(x2)
H0(x3) H1(x3) H0(x3)

∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣
H0(x1) H1(x1) x1H1(x1)
H0(x2) H1(x2) x2H1(x2)
H0(x3) H1(x3) x3H1(x3)

∣∣∣∣∣∣∣ , (108)

where we have put outside the multiplying 2 in the third column and the second determinant
has been set to zero because we have two equal columns (these are two widely known
properties of the determinants). Finally, using that H0(x) = 1 and H1(x) = 2x, we obtain:∣∣∣∣∣∣∣

H0(x1) H1(x1) H2(x1)
H0(x2) H1(x2) H2(x2)
H0(x3) H1(x3) H2(x3)

∣∣∣∣∣∣∣ = 2 · 22

∣∣∣∣∣∣∣
1 x1 x2

1
1 x1 x2

2
1 x1 x2

3

∣∣∣∣∣∣∣ =
(3−1∏

i=1
2i

)
det V (x1, x2, x3). (109)

3We do the derivations without aho and at the end we will change xi for xi
aho
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For the N -particle case the methodology is analogous. Notice that the second term
of Eq. (105) will never appear because there will always be an equal column inside the
determinant, so the latter will be zero. We write explicitly more terms to better see the
procedure. In the first step, we change all the columns except the first two ones using the
recurrence relation. As we have said, only the first term appears, so basically we have to
reduce an order of the Hermite polynomials and add a multiplying 2x factor. We also put
outside the factor of 2, and since it appears in N − 2 columns, we have a 2N−2 outside:

H ≡

∣∣∣∣∣∣∣
H0(x1) H1(x1) H2(x1) H3(x1) · · · HN−2(x1) HN−1(x1)

...
...

...
...

. . .
...

...
H0(xN ) H1(xN ) H2(xN ) H3(xN ) · · · HN−2(xN ) HN−1(xN )

∣∣∣∣∣∣∣
= 2N−2

∣∣∣∣∣∣∣
H0(x1) H1(x1) x1H1(x1) x1H2(x1) · · · x1HN−3(x1) x1HN−2(x1)

...
...

...
...

. . .
...

...
H0(xN ) H1(xN ) xN H1(xN ) xN H2(xN ) · · · xN HN−3(xN ) xN HN−2(xN )

∣∣∣∣∣∣∣ .
Now we repeat the same procedure for all the columns except the first three ones, so a

factor of 2N−3 is put outside:

H = 2N−22N−3

∣∣∣∣∣∣∣
H0(x1) H1(x1) x1H1(x1) x2

1H1(x1) · · · x2
1HN−4(x1) x2

1HN−3(x1)
...

...
...

...
. . .

...
...

H0(xN ) H1(xN ) xN H1(xN ) x2
N H1(xN ) · · · x2

N HN−4(xN ) x2
N HN−3(xN )

∣∣∣∣∣∣∣ .
If we continue with this process N − 4 more times, we will have a first order Hermite
polynomial in the last column (and in the rest columns except the first one, where we will
have H0(x)), since N − 3 − (N − 4) = 1. Thus, we have:

H = 2N−22N−3 · · · 21

∣∣∣∣∣∣∣∣
H0(x1) H1(x1) x1H1(x1) x2

1H1(x1) · · · xN−3
1 H1(x1) xN−2

1 H1(x1)
...

...
...

...
. . .

...
...

H0(xN ) H1(xN ) xN H1(xN ) x2
N H1(xN ) · · · xN−3

N H1(xN ) xN−2
N H1(xN )

∣∣∣∣∣∣∣∣ .
Finally, we write H0(x) = 1 and H1(x) = 2x and put outside the factors of 2, thereby

obtaining a 2N−1 (we have a multiplying 2 in all columns except in the first one):

H =
(

N−1∏
i=1

2i

) ∣∣∣∣∣∣∣∣
1 x1 x2

1 x3
1 · · · xN−2

1 xN−1
1

...
...

...
...

. . .
...

...
1 xN x2

N x3
N · · · xN−2

N xN−1
N

∣∣∣∣∣∣∣∣ =
(

N−1∏
i=1

2i

)
det V ({xi}N

i=1). (110)

If we change xi for xi
aho

, we can put outside the determinant the aho dividing as aho ·
a2

ho · · · aN−1
ho =

∏N−1
i=1 aho. Thus, we obtain the desired expression:∣∣∣∣∣∣∣∣∣∣∣∣

H0
(

x1
aho

)
H1
(

x1
aho

)
· · · HN−1

(
x1
aho

)
H0
(

x2
aho

)
H1
(

x2
aho

)
· · · HN−1

(
x2
aho

)
...

...
. . .

...
H0
(

xN
aho

)
H1
(

xN
aho

)
· · · HN−1

(
xN
aho

)

∣∣∣∣∣∣∣∣∣∣∣∣
=

N−1∏
i=1

( 2
aho

)i

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xN−1
1

1 x2 x2
2 · · · xN−1

2
...

...
...

. . .
...

1 xN x2
N · · · xN−1

N

∣∣∣∣∣∣∣∣∣∣
, (111)

as we wanted to show.
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B.2 Closed expressions for the harmonic oscillator OBDM and PCF
In this section, we want to find analytically the closed expressions for the OBDM and the
PCF in a HO potential. We do the calculations using the uncorrelated formulae of these
functions, Eqs. (13), (14). In this case, the single-particle wavefunctions are

ϕn(x) = Nne
− x2

2a2
ho Hn

(
x

aho

)
, n = 0, 1, 2, . . . , (112)

with Nn = 1√
2nn!aho

√
π
. Starting for the OBDM, we have that

ρ(N)(x, x′) =
N−1∑
n=0

N2
ne

− x2+x′2

2a2
ho Hn

(
x

aho

)
Hn

(
x′

aho

)

= 1
aho

√
π

e
− x2+x′2

2a2
ho

N−1∑
n=0

1
2nn!Hn

(
x

aho

)
Hn

(
x′

aho

)
(113)

= 1
aho

√
π

e
− x2+x′2

2a2
ho R(N)(x, x′),

where we have defined

R(N)(x, x′) =
N−1∑
n=0

1
2nn!Hn

(
x

aho

)
Hn

(
x′

aho

)
, (114)

which is a polynomial of degree N − 1 in both x and x′, since the nth Hermite polynomial
has degree n.

For the PCF it is easier to derive its closed expression, because it can be computed in
terms of the OBDM as shown in Eq. (16):

g(N)(x1, x2) = 1
2
(
ρ(N)(x1, x1)ρ(N)(x2, x2) − ρ(N)(x1, x2)ρ(N)(x2, x1)

)
= 1

2
1

a2
hoπ

e
−

x2
1+x2

2
a2

ho

[(
N−1∑
n=0

1
2nn!H

2
n

(
x1
aho

))(N−1∑
m=0

1
2mm!H

2
m

(
x2
aho

))

−
(

N−1∑
n=0

1
2nn!Hn

(
x1
aho

)
Hn

(
x2
aho

))(N−1∑
m=0

1
2mm!Hm

(
x2
aho

)
Hm

(
x1
aho

))]

= 1
2

1
a2

hoπ
e

−
x2

1+x2
2

a2
ho

N−1∑
n,m=0

1
2n+mn!m!

[
H2

n

(
x1
aho

)
H2

m

(
x2
aho

)

− Hn

(
x1
aho

)
Hn

(
x2
aho

)
Hm

(
x2
aho

)
Hm

(
x1
aho

)]
= 1

2
1

a2
hoπ

e
−

x2
1+x2

2
a2

ho P(N)(x1, x2), (115)

where

P(N)(x1, x2) =
N−1∑

n,m=0

1
2n+mn!m!

[
H2

n

(
x1
aho

)
H2

m

(
x2
aho

)

− Hn

(
x1
aho

)
Hn

(
x2
aho

)
Hm

(
x2
aho

)
Hm

(
x1
aho

)]
(116)

is a polynomial of degree 2N − 2 in both x1 and x2. However, as we discuss in Sec. 2.3.3,
we have seen in SymPy that we can further factorize this polynomial and get a factor
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(x1 − x2)2. Let us see if this is true for all the values of N (in SymPy we can just try a
finite number of cases, so actually it does not serve as a proof). We define the function

fn,m(y1, y2) = H2
n(y1)H2

m(y2) − Hn(y1)Hn(y2)Hm(y2)Hm(y1), (117)

with yi = xi
aho

(i = 1, 2). This function is inside a sum that goes from n, m = 0 to N − 1.
Notice that when n = m, fn,m(y1, y2) = 0. Thus, to make the sum we can always sum in
groups of two, fn,m(y1, y2) + fm,n(y1, y2). To make it more clear, all the combinations can
be put inside a square matrix, and when we do the sum in n, m, we can sum all the pairs
of transposed elements. For example, for n, m = 0, . . . , 2, we have the elements 0 f01(y1, y2) f02(y1, y2)

f10(y1, y2) 0 f12(y1, y2)
f20(y1, y2) f21(y1, y2) 0

 . (118)

In this case, the sum would be (f01(y1, y2) + f10(y1, y2)) + (f02(y1, y2) + f20(y1, y2)) +
(f12(y1, y2)+f21(y1, y2)), that is

∑N−1
n,m=0 fn,m(y1, y2) =

∑N−1
n<m=0 (fn,m(y1, y2) + fm,n(y1, y2))

and in particular for Eq. (116), since the multiplying factor does not change if we exchange
n and m, we have that

N−1∑
n,m=0

1
2n+mn!m!fn,m(y1, y2) =

N−1∑
n<m=0

1
2n+mn!m! (fn,m(y1, y2) + fm,n(y1, y2)) . (119)

We are doing the sum like this because it turns out that fn,m(y1, y2) cannot be factored
in (y1 − y2)2, but the sum fn,m(y1, y2) + fm,n(y1, y2) can. Indeed:

fm,n(y1, y2) = H2
m(y1)H2

n(y2) − Hm(y1)Hm(y2)Hn(y2)Hn(y1), (120)

so we have that

Fn,m(y1, y2) ≡ fn,m(y1, y2) + fm,n(y1, y2) = H2
n(y1)H2

m(y2) + H2
n(y2)H2

m(y1)
− 2Hn(y1)Hn(y2)Hm(y2)Hm(y1) = [Hn(y1)Hm(y2) − Hn(y2)Hm(y1)]2 . (121)

Now, if y1 = y2, Hn(y1)Hm(y2) − Hn(y2)Hm(y1) = 0. That means that we can write

Hn(y1)Hm(y2) − Hn(y2)Hm(y1) = (y1 − y2)Q(N)(y1, y2), (122)

where Q(N) is a polynomial of degree N − 2 in both y1 and y2. Thus,

Fn,m(y1, y2) =
[
(y1 − y2)Q(N)(y1, y2)

]2
= (y1 − y2)2Q′(N)(y1, y2), (123)

with Q′(N)(y1, y2) a polynomial of degree 2N − 4 in both y1 and y2. Therefore,

P(N)(x1, x2) =
N−1∑

n<m=0

1
2n+mn!m!Fn,m(y1, y2) =

N−1∑
n<m=0

1
2n+mn!m! (y1 − y2)2Q′(N)(y1, y2)

= (y1 − y2)2
N−1∑

n<m=0

1
2n+mn!m!Q

′(N)(y1, y2) = 1
a2

ho

(x1 − x2)2G(N)(x1, x2), (124)

with

G(N)(x1, x2) =
N−1∑

n<m=0

1
2n+mn!m!Q

′(N)(y1, y2) (125)
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also a polynomial of degree 2N − 4 in both y1 and y2. We can also write this polynomial
in terms of the Hermite polynomials. Since from Eq. (123) Q′(N)(y1, y2) = Fn,m(y1,y2)

(y1−y2)2 , we
have that

G(N)(x1, x2) = 1
(y1 − y2)2 P(N)(x1, x2), (126)

and from Eq. (116), we have that

G(N)(x1, x2) = a2
ho

(x1 − x2)2

N−1∑
n,m=0

1
2n+mn!m!

[
H2

n

(
x1
aho

)
H2

m

(
x2
aho

)

− Hn

(
x1
aho

)
Hn

(
x2
aho

)
Hm

(
x2
aho

)
Hm

(
x1
aho

)]
. (127)

Finally, combining Eq. (115) and (124), we obtain the desired closed expression for the
PCF:

g(N)(x1, x2) = 1
2a2

hoπ
e

−
x2

1+x2
2

a2
ho

(x1 − x2)2

a2
ho

G(N)(x1, x2). (128)

To finish this section, we also discuss the matrices R(N) and G(2N−3) for N = 5, which
were too large to add in Sec. 2.3.3. In this case we found them using SymPy as detailed
in the aforementioned section, yielding:

R(5) =


15/8 0 −5/2 0 1/2

0 5 0 −2 0
−5/2 0 8 0 −2

0 −2 0 4/3 0
1/2 0 −2 0 2/3

 , (129)

G(7) = 1
72



675 0 90 0 −180 0 72
0 2520 0 −1440 0 288 0
90 0 2340 0 −1080 0 144
0 −1440 0 1920 0 −384 0

−180 0 −1080 0 1200 0 −96
0 288 0 −384 0 384 0
72 0 144 0 −96 0 64


. (130)
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C Closed expressions for the infinite well OBDM and PCF
In this section, we want to find a closed expression for the OBDM and the PCF in an
IW. We do the calculations analytically using the uncorrelated formulae of the functions,
Eqs. (13), (14). In this case, the single-particle wavefunctions are

ϕn(x) =
√

2
L

sin
(

nπx

L

)
, n = 1, 2, 3, . . . (131)

For the OBDM, we do some particular cases to familiarize ourselves with the expressions
and then we derive the general closed expression. Let us start with N = 2. Since the single-
particle wavefunctions are real, we have that ϕ∗

n(x) = ϕn(x), so we can write that

ρ(2)(x, x′) = ϕ1(x)ϕ1(x′) + ϕ2(x)ϕ2(x′) = 2
L

(
sin πx

L
sin πx′

L
+ sin 2πx

L
sin 2πx′

L

)
= 2

L
sin πx

L
sin πx′

L

(
1 + 4 cos πx

L
cos πx′

L

)
, (132)

where we have used that sin 2α = 2 sin α cos α. Similarly, for N = 3

ρ(3)(x, x′) = ϕ1(x)ϕ1(x′) + ϕ2(x)ϕ2(x′) + ϕ3(x)ϕ3(x′)

= 2
L

(
sin πx

L
sin πx′

L
+ sin 2πx

L
sin 2πx′

L
+ sin 3πx

L
sin 3πx′

L

)
.

Here, we use the identity [SLL14]

sin nA = sin A

⌊ n+1
2 ⌋∑

i=1
(−1)i+1

(
n − i
i − 1

)
(2 cos A)n−(2i−1)

= sin A

{
(2 cos A)n−1 −

(
n − 2

1

)
(2 cos A)n−3 +

(
n − 3

2

)
(2 cos A)n−5 − · · ·

}
. (133)

Thus,

ρ(3)(x, x′) = 2
L

sin πx

L
sin πx′

L

[
1 + 4 cos πx

L
cos πx′

L

+
(

4 cos2 πx

L
− 1

)(
4 cos2 πx′

L
− 1

)]
. (134)

Therefore, we can see that the OBDM can be written as

ρ(N)(x, x′) = 2
L

sin πx

L
sin πx′

L
R(N)

(
cos πx

L
, cos πx′

L

)
, (135)

with R(N)
(
cos πx

L , cos πx′

L

)
a polynomial of order N − 1 in both cos πx

L and cos πx′

L .
We can state this more formally by seeing that

ρ(N)(x, x′) = 2
L

N∑
n=1

sin nπx

L
sin nπx′

L

= 2
L

sin πx

L
sin πx′

L

N∑
n=1

⌊ n+1
2 ⌋∑

i,j=1
(−1)i+j

(
n − i
i − 1

)(
n − j
j − 1

)
(2y)n−(2i−1) (2y′)n−(2j−1)

,
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where we have defined y = cos πx
L and y′ = cos πx′

L . The function

R(N) (y, y′) =
N∑

n=1

⌊ n+1
2 ⌋∑

i,j=1
(−1)i+j

(
n − i
i − 1

)(
n − j
j − 1

)
(2y)n−(2i−1) (2y′)n−(2j−1) (136)

is a polynomial whose order is found when n is maximum (n = N) and 2i − 1 and 2j − 1
are minimum (i, j = 1), that is, it is of order N − (2 − 1) = N − 1 in both y and y′. Hence,
the closed expression of the OBDM is

ρ(N)(x, x′) = 2
L

sin πx

L
sin πx′

L
R(N) (y, y′) . (137)

On the other hand, R(N) (y, y′) can also be written in terms of Vandermonde vectors
and an N × N matrix, R(N):

R(N)(y, y′) = y(N),T R(N)y′(N) =
(
1 y y2 · · · yN−1

)
R(N)


1
y′

y′2

...
y′N−1

 . (138)

For example, for the two particular cases we have discussed, we see that the matrices are:

R(2) =
(

1 0
0 4

)
, R(3) =

 2 0 −4
0 4 0

−4 0 16

 . (139)

For the PCF it is easier to derive its closed expression, because it can be computed in
terms of the OBDM:

g(N)(x1, x2) = 1
2
(
ρ(N)(x1, x1)ρ(N)(x2, x2) − ρ(N)(x1, x2)ρ(N)(x2, x1)

)
= 2

L2 sin2 πx1
L

sin2 πx2
L

[
R(N) (y1, y1) R(N) (y2, y2) − R(N) (y1, y2) R(N) (y2, y1)

]
. (140)

Recall that R(N)(y1, y1) and R(N)(y2, y2) are polynomials of order 2(N − 1) in y1 and
y2, respectively, and R(N)(y1, y2) and R(N)(y2, y1) are of order N − 1 in both y1 and y2, so
G(N)(y1, y2) ≡ R(N)(y1, y1)R(N)(y2, y2) − R(N)(y1, y2)R(N)(y2, y1) is a polynomial of order
2(N − 1) in both y1 and y2. Thus, the closed expression of the PCF is

g(N)(x1, x2) = 2
L2 sin2 πx1

L
sin2 πx2

L
G(N)(y1, y2), (141)

where G(N)(y1, y2) can be represented in terms of matrix products as

G(N)(y1, y2) = y
(2N−1),T
1 G(2N−1)y

(2N−1)
2 , (142)

being G(2N−1) a (2N − 1) × (2N − 1) matrix.
As said, here we show the rest of the matrices that we did not show in Sec. 2.4.3, that is,

N = 4, 5. These matrices, as well as the ones for N = 2, 3, have been found calculating the
polynomials that appear in the closed expressions of the OBDM and the PCF, Eqs. (51)
and (55), and identifying the coefficients as we explained in Sec. 2.3.3. As N increases,
the simplification of the polynomials (doing all the multiplications and groupings of terms)
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becomes more difficult. That is why we have used a Python code that receives the not
simplified polynomial, makes the pertinent simplifications and groupings, and returns the
desired matrix. This is easy to do with the expand() function of SymPy. The results are
shown below:

R(4) =


2 0 −4 0
0 20 0 −32

−4 0 16 0
0 −32 0 64

 , R(5) =


3 0 −16 0 16
0 20 0 −32 0

−16 0 160 0 −192
0 −32 0 64 0
16 0 −192 0 256

 ,

G(7) =



0 0 40 0 −112 0 128
0 −80 0 288 0 −256 0
40 0 −352 0 832 0 −256
0 288 0 −1408 0 1536 0

−112 0 832 0 −2560 0 1024
0 −256 0 1536 0 −2048 0

128 0 −256 0 1024 0 0


,

G(9) =



0 0 60 0 32 0 −448 0 512
0 −120 0 832 0 −1664 0 1024 0
60 0 −1728 0 6528 0 −8448 0 3072
0 832 0 −8832 0 20992 0 −14336 0
32 0 6528 0 −28160 0 38912 0 −12288
0 −1664 0 20992 0 −55296 0 40960 0

−448 0 −8448 0 38912 0 −57344 0 16384
0 1024 0 −14336 0 40960 0 −32768 0

512 0 3072 0 −12288 0 16384 0 0


.
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D Derivations for the Morse oscillator
D.1 Slater determinant of associated Laguerre polynomials as a VD
The ground-state wavefunction in a MO is a Slater determinant that contains associated
Laguerre polynomials. We want to rewrite this determinant as a VD as we did in the HO
case. In particular, we prove that

det
[
z

−(j−1)
i L

2β−2(j−1)
j−1 (zi)

]
i,j=1,...,N

=
[

N−1∏
i=1

(
2β − i

i

)]
det V

( 1
z1

, . . . ,
1

zN

)
, (143)

being (
2β − i

i

)
= 1

i!

2i−1∏
j=i

(2β − j) = 1
i! (2β − i)(2β − i − 1) · · · (2β − 2i + 1), (144)

with β ∈ R.
We need to use the explicit formula of the associated Laguerre polynomials,

Lα
n(x) =

n∑
i=0

(−1)i

(
n + α
n − i

)
xi

i! , (145)

where the binomial coefficient is defined as(
δ
m

)
= 1

m!

m−1∏
k=0

(δ − k) = 1
m!δ(δ − 1)(δ − 2) · · · (δ − m + 1), (146)

with m ∈ N and δ ∈ R. The first two associated Laguerre polynomials are Lα
0 (x) = 1 and

Lα
1 (x) = 1 + α − x. Let us start proving Eq. (143) for N = 3, to see how the procedure

works:

det
[
z

−(j−1)
i L

2β−2(j−1)
j−1 (zi)

]
i,j=1,...,3

=

∣∣∣∣∣∣∣
L2β

0 (z1) z−1
1 L2β−2

1 (z1) z−2
1 L2β−4

2 (z1)
L2β

0 (z2) z−1
2 L2β−2

1 (z2) z−2
2 L2β−4

2 (z2)
L2β

0 (z3) z−1
3 L2β−2

1 (z3) z−2
3 L2β−4

2 (z3)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1 z−1

1 L2β−2
1 (z1) z−2

1 L2β−4
2 (z1)

1 z−1
2 L2β−2

1 (z2) z−2
2 L2β−4

2 (z2)
1 z−1

3 L2β−2
1 (z3) z−2

3 L2β−4
2 (z3)

∣∣∣∣∣∣∣ . (147)

Notice that Lα
1 (x), according to Eq. (145), can be written as a sum of a term with

x0 and a term with x1. This means that in the second column of the above determinant,
only the term with z0

i of L2β−2
1 (zi) survives, since the term with zi becomes a constant

after being multiplied by z−1
i , thus being proportional to the first column (remember that

the determinant can be separated in two determinants according to Eq. (106)). The same
happens with the third column: Lα

2 (x) can be written as a sum of three terms, one with x0,
the second with x1 and the last one with x2. Only the term with z0

i of L2β−4
2 (zi) survives,

since after multiplying by z−2
i , the terms with z−2

i z2
i and with z−2

i zi become proportional
to the first and second columns, respectively. Thus,

det
[
z

−(j−1)
i L

2β−2(j−1)
j−1 (zi)

]
i,j=1,...,3

=
(

1 + (2β − 2)
1

)(
2 + (2β − 4)

2

) ∣∣∣∣∣∣∣
1 z−1

1 z−2
1

1 z−1
2 z−2

2
1 z−1

3 z−2
3

∣∣∣∣∣∣∣
=
(

2β − 1
1

)(
2β − 2

2

)
det V

( 1
z1

,
1
z2

,
1
z3

)
. (148)
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Now, it is immediate to solve the general case for N particles. As we have seen, only

the fist term of the sum in Eq. (145), which is given by

(
n + α

n

)
, survives in each case.

Therefore, we take these constants out of the determinant:

det
[
z

−(j−1)
i L

2β−2(j−1)
j−1 (zi)

]
i,j=1,...,N

=

∣∣∣∣∣∣∣∣
1 z−1

1 L2β−2
1 (z1) z−2

1 L2β−4
2 (z1) · · · z

−(N−1)
1 L2β−2N+2

N−1 (z1)
...

...
...

. . .
...

1 z−1
N L2β−2

1 (zN ) z−2
N L2β−4

2 (zN ) · · · z
−(N−1)
N L2β−2N+2

N−1 (zN )

∣∣∣∣∣∣∣∣

=
(

1 + (2β − 2)
1

)(
2 + (2β − 4)

2

)
· · ·
(

N − 1 + (2β − 2N + 2)
N − 1

) ∣∣∣∣∣∣∣∣∣∣∣

1 z−1
1 z−2

1 · · · z
−(N−1)
1

1 z−1
2 z−2

2 · · · z
−(N−1)
2

...
...

...
. . .

...
1 z−1

N z−2
N · · · z

−(N−1)
N

∣∣∣∣∣∣∣∣∣∣∣
=
(

2β − 1
1

)(
2β − 2

2

)
· · ·
(

2β − (N − 1)
N − 1

)
det V

( 1
z1

, . . . ,
1

zN

)

=
[

N−1∏
i=1

(
2β − i

i

)]
det V

( 1
z1

, . . . ,
1

zN

)
. (149)

We have thus proven Eq. (143). To write the binomial coefficient as in Eq. (144), we use
the definition in Eq. (146) with δ = 2β − i and m = i. We obtain(

2β − i
i

)
= 1

i!

i−1∏
k=0

(2β − i − k) = 1
i! (2β − i)(2β − i − 1) · · · (2β − 2i + 1). (150)

Defining the new variable j = i + k, we can rewrite it as(
2β − i

i

)
= 1

i!

2i−1∏
j=i

(2β − j) = 1
i! (2β − i)(2β − i − 1) · · · (2β − 2i + 1). (151)
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D.2 Closed expressions for the Morse oscillator OBDM and PCF
Following the same steps as in Secs. [B.2, C], we want to find a closed expression for
the OBDM and the PCF in a MO. Again, we do the calculations analytically using the
uncorrelated formula of the functions, Eqs. (13), (14). In this case, the single-particle
wavefunctions are

ϕn(z) = Nnzβe−z/2z−nL2β−2n
n (z), n = 0, 1, 2 . . . , ⌊λ − 1

2⌋, (152)

being β = λ − 1
2 and

Nn =
√

n!(2β − 2n)a
Γ(2λ − n) . (153)

Additionally, we use the closed form of the associated Laguerre polynomials:

Lα
n(x) =

n∑
i=0

(−1)i

(
n + α
n − i

)
xi

i! ≡
n∑

i=0
Cα

n,ix
i. (154)

We start for the OBDM. For N = 2, we have

ρ(2)(z, z′) = ϕ0(z)ϕ0(z′) + ϕ1(z)ϕ1(z′) = 2βa

Γ(2λ)zβz′βe− z+z′
2 L2β

0 (z)L2β
0 (z′)

+ (2β − 2)a
Γ(2λ − 1)(zz′)−1zβz′βe− z+z′

2 L2β−2
1 (z)L2β−2

1 (z′)

= (zz′)βe− z+z′
2

{ 2βa

Γ(2λ) + (2β − 2)a
Γ(2λ − 1)(zz′)−1

(
C2β−2

1,0 + C2β−2
1,1 z

) (
C2β−2

1,0 + C2β−2
1,1 z′

)}
.

Notice that the expression inside the braces can be written as 1
zz′ R(2)(z, z′), with R(2)(z, z′) =

a + bz′ + cz + dzz′ a polynomial of order N − 1 = 1 in both z and z′. This can also be
written in terms of Vandermonde vectors and a 2 × 2 matrix:

R(2)(z, z′) = z(2),T R(2)z′(2) =
(
1 z

)
R(2)

(
1
z′

)
, (155)

with

R(2) =
(

a b
c d

)
= (2β − 2)a

Γ(2λ − 1)


(
C2β−2

1,0

)2
C2β−2

1,0 C2β−2
1,1

C2β−2
1,1 C2β−2

1,0

(
C2β−2

1,1

)2
+ 2βΓ(2λ−1)

(2β−2)Γ(2λ)

 , (156)

so finally we can write

ρ(2)(z, z′) = (zz′)βe− z+z′
2

1
zz′ R

(N)(z, z′). (157)

Similarly, for N = 3 we obtain

ρ(3)(z, z′) = ρ(2)(z, z′) + ϕ2(z)ϕ2(z′) = ρ(2)(z, z′)

+ (zz′)βe− z+z′
2

2(2β − 4)a
Γ(2λ − 2) (zz′)−2

(
C2β−4

2,0 + C2β−4
2,1 z + C2β−4

2,2 z2
) (

C2β−4
2,0 + C2β−4

2,1 z′ + C2β−4
2,2 z′2

)
.

Again, we can take a common factor of 1
(zz′)2 and we obtain a polynomial of order 2 in z

and z′.
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For any N , we will always have the same structure, because each time we increase the
n in (zz′)−n, an extra term of order n appears in the sum of the Laguerre polynomials.
Thus, we can write that

ρ(N)(z, z′) = (zz′)βe− z+z′
2

1
(zz′)N−1 R(N)(z, z′), (158)

where R(N)(z, z′) is a polynomial of order N − 1 in both z and z′. This is the closed
expression for the OBDM in a MO. More compactly,

ρ(N)(z, z′) = (zz′)β−N+1e− z+z′
2 R(N)(z, z′). (159)

Actually, we can derive the above expression more formally:

ρ(N)(z, z′) =
N−1∑
n=0

ϕ∗
n(z)ϕn(z′) =

N−1∑
n=0

N2
n(zz′)βe− z+z′

2 (zz′)−nL2β−2n
n (z)L2β−2n

n (z′)

= (zz′)βe− z+z′
2

N−1∑
n=0

N2
n(zz′)−n

n∑
i,j=0

C2β−2n
n,i C2β−2n

n,j ziz′j

= (zz′)β(zz′)−(N−1)e− z+z′
2

N−1∑
n=0

N2
n(zz′)N−1−n

n∑
i,j=0

C2β−2n
n,i C2β−2n

n,j ziz′j , (160)

where in the last step we have divided and multiplied by (zz′)N−1. The reason for this is
that in the second sum there will always be a constant term corresponding to i = j = 0,
which in turn is multiplied by (zz′)−n. If we multiply this by (zz′)nmax , with nmax = N −1,
we obtain a polynomial in z and z′:

R(N)(z, z′) =
N−1∑
n=0

N2
n(zz′)N−1−n

n∑
i,j=0

C2β−2n
n,i C2β−2n

n,j ziz′j

=
N−1∑
n=0

N2
n(zz′)N−1−n

n∑
i,j=0

1
i!j! (−1)i+j

(
2β − n
n − i

)(
2β − n
n − j

)
ziz′j . (161)

This way we retrieve Eq. (159). This polynomial can be written in terms of Vandermonde
vectors and an N × N matrix, R(N), as

R(N)(z, z′) = z(N),T R(N)z′(N). (162)

On the other hand, we can find the closed expression of the PCF from the OBDM as

g(N)(z1, z2) = 1
2
(
ρ(N)(z1, z1)ρ(N)(z2, z2) − ρ(N)(z1, z2)ρ(N)(z2, z1)

)
= 1

2
(
z2β−2N+2

1 e−z1R(N)(z1, z1)z2β−2N+2
2 e−z2R(N)(z2, z2)

− (z1z2)β−N+1e− z1+z2
2 R(N)(z1, z2)(z1z2)β−N+1e− z1+z2

2 R(N)(z2, z1)
)

= 1
2(z1z2)2β−2N+2e−(z1+z2)

[
R(N)(z1, z1)R(N)(z2, z2) − R(N)(z1, z2)R(N)(z2, z1)

]
. (163)

Since R(N)(z1, z1) and R(N)(z2, z2) are polynomials of order 2(N − 1) in z1 and z2,
respectively, and R(N)(z1, z2) and R(N)(z2, z1) are of order N − 1 in both z1 and z2,
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G(N)(z1, z2) = R(N)(z1, z1)R(N)(z2, z2) − R(N)(z1, z2)R(N)(z2, z1) is a polynomial of order
2(N − 1) in both z1 and z2. Thus, the closed expression of the PCF is

g(N)(z1, z2) = 1
2(z1z2)2β−2N+2e−(z1+z2)G(N)(z1, z2), (164)

where G(N)(z1, z2) can be represented in terms of a matrix product as

G(N)(z1, z2) = z
(2N−1),T
1 G(2N−1)z

(2N−1)
2 , (165)

with G(2N−1) a (2N − 1) × (2N − 1) matrix.
As mentioned in Sec. 2.5.3, we have found all the matrices for N = 2, 3, 4, 5 by using

Eqs. (74) and (77). Similarly as in Appendix [C], we have used a Python code that receives
the not simplified polynomial and returns the desired matrix, because doing the groupings
manually would become very laborious. The R(N) matrices are shown below:

R(2) =

 N2
1

(
C2β−2

1,0

)2
N2

1 C2β−2
1,0 C2β−2

1,1

N2
1 C2β−2

1,1 C2β−2
1,0 N2

0 + N2
1

(
C2β−2

1,1

)2

 ,

R(3) =


N2

2

(
C2β−4

2,0

)2
N2

2 C2β−4
2,0 C2β−4

2,1 N2
2 C2β−4

2,0 C2β−4
2,2

N2
2 C2β−4

2,1 C2β−4
2,0 N2

1

(
C2β−2

1,0

)2
+ N2

2

(
C2β−4

2,1

)2
N2

1 C2β−2
1,0 C2β−2

1,1 + N2
2 C2β−4

2,1 C2β−4
2,2

N2
2 C2β−4

2,2 C2β−4
2,0 N2

1 C2β−2
1,1 C2β−2

1,0 + N2
2 C2β−4

2,2 C2β−4
2,1 N2

0 + N2
1

(
C2β−2

1,1

)2
+ N2

2

(
C2β−4

2,2

)2

 ,

For N = 4, the matrices are so big that we have to separate them into blocks for ease of
presentation:

R(4) =
(
R

(4)
1 R

(4)
2 R

(4)
3 R

(4)
4

)
,

where

R
(4)
1 =


N2

3

(
C2β−6

3,0

)2

N2
3 C2β−6

3,0 C2β−6
3,1

N2
3 C2β−6

3,0 C2β−6
3,2

N2
3 C2β−6

3,0 C2β−6
3,3

 , R
(4)
2 =


N2

3 C2β−6
3,0 C2β−6

3,1

N2
2

(
C2β−4

2,0

)2
+ N2

3

(
C2β−6

3,1

)2

N2
2 C2β−4

2,0 C2β−4
2,1 + N2

3 C2β−6
3,1 C2β−6

3,2
N2

2 C2β−4
2,0 C2β−4

2,2 + N2
3 C2β−6

3,1 C2β−6
3,3

 ,

R
(4)
3 =


N2

3 C2β−6
3,0 C2β−6

3,2
N2

2 C2β−4
2,0 C2β−4

2,1 + N2
3 C2β−6

3,1 C2β−6
3,2

N2
1

(
C2β−2

1,0

)2
+ N2

2

(
C2β−4

2,1

)2
+ N2

3

(
C2β−6

3,2

)2

N2
1 C2β−2

1,0 C2β−2
1,1 + N2

2 C2β−4
2,1 C2β−4

2,2 + N2
3 C2β−6

3,2 C2β−6
3,3

 ,

R
(4)
4 =


N2

3 C2β−6
3,0 C2β−6

3,3
N2

2 C2β−4
2,0 C2β−4

2,2 + N2
3 C2β−6

3,1 C2β−6
3,3

N2
1 C2β−2

1,0 C2β−2
1,1 + N2

2 C2β−4
2,1 C2β−4

2,2 + N2
3 C2β−6

3,2 C2β−6
3,3

N2
0 + N2

1

(
C2β−2

1,1

)2
+ N2

2

(
C2β−4

2,2

)2
+ N2

3

(
C2β−6

3,3

)2

 .

Similarly, for N = 5 we have:

R(5) =
(
R

(5)
1 R

(5)
2 R

(5)
3 R

(5)
4 R

(5)
5

)
,
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where

R
(5)
1 =



N2
4

(
C2β−8

4,0

)2

N2
4 C2β−8

4,0 C2β−8
4,1

N2
4 C2β−8

4,0 C2β−8
4,2

N2
4 C2β−8

4,0 C2β−8
4,3

N2
4 C2β−8

4,0 C2β−8
4,4


, R

(5)
2 =



N2
4 C2β−8

4,0 C2β−8
4,1

N2
3

(
C2β−6

3,0

)2
+ N2

4

(
C2β−8

4,1

)2

N2
3 C2β−6

3,0 C2β−6
3,1 + N2

4 C2β−8
4,1 C2β−8

4,2
N2

3 C2β−6
3,0 C2β−6

3,2 + N2
4 C2β−8

4,1 C2β−8
4,3

N2
3 C2β−6

3,0 C2β−6
3,3 + N2

4 C2β−8
4,1 C2β−8

4,4


,

R
(5)
3 =



N2
4 C2β−8

4,0 C2β−8
4,2

N2
3 C2β−6

3,0 C2β−6
3,1 + N2

4 C2β−8
4,1 C2β−8

4,2

N2
2

(
C2β−4

2,0

)2
+ N2

3

(
C2β−6

3,1

)2
+ N2

4

(
C2β−8

4,2

)2

N2
2 C2β−4

2,0 C2β−4
2,1 + N2

3 C2β−6
3,1 C2β−6

3,2 + N2
4 C2β−8

4,2 C2β−8
4,3

N2
2 C2β−4

2,0 C2β−4
2,2 + N2

3 C2β−6
3,1 C2β−6

3,3 + N2
4 C2β−8

4,2 C2β−8
4,4


,

R
(5)
4 =



N2
4 C2β−8

4,0 C2β−8
4,3

N2
3 C2β−6

3,0 C2β−6
3,2 + N2

4 C2β−8
4,1 C2β−8

4,3
N2

2 C2β−4
2,0 C2β−4

2,1 + N2
3 C2β−6

3,1 C2β−6
3,2 + N2

4 C2β−8
4,2 C2β−8

4,3

N2
1

(
C2β−2

1,0

)2
+ N2

2

(
C2β−4

2,1

)2
+ N2

3

(
C2β−6

3,2

)2
+ N2

4

(
C2β−8

4,3

)2

N2
1 C2β−2

1,0 C2β−2
1,1 + N2

2 C2β−4
2,1 C2β−4

2,2 + N2
3 C2β−6

3,2 C2β−6
3,3 + N2

4 C2β−8
4,3 C2β−8

4,4


,

R
(5)
5 =



N2
4 C2β−8

4,0 C2β−8
4,4

N2
3 C2β−6

3,0 C2β−6
3,3 + N2

4 C2β−8
4,1 C2β−8

4,4
N2

2 C2β−4
2,0 C2β−4

2,2 + N2
3 C2β−6

3,1 C2β−6
3,3 + N2

4 C2β−8
4,2 C2β−8

4,4
N2

1 C2β−2
1,0 C2β−2

1,1 + N2
2 C2β−4

2,1 C2β−4
2,2 + N2

3 C2β−4
3,2 C2β−6

3,3 + N2
4 C2β−8

4,3 C2β−8
4,4

N2
0 + N2

1

(
C2β−2

1,1

)2
+ N2

2

(
C2β−4

2,2

)2
+ N2

3

(
C2β−6

3,3

)2
+ N2

4

(
C2β−8

4,4

)2


.

The expressions for G(2N−1) are even more difficult and large. We can only write here
the case for N = 2 because for the other cases the matrices become excessively big:

G(3) = N2
0 N2

1

(
C2β−2

1,0

)2

0 0 1
0 −2 0
1 0 0

 .

For N = 3, 4, 5 the results are excessively large, so we do not include these cases in
this document. However, we have computed and plotted the OBDM and the PCF with all
the matrices for N = 2, 3, 4, 5 and we have obtained the same results as in Sec. 2.5.2, thus
checking the derived closed expressions matrices.
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E Ground-state calculations
E.1 Ground-state energy of the systems
In this section we find the ground-state energy for each one of the systems of N spinless
fermions, taking into account the Pauli exclusion principle. For the calculations, we need
the following formulae:

M∑
i=0

i = 1
2M(M + 1), (166)

M∑
i=0

i2 = 1
6M(M + 1)(2M + 1). (167)

Let us start for the HO, which has the following single-particle energy:

ϵn = ℏω

(
n + 1

2

)
, n = 0, 1, 2 . . . (168)

Thus, the ground-state energy is

E(N) =
N−1∑
n=0

ϵn = ℏω
N−1∑
n=0

(
n + 1

2

)
= ℏω

[1
2(N − 1)N + 1

2N

]

= ℏω

(
N2

2 − N

2 + N

2

)
= ℏω

N2

2 . (169)

Using HO units, since ℏω = 1, the energy is just E(N) = N2

2 .
For the IW,

ϵn = ℏ2π2

2mL2 n2, n = 1, 2, 3 . . . (170)

Therefore

E(N) =
N∑

n=1
ϵn = ℏ2π2

2mL2

N∑
n=1

n2 = ℏ2π2

12mL2 N(N + 1)(2N + 1). (171)

In the natural units of the system, we have that ℏ2

mL2 = 1, so E(N) = π2

12 N(N + 1)(2N + 1).
Finally, for the MO the single-particle energies are given by

ϵn =
[(

n + 1
2

)
− 1

2λ

(
n + 1

2

)2
]
ℏωe, n = 0, 1, 2 . . . (172)

so the ground-state energy is

E(N) =
N−1∑
n=0

ϵn =
[

N2

2 − 1
2λ

N−1∑
n=0

(
n2 + n + 1

4

)]
ℏωe

=
[

N2

2 − 1
2λ

(1
6(N − 1)N(2N − 1) + 1

2(N − 1)N + 1
4N

)]
ℏωe

=
[

N2

2 − 1
2λ

(
1
6(2N3 − 3N2 + N) + N2

2 − N

2 + N

4

)]
ℏωe

=
[

N2

2 − 1
2λ

(1
6(2N3 + N) − N

4

)]
ℏωe =

[
N2

2 − 1
24λ

N
(
4N2 − 1

)]
ℏωe. (173)

In the natural units of the MO, a2ℏ2

m = 1, so ℏωe = λ and E(N) = N2

2 λ − 1
24N

(
4N2 − 1

)
.
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E.2 Nodal structure of the single-particle wavefunctions
The single-particle wavefunctions of the three systems have a number of nodes directly
related to the principal quantum number n. Here we show which is the exact relation.

For the HO, the single-particle wavefunctions vanish only in the roots of the Hermite
polynomials, as we can see:

ϕn(x) = Nne
− x2

2a2
ho Hn

(
x

aho

)
, n = 0, 1, 2, . . . (174)

However, a Hermite polynomial of degree n has n distinct real nodes or zeros [GM48],
so ϕn(x) has n distinct real nodes.

For the MO we encounter a similar case, since the single-particle wavefunctions vanish
only in the roots of the associated Laguerre polynomials:

ϕn(z) = Nnzβe−z/2z−nL2β−2n
n (z), n = 0, 1, 2 . . . , ⌊λ − 1

2⌋. (175)

Recall that z = 2λe−ax is strictly positive, so only the Laguerre term can make the wave-
function to vanish. On the other hand, an associated Laguerre polynomial of degree n has
n distinct real and positive nodes or zeros [DM15], so the single-particle wavefunctions have
exactly n nodes, because z is also positive. In Fig. 8 we plot the Hermite and associated
Laguerre polynomials for n = 0 to 4.

For the IW, the single-particle states vanish in the zeros of the sine:

ϕn(x) =
√

2
L

sin
(

nπx

L

)
, n = 1, 2, 3, . . . (176)

This happens when sin
(

nπx
L

)
= 0, that is, nπx

L = mπ, or equivalently x = m
n L, with

m = 0, 1, 2, . . . , n because x goes from 0 to L. Therefore, without counting x = 0 and
x = L, there are n − 1 nodes. For example, for n = 4, x = 0, 1

4L, 2
4L, 3

4L, L, we have three
nodes. Notice though that for the IW n starts from 1, so in fact for the three systems we
have the same number of nodes for a particular energy level. For example, for the first
level to be filled by fermions, we have 0 nodes in all cases.

Figure 8: Plot of Hermite polynomials and the associated Laguerre polynomials for α = 4 and
n = 0, 1, 2, 3, 4, which are the n values used in this work. We can see that these polynomials have n
zeros and, in particular, for the associated Laguerre polynomials these zeros are positive.
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F Plots of the OBDM and the PCF obtained with ML
Here we show the plots of the OBDM and the PCF for the HO (Figs. 9, 10), the IW
(Figs. 11, 12) and the MO (Figs. 13, 14) obtained using ML techniques.

Figure 9: OBDM ρ(N)(x, x′) obtained with ML techniques in terms of the positions x and x′ for N = 2
to 5 particles in a HO well. We use HO units.

Figure 10: PCF g(N)(x1, x2) obtained with ML techniques in terms of the positions x1 and x2 for
N = 2 to 5 particles in a HO well. We use HO units.
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Figure 11: OBDM ρ(N)(x, x′) obtained with ML techniques in terms of the positions x and x′ for N = 2
to 5 particles in an IW. We use IW natural units.

Figure 12: PCF g(N)(x1, x2) obtained with ML techniques in terms of the positions x1 and x2 for
N = 2 to 5 particles in an IW. We use IW natural units.
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Figure 13: OBDM ρ(N)(x, x′) obtained with ML techniques in terms of the positions x and x′ for N = 2
to 5 particles in a MO, with λ = 11.5. We use MO natural units.

Figure 14: PCF g(N)(x1, x2) obtained with ML techniques in terms of the positions x1 and x2 for
N = 2 to 5 particles in a MO, with λ = 11.5. We use MO natural units.
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