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ABSTRACT

A detailed geological map of the Les Avellanes salt Diapir (South-Central Pyrenees, Spain) that
includes both the diapir body and adjacent areas is presented to understand the diapir
evolution and geometry. Structural, stratigraphical, and sedimentary data north and south of
the diapir is used to infer the timing of its emplacement. The northern diapir boundary is
characterized by a set of extensional faults oblique to the main Pyrenean trend, while the
southern boundary is an extrusive salt sheet that overlays the late Eocene-early Oligocene
sequence in three adjacent sub-basins. Salt extrusion occurred due to synorogenic folding.
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The topography created as salt extruded trapped the arrival of external sediments from the
north, blocking the transport pathways southward. Low sedimentation rates southwards
allowed for the lateral salt extrusion, advancing southwards from the feeder. The salt sheet
emplacement was postdated by Oligocene conglomerates, indicating that the salt extrusion

was a relatively quick event.

1. Introduction

The study of salt diapirism in the South-Central Pyr-
enees has primarily focused on the internal regions
of the South Pyrenean fold-and-thrust belt. During
the Lower Cretaceous rifting stage, pre-orogenic dia-
pirs developed in those regions (e.g. Cotiella Basin,
Lopez-Mir et al., 2015; 2016, Sopeira Basin and Sant
Gervas Basin, Saura et al., 2016 and Organya Basin,
Casini et al., 2023) which were subsequently inverted
during the Upper Cretaceous-Oligocene contraction
(Beaumont et al., 2000; Garcia-Senz, 2002; Martinez-
Pefia & Casas-Sainz, 2003; Ramos et al., 2020). How-
ever, the South Pyrenean external areas also contain
several diapirs associated with syn-orogenic sedimen-
tation and the southwards propagation of the Pyre-
nean deformation (Burrel & Teixell, 2021; Cofrade
et al., 2023; Salvany, 1999; Santolaria et al., 2014; San-
tolaria et al., 2022b). These diapirs offer quality
exposures for a direct field approach and provide
insights into the relationship between tectonosedi-
mentary processes and diapirism, thus shedding light
on how salt interacts with mountain building pro-
cesses (Duffy et al., 2018; Rowan et al., 2019; Santolaria

Diapir, located next to the frontal Pyrenean thrust
within the external South-Central Pyrenean region,
shows one of the most extensive exposures and is an
excellent field example that illustrates salt-sediment
interaction during tectonic compression.

One approach to unravel the combination of tec-
tonics, sedimentation, and diapirism is to map the dia-
pir body as well as the adjacent areas using structural
and sedimentary data (e.g. Sivas Basin, Turkey, Callot
et al., 2016; Tazoult Salt Wall, Morocco, Martin-Mar-
tin et al., 2017; Flinders Range, Australia, Rowan et al.,
2019; Vidal-Royo et al., 2021) as used in this work in
the Southern Pyrenees. Geological maps from the
Institut Cartografic i Geologic de Catalunya (ICGC,
https://www.icgc.cat) in the eastern South Pyrenean
area (1:25000 scale) (ICGC Figuerola de Meia sheet,
2007; ICGC Ager sheet, 2008; ICGC Os de Balaguer
sheet, 2010 and ICGC Camarasa sheet, 2014), and
the Mapa Geoldgico de Espafna (1:50000 scale) (Os
de Balaguer sheet by Teixell & Barnolas, 1996; Artesa
de Segre sheet by Saula et al., 2000), as well as maps
published in other geological reports (i.e. Burrel &
Teixell, 2021; Lopez-Mir et al., 2016; Munoz et al,

et al.,, 2022a). Among these diapirs, the Les Avellanes ~ 2018), have «created an extensive cartographic
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database. However, geological mapping must be
appropriate to the scale of the features portrayed to
illustrate the range of geometries and structures pro-
duced during their geological evolution (Borradaile,
2015). Since diapirs are structures that can exhibit
severe structural and stratigraphic changes in their
surroundings regions (Roca et al., 2021; Rowan
et al., 2019), it is necessary to improve current maps
to reach the optimal scale required to observe salt-
sediment interactions accurately.

In this regard, the Les Avellanes Diapir is located in
a region of intense deformation where the pre-oro-
genic and syn-orogenic host sequence outcrops
along compressive structures, constraining the dia-
pir’s evolution. At the SW boundary of the Les Avel-
lanes Diapir, the salt body covers the syn-orogenic late
Eocene-early Oligocene sequence which records the
extrusion of the salt as an extrusive (subaerial) advan-
cing salt sheet (Cofrade et al., 2023). This contribution
presents a detailed geological map of the Les Avellanes
Diapir (1:32000) that showcases the complete exten-
sion of the allochthonous salt-bedrock contact and
the internal architecture of this diapir. The map com-
bines structural, sedimentological, and stratigraphic
observations to deduce the diapir geometry and
evolution.

2. Geological context

The Pyrenees (Figure 1A) is an asymmetric, doubly-
vergent orogenic belt formed by the continental col-
lision between Iberia and Eurasia plates, from Late
Cretaceous to Middle Miocene times (i.e. Beaumont
et al.,, 2000; Calvet et al., 2021; Garcés et al,, 2020;
Muiioz, 1992; 2002; Muioz et al, 2018; Sussman
et al., 2004; Teixell & Muioz, 2000; Vergés et al,
1995). The collision was caused by the eastward trans-
lation and counterclockwise drifting of the Iberian
plate relative to Eurasia during the opening of the
North Atlantic Ocean (Angrand & Mouthereau,
2021; Handy et al, 2010; Olivet, 1996; Sibuet et al.,
2004). This deformation inverted the pre-existing
Lower Cretaceous hyperextended margin, resulting
in the formation of an antiformal sedimentologicos
de las evaporitas del Triasico y del Lidsico inferior
en el E de la Peninsula Ibérica. Cuadernos de Geologia
Ibérica stack of basement-detached, southward-imbri-
cated thrust sheets known as the Axial Zone (Figure
1A) (Beaumont et al., 2000; Espurt et al., 2019; Marti-
nez-Pefia & Casas-Sainz, 2003; Mufoz, 1992; Odlum
et al, 2019). The Axial Zone acts as a boundary
between the North and South Pyrenean fold-and-
thrust belts. The South Pyrenean fold-and-thrust
belt, where the Les Avellanes Diapir is located, was
formed by the southward propagation of the thrust
front from the Axial Zone as an imbricated south-ver-
ging sequence of piggyback thrusts, detached along the

Triassic evaporites (Figure 1B) (Mufoz, 1992; Muioz
et al., 2018; Saura et al., 2016; Séguret, 1972; Vergés
et al., 2002; Vergés & Muiioz, 1990).

Specifically, the South-Central Pyrenean fold-and-
thrust belt is formed of three main thrust sheets
branching southwards from a sole thrust running
along the Upper Triassic detachment and emplaced
over the Eocene-Oligocene evaporites of the Ebro
Foreland Basin (Figure 1C) (Mufoz, 1992; Vergés
et al., 1995). These are, from north to south, the Bbix-
ols-Cotiella Thrust Sheet, the Montsec-Pefia Monta-
nesa Thrust Sheet, and the Serres Marginals Thrust
Sheet, emplaced during the late Cretaceous, the Paleo-
gene-Eocene, and the late Eocene-Oligocene, respect-
ively (Beaumont et al., 2000; Cruset et al., 2020; Garcés
et al., 2020; Muifioz et al., 2013; Muifioz-Ldpez et al.,
2022; Teixell & Muifoz, 2000). These three thrust
sheets form an orogenic salient flanked by highly obli-
que tectonic structures (N-S to E-W) (Figure 1B).
Differential tectonic transport displacement along-
strike caused the gradual formation of the orogenic
curvature (Garcés et al., 2020; Mufoz et al., 2013;
Sussman et al., 2004). The larger tectonic transport
of these thrust sheets was caused by the superposition
of the two predominant décollement levels in the Pyr-
enees: the Upper-Middle Triassic evaporites and the
upper Eocene-Oligocene evaporites in the Ebro Fore-
land Basin (Muiioz et al., 2013; 2018; Santolaria et al.,
2022b)

The Les Avellanes salt Diapir is located at the fron-
tal part of the thrust salient in the Serres Marginals
Thrust Sheet. Here, the distribution and mobilization
of the Triassic evaporites strongly controlled the
mountain-building process, impacting the location,
type, and geometry of contractional structures. In
the Serres Marginals, Triassic exposures are associated
with thrusts, detached folds (Salvany, 1999), and salt
diapirs (Garcia-Senz, 2002; McClay et al., 2004; Santo-
laria et al., 2014). Triassic outcrops are mainly formed
of gypsum, carbonates, and mudrocks and salt is not
exposed at the surface (Calvet et al., 2004; Lopez-
Gomez et al., 2019; Salvany & Bastida, 2004). How-
ever, exploration wells and gravimetric maps reveal
the presence of subsurface Middle to Upper Triassic
salt (Lanaja, 1987, e.g. Monzén-1 well log; Santolaria
et al, 2014; Camara & Flinch, 2017; Ayala et al,
2021). These Triassic sequence was sedimented an epi-
continental, restrictive marine-coastal evaporitic
environment within a polyphase rifting that spans
from the late Permian to Middle-Late Triassic associ-
ated with the fragmentation of the supercontinent
Pangea and the opening of the North Atlantic Ocean
(Orti et al., 2017). In this sequence, there are two
main salt intervals, middle Triassic (Ladinian, middle
Muschelkalk facies, M2) and upper Triassic (Carnian
to Norian, lower and middle Keuper facies, K1 and
K2) in age respectively (Figure 2) (Calvet et al., 2004;
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Figure 1. (A) Geological sketch of the Pyrenees. The red polygon indicates the approximate extension of Figure 1B. Modified from
Gonzalez-Esvertit et al., 2022. (B) Geological map of the South-Central Pyrenean fold-and-thrust belt. Modified from Mufioz et al.,
2018. External diapirs are numbered: 1. Alds de Balaguer, 2. Les Avellanes, 3. Estopinya, 4. Calasanz, 5. Justeu, 6. La Puebla de
Castro, 7. Estada, 8. Naval, and 9. Clamosa. (C) Section showing the structure of the South-Central Pyrenean fold-and-thrust
belt. Black dashed line in Figure 1B indicates the location of this cross-section (after Mufioz et al., 2018).

Camara & Flinch, 2017; Klimowitz & Torrescusa,  which are more abundant in the upper part of the
1990; Orti, 1987; Orti et al., 1996). These salt intervals Triassic sequence, in the K1-K2 salt interval (Jurado,
also contain interbedded sulphates and mudrocks, 1990; Orti et al., 1996). These two salt intervals are
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Figure 2. Sketch representing the stratigraphy of the Les Avellanes Diapir and adjacent areas, not-to-scale. Geometries are over-
simplified to understand stratigraphic relationships. The thicknesses of the units are approximations (see sources from Cofrade

et al., 2023).

separated by a late Ladinian carbonate layer that cor-
responds to the upper Muschelkalk facies (M3). Doler-
ites are also found within the salt sequence, intruding
into the Muschelkalk and Keuper intervals as sills and/
or dykes during or slightly after salt deposition
(Lopez-Gomez et al,, 2019). During diapirism, the
mobilization of the Triassic salt caused the detach-
ment and rupture of the intrasalt Muschelkalk (M3)
layer. Resulting fragments of the intrasalt carbonate
strata, called stringers, behaved as competent bodies
in the host salt (Cofrade et al., 2023). These stringers
experienced intense deformation while being trans-
ported within the salt flow and accumulated at the sur-
face due to salt dissolution. Thus, major Triassic
exposures in the area, including the Les Avellanes Dia-
pir body, are interpreted as caprock-like deposits
formed by a caprock matrix constituted by dissolution
residues (gypsum and mudrocks), that embeds deca-
meter-thick and laterally extensive carbonate stringers
and dolerite bodies (Cofrade et al., 2023). Dolerite

bodies were also probably transported within the salt
flow and accumulated at the surface as salt dissolved.

The Les Avellanes Diapir is surrounded by a south-
ward wedging sedimentary host sequence. This
sequence is formed from the erosion and condensed
deposition occurring at the southernmost tip of the
Pyrenean basin (former location of the Serres Margin-
als Thrusts Sheet), detached along the Triassic salt and
tectonically emplaced over the Ebro Foreland Basin
(Garcés et al., 2020; Mufoz et al., 2018). This host
sequence spans from the Upper Triassic to the Oligo-
cene and can be subdivided into a pre-orogenic and a
syn-orogenic interval (Figure 2).

The pre-orogenic sequence is constituted of an
alternation of white marls and dolostones (Norian in
age), which is the top of the Keuper facies, K3; fol-
lowed by well-bedded dolostones and limestones of
the Isabena/Imén Fm. (Rhaetian in age). These units
are overlain by a marine Jurassic succession (Pocovi,
1978) formed of lower Lias evaporites and breccias,



upper Lias marls with interbedded limestones, and
Dogger-Malm platform carbonates.

The syn-orogenic sequence in the studied area
began with the sedimentation of the Upper Cretaceous
sediments, consisting of a basal unit of sandstones and
conglomerates from the Adraén Fm. (Santonian in
age), which unconformably overlays the Jurassic
rocks (Figure 2) (Pocovi, 1978; Ullastre & Masriera,
2004). The marine limestones and calcareous sand-
stones from the Calcaria de les Serres Fm. (Maastrich-
tian in age) overlie the Adraén Fm. The Upper
Cretaceous gradually evolves into a continental silici-
clastic-calcareous alternation named the Tremp
Group (also known as Garumnian facies), which rep-
resents a marine regression that occurred during the
Cretaceous-Paleocene boundary (Gémez-Gras et al.,
2016). This episode was followed by a new transgres-
sion during the early Eocene (early Ypresian times)
(Pujalte et al., 2009), represented by the marine Alveo-
lina Limestones characterized by their content of
Alveolina (Pocovi, 1978). The basal horizon of this
unit is easily recognizable in the field, being useful
for regional correlations. South of the diapir, the
Alveolina Limestones gradually change into more sili-
ciclastic, shallower facies during the Lutetian, which
are almost missing elsewhere in the Serres Marginals.
After that, late Eocene-early Oligocene mixed clastic
and evaporitic facies covered the structural paleorelief
produced by the uplift and ongoing formation of tec-
tonic structures in the Serres Marginals, therefore
recording the orogenic deformation at the external
Pyrenean wedge (Teixell & Muifioz, 2000) and at the
foreland basin (Ramirez-Perez et al., 2023; Santolaria
et al., 2022b). Oligocene deposition postdating the
contractional structures, buried the fold-and-thrust
belt under more than 700 m of conglomerates in the
Les Avellanes Diapir area (Fillon et al., 2013). Finally,
the Pleistocene erosion sculpted the present relief.

3. Methods

The geological map of the Les Avellanes Diapir covers
an area of approximately 200 km?. It is presented at a
scale of 1:32000 (Main Map, Figure 3) but the carto-
graphy work was done at a detailed scale of 1:10.000.
The map was created through several months of field-
work and is also based on the existing geological maps
(ICGC Figuerola de Meia sheet, 2007; ICGC Ager
sheet, 2008; ICGC Os de Balaguer sheet, 2010 and
ICGC Camarasa sheet, 2014, and Os de Balaguer
sheet by Teixell & Barnolas, 1996; Artesa de Segre
sheet by Saula et al., 2000). The topographic base com-
prised of the 1:25000 and 1:5000 maps and orthopho-
tographic aerial images (25 cm pixel maximum
resolution) from the ICGC (series 25 cm (OF-25C)
v4r0, 2022 flight), as well as a high-resolution DEM
(ICGC, HD-DEM, 2x2 m (MET-2) v2.0 (2016—
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2017), https://icgc.cat). Structural data (up to 3000
dip directions/dip angles from bedding surfaces,
faults, and foliations) was collected directly on the
field with a compass-clinometer, georeferenced with
FieldMove software, and digitalized alongside surfaces
and stratigraphic contacts with ArcGIS software. Fault
symbology is simplified based on stratigraphic con-
straints to avoid the complexity caused by the inver-
sion, tilting, and/or reactivations during the intense
deformation history of the area. The map is
accompanied by a stratigraphic key, which is divided
into pre- and syn-orogenic lithostratigraphic units
and the diapir units, as well as a stratigraphical sketch
summarizing the relationships between these units in
the area. Quaternary deposits have not been included
on the map.

4, Results

4.1. Structural domains of the Les Avellanes
Diapir adjacent areas

The Les Avellanes Diapir has an irregular shape pro-
duced by the combination of tectonic structures and
diapirism, resulting in different structural domains.
These are described below regarding their location
relative to the diapir boundaries (Main Map and
Figure 3).

Along the northern boundary of the diapir, the
contact between the diapir body and the host sedimen-
tary sequence runs along the trace of two sets of faults,
NW-SE and SW-NE, oblique to the main compres-
sional structures in this area (W-E). The north-central
part of the Les Avellanes Diapir exposure is located in
the intersection of both sets of faults. Towards the NE
and NW areas, these faults extend outwards and cut
through the folded Jurassic to Eocene sequence, result-
ing in grabens (Main Map, Figure 3). Accordingly,
these faults are evaluated as extensional, regardless
of the relationship observed along the diapir contact,
which resulted from the diapir emplacement. They
were formed during the Eocene-Oligocene since Oli-
gocene conglomerates filled the grabens and postdate
the faults at the NE and NW areas.

Adjacent to the western boundary of the Les Avel-
lanes Diapir, the structure is characterized by a set of
NW-SE trending folds affecting the salt-detached Jur-
assic to Oligocene Serres Marginals sequence. The fold
wavelength gradually decreases southwards as the
detached sequence becomes thinner. Broad synclines
are tectonically imbricated, separated by thrusts and
back-thrusts with the Keuper facies outcropping
along the base of the hangingwall (e.g. along the Os
de Balaguer back-thrust, Figure 3 and Main Map).
In addition, the Ypresian Alveolina Limestones exhibit
rotational offlap to onlap growth strata architectures
close to the fold limbs (Cofrade et al., 2023), indicating
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that folds grew during the early Eocene. Some anticli-
nes, such as the Canelles Anticline, are box-shaped
with wide hinges and Triassic rocks cropping out in
the eroded cores (Figure 3, Main Map). Furthermore,
the Canelles Anticline is intersected by oblique exten-
sional faults similar to those at the northern diapir
boundary. These faults displace stepping blocks down-
wards at the diapir contact (between Tartareu and
Vilamajor villages, Main Map).

The eastern to south-eastern boundary of the Les
Avellanes Diapir is dominated by the Montroig
Thrust, which has a W-E strike and continuously out-
crops eastwards up to the Segre River (Figure 3). This
thrust was emplaced out of sequence, after the for-
mation of the Serres Marginals Thrust (Teixell &
Muiioz, 2000). The hangingwall of the Montroig
Thrust, with upper Triassic rocks at its base, exposes
a complete Jurassic sequence up to 800 m thick uncon-
formably overlaid by the Upper Cretaceous units. Both
of these units are truncated by NW-SE extensional
faults, mainly dipping towards the NE. The footwall
of the Montroig Thrust corresponds to the eastern ter-
mination of the Vilanova-Sant Lloreng unit, which is a
detached tectonic unit emplaced over the Ebro Fore-
land Basin. This unit is characterized by a late Eocene
to early Oligocene thin and incomplete stratigraphic
sequence relative to the northern Serres Marginals
cover, deformed by an imbricated system of short-
wavelength folds and thrusts (Main Map). The thin
stratigraphy in this unit is related to a condensed

deposition and the presence of internal unconformi-
ties found at the southern termination of the Pyrenean
Basin.

4.2. Stratigraphical, sedimentological, and
petrological constraints on diapir emplacement

The Tartareu, Os de Balaguer, and Montroig sub-
basins show a similar late Eocene to Oligocene sedi-
mentary record that constrains the salt sheet empla-
cement. These sub-basins are adjacent to the diapir
body and occupy structural lows formed by folding
or faulting. Each section can be divided into two
main intervals separated by erosional unconformities
(Figure 4):

The lower interval is characterized by evaporitic
facies that are stratigraphically enclosed by late
Eocene-early Oligocene alluvial conglomerates. Eva-
poritic units (Figure 5A) lay on top of conglomerates
at the core of the Os de Balaguer and the Tartareu
sub-basins, and in the Montroig Thrust footwall.
These units overlap the previous stratigraphy postdat-
ing tectonic deformation (Main Map) (Figure 4, sec-
tions 3 and 4). The enclosing alluvial conglomerates
rapidly evolve laterally from massive, proximal facies
to distal facies, where they are intercalated with fine-
bedded sandstones and mudrocks (Figure 4, sections
1, 2, and 5 and Figure 5B). Clast composition, mainly
limestones from the Jurassic, Upper Cretaceous,
Paleocene, and lower Eocene units, indicates that



JOURNAL OF MAPS (&) 7

Tartareu sub-basin

NNW-SSE

Os de Balaguer sub-basin

w o SW-NE  Montroig sub-basin

Allochthonous
diapir body

T Section 1

120 I
15
110 I
105
100 I
90I
85
80

|

e Featono

wI
soI
SGI
45

40‘I> r
= s

20I

SFMCE S
E sand & 3

Megabreccia

Allochthonous diapir body

4 Section 2

% Section4 |

Allochthonous
diapir body

Megabreccia

Section 5

Stringer

(Eocene)

Alveolina limestones

[N I

—eoses)

[N

v evon

v eusod

pa=—==ace=T 7 .,
= S====-——NN.

Boulder:

30 v eton
v eusod]
v evoa

Calcaria de

El Mudrocks

Gypsum
Iz‘ Dolerites
ﬁ Limestones

0 les Serres  \
— Pper Cretaceoys
Contacts -
JA%
— — Unconformit )
E] Sandstones Y {
— Concordant A
Conglomerates/breccias  ******" Gradual A L
= Salt sheet basal ‘&
contact v
________ Dissolution contact 5\' \
(stringers) N

g Trough cross-bedding with

pebbels

~a Small-scale trough
cross-bedding

== Plane-parallel lamination
Zz Tabular cross-bedding

£

Pebble level/channel lag

== Tepee

=== | enticular gypsum

<= Detrital gypsum grains
Normal grading

' Inverse grading

Stratigraphic units

Diapir caprock

E Dolerites

I:l Limestones top interval
M3, Muschelkalk stringers

:l Caprock megabreccia

Breccias and conglomerates
(diapir source)

Late Eocene -early Oligocene

Mudrocks and sandstones
(palustrine)

Sandstones and
conglomerates (alluvial)

I:l Gypsum and mudrocks

N pL
Sect ; } S

AP Les Avellanes salt
Diapir
Sect2 \| o -~
mmlh_’//
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breccia deposit (debrites) derived from the erosion of the diapir and emplaced under it. This supports the extension and emplace-
ment of the diapir body as a salt sheet that advanced southwards, originated along the northern boundary where the salt
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Figure 5. (A). Tabular gypsum beds at the Tartareu sub-basin with minor intercalation of mudrocks. Gypsum nodules are also
observed. White arrow shows stratigraphic polarity. (B) Oligocene conglomerates at the southern diapir boundary (Os de Balaguer
sub-basin). The deposit is organized in channel-like bodies with cross-bedding at the base interbedded with red mudrocks (see
also Figure 4). (C). Close view from the facies described in Figure 5B. These conglomerates present a polymictic composition
mainly derived from the erosion of the Serres Marginals units, contrasting with the northern conglomeratic facies. Pink arrows
point towards Muschelkalk clasts, green arrows to Calcarea de les Serres clasts, and orange arrows to Alveolina Limestones clasts
(see Figure 5F). (D) Depositional breccias and conglomerates (debrites) exposed along the Montroig sub-basin (See also Figure 4).
The deposit is typically organized in inverse graded beds with erosional bases. Paleocurrent senses in addition of compositions
support that these breccias resulted from the erosion, mass-transport, and sedimentation of the diapir body rocks (Ghassemi &
Roustaei, 2021). This deposit is overridden by the salt and thus lies beneath the diapir body (megabreccia) in all the studied sec-
tions (Figure 4). (E) Close-up view of the facies described in Figure 5D. These breccias are monomictic, composed of fragments
derived from the Muschelkalk carbonate stringers, and clast-supported. (F) Oligocene conglomerates at the northern diapir
boundary, postdating the Les Avellanes lateral extrusion. There is a prevalence of metamorphic and igneous rock fragments
derived from the Pyrenean Axial Zone. (G) Banded gypsum facies located along the northern diapir exposure. (H) Megabreccia
facies. Blocks of deformed, laminated gypsum floating in a fine matrix with gypsum nodules. This matrix contains a high percen-
tage of mudrocks and carbonate milimeter-sized inclusions which gives a ‘dirty’ aspect.

conglomerates were formed by the erosion of the  are also present, indicating the erosion of the diapir,
Serres Marginals reliefs without any major contri-  which was exposed during the progressive filling of
bution from the Pyrenean hinterland. Triassic clasts  these sub-basins (Figure 5C).



The upper interval is characterized by breccias and
conglomerates sourced exclusively from the erosion of
the diapir units, since they are made of gypsum,
Muschelkalk carbonates, and dolerite clasts (Figure
5D and E). The internal architecture of this interval
shows an upwards transition from normal-graded to
inverse-graded beds, with a level of significantly bigger
blocks, up to 60 cm in diameter, of dolerites and
Muschelkalk carbonates with gypsum clasts, accumu-
lated atop. The base of this interval is an unconformity
caused by the erosion of the previous sequence, except
in the Tartareu sub-basin (Figure 4, section 1) where
these breccias are interbedded with the sub-basin
infill (lower interval). In all studied locations this
upper breccia interval is directly overlain by the diapir
body (Figure 4).

Along the northwestern and northeastern diapir
boundaries, Oligocene conglomerates and sand-
stones overlap the diapir body and preserve the
extensional faults that bound the northern contact
(in Vilamajor village and close to the Panta de
Camarasa, Main Map). A similar relationship is
observed in a section of the southern boundary,
between Os de Balaguer and Vilanova de la Sal vil-
lages. However, these three locations are the only
ones where this relationship occurs, as generally the
diapir is emplaced on top of the clastic facies. On
the other hand, clast composition is well-differen-
tiated in northern and southern areas, since the
northern conglomerates contain abundant fragments
of metamorphic and plutonic rocks transported from
the Axial Zone (Figure 5F).

4.3. The Les Avellanes Diapir body

The Les Avellanes Diapir displays an apparent chaotic
arrangement of mappable, decameter-thick carbonate
M3 (Muschelkalk) stringers and dolerite bodies
embedded within Keuper gypsum and mudrocks.
The Muschelkalk stringers are formed of two
clearly different stratigraphic intervals: (1) a basal
alternation of laminated limestones and marls overlaid
by, (2) well-bedded, tabular limestones with minor
intercalated thin levels of marls, which allow to estab-
lish the stratigraphic polarity of these stringers. Across
the diapir exposure, the presence and disposition of
the M3 stringers vary from north to south (Main
map). In the northern region, the abundance of strin-
gers is lower in comparison to the central and
southern parts where they are relatively accumulated.
In the northern area, they are located towards the NW,
between Tartareu and Vilamajor villages, and the NE,
close to Santa Linya (Main Map), where they are ver-
tically emplaced, subparallel to the diapir contact.
Conversely, in the central part where they are concen-
trated, around the Les Avellanes village (Main Map),
they are horizontally stacked or overturned. Along
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the southern boundary, they are imbricated and pri-
marily show a southwards vergence.

Likewise, the caprock matrix embedding the strin-
gers also exhibits different facies from north to
south. In the north, the caprock matrix facies are pre-
dominantly composed of banded gypsum with minor
content of mudrocks and carbonates (Figure 5G).
However, towards the south, along with the increasing
number of outcropping M3 stringers, the gypsum is
significantly more altered and mixed with accumu-
lations of mudrocks and carbonates. These caprock
matrix facies present deformation bands with myloni-
tic fabrics (named foliated gypsum, Main Map)
suggesting the combination of brittle and ductile
deformation related to the diapir evolution. In
addition, in the Os de Balaguer sub-basin and in the
Montroig sub-basin, the base of the diapir body is
characterized by a megabreccia featuring meter to
decameter blocks of gypsum and Muschelkalk strin-
gers surrounded by a fine matrix, partially cemented
with sulphates (Figure 5H). This megabreccia is
emplaced over the late Eocene-early Oligocene sedi-
mentary units (Figure 4) and shows a characteristic
sequence where ductile shear deformation (foliations
and lineations) is preferentially concentrated along
its base. The megabreccia was interpreted as a dissol-
ution breccia, or a debrite-like deposit created by the
disaggregation of the caprock at the frontal lobe of
the salt sheet and subsequently overrode by the
spreading salt (Cofrade et al., 2023). The deformation
was probably produced during the forward advance of
the salt sheet as an intrasalt basal shear-band (Cofrade
et al., 2023).

5. Discussion

The structural relationships between the diapir and
the main tectonic elements in the area, as well as the
stratigraphical, sedimentological, and petrological
observations, allow us to differentiate between the
two parts that form the Les Avellanes Diapir geometry,
the extrusive salt sheet and the columnar feeder diapir,
as well as the timing of its emplacement (Main Map).

5.1. The Les Avellanes Diapir geometry

The extensional faults, oblique to the contractive struc-
tures (Figure 3), form the northern boundary of the dia-
pir. Late Eocene-Oligocene sediments fill the associated
grabens and ultimately postdate the extensional defor-
mation, which is dated to the late Eocene-Oligocene.
These faults are associated with the collapse of the over-
burden caused by the migration of the salt towards the
diapir stem, and therefore also constrain diapirism to
the late Eocene-Oligocene. Thus, the northern part of
the diapir exposure is interpreted as the Les Avellanes
Diapir feeder. The mobilization of the salt in the study
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area was probably triggered by the onset of synorogenic
deformation, which started along the Serres Marginals
during early Ypresian times (Mufloz, 1992; Muioz,
2017), and is recorded by the existence of growth strata
architectures in the Alveolina Limestones. The sub-
sequent erosion of the elevated salt-cored contractive
structures exposed the salt, initiating diapirism. This is
constrained by the regional erosive surface at the base
of the late Eocene-Oligocene series, that records the
incision of the drainage network during the onset of
orogenic deformation in the Serres Marginals.

The late Eocene-early Oligocene facies below the
megabreccia in the Os de Balaguer sub-basin (Figure
4, sections 2, 3 and 4) are interpreted as the sedimen-
tological record of the advance of an extrusive salt
sheet laterally spreading by gravity from the feeder
(Cofrade et al., 2023). The same facies, overlain by
the megabreccia, are recorded in the Tartareu and
Montroig sub-basins (Figure 4), and therefore, the
salt sheet basal contact can be interpreted by the stra-
tigraphic correlation of these facies along the diapir
boundary. The trace and location of this contact
suggest that a salt sheet advanced southward covering
younger stratigraphy, although the precise extension
of the coverage is not recorded.

The two parts of the Les Avellanes Diapir geome-
try, the diapir feeder in the north and the salt sheet
in the south, are also supported by the structural
configuration of the M3 stringers and the compo-
sition of the diapir body since the internal architec-
ture of a salt structure reflects its evolution (Jackson
& Hudec, 2017; Talbot & Aftabi, 2004; Talbot & Jack-
son, 1987). On the one hand, the arrangement formed
by the stringers within the diapir body is the product
of different salt flow kinematics during different
stages of diapirism and can be preserved in the dissol-
ution residue of an extruding diapir (Alsop et al,
2015; Amri et al., 2020; Jackson & Hudec, 2017; Tal-
bot & Jackson, 1987). The stringers in the Les Avel-
lanes diapir are subvertical along the northern
contact and horizontally stacked in the central and
southern areas. Therefore, their configuration reflects
the vertical flow that characterizes a diapir stem (Sar-
karinejad et al, 2018) and the subhorizontal flow
during the advance of the salt sheet, respectively
(Ghassemi & Roustaei, 2021; Jackson & Hudec,
2017). On the other hand, the residue left after the
salt dissolution that surrounds the stringers (Cofrade
et al., 2023) is made of gypsum with different pro-
portions of embedded mudrocks and other insoluble
components, and gradually transforms from north
to south. In the northern area, where the feeder is
inferred to be, the dominant lithology is gypsum
(gypsum caprock, Main Map). However, towards
the south, the content of mudrocks and carbonate
within the gypsum (mixed caprock, Main Map)
increases. The increasing percentage of mudrocks in

the caprock matrix is in agreement with a higher
degree of alteration, which is usually present at the
frontal part of an extrusive salt sheet versus its feeding
area, as the salt sheet further transforms during its
advance (Nekouei & Zarei, 2016; Zavada et al,
2021). Nevertheless, the gradual increase in mudrocks
and carbonates towards the salt sheet frontal area may
reflect lithological variations in the depositional
Middle to Upper Triassic salt sequence. Diapirs
show a concentrical internal zonation inherited
from the stratigraphical architecture of the salt source
sequence where lower, older units are in the core of
the structure surrounded by younger, upper units.
As salt extrudes laterally to form a salt sheet/namakier
(Ghassemi & Roustaei, 2021)., this zonation rotates,
so the older units occupy the core of the allochtho-
nous sheet and the younger upper units tend to be
located along its front (Dooley et al., 2015; Talbot &
Aftabi, 2004; Talbot & Pohjola, 2009). Therefore,
since the upper Keuper interval (K2-K3) contains
more mudrocks interbeds, an enrichment of this
lithology within the caprock matrix is expected
along the frontal part of the salt sheet. Thus, given
the sedimentological and stratigraphical relations
observed along the southern boundary of the Les
Avellanes Diapir, as well as the internal architecture
of the diapir body, the southern part of the diapir
exposure is interpreted as an extrusive salt sheet/
namakier that extruded from a feeder diapir.

5.2. Relative timing of the salt sheet
emplacement

The sedimentological and stratigraphical relationships
between the salt extrusion and the deposition of the
Oligocene conglomerates constrain the timing for
the emplacement of the salt sheet. The different clast
composition observed in the Oligocene conglomerates
north and south of the diapir is explained by the exist-
ence of a barrier formed by the dynamic bulge over the
feeder, deflecting the southwards arrival of sediments
sourced in the Axial Zone. The isolation of the sub-
basins from the regional depositional pathways (NE
to SW, Garcés et al., 2020), reduced the sedimentation
rate in the southern sub-basins during the salt extru-
sion, so the salt sheet advance was registered in these
areas. Oligocene conglomerates postdate the feeder
(NW and NE areas) and part of the southern bound-
ary (east of the Os de Balaguer village). These con-
glomerates also postdate the Pyrenean structures and
thus, the salt sheet extrusion is dated to the late
Eocene-early Oligocene.

6. Concluding remarks

Mapped structural features, together with the strati-
graphical, sedimentological, and  petrological



correlations support the hypothesis that the Les Avel-
lanes Diapir geometry resulted from the combination
of two different salt structures, an extrusive salt sheet,
and a feeder diapir located along the northern diapir
exposure from where the salt spread laterally and
advanced southwards, covering the southern low
areas.

The Triassic salt migrated and accumulated in the
Serres Marginals during the Eocene-Oligocene due
to the Pyrenean deformation. The detached anticline
hinges collapsed, as recorded in the system of conju-
gate extensional faults oblique to the contractive struc-
tures, facilitating the expulsion of the Triassic salt
towards the surface in the northern area, thus inter-
preted as the feeder. A salt sheet emplacement is sup-
ported by the sedimentological and stratigraphical
interpretation of the facies overlaid by the diapir
body, as well as the internal architecture of the diapir
body, so the salt sheet basal contact has been traced
accordingly in the Main Map. Its emplacement
occurred relatively fast during the late Eocene-early
Oligocene and was later postdated by the Oligocene
sedimentation.

Software

FieldMove® (Petroleum Experts) application was used
for field-collected data and sketching, running in a
high-performance tablet device with a GPS system
integrated with a typical resolution of+- 2
m. Orthoimages (PNOA-IGN Plan Nacional de Orto-
fotografia Aérea — Instituto Geografico Nacional,
http://ign.es and ICGC 25 cm/px resolution, https://
www.icgc.cat), DEM (LiDAR-based, 2x2 m resol-
ution, IGCG, https://www.icgc.cat), and geological
and topographic maps were projected in the same
device and used during fieldwork (MAGNA 1:50000,
http://info.igme.es; and IGCG 1:25000 series, https://
www.icgc.cat). Data were then plotted and trans-
formed into georeferenced vector files using the 3D
software MOVE?® (Petroleum Experts), then imported
into ArcGIS Pro software where the Main Map was
constructed, also importing the mentioned carto-
graphic database to fine-tuning the geological contacts
and to improve accuracy. Symbology was designed
according to a standard geological library and adapted
when necessary.
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