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Abstract 

The vast and continuously increasing volume of available biomedical data produced 

during the last decades opens new opportunities for large-scale modeling of disease 

biology, facilitating a more comprehensive and integrative understanding of its 

processes. Nevertheless, this type of modelling requires highly efficient computational 

systems capable of dealing with such levels of data volumes.  

Computational approximations commonly used in machine learning and data 

analysis, namely dimensionality reduction and network-based approaches, have 

been developed with the goal of effectively integrating biomedical data. Among these 

methods, network-based machine learning stands out due to its major advantage in 

terms of biomedical interpretability. These methodologies provide a highly intuitive 

framework for the integration and modelling of biological processes.  

This PhD thesis aims to explore the potential of integration of complementary 

available biomedical knowledge with patient-specific data to provide novel 

computational approaches to solve biomedical scenarios characterized by data 

scarcity. The primary focus is on studying how high-order graph analysis (i.e., 

community detection in multiplex and multilayer networks) may help elucidate the 

interplay of different types of data in contexts where statistical power is heavily 

impacted by small sample sizes, such as rare diseases and precision oncology.  

The central focus of this thesis is to illustrate how network biology, among the several 

data integration approaches with the potential to achieve this task, can play a pivotal 

role in addressing this challenge provided its advantages in molecular interpretability. 

Through its insights and methodologies, it introduces how network biology, and in 

particular, models based on multilayer networks, facilitates bringing the vision of 

precision medicine to these complex scenarios, providing a natural approach for the 

discovery of new biomedical relationships that overcomes the difficulties for the study 

of cohorts presenting limited sample sizes (data-scarce scenarios). 
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Delving into the potential of current artificial intelligence (AI) and network biology 

applications to address data granularity issues in the precision medicine field, this 

PhD thesis presents pivotal research works, based on multilayer networks, for the 

analysis of two rare disease scenarios with specific data granularities, effectively 

overcoming the classical constraints hindering rare disease and precision oncology 

research.  

The first research article presents a personalized medicine study of the molecular 

determinants of severity in congenital myasthenic syndromes (CMS), a group of rare 

disorders of the neuromuscular junction (NMJ). The analysis of severity in rare 

diseases, despite its importance, is typically neglected due to data availability. In this 

study, modelling of biomedical knowledge via multilayer networks allowed 

understanding the functional implications of individual mutations in the cohort under 

study, as well as their relationships with the causal mutations of the disease and the 

different levels of severity observed. Moreover, the study presents experimental 

evidence of the role of a previously unsuspected gene in NMJ activity, validating the 

hypothetical role predicted using the newly introduced methodologies. 

The second research article focuses on the applicability of multilayer networks for 

gene priorization. Enhancing concepts for the analysis of different data granularities 

firstly introduced in the previous article, the presented research provides a 

methodology based on the persistency of network community structures in a range of 

modularity resolution, effectively providing a new framework for gene priorization for 

patient stratification.  

In summary, this PhD thesis presents major advances on the use of multilayer 

network-based approaches for the application of precision medicine to data-scarce 

scenarios, exploring the potential of integrating extensive available biomedical 

knowledge with patient-specific data.
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1.  Overcoming data scarcity in precision medicine 

Understanding the key factors behind clinical human disease manifestations requires 

knowledge of the various molecular aspects that may be involved. With the advent of 

the Big Data revolution, the amount of biomedical information available to study is 

growing in a constant manner, leading health research and practice to a new and 

promising era (1).  

The potential of such wealth of biomedical data has greatly benefited the field in 

recent years (2) provided the main purpose of its use: contributing to the modelling of 

the processes triggering human disease. This increase in biomedical data availability 

raises a considerable number of challenges to be addressed from the medical point 

of view (3). Among them, the main challenge consists in the creation of methods that 

are able to integrate large volumes of heterogeneous information in order to enable 

the personalized analysis of patient data, the so-called precision medicine (4). 

Precision medicine though, is a generic term that simplifies the essential objectives 

of contemporary approaches to understand disease dynamics. Precision medicine 

aims to shift the medicine paradigm towards a more predictive, preventive, 

personalized and participatory model (‘P4’ medicine) (5,6). This ongoing revolution 

in the medical field seeks to unravel the biological processes underlying individual 

biomedical problems, potentially enhancing its social and clinical impact (e.g., 

reducing healthcare costs and providing earlier disease detection). In addition to 

typical biomedical priorities such as disease diagnosis (7,8) and classification 

(disease subtyping) (9,10), precision medicine aims to solve distinct relevant 

challenges, namely prediction and prevention of clinical outcomes (2,11,12) and the 

identification of potential patient-specific therapeutical targets (13).  

The realization of this new vision for medicine is dependent on the development of 

integrative and cost-effective methods for the analysis of biomedical knowledge. 

Indeed, integrative precision medicine studies have proven highly valuable for the 

analysis of some of the most investigated human conditions in recent years, including 
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cancer (14), Chronic obstructive pulmonary disease (COPD) (10) and COVID-19 (15). 

However, the implementation of precision medicine to rare diseases and rare cancers, 

such as pediatric tumors is classically hindered due to data scarcity (16,17).  

Rare diseases are defined by their low prevalence within the population. Within the 

European community, a disease is cataloged as rare if the prevalence is below 5 out 

10000 individuals. However, despite their low prevalence, rare diseases actually 

impact a significant number of people, accounting for up to 7% of the world's 

population. Unfortunately, most rare diseases (approximately 95%) lack proper 

described treatments (18). On top of the small fraction of these disorders that has 

known efficient treatments, some patients may not experience improvement due to 

the multiple factors driving the heterogeneous manifestations of these diseases. This 

way, rare disease research means dealing with unique disease biomedical scenarios 

where precision medicine becomes even more critical (19).  

The overall lack of treatments can be attributed to the difficulties in understanding the 

molecular drivers of rare disease biology, which stem from the limitations in cohort 

recruitment. Availability of patients is extremely low, and their geographical 

distribution is highly dispersed (20). In this context, collection of data requires high-

level domestic (21) and international collaborative efforts, which become critical for 

the creation of complete biomedical registries. Initiatives like RD-Connect (22) and 

individualizedPaediatricCure (https://ipc-project.eu/) foment the integration of biobank 

platforms for the analysis of this uncommon conditions. Precision medicine aims for 

the holistic modelling of the relationships among multiple levels of biological data. 

Data scarcity represents a major obstacle for achieving the effective application of 

precision medicine to rare diseases. Moreover, overcoming this problem is the key to 

approach the analysis of biomedical information at the different levels at which it is 

collected (data granularity). Fine-grained data contains detailed and specific 

information, while coarse-grained data is more generalized and aggregated. To be 

effective, precision medicine demands a deeper level of granularity to harness its 

potential for truly personalized healthcare solutions.
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This comprehensive view of biomedical knowledge can only be accomplished through 

computational approaches. As availability of biomedical data increases, so does the 

importance of computational biology (the study of biological systems by 

computational means) and bioinformatics (the generation of computational tools for 

the processing and analysis of biological data).  

In terms of providing ways to integrate complex biological data, computational biology 

relies on the power of machine learning (ML) approaches. The increasing application 

of ML and artificial intelligence (AI) in biomedicine is fostering the development of new 

methods that enable explaining opaque models. As a result, ML and AI have become 

subject of huge interest for the biomedical community during the last decade (23). 

Nevertheless, such approaches largely benefit from sample sizes greater than feature 

dimensions, a requirement that is difficult to be met in the biomedical filed, where 

typically a large number of characteristics are measured and collected for relatively 

small cohorts (24). For example, approaches based on neural networks easily overfits 

datasets of small dimensions (25). This ‘curse of dimensionality’ greatly affect the 

a direct applicability of ML and AI in many types of biomedical studies (26). 

One promising way to alleviate the limitations coming from data scarcity is to leverage 

the vast amount of biomedical knowledge available in publicly accessible databases 

(26,27), which offer a great opportunity to identify different kinds of associations 

among the limited elements of patient information at hand.  In the case of molecular 

information, this, in turn, yields valuable insights for the interpretation of the underlying 

biology of the disease under study (Figure 1). Confronting data scarcity entails 

addressing scenarios characterized by small sample sizes, a major factor that 

significantly impacts statistical power. By simultaneously analyzing the external and 

complementary biomedical knowledge, it is possible to reveal new relevant 

relationships that would not be uncovered by using the patient data alone. Moreover, 

this vision opens the door to a more informed analysis of variations among individuals 

across different levels of biomedical data.  
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Figure 1. The data scarcity challenge. In situations where patient data availability is limited, 

generation of computational biology approaches becomes challenging, particularly in the context of 

precision medicine. To overcome this issue, a solution lies in combining patient data with the vast 

biomedical knowledge accumulated in available resources. The additional information coming from 

these resources can help identify associations that enable the application of these methodologies. 

Nonetheless, a significant challenge arises due to the diverse nature of such data 

(e.g., genetics, gene expression, etc.), consisting of effectively managing the inherent 

differences in this comprehensive information, in order to draw conclusions 

encompassing the different data layers.  

Tables 1 and 2 provide an overview of several data types commonly investigated in 

precision medicine studies. Table 1 focuses on omics data, which refers to high-

throughput biochemical assays that measure molecules of the same type from a 

biological sample (28). The joint study of multiple omics data levels (multi-omics data 

integration) has emerged as a crucial practice in understanding the complex 

interactions between genes, proteins, metabolites, and other quantifiable molecules.  
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Table 1. Omics data disciplines and their targeted biomedical information. Omics data includes 

information from measurable high-throughput biochemical assay, including DNA variation and 

chromatin structure conformation (genomics) (30–34), gene expression and RNA biology 

(transcriptomics) (30,35–41), protein information regarding structural data, interactions with other 

proteins and cell-specific dynamics (proteomics) (42–52), chemical reactions and their cellular roles 

(metabolomics) (53–55), other modifications capable of modulating normal DNA activity 

(epigenomics) (56–58) and the key activities played by normal microorganism flora over different 

human ecological niches (metagenomics) (59–69). 

 



Introduction: Overcoming data scarcity in precision medicine 
 

6 
 

Table 2. Non-omics data disciplines and their targeted biomedical information. Non-omics data 

sources covered by state-of-the-art research include images from radiological and magnetic resonance 

studies (imaging data) (70–74), drug administration and their molecular targets (treatments) (75–80), 

clinically pertinent demographic annotations (epidemiology and electronic health records -EHRs-) 

(81–83), the arrangement of related sets of biochemical events (pathways) (84–87) and non-invasive 

physiological measurements (electronic wearable devices) (88–93). 

This integration allows researchers to explore the underlying biology of diseases by 

contextualizing these interactions within unified frameworks. Recognizing the 

potential of providing a comprehensive view of omics information, scientists are now 

devoted to the development of complete omics resources (29).  

In contrast, non-omics data encompasses a spectrum of biomedical information 

that is not acquired through high-throughput biochemical assays (Table 2). 
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Integrating these diverse non-omics data types presents an even more significant 

challenge compared to omics data integration (94), given their diverse characteristics 

and frequent utilization within specialized communities (95).  

In this sense, the integrative view provided by systems biology is crucial for the 

development of novel methodologies to deal with such large and diverse amounts of 

biomedical information and it is a central topic of this PhD thesis. One major goal 

of systems biology consists in understanding how the different components of each 

biological system can be represented, integrated, and analyzed in a unifying manner. 

The application of systems biology methods to medicine (Systems medicine) tries 

to model the biological aspects driving disease manifestations, giving robust 

interpretations of their dynamics both at the phenotypic and the molecular level (96).  

However, the simultaneous integration of multiple biomedical levels comes with a 

significant number of challenges (97). Summarizing, a number of these challenges 

are related to the scarcity of required information (e.g., handling of missing values 

and class imbalance), while others have to do with the inherent nature of the different 

biomedical variables (e.g., joint analysis of heterogenous data types and information 

resources). In this regard, network biology solutions (98) are becoming increasingly 

valued as they considerably ease the representation and integration of these multiple 

data types and the transparency of systems biology models (99).  

Indeed, the challenges related to data scarcity and data granularity can be tackled by 

making use of the capability of these methods to intuitively integrate patient 

information with complementary biomedical knowledge from external resources. This 

PhD thesis aims to provide novel integrative network biology methods for applying 

precision medicine to data-scarce biomedical contexts, in an effort to contribute to the 

personalized analysis of the complexities displayed by these cases. Furthermore, it 

explores the potential of such methodologies for the efficient analysis of the multiple 

granularity levels existing within biomedical data, specifically providing solutions for 

scenarios characterized by data scarcity. 
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2. Integrative approaches in precision medicine 

So far, we have discussed how data scarcity hinders the application of precision 

medicine, particularly in the context of rare disease research. Furthermore, we have 

introduced how the integration of patient data and complementary biomedical 

knowledge from external resources holds great potential for overcoming these 

limitations, while gaining a holistic understanding of the disease. This fact raises 

several important questions: How can we address simultaneously all these 

meaningful biomedical aspects? How should we account for all interactions and 

relationships among the different layers? This is where data integration comes into 

play.  

By combining multiple layers of omics and non-omics data it is possible to overcome 

potential biases and discover biomedical relationships that are not apparent when 

analyzing datasets with limited content and scope. Over the last decade, diverse 

integrative data approaches have been developed (100), ranging from consecutive 

analysis of relevant omics data to more complex approaches accounting for the 

synergisms existing between the different biological layers (24). 

Integrating biomedical data presents various challenges due to its high dimensionality 

but typically limited sample size. Therefore, a primary objective of data integration for 

precision medicine is to provide methodologies to reduce such complexity (i.e., data-

driven feature selection) (24).   

This section introduces several state-of-the-art approaches commonly applied in data 

integration and their successful application into biomedical research. Provided the 

biological focus of the thesis dissertation, a selection of in-depth review articles that 

explore the formal description of these methods is provided for the interested reader: 

Cantini et al. 2021 (100), Pierre-Jean et al., 2020 (101), Huang et al., 2017 (102). 

Instead, we will emphasize the successful applications of each approach, keeping an 

eye on their interpretability capabilities. Additionally, we comment on the current state 

of application of these methodologies to data-scarce scenarios.
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2.1 Dimensionality reduction methods 

Integrative dimensionality reduction methods aim to project the various datasets of 

interest into lower-dimensional spaces. By merging these datasets into common 

representations, these methodologies allow for the detection of coherent patterns 

among the different data levels, effectively providing a reduced number of 

representative features (Figure 4). 

The majority of dimensionality reduction algorithms for the analysis of biomedical data 

are unsupervised learning techniques, meaning that they do not rely on labelled 

target variables for training. Among these techniques, latent variable approaches 

have gained popularity due to their effectiveness and versatility. However, while 

commonly applied machine learning dimensionality reduction techniques are able to 

generate useful and accurate representations of the data (103), they often lack 

intuitive ways to extract interpretable knowledge from the generated latent variables. 

This is currently one of the main challenges to be addressed in the field (104). 

 

Figure 2. Basic workflow of an integrative dimensionality reduction approach. Measurements 

from multiple biomedical data types can be represented in the format of a matrix (Yn). Dimensionality 

reduction techniques are then applied to obtain common reduced mathematical spaces, with a reduced 

number of latent components (Z) that capture consistent patterns across the different data types.
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2.1.1 Joint Non-negative Matrix Factorization (NMF) 

Matrix factorization models map cases and features to a joint latent factor space of 

lower dimensionality (105). As a framework for medical data integration, NMF 

assumes the existence of a common basis matrix between the two decomposed 

factors of each data type measurement (latent variables). The objective function of 

NMF optimizes the difference between the original data matrices, their specific matrix 

and the common latent factor, assuming non-negative constraints (106). Despite its 

computational requirements, NMF has become a very popular dimensionality 

reduction approach, particularly in the field of recommender systems. Major e-

commerce leaders, such as Netflix or Amazon, use NMF-based methods to provide 

product recommendations, benefiting from their high performance (107).  

In the biomedical context, one of the most intuitive applications of matrix factorization 

is the prediction of drug-disease associations (108). Other recent biomedical 

implementations include the integration of multi-omic single-cell datasets (109) and 

the analysis of oncological cohorts (110). NMF has additionally shown high 

performances in sample clustering problems (111,112), demonstrating its 

effectiveness in these domains. 

Regarding its application to rare disease research, an interesting application of matrix 

factorization is MultiPLIER (113). Making use of gene expression datasets, 

MultiPLIER provided valuable latent factors for the analysis of rare disease dynamics, 

namely antineutrophil cytoplasmic autoantibody-associated vasculitis (a rare 

autoimmune disease) and medulloblastoma, a rare childhood cancer. 

2.1.2 Multiple co-inertia analysis 

Multiple co-inertia analysis (MCIA) is a two-step data integration process that 

identifies co-relationships between multiple datasets (114). The first step of MCIA 

consists of applying a table ordination method, such as Principal Component Analysis 

(PCA), to transform the data layers into matrices of similar dimensions.  
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By assessing the relative contribution of each individual to each dataset, MCIA 

maximizes the covariance between the different matrices, resulting in a space of a 

single latent variable. Interpretation of MCIA-based analysis can be challenging (115). 

However, applications for data visualization have proven promising (116).  

Other recent effective MCIA applications to the multi-omics field include taxonomic 

analysis of human gut microbiome populations (117) and disease modelling in 

Chron’s disease (118). While the literature on MCIA's application to rare disease 

scenarios is considerably limited (119), its promising results on the analysis of cancer 

data (100) offer a positive outlook for its potential.  

2.1.3. iCluster and iCluster+ 

iCluster is an integrative framework specifically designed for disease subtyping (120). 

Like NMF, iCluster assumes the existence of a common latent variable that connects 

the different datasets, but without requiring non-negative inputs. In addition, iCluster 

adds an independent error factor for each data type, capturing the variances after 

accounting for inter-dataset correlations. However, the computational complexity of 

this methodology makes selecting the final model a complex task (121). 

The iCluster framework uses a likelihood-based formulation to estimate the latent 

features. Disease subtypes are determined using k-means clustering based on the 

joint latent variable matrix. The upgraded version of iCluster, iCluster+, allows for the 

combination of generalized linear modelling of heterogeneous data types assuming 

varied distributions (121). This extension enables the simultaneous integration of 

binary, continuous and categorical data.  

The original iCluster algorithm demonstrated its efficacy in discovering disease 

subtypes in breast and lung cancer (120). iCluster+ was originally applied on a 

colorectal cancer cohort from TCGA, helping detect 2 new subtypes of the disease. 

Concerning rare diseases, disease subtyping using iCluster has been successfully 

applied to hepatocellular carcinoma (HCC) (122) and glioblastoma (123). 
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2.1.4. Multi-Omics Factor Analysis (MOFA) 

Multi-Omics Factor Analysis (MOFA) was introduced in 2018 by Argelaguet et al., as 

a generalization of PCA for multi-omics data analysis (124). MOFA follows a similar 

matrix decomposition approach as iCluster+, assuming the existence of a latent 

common variable shared across all data matrices, along with weight and error 

matrices specific to each data type. However, instead of using a likelihood-based 

formulation to obtain these variables, MOFA assumes randomness for these 

matrices, formulating the model as a probabilistic Bayesian Framework, placing prior 

hierarchical distributions to all unobserved variables of the model to initiate the 

learning process.  

One notable feature of MOFA is its flexibility in supporting a variety of omics-specific 

distributions for the error variables, rather than assuming normal distributions. MOFA 

also provides a model regularization technique that assesses the degree to which 

factors are specific to each single data layer, enabling a more detailed analysis of the 

individual contributions to the whole system. MOFA has been applied for the 

identification of clinical markers for chronic lymphocytic leukemia (CLL) (125) and 

pathways related to the rare disease methylmalonic aciduria (126), showcasing its 

potential in uncovering meaningful insights also in data-scarce scenarios.  

2.1.5. Neural Network Autoencoders 

AI research has placed strong emphasis on neural network-based models, which 

serve as the foundation for various applications. A neural network operates as a 

graph-like system, consisting of three types of node layers: an input layer that 

receives the values of the dataset variables, hidden node layers, that vary the 

dimensionality of the original input layer, and an output layer that encodes the different 

possible outcomes. Nodes within each layer are interconnected with nodes in the 

previous and the following layer, with a given weight value.  

Neural network systems are trained using the backpropagation algorithm, a 

supervised learning technique that iteratively updates the interlayer weights during 
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training. During the learning steps, neural networks aim to minimize a designated loss 

function (127), which serves as an evaluation metric, adjusting the weights while 

assessing the performance of the model.  

Variational Autoencoders (VAEs) have raised as a promising methodology for the 

task of multi-omics dimensionality reduction (128). VAEs present a unique 

architecture, consisting of two neural networks. The first network, known as the 

encoder, contains hidden layers that perform the dimensionality reduction by 

recursively reducing the set of nodes between each layer, ultimately producing a 

limited set of nodes as the output of the network. The second network, the decoder, 

is trained to accurately recover the original input from the encoder. The minimized 

output of the encoder system represents a new low-dimensional latent representation 

of the input data that encapsulates the information to reconstruct the input data (129).  

VAEs, like other dimensionality reduction techniques, offer useful modelling solutions 

for multi-omics tasks due to their accuracy and efficiency. They have been 

successfully applied in various areas, including classification of tumor subtypes (130), 

clinical disease endotyping (131) and the identification of interactions between long 

non-coding RNAs and protein-coding genes (132). As for rare diseases, a recent 

application of VAEs has been the prediction of patient severity state in glioblastoma 

from medical images (123). 

2.2. Network-based methods 

Up until this point, we have discussed various dimensionality reduction techniques, 

putting a focus on their application to the biomedical field. However, one notable 

limitation of these methods is their complexity in interpreting the encoded biomedical 

knowledge within the obtained latent variables. As an alternative to latent 

representation methods, models based on graphs offer an intuitive way of depicting 

the relationships underlying biological systems (133,134). Network biology aims to 

model biological entities, such as genes and proteins, as nodes linked by edges that 

signify their relationship in specific biological contexts. Networks have become 
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extremely popular in biology due to the versatility that they provide for the 

representation of knowledge, while also facilitating the analysis of biological 

relationships. Topological analysis of biological networks are characterized by an 

inherently interpretable way to model and identify relationships between concepts. 

For example, detection of network communities (i.e. densely connected nodes) can 

reveal disease-related patterns (27,135). 

Despite their inherent interpretability, network biology approaches are 

computationally demanding compared to other ML approaches. Biological networks 

often involve a vast number or relationships, leading to increased computational 

complexity and a major necessity of scalable methods (136,137).  

2.2.1. Similarity Network Fusion (SNF) 

SNF is an edge-prioritization methodology for data aggregation based on finding a 

common similarity network from a set of similarity networks representing multiple 

biological aspects (138). The algorithm starts from calculating pair-wise similarity 

matrices for each data type, rendering weighted networks where each sample is a 

node, and the similarities are codified as edge weights (See section 4, Figure 5C-

D). The following step consists in the fusion of the networks, which occurs iteratively 

through message passing events. Each network is updated in a stepwise manner to 

resemble the others, eventually converging into a single ‘fused’ network. This process 

prioritizes strong node similarities, keeping low-weight edges shared across all 

graphs.  

The similarity matrix serves as input for sample clustering, providing the contribution 

of each data source in determining patient proximity. SNF was first applied to several 

TCGA cohorts (138), and recent remarkable applications include predicting clinical 

outcomes in neuroblastoma (139) and integrating multi-omics data in respiratory 

conditions (140) such as Bronchiectasis (141) and COPD (10). Furthermore, 

application of SNF helped in disease subtyping of a group of rare diseases known as 

idiopathic inflammatory myopathies (142). 
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SNF-based methods have exhibited a significant potential in recent years (143), but 

also revealed a common issue in most integrative approaches. The original version 

of SNF (139) excludes patients and features from the analysis if they have > 20% 

missing data in each data type. While this is an arguably understandable decision, 

major questions arise: How can we handle missing data to prevent potential biases? 

Dealing with missing data is one of the topics explored in the research article 

presented in Chapter 4. 

 2.2.2. Graph Embeddings 

Section 2 is structured making a distinction between dimensionality reduction 

methods and network-based techniques as data integration frameworks. However, 

we should note that both concepts are not mutually exclusive. Graph embedding 

approaches are widely popular techniques for dimensionality reduction.  

Graph embeddings aim to simplify the analysis of large-scale networks, where 

mathematical magnitude of adjacency matrices (See Section 4, Figure 5A-B) 

becomes high-dimensional. Embeddings are reduced vectorial spaces packing graph 

features, favouring the scalability of topological network analysis.  

This methodology draws inspiration from Word2vec, a well-known Natural Language 

Processing (NLP) approach for word prediction (144). Given a set of phrases, the 

model predicts the probability of each known word to be next one in the sentence. 

The underlying neural network architecture, known as skip-gram neural network, is 

formed by three layers: a binarized input layer of the size of all known words, a hidden 

vector layer with a predefined number of features and an output layer of the same 

dimensionality as the input layer. This output layer returns the probability of each node 

being the next in the sentence.  

For dimensionality reduction, the skip-gram model can be used for embedding both 

vertices and entire graphs, with the hidden layer becoming the reduced feature space 

to be found. A classic example of this is DeepWalk (145), where random walks (See 

Section 4.1, Figure 6E) serve as “sentences” and the nodes act as words.  
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Recent advances have resulted in the extension of random walk-based embeddings 

to complex networks (that we will explore in Section 4.2.) with applications such as 

OhmNet (146) and MultiVERSE (147).  The latter has been successfully applied for 

the study of rare disease-gene associations. 
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3. Network Biology: an interpretable framework for 

biomedical data representation and integration 

Network biology is the research discipline focused on studying complex biological 

systems by means of graph theory, a branch of mathematics that focuses on the study 

of relational data structures (graph or network). A network is formed by a set of 

entities (nodes or vertices) and the relationships between them (edges). Graph 

theory is widely applied in various fields, including network analysis (148), computer 

science and physics (149). Graphs provide a versatile framework for data 

representation, making them suitable for both simple and complex problems across 

multiple domains. In the biological context, graph theory is particularly well-suited, as 

it can effectively represent multiple biological concepts as nodes, and their 

relationships as edges (150).  

In a simple graph two nodes are connected by one edge (Figure 5A). A simple graph 

can also be represented in the form of a binary adjacency matrix (Figure 5B). 

Interactome networks, which we briefly mentioned in Section 2.3., Proteomics, are 

generally depicted as simple graphs. These graphs depict sets of proteins (or protein 

subunits) as nodes, while the edges represent physical interactions between such 

proteins. Such a representation of an interactome network provide a subtle way to 

identify promiscuous interacting proteins, but assessing the significance of these 

interactions becomes unfeasible unless edge weights are included, resulting in 

weighted networks (Figure 5C).  

Weighted networks assign values (weights) to each edge, allowing for the 

prioritization of certain connections over others. A gene expression correlation 

network is an example of a biological weighted network. By computing the correlation 

values between pairs of expression arrays for a given set of samples, a non-binary 

adjacency matrix is obtained, where each matrix entry corresponds to the weight (i.e., 

correlation) between the nodes (Figure 5D).  
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Directionality can also serve as a valuable means to convey additional information 

within a network. A directed network (Figure 5E) includes edges coming from root 

nodes to target nodes. Ontologies and hierarchical networks are examples of directed 

graphs, where a child concept will be connected to its parent with a directed edge, 

which, may or not be weighted. The corresponding adjacency matrix of directed 

networks is therefore non-symmetric (Figure 5F). In a further complex level, graphs 

may include multiple edges with the same involved nodes (i.e., incident nodes): 

multigraphs. Multigraphs offer the possibility of representing edges of different 

nature between two nodes (Figures 5G and 5H).  

 

Figure 5. A depiction of common graph representations, and their corresponding adjacency 

matrices. A) Simple graph. B) Adjacency matrix for A. C) Weighted network. D) Weighted adjacency 

matrix of C. E) Directed graph. F) Adjacency matrix for E. G) Multigraph. H) Adjacency matrix of a 

multigraph.  

3.1. Scale-free networks and topological graph analysis 

For now, we have introduced how networks can be used for a reliable representation 

of relationships between different entities. However, there exists a deeper 

fundamental axiom underlying that justifies the utilization of networks as means in 

biomedicine: the topology of real network differs from that of randomly generated 

networks, exhibiting scale-free characteristics (151). 
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A graph is scale-free depending on a property of its nodes: degree. The degree of a 

node is defined as the number of edges that link the node to other nodes of the 

network (Figure 6A). Nodes presenting high number of edges compared to other 

neighbour vertices are commonly referred to as hubs. For directed networks, we refer 

to outdegree (edges outgoing from the node) and indegree (edges incoming to the 

node) (Figure 6B). If the degree distribution of a network does not follow a Poisson 

distribution (which can be expected for any randomly generated networks), then the 

graph is considered scale-free.  

As topology of networks depends on the underlying relationships represented, several 

graph properties can be used to understand the modelled system (Figure 6). 

Centrality measures allow to rank the importance of nodes and edges in terms of a 

given graph property. For example, hubs are central in a graph regarding degree 

centrality. Another commonly used centrality measure is betweenness centrality 

(152). Betweenness is based on shortest paths (Figure 6C) (153). The shortest path 

between two nodes is the path where the number of nodes traversed (in unweighted 

networks) or the sum of the edge weights (in weighted networks) is minimal. 

Computation of betweenness centrality for a given node v starts by identifying shortest 

paths between all pairs of nodes in the graph; then, for each pair of nodes, the fraction 

of shortest paths traversing v is calculated. The betweenness centrality of v is the sum 

of this fraction for all node pairs (Figure 6D). This way, v is central in terms of 

betweenness depending on the extent by which it is traversed by shortest paths.  

A widely used algorithm for measuring distances in graphs is based on random walks 

(154) (Figure 6E). A random walk is a Markov chain (a stochastic model where the 

probability of each event is dependent on the state acquired during the previous one) 

where a particle explores the graph starting from a given initial node, named seed. At 

each step, the particle traverses the network, moving through existing edges, 

following the associated probabilities of each edge.  
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Recursively, probability of reaching other nodes of the graph is updated until the 

corresponding probability distribution converges. The probabilities associated with 

each node can be considered as a measure of connectivity from the seed to other 

nodes. 

 

Figure 6. Visual representation of typical analysis of network topology. A) A hub node, and its 

corresponding degree. B) A graph highlighting outdegree (pink edges) and indegree (orange edges) 

of a node. C) A graph showcasing the shortest paths between node B and H (pink edges). D) A graph 

displaying the nodes with the highest betweenness centrality. E) An example of a random walk 

process. A ‘walker’ particle starts from node A at time point 0, to reach vertex F at time 3, traversing C 

and D in the process (pink path). F) Random walk with restart. After reaching node E, a random ‘restart’ 

event occurs, forcing the particle to come back to seed node A.  

An extension of the procedure is the random walk with restart (Figure 6F), which 

provides an elegant solution to avoid walks from getting trapped in dead ends. In this 

extension, the particle is allowed to randomly restart the process at any step of the 

walk (with an associated restart probability), at any node of a given set of seeds This 

approach results in a stationary distribution that represents the distance of the seed 

node set to all other nodes of the network.  



Introduction: Network Biology  
 

23 
 

In network medicine, topological analysis of distances, as well as centrality measures 

allow for a thorough understanding of the importance of encoded biological entities 

such as genes, proteins, and metabolites. Due to the complexity of biological systems, 

and the need for a holistic interpretation of disease-related processes, researchers 

aim to identify meaningfully connected regions of biomedical networks. Identifying 

such regions (known as communities) has a huge relevance because nodes within 

the same community are expected to have stronger functional relationships (155–

157). 

One commonly used algorithm for community detection in networks is the Louvain 

algorithm, introduced by Blondel et al. (158) in 2008 (Figure 7). This greedy 

optimization technique maximizes a structural metric from the network: modularity 

(159). Modularity measures the fraction of significantly enriched edges within a set of 

vertices compared to a randomly generated graph model. As a quality measure for 

network partitions, recent research pinpointed how the algorithm outperforms similar 

heuristics (160). Louvain algorithm procedure starts by assigning each node to its 

own community (Figure 7). Then, node-wise, the potential variation of the global 

modularity is recursively computed when the node is moved to a neighbour 

community, until no further changes increase modularity. This initial stage is followed 

by subsequent steps, where the nodes within the detected communities are 

aggregated into a super-node. The resulting super-node network is a weighted 

network where the weight of the super-node edges is the sum of the weight of the 

edges existing between the corresponding communities. For the new super-node 

network, the procedure is iteratively recomputed, until the community structure 

converges, ultimately yielding a hierarchical community structure.  

An important feature of modularity is resolution. The resolution parameter plays a 

crucial role in modularity as a quality metric for community divisions. It allows for the 

adjustment of community size and composition, resulting in the emergence of 

multiple, equally valid partitions at different resolution levels (161). 
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Figure 7. Louvain network community detection algorithm. This recursive heuristic works in 

iterations of two processes. The first step is the optimization of modularity, a quality measure for the 

partition. When the optimization is finished, nodes pertaining to the same community are unified into a 

super-node. The resulting super-node graph is the input for the following iteration, until the process 

converges. 

The resolution parameter poses a significant challenge in community detection, 

particularly in the context of network biology. As all community structures at any 

resolution value are equally valid, an arbitrary choice of this parameter can have a 

great influence on the conclusions drawn from the community analysis. A possible 

solution to deal with this limitation is to identify persistent community memberships 

across a range of resolution values of interest. Strong modular structures are indeed 

characterized by persistent common community identity along resolution ranges 

(161). We explore the power of such persistency analysis, as well as its potential for 

the analysis of biomedical data in Chapters 3 and 4. 
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3.2. Network-based representation of biomedical data 

In previous sections, we have highlighted the potential of graphs as a framework for 

data representation, along with classic topological metrics to analyze them. However, 

different data types require distinct graph representations. Here, we introduce several 

examples of network models used in the literature for the different data types used in 

the research articles presented in Chapters 3 and 4. 

3.2.1. Proteomic networks 

Proteomic data networks can represent various concepts, with the most widely 

focused type being protein-protein (PPI) networks. These networks offer a 

mechanistic perspective of the human interactome (47,48), and are a particularly 

important target of the research presented in Chapters 3 and 4. However, several 

other network models have proved useful for the analysis of proteomic data. For 

instance, protein structure networks offer valuable insights into the three-dimensional 

arrangements of proteins (162), offering detailed understanding on how proteins fold 

and function within cellular processes.  Protein co-expression networks, on the other 

hand, provide a comparable view of protein co-occurrence within a sample to that of 

gene co-expression (163). All this diverse protein network models can provide 

comprehensive understanding of the dynamics of proteomic data across different 

biological conditions. 

3.2.2. Pathway networks 

The concept of a biological pathway is probably the most naturally translatable to a 

network representation, encompassing interrelated biochemical events. For example, 

signalling cascade processes can be represented as directed networks. In these 

networks, an edge indicates a chemical reaction catalysed by a source node, thereby 

influencing the state of a target node (164). The representation of chemical reactions 

in this manner holds huge potential for disease modelling. This type of networks also 

allows for the representation and analysis of more complex relationships, such as 
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feedback loops and other common regulatory features of metabolic pathways, 

allowing researchers to identify key steps of this processes to be targeted for 

intervention (165). 

Another interesting network representation of pathways information, explored in the 

research presented in Chapters 3 and 4, is based on share pathway annotations. In 

such representations, nodes are connected if they are annotated to the same pathway 

in a given database (e.g., Reactome or KEGG pathways). We will introduce the 

benefit of this representation in the following section (Section 3.3., Multilayer and 

complex networks).  

3.2.3 Metabolomic networks 

Although most metabolomic analysis are focused on the knowledge coming from 

metabolic pathway representations, several aspects of metabolism can be 

represented as networks (166), including mass spectrometry-data (167,168) and, as 

explored in Chapters 3 and 4, gene networks of shared interacting metabolites, which 

we also introduce briefly in the next section. In this sense, a common challenge for 

metabolic network inference is dealing with metabolite instances marked by 

significant promiscuity, stemming from their low specificity in reactivity. 

3.2.4 Drug-based networks 

Drug-based relationships have been commonly represented as networks to facilitate 

drug repurposing analysis, accelerating the study of the potential effects of drug pairs 

that may arise from combining different drugs. This approach offers a means to 

prioritize testing and enhance the efficiency of the study (169).  

Interestingly, drug associations to common target genes can be used to represent 

gene relationships that reflect drug information, a configuration we explore in the 

article presented in Chapter 4. An example of the recent efforts into providing large-

scale network-based resources is DrugMAP, a comprehensive collection of 

information from multiple databases covering drug data (80).   
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3.2.5 Chromatin interaction networks 

Recently, network approaches have been employed to analyze the 3D organization 

of chromatin, with the objective of studying the processes underlying chromatin 

structure dynamics (170,171). Furthermore, significant progress has been made in 

studying the interactome that mediates promoter interactions, for example, in cell 

differentiation (172). In Annex III, an additional analysis of HiChIP data (which 

includes DNA-protein interactions and protein-protein interactions) in prostate cancer 

is provided. 

3.2.6 Disease networks 

Network representations are also well-suited for the analysis of disease relationships 

(150). These associations can be based on multiple features, such as bulk or single-

cell multi-omic data (173) or phenotypic information (174). Comorbidity dynamics 

have been well studied by means of network analysis (175,176). Disease comorbidity 

networks allow to measure both the positive and negative impact of a disease on the 

likelihood of developing another one, providing additional insights for potential drug 

targets (177). The network configuration discussed in the article presented in Chapter 

4, like the ones mentioned earlier, focuses on genes affected in human diseases as 

the central elements. Particularly, the relationships identify genes whose variants 

have been described to be associated to the same disease, connecting genes based 

on disease knowledge, for instance, genome wide association studies (GWAS).    

3.2.7. Transcriptomic networks 

When inferring networks from bulk RNA-seq gene expression profiles, the classical 

methodology relies on one assumption: genes presenting high correlation across a 

dataset are likely to share similar regulative processes (178). This way, the study of 

gene co-expression can be performed from multiple perspectives, including 

correlation of gene profiles across a patient dataset (179) and vice versa. However, 

when working with single cell RNA-seq data, the network representation becomes 

more complex. Although it is possible to perform pseudo-bulk RNA-seq analysis from 



Introduction: Network Biology 

28  
 

single cell RNA-seq, the noise coming from cell subpopulations (180) require of the 

development of network inference tools accounting for such variability. In this sense, 

notable network inference approaches include GENIE3 (181) and SCENIC (182).  

3.3. Multilayer and complex networks 

The main motivation behind the research articles presented in this thesis is to propose 

novel frameworks for precision medicine that use in a jointly way several network 

networks encoding information from diverse sources. Particularly, we focus on the 

potential of multilayer networks, systems formed by collections of interconnected 

networks (hereby called layers) (Figure 8B and Figure 9) (184,185), for the analysis 

of disease information. 

 

Figure 8. Visual representation of complex graph constructions. A) A multiplex network. B) 

Multilayer network. C) Heterogeneous network.  
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A multilayer network is a complex graph presenting intralayer edges within each layer, 

and interlayer edges connecting nodes across different layers. This representation 

has proven valuable for biomedicine in multiple scenarios, enabling to study 

biomolecular interactions (146) and diseases (183) and facilitating the integration and 

interpretation of heterogeneous data resources. Several established tools for network 

analysis have been recently adapted for multiplex networks.  

These include classical graph theory approaches such as random walk with restart 

(154) and community detection algorithms (184), which we will introduce and discuss 

in subsequent sections. However, due to the relatively recent introduction of complex 

networks in the biomedical domain, the application of machine learning approaches 

in this area is currently limited to few biomedical (185) contexts, including biomedical 

graph embedding (146,186), biological association prediction (187), cancer driver 

gene detection (188) and reconstruction of molecular mechanisms from single cell 

RNA-seq data (189).  

An illustrative example of the concept of a multilayer network is the representation of 

multiple transport systems in a city (190). Connections between nodes within the 

same layer (in this example, the stations) correspond to intralayer edges, while the 

connections between the different graph units of the systems (in this example, 

stations where a change between transport options is available) are the interlayer 

edges. This way, multilayer graphs can be adapted to encode specific knowledge, 

allowing for a finer analysis of the represented system.  

Still, the absence of a standardized nomenclature to denominate the different 

structures that complex networks may adopt has resulted in multiple designations 

such as multilayer networks, heterogeneous networks, and multiplex networks 

populating the literature. Here, we will herein follow an adaptation of the nomenclature 

used by Valdeolivas et al. (2019) in their work for the extension of the Random Walk 

with Restart algorithm to high-order graphs (154).  
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The presented definition of a multilayer network is, in fact, a specific instance of a 

multiplex network. In general, a multiplex network refers to a set of interconnected 

graphs where the layers share the same set of nodes (Figure 8A). A multilayer 

network is a multiplex network instance where interlayer edges exist only between 

nodes of the same identity through the different layers (Figure 8B). A heterogeneous 

network, in contrast, presents graphs with different node sets, as well as bipartite 

networks corresponding to the interlayer edges between pairs of layers (Figure 8C).  

The way in which a multilayer network is modelled plays a crucial role on how the 

underlying biology is studied. Figure 9 depicts a commonly applied multilayer network 

structure for the integration of biomedical data, illustrating a three-layer multilayer 

gene network. These networks connect multiple simple graph layers, where each 

layer represents genes connected based on data from a specific biomedical source. 

This model results in the integration of diverse gene associations within each layer.  

 

Figure 9. Schematical depiction of a gene multilayer network formed by three layers, from the 

research presented on Chapter 3. Each layer represents gene associations retrieve from biomedical 

knowledge databases that provides specific omics information. Intralayer edges describe gene 

relationships in each database, while interlayer edges exist between nodes sharing the same gene 

identity in different layers. 
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It is important to emphasize that reasonable adjustments can (and should) be made 

to the data extracted from databases to ensure a coherent representation of biological 

entities across the layers. For instance, within a gene multilayer network’s protein 

interactome layer, nodes conveniently represent genes, while the edges symbolize 

the physical interactions among gene products.  

The research articles presented in Chapters 3 and 4 explore the effectivity of the 

multilayer network system in detecting genes related to disease processes, providing 

a valuable tool for studying and understanding diseases in a comprehensive manner. 

3.4. Topological analysis of complex networks 

The analysis of node relationships within the multilayer network is also performed by 

means of topological analysis. Extension of topological exploration tools to the 

multilayer network level has been undertaken recently, including the previously 

mentioned algorithm for random walk with restart exploration (154) as well as 

community detection tools (184). The adaptation of these approaches represents a 

significant stride forward in analyzing biological systems and advancing the field of 

network science.  

3.4.1. Random Walk with Restart on complex graphs 

Extending topological analysis to multilayer and heterogeneous graphs imply 

considering both interlayer and intralayer connections simultaneously, but with 

different implications. An elegant (and computationally scalable) solution to model 

such analysis was introduced in 2019 by Valdeolivas et al. (154) as a way to prioritize 

disease associated genes using biomedical database knowledge.  

In the algorithm proposed, the walker is allowed to navigate through the multilayer 

structure, jumping between layers when encountering a node that exists in other 

layers. Furthermore, in addition to the probability that controls restart events, a second 

probability selects the restarting seeds of each layer.  
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This way, when a restart event occurs and the seed node exists in more than one of 

the layers, the corresponding probability array assigns specific importance weights to 

each network. As a result, it is possible to prioritize those layers that may present 

more meaningful information for the biological problem of analysis. The original 

publication of the algorithm showcased the effectiveness and applicability of random 

walks on complex networks in the context of rare disease studies. It demonstrated 

how random walks can be used to explore the neighbourhood of known causal genes, 

enabling the identification of novel candidate genes that may have a modifying effect. 

3.4.2. Multilayer community detection 

Initial approaches to perform community detection in complex graphs primarily 

focused on network aggregations, treating all interactions as equivalent (191). 

However, such an approach may overlook valuable information encoded within 

known interlayer edges.  

Detecting communities in multilayer networks implies the challenge of considering the 

impact of all the layers to the definition of a community. For this task, a number of 

algorithms have been proposed (192,193). In the context of the research presented 

in this PhD thesis, we focus on the proposed adaptation of the Louvain algorithm for 

multilayer networks introduced by Didier et al (184). This adaptation utilizes a new 

metric called multiplex-modularity. The article demonstrates how multiplex-

modularity can be defined as the sum of the individual modularities of each graph and 

serves as an appropriate metric for optimizing the partitions of the multiplex network. 

Furthermore, the publication presents the higher performances achieved by the 

algorithm compared to a battery of graph aggregative methods, and most importantly, 

demonstrates its potential for the analysis of real biological multiplex networks. 

By applying community detection based on multiplex-modularity to gene multilayer 

networks, we could perform several analyses of the persistence of gene community 

associations demonstrating its relevance for rare disease research. This methodology 
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is displayed in the research presented on Chapters 3 and 4 for the analysis of gene 

relationships based on multi-omics data in scenarios characterized by data scarcity. 
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4. Main Objectives 

The main objectives of the PhD thesis are the following: 

1. Explore the potential of network biology in addressing the challenges of precision 

medicine, related to limited data in areas such as rare disease research. 

2. Develop new methodologies based on multilayer network modelling, for the 

integration and analysis of biomedical data, with a specific emphasis on bringing 

personalized medicine to contexts with constraints in patient availability, namely, 

precision oncology and rare disease scenarios. 

3. Create novel approaches based on multilayer networks to enhance the 

interpretability of biomedical studies, harnessing the potential of the integrated 

complementary resources to uncover new relationships in precision medicine studies. 

4. Establish multilayer network-based models as an effective approach for achieving 

effective patient stratification, as well as facilitating explainable dimensionality 

reduction and feature selection. 

5. Apply and adapt these new methods for the work with real-world data, aiming to 

address specific questions in rare disease research, such as the identification of 

genetic modifiers of disease severity, a largely neglected biomedical challenge.
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Chapter results summary 

The main concepts introduced in the review publication presented in this chapter are 

the following: 

1. Finer investigation is required to understand the inherent biomedical data 

granularity, including sample size and label availability. 

2. Lack of proper considerations regarding data granularity reflecting the variety and 

size of measurements in cancer research can have a deep impact in clinical decision-

making.  

3. AI has the potential to transcend the current limitations of Big Data analysis with 

respect to data granularity. 

4. Traditional data management may be overwhelmed by the scale size of the current 

available biomedical information, making computational efforts crucial for its efficient 

handling.  

5. Application of AI-based approaches is already making a huge impact in areas such 

as prediction of clinical outcome, subtyping and disease diagnosis. 

6. High Performance Computing (HPC) is key for efficient AI development, not only in 

terms of computational performance scalability, but also for reducing research costs. 

7. Heterogeneous levels of data granularity difficult Big Data analysis, provided the 

imbalance between cohort size and feature cardinality. Moreover, disaggregation of 

cohorts by demographic factors can reveal imbalances and potential dataset biases. 

8. In small cohorts, an intrinsic property of rare disease research, imbalance impact 

becomes even more apparent, and may lead to biased outcomes. 

9. Multi-omics data modelling, transfer learning, meta-learning and data augmentation 

come as promising options to overcome limitations from imbalanced data analysis, 

while accounting for the underlying granularity of oncological data.
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Article abstract  

Exploring the molecular basis of disease severity in rare disease scenarios is a 

challenging task provided the limitations on data availability. Causative genes have 

been described for Congenital Myasthenic Syndromes (CMS), a group of diverse 

minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the 

phenotypic severity differences remains unclear. Here, we present a workflow to 

explore the functional relationships between CMS causal genes and altered genes 

from each patient, based on multilayer network analysis of protein-protein 

interactions, pathways, and metabolomics.  

Our results show that CMS severity can be ascribed to the personalized impairment 

of extracellular matrix components and postsynaptic modulators of acetylcholine 

receptor (AChR) clustering. We explore this in more detail for one of the proteins not 

previously associated with the NMJ, USH2A. Loss of the zebrafish USH2A ortholog 

revealed some effects on early movement and gross NMJ morphology.  

This work showcases how coupling multilayer network analysis with personalized -

omics information provides molecular explanations to the varying severity of rare 

diseases, paving the way for sorting out similar cases in other rare diseases. 

Keywords: multi-omics data, network biology, multilayer networks, personalized 

medicine, applied network science, network community analysis, rare diseases, 

congenital myasthenic syndromes. 
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1. Introduction 

Understanding phenotypic severity is crucial for prediction of disease outcomes, as 

well as for administration of personalized treatments. Different severity levels among 

patients presenting the same medical condition could be explained by characteristic 

relationships between diverse molecular entities (i.e., gene products, metabolites, 

etc.) in each individual. In this setting, multi-omics data integration is becoming a 

promising tool for research, as it has the potential to gain complex insights of the 

molecular determinants underlying disease heterogeneity. However, even in a 

scenario where the level of biomedical detail available to study is growing in an 

exponential manner (Karczewski and Snyder, 2018), the analysis of the molecular 

determinants of disease severity is not typically addressed in rare disease research 

literature (Boycott et al., 2013), despite its obvious relevance at the medical and 

clinical level. Rare diseases represent a challenging setting for the application of 

precision medicine because, by definition, they affect a small number of patients, and 

therefore the data available for study is considerably limited in comparison to other 

conditions. Accordingly, leveraging the wealth of biomedical knowledge of diverse 

nature coming from publicly available databases has the potential to address data 

limitations in rare diseases (Buphamalai et al., 2021; Mitani and Haneuse, 2020). In 

this sense, multilayer networks can offer a holistic representation of biomedical data 

resources (Gosak et al., 2018; Halu et al., 2019), which may allow exploration of the 

biology related to a given disease independently of cohort sizes and their available 

omics data.  

Here, in order to evaluate and demonstrate the potential of multilayer networks as 

means of assessing severity in rare disease scenarios, we provide an illustrative case 

where we develop a framework for analyzing a patient cohort affected by Congenital 

Myasthenic Syndromes (CMS), a group of inherited rare disorders of the 

neuromuscular junction (NMJ). Fatigable weakness is a common hallmark of these 

syndromes, that affects approximately 1 patient in 150,000 people worldwide.
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Location Phenotype Inheritance Gene 

2q31.1 CMS1A, slow-channel AD 
CHRNA1 

2q31.1 CMS1B, fast-channel AR, AD 

17p13.1 CMS2A, slow-channel AD 

CHRNB1 
17p13.1 

CMS2C, associated with 
acetylcholine receptor deficiency 

AR 

2q37.1 CMS3 A, slow-channel AD 

CHRND 2q37.1 CMS3 B, fast-channel AR 

2q37.1 
CMS3 C, associated with 

acetylcholine receptor deficiency 
AR 

17p13.2 CMS4 A, slow-channel AR, AD 

CHRNE 17p13.2 CMS4 B, fast-channel AR 

17p13.2 
CMS4 C, associated with 

acetylcholine receptor deficiency 
AR 

3p25.1 CMS5 AR COLQ 

10q11.23 CMS6, presynaptic AR CHAT 

1q32.1 CMS7, presynaptic AD SYT2 

1p36.33 CMS8, with pre- and postsynaptic defects AR AGRN 

9q31.3 
CMS9, associated with 

acetylcholine receptor deficiency 
AR MUSK 

4p16.3 CMS10 AR DOK7 

11p11.2 
CMS11, associated with 

acetylcholine receptor deficiency 
AR RAPSN 

2p13.3 CMS12, with tubular aggregates AR GFPT1 

11q23.3 CMS13, with tubular aggregates AR DPAGT1 

9q22.33 CMS14, with tubular aggregates AR ALG2 

1p21.3 CMS15, without tubular aggregates AR ALG14 

17q23.3 CMS16 AR SCN4A 

11p11.2 CMS17 AR LRP4 

20p12.2 CMS18 AD SNAP25 

10q22.1 CMS19 AR COL13A1 

2q12.3 CMS20, presynaptic AR SLC5A7 

10q11.23 CMS21, presynaptic AR SLC18A3 

2p21 CMS22 AR PREPL 

22q11.21 CMS23, presynaptic AR SLC25A1 

15q23 CMS24, presynaptic AR MYO9A 

12p13.31 CMS25, presynaptic AR VAMP1 
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3p21.31 CMS, related to GMPPB AR GMPBB 

20q13.33 CMS, presynaptic AR LAMA5 

3p21.31 CMS, with nephrotic syndrome AR LAMB2 

8q24.3 CMS, with plectin defect AR PLEC 

12q24.13 CMS, related to RPH3A AR RPH3A 

9p13.3 CMS, presynaptic, related to MUNC13-1 AR UNC13B 

2q37.1 Escobar syndrome AR CHRNG 

 

Table 1. Location, phenotype, inheritance, and genes involved in CMS (adapted from 

https://omim.org/phenotypicSeries/PS601462 and http://www.musclegenetable.fr). AR: autosomal 

recessive; AD: autosomal dominant. 

The inheritance of CMS is autosomal recessive in the majority of patients. CMS can 

be considered a relevant use case because, while patients share similar clinical and 

genetic features (Finsterer, 2019), phenotypic severity of CMS varies greatly, with 

patients experiencing a range of muscle weakness and movement impairment. While 

over 30 genes are known to be monogenic causes of different forms of CMS (Table 

1), these genes do not fully explain the ample range of observed severities, which has 

been suggested to be determined by additional factors involved in neuromuscular 

function (Thompson et al. 2019). Examples of CMS-related genes are AGRN, LRP4 

and MUSK which code for proteins that mediate communication between the nerve 

ending and the muscle, which is crucial for formation and maintenance of the NMJ 

(Figure 1).  

In particular, the AGRN-LRP4 receptor complex activates MUSK by phosphorylation, 

inducing clustering of the acetylcholine receptor (AChR) in the postsynaptic 

membrane allowing the presynaptic release of acetylcholine (ACh) to trigger muscle 

contraction (Burden et al., 2013; Li et al., 2018) . Additional evidence of CMS severity 

heterogeneity emerged within the NeurOmics and RD-Connect projects (Lochmüller 

et al., 2018) studying a small population (about 100 individuals) of gypsy ethnic origin 

from Bulgaria. 



Chapter 3: Introduction 

68 
 

 

Figure 1. A schematic depiction of the main molecular activities of known CMS causal genes 

(Methods) taking place at the neuromuscular junction (NMJ) in the presynaptic terminal (in blue), 

synaptic cleft (in white), and skeletal muscle fiber (in yellow) (for a detailed description of this system 

see Supplementary Information). 

All affected individuals shared the same causal homozygous mutation (a deletion 

within the AChR ε subunit, CHRNE c.1327delG (A. Abicht et al. 1999)), however, the 

severity of symptoms across this cohort varies considerably regardless of age, 

gender, and initiated therapy, suggesting the existence of additional genetic causes 

for the diversity of disease phenotypes. By analyzing multi-omics data, we performed 

an in-depth characterization of 20 CMS patients, representing the two opposite ends 

of the spectrum observed in the wider cohort, aiming to investigate the molecular 

basis of the observed differences in the individual severity of the disease. Clinically, 

CMS severity ranges from minor symptoms (e.g., exercise intolerance) to more 

severe CMS forms and is dependent on the causal genetic impairments (Abicht et al., 

1993; Della Marina et al., 2020). Severe CMS is typically presented with reduced 
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Forced Vital Capacity (FVC), severe generalized muscle fatigue and weakness, 

proximal and bulbar muscle fatigue and weakness, impaired myopathic gait and 

hyperlordosis. Two CMS severity levels have been identified through extensive 

phenotyping, namely a severe disease phenotype (8 patients) and a not-severe 

disease phenotype (2 intermediate and 10 mild patients) (Suppl. Table 1). Out of the 

tested demographic factors (age, sex) and clinical tests (speech, mobility, respiratory 

dysfunctions, among others), FVC and shoulder lifting ability show a significant 

association with the severity classes (two-tailed Fisher’s exact test p-values of 0.0128 

and 0.0418, respectively; Suppl. Figure 1). We sought to interrogate whether severity 

was determined by additional genetic variations impacting neuromuscular activity, on 

top of the causative CHRNE mutation.  

We analyzed three main types of genetic variations: single nucleotide polymorphisms 

(SNPs), copy number variations (CNVs), and compound heterozygous variants (two 

recessive alleles located at different loci within the same gene in a given individual). 

The extensive analysis of the genomic information did not render any SNPs that could 

be considered a unique cause of disease severity by being common to all the cases. 

Nevertheless, a number of CNVs and compound heterozygous variants were found 

to appear exclusively in the different severity groups, in one or more patients. 

Moreover, the compound heterozygous variants of the severe group are enriched in 

pathways related to the extracellular matrix (ECM) receptors, which have been 

proposed as a target for CMS therapy (Ito and Ohno 2018). To investigate the 

functional relationship between these variants and CMS severity, we designed an 

analytical workflow based on multilayer networks (Figure 2), allowing the integration 

of external biological knowledge to acquire deeper functional insights. A multilayer 

network consists of several layers of nodes and edges describing different aspects of 

a system (Kivelä et al., 2014). In biomedicine, this data representation has been used 

to study biomolecular interactions (Zitnik and Leskovec, 2017) and diseases (Halu et 

al., 2019), facilitating integration and interpretation of heterogeneous sources of data.  
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Figure 2. Analytical workflow employed to address the severity of a cohort of patients affected 

by Congenital Myasthenic Syndromes (CMS). A multi-scale functional analysis approach, based on 

multilayer networks, was used to identify the functional relationships between genetic alterations 

obtained from omics data (Whole Genome Sequencing, WGS; RNA-sequencing, RNAseq) with known 

CMS causal genes. Modules of CMS linked genes are detected using graph community detection at a 

resolution range (γ) (Methods) where the most prominent changes in community structure occur. 

Modules that emerged from this analysis were characterized at single individual level. 

Several established tools for network analysis have been recently adapted for 

multilayer networks, such as random walk with restart (Edler et al., 2017; Valdeolivas 

et al., 2019), community detection algorithms (Didier et al., 2015) and node 

embeddings (Pio-Lopez et al., 2021). By crossing patient genomic data with the 

information provided by a biomedical knowledge multilayer network, we are able to 

describe the functional relationships of new genetic modifiers responsible for the 

different phenotypic severity levels, showcasing the potential of multilayer networks 

to provide support on the analysis of rare disease patients.
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2. Results 

2.1. Variants do not segregate with patient severity 

We first searched for variants able to segregate the disease phenotypes (severe and 

not-severe) by analyzing a large panel of mutational events (mutations in isoforms, 

splicing sites, small and long noncoding genes, promoters, TSS, predicted pathogenic 

mutations, loss of function mutations, among others). We could not find one single 

mutation or combinations of mutations that were able to completely segregate the two 

groups (Supplementary Information) although partial segregation can be observed 

(Suppl. Table 2).  

As already described for monogenic diseases (Kousi and Katsanis, 2015) and cancer 

(Castro-Giner et al., 2015), we hypothesized that distinct weak disease-promoting 

effects may represent patient-specific causes to CMS severity, which bring damage 

to sets of genes that are functionally related. To find these causes, we sought to 

search for variants with the potential to alter gene functions, such as CNVs and 

compound heterozygous variants, which have been previously reported to be key to 

CMS (Abicht et al., 1993; Bevilacqua et al., 2017; Richard et al., 2003; Yang et al., 

2018). 

2.2. Compound heterozygous variants are functionally related 

In order to explore the hypothesis that disease severity in this cohort is due to variants 

in patient-specific critical elements, we sought to identify potentially damaging 

compound heterozygous variants and CNVs. We analyzed the gene lists associated 

with these mutations to search for evidence of alterations in relevant pathways for the 

severe (n=8) and not-severe cases (n=12). We first performed a functional enrichment 

analysis (Methods) of the genes with CNVs found in the two groups. The set of 

affected genes in the severe group is composed of 26 unique genes (10 private to the 

severe group), while the not-severe group presented 86 unique genes (Suppl. Table 

3).  
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None of these gene sets showed any functional enrichment. Moreover, none of these 

genes had been described as causal for CMS, and none carried compound 

heterozygous variants. (Suppl. Figure 2). As for compound heterozygous variants, the 

set of affected genes in the severe group is composed of 112 unique genes (89 private 

to the severe group), while the not-severe group resulted in 152 unique genes (Suppl. 

Table 3).  

We found that the severe group shows significant enrichment in genes belonging to 

extracellular matrix (ECM) pathways, in particular “ECM receptor interactions” (KEGG 

hsa04512, adjusted p-value 0.002337) and “ECM proteoglycans” (Reactome R-

HSA30001787, adjusted p-value 0.001237), which are the top-hit pathways when the 

89 genes appearing only in the severe group are considered. Both these pathways 

share common genes, namely TNXB, LAMA2, TNC, and AGRN. The role of 

extracellular matrix proteins for the formation and maintenance of the NMJ has 

recently drawn attention to the study of CMS (Beeson, 2016; Rodríguez Cruz et al., 

2018).  

In particular, within the genes linked with ECM pathways, AGRN and LAMA2 stand 

out for their implication in CMS and other rare neuromuscular diseases (Bertini et al., 

2011; Bönnemann et al., 2014; Nicole et al., 2014). ECM-related pathways are not 

enriched in the not-severe set of genes (KEGG hsa04512, adjusted p-value 0.6170). 

Moreover, top-hit pathways of the not-severe set of genes are not explicitly related to 

ECM and not consistent between Reactome and KEGG (Reactome “Susceptibility to 

colorectal cancer” R-HSA-5083636, adjusted p-value 4.131e-7, genes 

MUC3A/5B/12/16/17/19; KEGG “Huntington's disease” hsa05016, adjusted p-value 

0.07103, genes REST, CREB3L4, CLTCL1, DNAH2/8/10/11).  

These findings support our hypothesis that severe patients might present disruptions 

in NMJ functionally related genes that, combined with CHRNE causative alteration, 

may be responsible for the worsening of symptoms. 
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2.3. CMS-specific monolayer and multilayer community 

detection 

As disease-related genes tend to be interconnected (Menche et al. 2015), we sought 

to analyze the relationships among the CMS linked genes (i.e., known CMS causal 

genes, and severe and not-severe compound heterozygous variants and CNVs; 

Methods) using network community clustering analysis. 

We employed the Louvain algorithm (Methods) to find groups of interrelated genes 

in three monolayer networks that represents biological knowledge contained in 

databases, separately: the Reactome database (Fabregat et al. 2018), the Recon3D 

Virtual Metabolic Human database (Brunk et al. 2018) (both downloaded in May 

2018), and from the Integrated Interaction Database (IID) (Kotlyar et al. 2016) 

(downloaded in October 2018) (Suppl. Figure 3). The first network consists of 10,618 

nodes (genes) and 875,436 edges, representing shared pathways between genes. 

The second network consists of 1,863 nodes (genes) and 902,188 edges, 

representing shared reaction metabolites between genes. The third network consists 

of 18,018 nodes (genes) and 947,606 edges, representing aggregated protein-protein 

interactions from all tissues (Methods: Monolayer community detection). The last 

two networks represent the ‘metabolome’ and the ‘interactome’ data, respectively. By 

measuring community similarity (Methods), we observed that the same CMS linked 

genes did not form the same communities across the different networks (Suppl. 

Figure 4).  

These results show that, although disease related genes are prone to form well-

defined communities in distinct networks (Goh et al. 2007; Cantini et al. 2015), 

different facets of biological information (i.e., reactome, metabolome, interactome) 

reflect diverse participation modalities of such genes into communities. In order to 

deliver an integrated analysis of such heterogeneous information, we further consider 

them as a multilayer network (Gosak et al. 2018). (Methods: Monolayer community 

detection and Multilayer community detection). 
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2.4. Large-scale multilayer community detection of disease 

associated genes 

We first sought to test the hypothesis that disease-related genes tend to be part of 

the same communities also in a multilayer network setting. We used the curated gene-

disease associations database DisGeNET (Piñero et al., 2017), showing that disease-

associated genes are significantly found to be members of the same multilayer 

communities (Wilcoxon test p-value < 0.001 in a range of resolution parameters 

described in the Methods). We preprocessed DisGeNET database by filtering out 

diseases and disease groups with only one associated gene (6,352 diseases), and 

those whose number of associated genes was more than 1.5 * interquartile range 

(IQR) of the gene associated per disease distribution (823 diseases with more than 

33 associated genes) (Suppl. Figure 5A-B). This procedure prevents a possible 

analytical bias due to the higher amounts of genes annotated to specific disease 

groups (e.g., entry C4020899, “Autosomal recessive predisposition”, annotates 1445 

genes). We then retrieved the communities of each associated gene, excluding 428 

genes not present in our multilayer network and the diseases left with only one 

associated gene. The final analysis comprised a total of 5,892 diseases with an 

average number of 7.38 genes per disease. For each disease, we counted the 

number of times that disease-associated genes are found in the same multilayer 

communities and compared the distribution of such frequencies with that of balanced 

random associations (1000 randomizations). Results show that disease-associated 

genes are significantly found in the same multilayer communities across the resolution 

interval (Suppl. Figure 5C).  

2.5. Modules within the CMS multilayer communities 

We define a module as a group of CMS linked genes that are systematically found to 

be part of the same multilayer community while increasing the multilayer network 

community resolution parameter (Methods; Supplementary Information; Figures 

3-4).  Within each of these communities, we identified smaller modules of CMS linked 
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genes that are specific to the severe and not-severe groups. We tested the 

significance of obtaining these exact genes in the severe and not-severe largest 

modules upon severity class label shuffling among all individuals (1000 

randomizations). We found that 13 (p-value 0.022) and 14 (p-value 0.027) are the 

minimum number of genes composing the modules that are not expected to be found 

at random in the severe and not-severe largest components, respectively (Suppl. 

Figure 6).  

 

 

Figure 3. Identification of the largest module containing genes that are found in the same 

community in the entire range of resolution parameters (Methods). In each module, genes are 

connected if they are found in the same multilayer communities at n values of the resolution parameter 

γ within the range under consideration (γ (0,4]). The arrows indicate the systematic increase of ∈ n. At 

n = 8, the module contains genes that are always found in the same community in the entire range of 

resolution (see Supplementary Information "Multilayer community detection analysis"). The largest 

modules containing the CMS linked gene set (highlighted in red), which includes known CMS causal 

genes, severe-specific heterozygous compound variants and CNVs, are shown. 
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In the two groups, the significantly largest module that contains known CMS causal 

genes is composed of 15 genes (Figure 4). 6 out of these 15 are previously described 

CMS causal genes (Methods), namely the ECM heparan sulfate proteoglycan agrin 

(AGRN); the cytoskeleton component plectin (PLEC), causative of myasthenic 

disease (Forrest et al. 2010); the agrin receptor LRP4, key for AChR clustering at 

NMJ (Barik et al. 2014) and causative of CMS by compound heterozygous variants 

(Ohkawara et al. 2014); the ECM components LAMA5 and LAMB2 laminins, and 

COL13A1 collagen. Considering all nodes (not only CMS linked) the number of nodes 

in the module is 482.  

All the other genes of the two modules are involved in a varied spectrum of muscular 

dysfunctions, discussed in the following sections. As the location of the causal gene 

products determine the most common classification of the disease (i.e., presynaptic, 

synaptic, and postsynaptic CMS) (Rodríguez Cruz et al., 2018), we determined class 

and localization of the members of the found modules (Table 2). 

 

Figure 4. Largest module, containing known CMS causal genes, within the multilayer 

communities of CMS linked genes that are specific to the not-severe (A) and severe (B) groups. 

In green, compound heterozygous variants; in yellow, CNVs; in purple, known CMS causal genes. 

Being a CMS causal gene bearing compound heterozygous variants, AGRN is depicted using both 

green and purple. 
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Laminins, well-known CMS glycoproteins, are affected in both severe (LAMA2, 

USH2A) and not-severe (LAMB4) groups, and are bound by specific receptors that 

are damaged in the not-severe group (MCAM) (Dagur and McCoy, 2015). Collagens, 

known CMS-related factors, are associated with the not-severe group (COL6A5 ), and 

bound by specific receptors that are damaged in the not-severe group (MSR1) (Di 

Martino et al., 2023). However, collagen biosynthesis is affected in both severe and 

not-severe groups. Indeed, metalloproteinases, damaged in the not-severe group, are 

responsible for the proteolytic processing of lysyl oxidases (LOXL3), which are 

implicated in collagen biosynthesis (Panchenko et al. 1996) and damaged in the 

severe group. Alterations in proteoglycans (AGRN, HSPG2, VCAN, COL15A1) (Iozzo 

and Schaefer, 2015) , tenascins (TNC, TNXB) (Flück et al., 2008; van Dijk et al., 

1993), and chromogranins (CHGB) (Andreose et al., 1994) are specific of the severe 

group. We observed no genes associated with proteoglycan damage in the not-

severe group, suggesting a direct involvement of ECM in CMS severity. 

2.6. Personalized analysis of the severe cases 

We sought to analyze the 15 genes of the largest module of the severe group in each 

one of the 8 patients, hereafter referred to using the WGS sample labels (Suppl. 

Table 1). At the topological level, all incident interactions existing between the genes 

of the severe module (Figure 4B) are related to the protein-protein interaction and 

pathway layers (Supplementary Figure 7). Overall, these genes have a varied range 

of expression levels in tissues of interest (Suppl. Figure 8), for instance in skeletal 

muscle HSPG2, LAMA2, PLEC and LAMB2 show medium expression levels (9 to 107 

TPM) while the others show low expression levels (0.6 to 9 TPM) (Methods). 

Patient 2, a 15 years old male, presents compound heterozygous variants in tenascin 

C (TNC), mediating acute ECM response in muscle damage (Flück et al., 2008; 

Sorensen et al., 2018), and CNVs (specifically, a partial heterozygous copy number 

loss) in usherin (USH2A), which have been associated with hearing and vision loss 

(Austin-Tse et al., 2018). 
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Patient 16, a 25 years old female, presents compound variants in tenascin XB 

(TNXB), which is mutated in Ehlers-Danlos syndrome, a disease that has already 

been reported to have phenotypic overlap with muscle weakness (Kirschner et al., 

2005; Matsumoto and Aoki, 2020; Okuda-Ashitaka and Matsumoto, 2023; Voermans 

and Engelen, 2008) and whose compound heterozygous variants have been reported 

for a primary myopathy case (Pénisson-Besnier et al., 2013; Voermans et al., 2014), 

and versican (VCAN), which has been suggested to modify tenascin C expression 

(Keller et al., 2012) and is upregulated in Duchenne muscular dystrophy mouse 

models (McRae et al., 2017, 2020).  

Patient 13, a 26 years old male, presents compound mutations in laminin α2 chain 

(LAMA2), a previously reported gene related to various muscle disorders (AMIN et 

al., 2019; Dimova and Kremensky, 2018; Løkken et al., 2015) whose mutations cause 

reduction of neuromuscular junction folds (Rogers and Nishimune, 2017), and 

collagen type XV α chain (COL15A1), which is involved in guiding motor axon 

development (Guillon et al., 2016) and functionally linked to a skeletal muscle 

myopathy (Eklund et al., 2001; Muona et al., 2002). 

Patient 12, a 49 years old female, presents compound mutations in chromogranin B4 

(CHGB), potentially associated with amyotrophic lateral sclerosis early onset (Gros-

Louis et al., 2009; Pampalakis et al., 2019). Patient 18, a 51 years old man, presents 

compound mutations in agrin (AGRN), a CMS causal gene that mediates AChR 

clustering in the skeletal fiber membrane (Huzé et al., 2009) (Jacquier et al., 2022).  

Patient 20, a 57 years old male, presents compound mutations in lysyl oxidase-like 3 

(LOXL3), involved in myofiber extracellular matrix development by improving integrin 

signaling through fibronectin oxidation and interaction with laminins (Kraft-Sheleg et 

al., 2016), and perlecan (HSPG2) (Zoeller et al., 2008), a protein present on skeletal 

muscle basal lamina (Carmen et al., 2019; Larraı́n et al., 1997), whose deficiency 

leads to muscular hypertrophy (Xu et al., 2010), that is also mutated in Schwartz-

Jampel syndrome (Stum et al., 2006), Dyssegmental dysplasia Silverman-
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Handmaker type (DDSH) (Arikawa-Hirasawa et al., 2001) and fibrosis (Lord et al., 

2018), such as Patient 19, a 62 years old female. Furthermore, based on the 

estimated familial relatedness (Methods) and personal communication (February 

2018, Teodora Chamova), patients 19 and 20 are siblings (Suppl. Table 4). 

2.7. Functional consequences of variants in the severe-

specific module 

Studying the functional impact of the compound heterozygous variants in the severe-

specific genes of the module, we observed that in 6 of the 8 patients at least one of 

the variants is predicted to be deleterious by the Ensembl Variant Effect Predictor 

(VEP) (McLaren et al., 2016) (Methods; Suppl. Table 5). For example, as for Patient 

18, who presents 3 different variants in AGRN gene, only rs200607541 is predicted 

to be deleterious by VEP’s Condel (score = 0.756), SIFT (score = 0.02), and PolyPhen 

(score = 0.925). In particular, the variant (a C>T transition) presents an allele 

frequency (AF) of 4.56E-03 (gnomAD exomes) (Karczewski et al., 2020) and affects 

a region encoding a position related to an EGF-like domain (SMART:SM00181) and 

a Follistatin-N-terminal like domain (SMART:SM00274). Both of these domains are 

part of the Kazal domain superfamily which are specially found in the extracellular 

part of agrins (PFAM: CL0005) (Laskowski and Kato, 1980; Porten et al., 2010).  

On the other hand, Patient 16 presents a total of 38 TNXB transcripts affected by 

three gene variants (rs201510617, rs144415985, rs367685759) that are all predicted 

to be deleterious by the three scoring systems, have allele frequencies of 3.17E-02, 

4.83E-02 and 5.90E-03, respectively; and in overall, are affecting two conserved 

domains.  

The first consists of a fibrinogen related domain that is present in most types of 

tenascins (SMART:SM00186), while the second is a fibronectin type 3 domain 

(SMART:SM00060) that is found in various animal protein families such as muscle 

proteins and extracellular-matrix molecules (Bork and Doolittle, 1992). 
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Activity 

localization 
Class 

CMS 

causal 

gene 

Phenotype group 

Function 

Synaptic 

localization 

(Manual curation) 

Localization 

(UniProt) Not-

severe 
Severe 

ECM (ECM) 

Proteoglycans 

AGRN - AGRN 

Cell hydration 

and growth 

factor trapping 

Pre- and 

postsynaptic 

(PMID:29462312) 

Synaptic basal 

lamina / ECM 

- - HSPG2 

Basement 

membrane 

(PMID:30453502) 

Basement 

membrane / 

ECM 

- - VCAN 
ECM 

(PMID:29211034) 
ECM 

- - COL15A1 

Basement 

membrane 

(PMID:26937007) 

ECM 

Collagens 

COL13A1 - - 

Structural 

support 

Basement 

membrane, post-

synaptic 

(PMID:30768864) 

Post-synaptic cell 

membrane 

- COL6A5 - 

Basement 

membrane 

(PMID:23869615) 

Extracellular 

matrix 

Laminins 

LAMA5 - - 

Web-like 

structures 

Pre-synaptic 

(PMID:28544784) 

Basement 

membrane / 

ECM 

LAMB2 - - 

Basement 

membrane 

(PMID:27614294) 

Basement 

membrane / 

ECM / Synaptic 

cleft 

- LAMB4 - 

Myenteric plexus 

basement 

membrane 

(PMID:28595269) 

Basement 

membrane / 

ECM 

- - LAMA2 
Pre-synaptic 

(PMID:9396756) 

Basement 

membrane / 

ECM 

- - USH2A 

Neuronal 

projection of 

stereocilia 

(PMID:19023448) 

Stereocilia 

membrane / 

Secreted 

(Extracellular 

region) 
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Fibulins - HMCN1 - Scaffolding 

Glomerular 

Extracellular matrix 

(PMID:29488390) 

Basement 

membrane / 

ECM 

Tenascins - - 

TNC 

Anti-adhesion 

Basement 

membrane 

(PMID:29466693) 

ECM / 

Perisynaptic ECM 

(Ensembl) 

TNXB 

Basement 

membrane 

(PMID:23768946) 

ECM 

Enzymes - 

- LOXL3 
Collagen 

assembly 

Basement 

membrane 

(PMID:26954549) 

Secreted 

(extracellular 

region) 

ADAMTS9 - 

Proteoglycan 

cleavage 

Secreted to ECM 

(PMID:30626608) 
ECM 

ADAM28  
ECM 

(PMID:24613731) 

Cell membrane / 

Secreted 

(extracellular 

region) 

Neuropeptides - - CHGB 

Regulatory 

peptides 

precursor 

Pre- and 

postsynaptic 

(PMID:7526287) 

Secreted 

(extracellular 

region) 

Others - ITIH5 - 
Hyaluronic acid 

binding 

ECM 

(PMID:27143355) 

Secreted 

(extracellular 

region) 

Cell surface Receptors 

- 

MSR1 

- 

Proteoglycan 

and collagen 

binding 

Macrophage 

surface Scavenger 

Receptor 

(PMID:12488451) 

Plasma 

membrane 

MCAM 
Plasma membrane 

(PMID:28923978) 

Plasma 

membrane 

LRP4 - - Laminin binding 
Post-synaptic 

(PMID:25319686) 

Post-synaptic cell 

membrane 

Cytoplasm Cytoskeleton PLEC - - 
Structural 

support 

Post-synaptic 

(PMID:20624679) 

Post-synaptic 

cytoskeleton 

 

Table 2. Localization and functions of proteins encoded by the genes found in the largest 

modules of the multilayer communities of severe and not-severe groups. In green, compound 

heterozygous variants; in yellow, CNVs; in purple, known CMS causal genes. Synaptic localization 

was retrieved from manual curation and Uniprot database (Methods). 
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Two of the severe patients (Patients 12 and 19) present severe-only specific 

compound heterozygous variants that are not predicted to be deleterious. However, 

one variant in the CHGB gene (rs742710, AF=1.07E-01), present in patient 12, has 

been previously reported to be potentially causative for amyotrophic lateral sclerosis 

early onset (Gros-Louis et al., 2009; Pampalakis et al., 2019). This gene has also 

been strongly suggested in literature as a possible marker for onset prediction in 

multiple sclerosis (Mo et al., 2013), and other related neural diseases like Parkinson’s 

(Nilsson et al., 2009) and Alzheimer’s disease (Chen et al., 2019). 

As for patient 19, the variant rs146309392 (AF=8.40E-04) in the gene HSPG2 has 

been previously referred to be causal of Dyssegmental dysplasia as a compound 

heterozygous mutation (Arikawa-Hirasawa et al., 2001). This variant, as pointed out 

before, is shared with sibling patient 20.  

One severe individual (Patient 3), a 37 years old female, does not carry compound 

heterozygous variants included in this module but others at a lower resolution 

parameter value (Suppl. Figure 9; Suppl. Table 6). Interestingly, most of the genes 

carrying severe-specific deleterious compound heterozygous variants in this patient 

(CDH3, FAAP100, FCGBP, GFY, RPTN) are not related to processes at the NMJ 

level (Hull et al., 2016; Johansson et al., 2009; Kaneko-Goto et al., 2013; 

Ramanagoudr-Bhojappa et al., 2018; Swuec et al., 2017). Nevertheless, three of 

these variants occur in genes potentially involved in NMJ functionality. In particular, 

variants rs111709242 (AF=2.64E-03) and rs77975665 (AF=3.03E-02) affect gene 

PPFIBP2, which encodes a member of the liprin family (liprin-β) that has been 

described to control synapse formation and postsynaptic element development 

(Astigarraga et al., 2010; Bernadzki et al., 2017).   

Furthermore, the variant rs111709242 is predicted to be deleterious by the SIFT 

algorithm (see Suppl. Table 6). Interestingly, PPFIBP2 appears in modules at lower 

resolution parameter values associated with known CMS causal genes (e.g., DOK7, 

RPSN, RPH3A, VAMP1, UNC13B) (Supplementary Figure 9). In addition, variant 
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rs151154986 (AF=2.18E-02) affects the acyl-CoA thioesterase ACOT2, which 

generate CoA and free fatty acids from acyl-CoA esters in peroxisomes (Grevengoed, 

et al., 2014). While ACOT2 is lost early during the module detection process, 

community detection at the individual layer level (i.e., Louvain community detection 

for each network) revealed relationships with causal CMS genes throughout all layers 

of the multilayer network system (Supplementary Figure 3). Namely, ACOT2 shares 

community membership with ALG14, DPAGT1, GFPT1, GMPPB and SLC25A1A at 

the protein-protein interaction network; with CHAT and SLC5A7 at the pathways level, 

and with GMPBB, SLC25A1 and CHAT at the metabolomic layer. 

A role for CoA levels in skeletal muscle for this enzyme class has been previously 

described (Li et al. 2015). Moreover, this patient presents high relatedness with three 

not-severe patients (Patients 8, 9, and 10) who in turn display a very high relatedness 

among them (Suppl. Table 4). 

2.8. Potential pharmacological implications 

Finding a genetic diagnosis might help select the appropriate medication for each 

patient. For instance, fluoxetine and quinine are used for treating the slow-channel 

syndrome, an autosomal dominant type of CMS caused by mutations affecting the 

ligand binding or pore domains of AChR, but this treatment should be avoided in 

patients with fast-channel CMS (Engel et al. 2015). Within our cohort, 13 (7 mild, 2 

moderate and 4 severe) out of 20 individuals from our CMS cohort are receiving a 

pharmacological treatment consisting of pyridostigmine, an acetylcholinesterase 

inhibitor used to treat muscle weakness in myasthenia gravis and CMS (Lee, Beeson, 

and Palace 2018). This treatment slows down acetylcholine hydrolysis, elevating 

acetylcholine levels at the NMJ, which eventually extends the synaptic process 

duration when the AChR subunits are mutated. Although the severity could potentially 

be related to how well a patient responds to the standard treatment with the AChE 

inhibitors, we could not find a clear correlation between severity and pyridostigmine 

treatment (two-tailed Fisher’s exact test p-value 0.356; Suppl. Figure 1). 
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In addition to the causal mutation in CHRNE, our results indicate that severity is 

related to AChR clustering at the Agrin-Plectin-LRP4-Laminins axis level, suggesting 

the potential benefit of pharmaceutical intervention enhancing the downstream 

process of AChR clustering. For example, beta-2 adrenergic receptor agonists like 

ephedrine and salbutamol have been documented as capable of enhancing AChR 

clustering (Clausen et al., 2018) and proved to be successful in the treatment for 

severe AChR deficiency syndromes (Cruz et al., 2015; Garg and Goyal, 2022). 

Furthermore, the addition of salbutamol in pyridostigmine treatments has been 

described as being able to ameliorate the possible secondary effects of 

pyridostigmine in the postsynaptic structure (Vanhaesebrouck et al., 2019). 

2.9. Experimental validations of USH2A involvement at the 

NMJ 

To determine the potential relevance of one of our identified potential modifiers with 

no previously published relationship to the NMJ, we analyzed its function using 

zebrafish. For this we chose USH2A, a gene associated with Usher syndrome and 

Retinitis pigmentosa in humans (OMIM ID 608400, https://omim.org/), which was 

identified as a copy number loss in patient 2. While we expect the phenotypic outcome 

(more severe disease) of this genetic difference to manifest when expressed in 

conjunction with the CHRNE mutation causing this patients’ CMS, we hypothesized 

that knockdown of USH2A expression alone may cause detectable NMJ impairments.  

Therefore, we used a MO to knockdown the expression of the zebrafish orthologue; 

ush2a, and studied the effects on survival, development and NMJ function. Zebrafish 

ush2a is expressed from 1 to 5 dpf, as shown in Suppl. Figure 10A. Using a MO 

targeting the exon 3/intron 3 splice donor site we were able to decrease expression 

of ush2a with a 6 ng to 18 ng MO injection (Suppl. Figure 10B).  

Survival of control and ush2a-MO zebrafish was not significantly affected as 

compared to wildtype (WT) fish over 5 dpf (log-rank test, WT n = 574, control MO 4 

ng n = 46, 6 ng n = 75, 18 ng n = 34, ush2a-MO 2 ng n = 72, 4 ng n = 68, 6 ng n = 
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360, 12 ng n = 288, 18 ng n = 139, Suppl. Figure 10C). There were no obvious gross 

morphological differences between control MO and ush2a-MO fish up to 5 dpf 

(representative images of 2 dpf fish shown in Suppl. Figure 10D).  

 

 

Figure 5. Early movement behaviors in ush2a-MO zebrafish. (A) Chorion rotations per minute 

(burst count), and (B) mean chorion rotation duration in seconds for control and ush2a-MO-injected 

zebrafish at 1 days post fertilization (dpf). (C) Average velocity and (D) initial acceleration of control 

and ush2a-MO zebrafish at 2 dpf in response to touch. Dashed line shows the median, dotted lines 

show the quartiles, **p < 0.01, ****p < 0.0001, ns = not significant, Mann Whitney test (A and B), 

unpaired t-test (C and D). 
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As length is an indicator of developmental stage, we measured the length of 18 ng 

injected ush2a-MO fish at 2 dpf and found a significant reduction in length as 

compared to controls (p = 0.013, t = 2.59, df = 38, unpaired t-test, control MO n = 20, 

ush2a-MO n = 20, Suppl. Figure 10E).  

Eye area can be reduced in zebrafish models of retinitis pigmentosa, the condition 

that USH2A mutations are associated with in humans. We measured eye area in 2 

dpf fish and found it to be significantly reduced in 18 ng-injected ush2a-MO fish as 

compared to controls (p = 0.0006, t = 3.73 df = 38, unpaired t-test, control MO n = 20, 

ush2a-MO n = 20, Supplementary Figure 10F). Eye area remains significantly 

different after normalizing for body length (data not shown).  

CMS manifests as fatigable muscle weakness in patients and in developing zebrafish 

we can study the ability of fish to perform repetitive, well-characterized movements 

during development to determine whether impairments to the functioning of the 

neuromuscular system may be present. We quantified the number and duration of 

chorion movements in 1 dpf fish following administration of a control or 18 ng ush2a-

MO. This revealed a significant decrease in the number of burst events performed per 

minute in knockdown fish as compared to controls (p = 0.003, Mann Whitney test, 

control MO n = 84, ush2a-MO n = 74, Figure 5A).  

The average duration of each burst event was not significantly affected by loss of 

ush2a (p = 0.467, Mann Whitney test, control MO n = 72, ush2a-MO n = 49, Figure 

5B). To ascertain whether impairments to movement are present in the knockdown 

fish while swimming free of the chorion, we also performed a touch response assay 

at 2 dpf. We observed a significant decrease in average velocity of the fish injected 

with ush2a-MO as compared to control MO in response to a touch stimulus (p < 

0.0001, t = 4.42, df = 48, unpaired t-test; n = 25, Figure 5C). There was no significant 

difference in acceleration of ush2a-MO fish as compared to controls (p = 0.263, t = 

1.13 df = 47, unpaired t-test; control MO n = 24, ush2a-MO n = 25, Figure 5D).  
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To determine whether changes in movement are reflected at the level of gross NMJ 

structure, analysis of NMJ morphology was performed on 2 dpf zebrafish (Figure 6A). 

A significant decrease in the number of SV2-positive clusters per 100 µm2 

(representative of the presynaptic motor neurons) was identified on the fast muscle 

fibers of ush2a-MO fish as compared to controls (p = 0.0004, Mann Whitney test, 

control MO n = 11, ush2a-MO n = 15, Figure 6B). SV2-positive clusters overlie 

postsynaptic AChRs to form NMJs and these receptors can be detected with 

fluorophore-labelled α-bungarotoxin. Analysis of AChR clusters revealed no 

significant differences in number per 100 µm2 between the two conditions (p = 0.217, 

Mann Whitney test, control MO n = 11, ush2a-MO n = 15, Figure 6C). Colocalization 

analysis revealed no significant differences in co-occurrence of SV2 and AChR on 

fast muscle fibers (SV2 colocalization with AChRs: p = 0.371, t = 0.911, df = 24, 

nested t-test, Figure 6D and AChR colocalization with SV2: p = 0.372, t = 0.909, df = 

24, control MO n = 11, ush2a-MO n = 15, nested t-test, Figure 6E).  

There was also no significant difference in colocalization of SV2 with AChRs on slow 

muscle, however, a significant reduction in co-occurrence of AChRs with SV2 is 

present on ush2a-MO slow muscle (SV2 colocalization with AChRs: p = 0.516, t = 

0.660, df = 24, nested t-test, Figure 6F and AChR colocalization with SV2: p = 0.002, 

t = 3.41, df = 24, control MO n = 11, ush2a-MO n = 15, nested t-test, Figure 6G). 

Movement differences in zebrafish may also be caused by changes in muscle growth 

and development. Therefore, we assessed 2 dpf fish for gross phenotypic differences 

in muscle fiber orientation and structure using a phalloidin stain to detect actin in 

muscles (Suppl. Figure 11A). We identified no significant differences in muscle fiber 

dispersion (organization) or myotome size between ush2a-MO and control-MO 

zebrafish (p = 0.922, t = 0.099, df = 24 unpaired t-test and p = 985, t = 0.019, df = 24 

nested t-test, respectively. Control MO n = 11 and ush2a-MO n = 15, Suppl. Figure 

11B, C). 
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Figure 6. Neuromuscular junction morphology in ush2a-MO zebrafish. (A) Representative images of 

neuromuscular junctions from control and ush2a-MO zebrafish at 2 days post fertilization (dpf). 

Acetylcholine receptors (AChRs) are stained with fluorophore bound α-bungarotoxin (aBt, cyan), and 

motor neurons detected with an antibody against synaptic vesicle protein 2 (SV2, magenta). Scale bar 

= 50 µm. (B) Number of SV2-positive clusters and (C) number of aBt-positive clusters per 100 µm2. 

(D) Colocalization of SV2 with aBt and (E) colocalization of αBT with SV2 on fast muscle cells, using 

Mander’s correlation coefficient (0 = no colocalization, 1 = full colocalization). (F) Colocalization of SV2 

with aBt and (G) colocalization of aBt with SV2 on slow muscle cells at the myosepta, using Mander’s 

correlation coefficient. Dashed line shows the median, dotted lines show the quartiles, **p < 0.05, ***p 

< 0.001, ns = not significant, nested t-test.
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3. Discussion 

In this work, we have developed a framework for the analysis of disease severity in 

scenarios heavily impacted by sample size. Presenting limited numbers of cases is 

one of the main obstacles for the application of precision medicine methods in rare 

disease research, as it critically affects the level of expected statistical power, a 

common hallmark in the analysis of minority conditions (Whicher et al., 2018). This 

fact makes it difficult to explore the molecular relationships that define the inherently 

heterogeneous levels of disease severity observed in rare disease populations, 

making it an atypically addressed biomedical problem (Boycott et al., 2013). Our 

approach, based on the application of multilayer networks, enable the user to account 

for the many interdependencies that are not properly captured by a single source of 

information, effectively combining the available patient genomic information with 

general biomedical knowledge from relevant databases representing different 

aspects of molecular biology. The application to a relevant clinical case, where we 

tested the hypothesis that the severity of CMS is determined by patient-specific 

alterations that impact NMJ functionality, provided evidence on how the methodology 

is able to recover the molecular relationships between the candidate patient-specific 

genomic variants, the observed causal AChR mutation and previously described CMS 

causal genes (Table 1).  

Our in-depth functional analysis focused on a cohort of 20 CMS patients, from a 

narrow, geographically isolated and ethnically homogenous population, who share 

the same causative mutation in the AChR ε subunit (CHRNE) but present with 

different levels of severity.  

The isolation and endogamy that characterize the population from which these 

patients come from might have favored the accumulation of damaging variants 

(Fareed and Afzal, 2017; Petukhova et al., 2009), giving rise to the emergence of 

compound effects on relevant genes for CMS. This observation has previously been 

made in similar syndromes (Müller et al., 2004; Ohno et al., 2003) and in a number of 
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other neuromuscular diseases (Wang et al., 2018; Zhong et al., 2017). Compound 

heterozygosity is known to happen in CMS (Hantaï et al., 2013) (Thompson et al., 

2019). The initial analysis of compound heterozygous variants revealed a significant 

enrichment of functional categories that are specific to the severe cases, namely ECM 

functions. This suggests the existence of functional relationships between major 

actors of the NMJ that are affected by severity-associated damaging mutations. Such 

interactors include already known CMS causal genes (e.g., AGRN, LRP4, PLEC) as 

well as genes known to interact with them. While severity-specific compound 

heterozygous variants and CNVs are observed, demographic factors (e.g., sex, age), 

pharmacological treatment, and personalized omics data (e.g., variant calling, 

differential gene expression, allele specific expression, splicing isoforms) do not 

segregate with patient severity.  

Therefore, this motivated the developing of our multilayer network community 

analysis to investigate the relationship between known CMS causal genes and 

severity-associated variants (compound heterozygous variants and CNVs), 

integrating pathways, metabolic reactions, and protein-protein interactions. Recently, 

we used a multilayer network as a means to perform dimensionality reduction tasks 

for patient stratification in medulloblastoma, a childhood brain tumor (Núñez-

Carpintero et al. 2021) (See Chapter 4).  

Here, we started by analyzing DisGeNET data in order to verify that disease-

associated genes tend to belong to the same multilayer communities. We then 

identified stable and significantly large gene modules within our CMS cohort’s 

multilayer communities and mapped the corresponding damaging mutations back to 

the single patients, providing a personalized mechanistic explanation of severity 

differences. Given the difficulties of cohort recruitment for rare diseases, this 

approach could be used to investigate forms of CMS and other phenotypically variable 

rare diseases caused by a common mutation. 
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Overall, our approach revealed major relationships at the protein-protein and pathway 

layers, with the personalized analysis of these mutations suggesting that CMS 

severity can be ascribed to the damage of specific molecular functions of the NMJ 

which, despite affecting individuals in a personalized manner, involve genes 

belonging to distinct classes and localizations, namely ECM components 

(proteoglycans, tenascins, chromogranins) and postsynaptic modulators of AChR 

clustering (LRP4, PLEC) (Table 2). Alterations of other genes related to the 

production of ECM components, such as laminins and collagen, are observed but are 

not specific to the severity levels.  

Although at first the usage of metabolomic knowledge as an additional level of the 

multilayer network system did not seem to provide highly relevant information for the 

cohort, it provided major information for the personalized analysis of patient 3, whose 

mutations presented functional relationships with other CMS causal genes outside of 

the presented severe-specific module (Supplementary Figure 3). Finding a 

personalized genetic diagnosis for phenotypic severity might help select the 

appropriate medication for each patient. For instance, fluoxetine and quinidine are 

used for treating the slow-channel syndrome, an autosomal dominant type of CMS 

caused by mutations affecting the ligand binding or pore domains of AChR, but this 

treatment should be avoided in patients with fast-channel CMS (Engel et al., 2015). 

Within our cohort, 13 out of 20 individuals from our CMS cohort are receiving a 

pharmacological treatment consisting of pyridostigmine, an acetylcholinesterase 

inhibitor used to treat muscle weakness in myasthenia gravis and CMS (Lee et al., 

2018). Although the severity could potentially be related to how well a patient 

responds to the standard treatment with the AchE inhibitors, we could not find a clear 

correlation between severity and pyridostigmine treatment (two-tailed Fisher’s exact 

test p-value 0.356; Suppl. Figure 1).  

Our results indicate that severity is related to AChR clustering at the Agrin-Plectin-

LRP4-Laminins axis level, suggesting the potential benefit of pharmaceutical 

intervention enhancing the downstream process of AChR clustering. Strikingly, beta-
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2 adrenergic receptor agonists like ephedrine and salbutamol have been documented 

as capable of enhancing AChR clustering (Clausen et al., 2018) and proved to be 

successful in the treatment for severe AChR deficiency syndromes (Rodríguez Cruz 

et al., 2015; Garg and Goyal, 2022; Sadeh et al., 2011; Vanhaesebrouck et al., 2019) 

, but a strong molecular explanation for the observed favorable effects was still 

missing. This study reinforces explainability for the described successful usage of 

such treatments by relating CMS phenotypic severity with the normal development of 

AChR clusters at the motor neuron membrane. Several of the genes identified in this 

analysis do not have previous associations with the NMJ, such as the Usher 

syndrome and Retinitis pigmentosa associated gene; USH2A, identified as a copy 

number loss in patient 2. To provide proof of principal for this gene acting as a 

potential modifier of CMS severity, we investigated whether knockdown of ush2a, the 

zebrafish orthologue, could result in NMJ defects. Both CRISPR and TALEN-

mediated knockout of ush2a in zebrafish have previously revealed phenotypes 

consistent with Usher syndrome and Retinitis pigmentosa such as hearing loss and 

progressive visual impairments (Han et al. 2018). 

However, neither study assessed impacts on muscle structure or movement of the 

fish. Zebrafish perform well-characterized movements throughout development, 

starting with spontaneous chorion rotations from approximately 17 hours post 

fertilization (hpf, the time at which primary motor axons start extending into the 

muscle) to 30 hp (Saint-Amant & Drapeau, 1998). We treated 1-cell-stage embryos 

with a high dose of MO to reduce expression of ush2a (or equivalent dose of a control 

MO) and found a decrease in the number of chorion rotations performed at 24 hpf. 

These movements are mediated at the level of the spinal cord and are independent 

of supraspinal inputs (Downes & Granato. 2006), thus implying an early defect in NMJ 

or muscle development, or in signal transduction in the spinal cord/peripheral nervous 

system. By 2 dpf zebrafish can respond to touch and do so by rapidly swimming at 

least 1 body-length away from the stimulus (Saint-Amant & Drapeau. 1998).  In 

ush2a-MO fish the average swimming velocity was significantly slower than in 
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controls, whereas the initial acceleration (proportional to the force of muscle 

contraction) was unaffected (Sztal et al., 2016). This implies that the initial fast muscle 

response is not significantly affected at this time-point, but that loss of ush2a at the 

NMJs of slow muscle may be impacting swimming. Defects in movement are reported 

in many other zebrafish models of CMS, such as those lacking dok7 (Müller et al. 

2010), gfpt1 (Senderek et al., 2011) and syt2 (Wen et al., 2010). Our motility findings 

are supported by the identification of a reduction in colocalization of AChRs with SV2-

positive clusters on slow muscle fibers in 2 dpf fish, thus showing an increase in the 

number of AChRs that have not been contacted by a motor axon. We also identified 

an overall reduction in the number of SV2-positive clusters, which may be indicative 

of a defect or delay in development of the motor nervous system.  

Previous studies have commented on USH2A presence on the basement membranes 

of perineurium nerve fibers (Pearsall et al., 2002) (Schwaller et al., 2021), however, 

further functional studies will be required to determine the precise localization of the 

defect and whether loss of USH2A alone can impact NMJ signaling or whether co-

occurrence with CHRNE CMS is required. Additional functional work is also required 

to ascertain the importance of other potential modifiers identified in this study. 

Particularly, a prospective analysis on the potential NMJ involvement of the unique 

variants detected for the non-severe group could be of special interest for the study 

of CMS, potentially discerning their functional relationship to causal CMS genes.  

Our work represents a thorough study of a narrow population showing a differential 

accumulation of damaging mutations in patients with CMS who have varying 

phenotypic severities, building on the initial impact of CHRNE mutations on the NMJ. 

It is important to remark that CMS is of particular interest among rare diseases, since 

drugs that influence neuromuscular transmission can produce clear improvements in 

the affected patients (Engel 2007). In this sense, identifying meaningful molecular 

relationships between gene variants allow us to gain insight into the disease 

mechanisms through a multiplex biomedical framework, paving the way for a whole 

new set of computational approximations for rare disease research.
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Methods 

WGS and RNA-seq 

Whole genome sequencing (WGS) data have been obtained from blood using the 

Illumina TruSeq PCR-free library preparation kit. Sample sequencing was performed 

with the HiSeqX sequencing platform (HiseqX v1 or v2 SBS kit, 2x150 cycles), with 

an average mean depth coverage ≥ 30X. Samples have been analyzed using the RD-

Connect specific pipeline: BWA-mem for alignment; Picard for duplicate marking and 

GATK 3.6.0 for variant calling. RNA sequencing (RNA-seq) data have been obtained 

from fibroblasts, using Illumina TruSeq RNA Library Preparation Kit v2, sequencing 

with an average of 60M reads per sample (paired-end 2X125 cycles). Data has been 

processed with the following pipeline (Laurie et al. 2016): STAR 2.35a for alignment, 

RSEM 1.3.0 for quantification, and GATK 3.6.0 for variant calling. All analyses have 

been performed using the human genome GRCh37d5 as reference. 

Copy number variants 

Copy Number Variants (CNVs) have been extracted using ClinCNV 

(https://github.com/imgag/ClinCNV) by employing a set of Eastern European samples 

as a background control group. Out of the 569 autosomal CNVs we selected as 

potential candidates the CNVs of the following types that overlapped with protein-

coding genes: 1) whole gene gains or losses, and 2) partial losses (deletions 

overlapping with exons but not with the whole gene). The list of potential candidates 

included 55 CNVs that created a total of 82 whole gene gains or losses and 28 partial 

losses.  

Compound heterozygous variants 

Compound heterozygous variants have been obtained by phasing the WGS variant 

calls with the RNA-seq aligned BAM files using phASER (Castel et al. 2016). At first, 

variants are imputed using Sanger Imputation Service with EAGLE2 pre-phasing 
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step (Durbin 2014). PhASER is then applied to extend phased regions to gene-wide 

haplotypes. By accurately reflecting the muscle transcriptome, fibroblasts have been 

previously proved to be excellent and minimally invasive diagnostic tools for rare 

neuromuscular diseases (Gonorazky et al. 2019). We then annotated variants with 

eDiVA tool (www.ediva.crg.es) (Bosio et al. 2019), and  removed all mutations with 

Genome Aggregation Database (gnomAD) (Lek et al. 2016) that show allele 

frequency > 3% globally, all variants outside exonic and splicing regions using 

Ensembl annotation, all synonymous mutations, and all variants with read depth 

(coverage) smaller than 8. Afterwards we selected all genes with at least two hits on 

different alleles as genes affected by damaging compound heterozygous variants. 

Each sample has been processed individually throughout the whole process. 

Monolayer community detection 

We performed a network community detection analysis using the Louvain clustering 

algorithm (Blondel et al. 2008) implemented in R package igraph (https://igraph.org/) 

with default parameters. We carried out the analysis using three (monolayer) 

networks, obtained from Reactome database (Fabregat et al. 2018), from the 

Recon3D Virtual Metabolic Human database (Brunk et al. 2018) (both downloaded in 

May 2018), and from the Integrated Interaction Database (IID) (Kotlyar et al. 2016) 

(downloaded in October 2018).  

Additional information on network connectivity metrics (e.g., node centrality 

distributions and specific centrality information for severe-specific module genes) is 

conveniently provided as a jupyter notebook script, accessible from the following link: 

https://github.com/ikernunezca/CMS/blob/master/Scripts/Multilayer_Network_Inform

ation_and_Connectivity_Patterns.ipynb. All gene identifiers of each network were 

converted to NCBI Entrez gene identifiers using R packages AnnotationDbi v1.44.0 

and org.Hs.eg.db v3.7.0 (http://bioconductor.org/). After detecting the community 

structure from each layer independently, we retrieved the community membership of 

the genes of interest, henceforth called “CMS linked genes”, i.e., known CMS causal 
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genes, and severe and not-severe compound heterozygous variants and CNVs. We 

then defined a community similarity measure as Jaccard Index, i.e., the number of 

shared genes of interest between the communities divided by the sum of the total 

number of genes of each community. 

Multilayer community detection 

We constructed a multilayer gene network composed of the three monolayer networks 

described in the previous section (Reactome, Virtual Metabolic Human and Integrated 

Interaction Database). Each of these three networks represents one layer of the 

multilayer network and, in general, three facets of fundamental molecular processes 

in the cell (Suppl. Figure 11). The multilayer community detection analysis was 

performed by using MolTi software  (Didier, Brun, and Baudot 2015), which adapts 

the Louvain clustering algorithm with modularity maximization to multilayer networks. 

The algorithm is parametrized by the resolution (γ): the higher the value of γ, the 

smaller the size of the detected multilayer communities. 

By varying the resolution parameter γ it is possible to uncover the modular structure 

of network communities (Fortunato and Barthelemy 2007). By exploring a wide range 

of resolution parameter values, we identified γ=4 (727 communities, each one 

composed of 26.46 genes on average) as an extreme value before both size and 

number of the detected multilayer communities stabilize (Suppl. Figure 12). The most 

dramatic changes in number and composition of detected communities are observed 

in the resolution parameter interval γ∈(0,4].  

We, therefore, used this parameter interval to test the hypothesis that disease-related 

genes consistently appear in the same multilayer communities, as well as to identify 

modules containing CMS linked genes within them. In this analysis, we define a 

module as a group of CMS linked genes that are systematically found to be part of 

the same multilayer community while increasing the resolution parameter (see 

Supplementary Information "Multilayer community detection analysis"). 
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Additional analyses and data availability 

We retrieved known CMS causal genes from the GeneTable of Neuromuscular 

Disorders (http://www.musclegenetable.fr, version November 2018) (Bonne, Rivier, 

and Hamroun 2017). Segregation analysis of WGS data has been performed using 

Rbbt (Vázquez et al. 2010). DisGeNET database (Piñero et al. 2017) was downloaded 

in November 2018. The association between CMS severity, demographic factors and 

clinical tests was assessed with a two-tailed Fisher’s test using R statistical 

environment (www.R-project.org). Networks were rendered with Cytoscape (Saito et 

al. 2012). We used VCFtools (Danecek et al. 2011) to compute familial relatedness 

Ω among patients, scaled to -log2(2Ω). We used Enrichr (E. Y. Chen et al. 2013) for 

the functional enrichment analysis of the gene lists under study. We used Ensembl 

Variant Effect Predictor (VEP) (McLaren et al. 2016) to assess the impact of the 

compound heterozygous variants in the genes of the severe-specific largest module. 

Expression levels in tissues of interest (GTEx and Illumina Body Map) were retrieved 

from EBI Expression Atlas (www.ebi.ac.uk/) by filtering with the following keywords: 

‘nerve’, ‘muscle cell’, ‘fibroblast’ and ‘nervous system’ (0.5 TPM default cutoff). We 

used Expression Atlas expression level categories: low (0.5 to 10 TPM), medium (11 

to 1000 TPM), and high (more than 1000 TPM). Synaptic localization was retrieved 

from the UniProt database (https://www.uniprot.org/).  

Zebrafish morpholino injections 

Zebrafish have one orthologue of human USH2a: ush2a, as identified using the UCSC 

database (http://genome.ucsc.edu/, GRCz11/danRer11 assembly). We confirmed 

that ush2a is expressed throughout the first 5 days post fertilization (dpf). Gene Tools 

LLC (USA) then designed and synthesized an antisense morpholino oligonucleotide 

(MO) targeting the splice donor site of exon 3/intron 3 of ush2a (5’-3’ 

GAGAAATGCTGCTCACCTGTAGAGC, ENSDART00000086201.5). We also 

obtained a control MO that targets a human beta-globin mutation (5’-3’ 

CCTCTTACCTCAGTTACAATTTATA). MOs were diluted to 2 ng/nl in Danieau buffer 
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(58 mM NaCl, 5 mM HEPES, 0.7 mM KCl, 0.6 mM Ca(NO3)2, 0.4 mM MgSO4; pH 7.6) 

and supplemented with 1% phenol red, before being injected into the yolk-sac of 1-

cell stage embryos. A range of doses between 6 and 18 ng per 1-cell stage embryo 

were trialed for success in reducing ush2a expression and producing a measurable 

phenotypic change. A dose of 18 ng per 1-cell stage embryo was selected for 

behavioral and morphological analysis, as survival was not significantly affected for 

any dose tested. Embryos were maintained at 28.5°C in blue water (system water 

with 0.1 µg/ml Methylene Blue) for up to 5 dpf and survival recorded daily. At 2 dpf 

zebrafish were imaged using a Leica EZ4 W stereomicroscope and eye size and 

length measured using Fiji (ImageJ). 

Chorion movement analysis in zebrafish 

At 1 dpf (24 hours post fertilization), zebrafish were recorded in their chorions for 1 

minute at 30 frames per second using a Leica EZ4 W stereomicroscope. Videos were 

analyzed using DanioScope software (Noldus Information Technology Inc., Leesburg, 

VA) to automatically assess duration of bursts and burst count/minute (bursts are full 

rotations performed by the zebrafish within the chorion). 

Touch response analysis 

At 2 dpf, a touch response assay was performed as previously described (O’Connor 

et al. 2018). Only fish with a normal phenotype were used for movement analysis. 

Briefly, fish that had not hatched from the chorion were enzymatically dechorionated 

with pronase (1 mg/ml, Sigma) for 10 min in blue water, followed by 3x washes in blue 

water. An individual fish was placed in a petri dish containing blue water and a Sony 

RX0 II (DSC-RX0M2) camera was placed 20 cm above the petri dish. A ruler with 1 

mm markings was used as a scale for recordings. A gel loading pipette tip was used 

to touch the zebrafish on the back of the head and the response recorded. Videos 

were imported into Fiji ImageJ (Schindelin et al. 2012) as FFmpeg movies and 

movements analyzed using the Trackmate plugin (Tinevez et al. 2017). Values for 

average speed were exported and used to derive initial acceleration.  
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RNA isolation, cDNA synthesis and RT-PCR in zebrafish  

RNA was isolated from pools of around 20 2 dpf zebrafish (control MO and ush2a 

MO-injected) following removal of chorions with pronase (Streptomyces griseus, 

Roche,1 mg/ml in blue water). Zebrafish were washed 3 times with blue water, 

euthanized with a 1:1 ratio of fresh system water:4 mg/ml tricaine methanesulfonate 

(Sigma). Fish were homogenized in RLT buffer (RNeasy mini kit, Qiagen) using 5 mm 

stainless steel beads with a TissueLyser II (Qiagen) at 25 Hz for 2 mins. RNA was 

then isolated following the RNeasy kit manufacturer’s instructions, including on-

column DNase digestion. RNA was measured using a Nanodrop ND-1000 and 1 µg 

used for cDNA synthesis according to manufacturer’s instructions (5X All-In-One RT 

MasterMix, abm). Reverse-transcriptase PCR (RT-PCR) was performed to check for 

ush2a gene expression and knockdown success in MO-treated embryos, using 

MyTaq™ DNA Polymerase (Meridian Bioscience) and primers as follows: eef1a1l1 

forward 5’-CTGGAGGCCAGCTCAAACATGG-3’, reverse 5’-

CTTGCTGTCTCCAGCCACATTAC-3’ and ush2a forward 5’-

CTGGGCACACTTGGCTCTAC -3’, reverse 5’-TTCTTCAATCTCCCTGTTGGTT-3’. 

Immunofluorescent staining, imaging and analysis of zebrafish 

neuromuscular junctions and muscle fibers 

Whole mount staining of 2 dpf zebrafish NMJs was performed as previously described 

(O’Connor et al. 2019).  Briefly, a mouse anti-synaptic vesicle protein 2 (SV2) antibody 

was used to visualize motor neurons (1:200, AB2315387, Developmental Studies 

Hybridoma Bank) and Alexa Fluor 488-α-bungarotoxin conjugate (1:1000, B13422, 

Invitrogen) was used for visualizing acetylcholine receptors (AChRs). Phalloidin-

iFluor 594 was used to visualize filamentous actin within muscle fibers (1:1000, 

ab176757). Z-stack images encompassing the depth of the midsection of the 

zebrafish tail were obtained using a 20× air objective on an LSM800 confocal 

microscope. Analysis of NMJ structure was performed as previously described 

(O’Connor et al. 2019), using Fiji (ImageJ, Madison, WI, USA). The number of SV2-
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positive and α-bungarotoxin-positive clusters per 100 µm2 were measured. Co-

localization analysis between SV2 and α-bungarotoxin was performed on maximum 

intensity projections using the ‘JACoP’ Fiji plugin (Bolte & Cordelières, 2006). Briefly, 

each fluorophore was subject to manual thresholding to remove background, and the 

Mander’s correlation coefficient calculated to give a value between 0 and 1, reflecting 

the degree of co-occurrence of signals between both SV2 and α-bungarotoxin, and 

α-bungarotoxin with SV2. For phalloidin-stained fish, average myotome size was 

measured, and degree of fiber dispersion quantified using the directionality plugin. 

Data was collected from at least 4 myotomes per fish. 

Statistics for zebrafish experiments 

Statistical analysis was performed using GraphPad Prism software (v9.3.0). Outliers 

were removed from data using the ROUT method (Q = 1 %). Cleaned data was tested 

for normal distribution then depending on outcome either a nonparametric Mann-

Whitney test or parametric unpaired t-test were applied for behavioral studies and 

degree of dispersion. For NMJ morphology experiments in which 4+ myotomes 

(technical replicates) per fish (biological replicates) were analyzed, data was 

assessed for significance using a nested t-test to avoid pseudo-replication. Statistical 

significance was taken as p < 0.05, degrees of freedom (df) and t-value are given for 

all parametric tests, and n numbers listed in the results section. Survival analysis was 

performed using the log-rank test comparing WT to each other condition, and 

threshold for significance was corrected for multiple comparisons using the Bonferroni 

method (p < 0.006). Zebrafish studies were blinded before image/video acquisition 

and unblinded following analysis.  

Data availability 

The datasets generated and analyzed in this study are not publicly available due to 

sensible content (genomics information in a rare disease). Reasonable requests for 

further information will be carefully evaluated by the corresponding author and co-

authors. 
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Code availability 

All code and the Cytoscape session rendering Figures 3 and 4, as well as 

Supplementary Figures 3, 6 and 9 are available for reproducibility purposes at: 

https://github.com/ikernunezca/CMS. The analysis of multilayer community 

communities can also be performed using CmmD (Núñez-Carpintero et al., 2021) 

(https://github.com/ikernunezca/CmmD) with parameters: resolution_start: 0, 

resolution_end: 4, interval: 0.5 and the CMS linked genes as nodelist.
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Chapter results summary 

The main concepts introduced in the research article presented in this chapter are the 

following: 

1. The study of phenotypic severity in rare diseases, despite being a huge clinically 

relevant problem, is still a typically neglected scenario provided the challenging 

setting that minor conditions represent. 

2. Multilayer networks provide an integrative framework for the exploration of relevant 

biomedical data resources, that is independent of cohort size limitations. 

3. Detection of multilayer communities at multiple levels of modularity resolution 

allows for an evaluation of the robustness of the functional relationships of genes 

affected by patient-specific damaging mutations. 

4. The detected gene modules, provide a thorough understanding of the specific 

damaged NMJ processes in the patients presenting severe phenotypic affectations, 

as well as their functional connection to already known causative processes of 

Congenital Myasthenic Syndromes.  

5.  Identified severe-specific compound heterozygous variants affect key mediators 

for the presentation of AChR at the post-synaptic level, a crucial process for normal 

muscle contraction, in a patient-wise manner. This article additionally provides 

explainability on the potential of AChR clustering as a therapeutic target. 

6. One of the studied patients additionally presents a partial heterozygous copy 

number loss affecting the gene USH2A, previously unknown to play functional roles 

at the NMJ level. We provide extensive experimental demonstration of its importance 

by studying a zebrafish morpholino model affecting the orthologous gene: ush2a. 

7. Overall, this chapter presents an important example of the potential of multilayer 

network analysis for the detection of severity related genes, efficiently overcoming 

inherent limitations of rare clinical settings.
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Suppl. Figure 1. Association between CMS severity (severe and not-severe phenotypes) and 

demographic factors (age, sex), pharmacological treatment (pyridostigmine), and clinical tests 

(speech, respiratory, swallowing functionality, ability to list shoulder, head, leg, eyelids (ptosis), and to 

rise from the floor, and Forced Vital Capacity (FVC)) (Suppl. Table 1). Classes were defined based 

on Suppl. Table 1. Age was discretized into two classes (‘young’ and ‘old’) based on the average age 

of all the patients (40 years). Bar plot reports the p-values of a two-tailed Fisher’s exact test (Methods). 

The dotted line indicates a p-value of 0.05. 

 

Suppl. Figure 2. Venn diagram of the genes associated with CNVs and compound heterozygous 

variants in not-severe and severe phenotypes as well as known CMS causal genes
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Suppl. Figure 3. Communities of CMS linked genes in the monolayer networks. Nodes are connected 

if they share membership to the same community from the clustering obtained using the Louvain 

algorithm. In green compound heterozygous variants; in yellow, CNVs; in purple, known CMS causal 

genes. Being a causal gene bearing compound heterozygous variants, AGRN is depicted in both 

purple and green. Being a gene presenting both compound heterozygous mutations and copy number 

variations, ACOT2 is depicted in both green and yellow. 
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Suppl. Figure 4. (A) Edge overlap among the layers of the multilayer network. Each layer is identified 

by the name of the database from which the information was retrieved. (B) Node overlap among the 

layers of the multilayer network. (C) Heatmap of the Jaccard index dissimilarity among communities of 

CMS linked genes in the monolayer networks. Left, not-severe group, right, severe group.  
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Suppl. Figure 5.  Distribution of the number of genes per disease in the DisGeNET database, not 

showing (A) and showing (B) outliers (Methods). Distribution of p-values (two-sided Wilcoxon test; 

logarithmic scale) associated with DisGeNET multilayer communities along the range of the MolTi 

resolution parameter under evaluation (C; Methods). 

 

Suppl. Figure 6. Multilayer modules containing CMS linked genes of the severe and not-severe 

groups. Nodes are connected if the genes share membership to the same multilayer community across 

the range of MolTi resolution parameter (Methods). Modules with a size not expected to be found by 

chance are highlighted with a dotted circle (p-value < 0.05). In turquoise, compound heterozygous 

variants; in yellow, CNVs; in pink, known CMS causal genes. 
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Suppl. Figure 7. Nature of the existing incident interactions between the genes identified in the severe-

specific module. In green compound heterozygous variants; in yellow, CNVs; in purple, known CMS 

causal genes. As LOXL3 does not present incident interactions in any of the two layers, but with other 

module genes that are not represented for not being a CMS linked gene, LOXL3 is not depicted. 

Provided that USH2A does not exist on the pathways layer, it is only depicted on the protein-protein 

interaction layer. 
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Suppl. Figure 8. Tissue-specific expression levels (Transcripts Per Million, TPM) of the genes 

contained in the largest module within the multilayer communities of the severe group (Methods). 

Expression levels are reported for GTEx (left panels) and Illumina Body Map (right panels) using EBI 

Expression Atlas default cutoff (0.5 TPM). Missing bars indicate no data availability (e.g., COL13A1, 

LOXL3). As its expression is below the cutoff for the tissues of interest  in both GTEx and Illumina Body 

Map (Methods), USH2A is not reported. Expression level categories based on Expression Atlas: low 

(0.5 to 10 TPM), medium (11 to 1000 TPM), and high (more than 1000 TPM). 
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Suppl. Figure 9. Presence of PPFIBP2 and ACOT2 in the multilayer communities across the range of 

resolution parameter values (Methods). Genes of the severe-specific module are highlighted in red. 

PPFIBP2 (present from n=1 to n=5) and ACOT2 (present from n=1 to n=2) are depicted in blue. 
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Suppl. Figure 10. Survival and phenotype of Ush2a-MO zebrafish. (A) Reverse-transcriptase (RT)-

PCR of wildtype (WT) zebrafish at 1-5 days post fertilization (dpf) showing expression of ush2a 

throughout early development. (B) RT-PCR of control ush2a-MO fish at 2 dpf showing consistent 

expression of eef1a1l1 and a loss of expression of ush2a in ush2a-MO fish when injected with 6, 12 

and 18 ng of MO. NTC = no template control. (C) Survival of WT, control MO and ush2a-MO injected 

zebrafish over 5 dpf. (D) Example light microscope images of control MO and 18 ng ush2a-MO-injected 

zebrafish at 2 dpf. Scale bar = 2mm. (E) Length of 2 dpf control and ush2a-MO zebrafish from the tip 

of the head to the tail. (F) Eye area of control and ush2a-MO zebrafish at 2 dpf. Dashed line shows the 

median, dotted lines show the quartiles, *p < 0.05, ***p < 0.001, unpaired t-test. 
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Suppl. Figure 10. Muscle morphology in ush2a-MO zebrafish. (A) Representative images of 

phalloidin-stained muscle fibers (detects filamentous-actin) in control and ush2a MO 2 dpf fish. 

Regularly arranged muscle fibers can be observed, with no obvious indications of disorganization, 

missing fibers, or fiber size changes. Scale bar = 50 µm. (B) Dispersion, as a measure of muscle fiber 

orientation and arrangement, showed no significant differences between the two groups. (C) Myotome 

size was also similar in control and ush2a-MO injected zebrafish. Dashed line shows the median, 

dotted lines show the quartiles, ns = not significant, nested t-test/unpaired t-test. 
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Suppl. Figure 11. Distinct layers of biological information covered in the analysis. In this example, 

enzyme A physically interacts (interactome) with enzyme B for the production of a metabolite that is 

further processed (metabolome). Moreover, all these molecules are part of the same pathway 

(reactome).  

 

Suppl. Figure 12. Variation of number (blue line) and size (red line) of detected multilayer communities 

as a function of the MolTi resolution parameter γ. Curves are fitted with LOESS (locally estimated 

scatterplot smoothing) regression with span 0.6. Sampled points along the explored interval are shown 

for ease of visualization.
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Supplementary Table availability and legends 

Supplementary tables are available at the following link: 

https://doi.org/10.1101/2023.01.19.524736 

Supplementary Table legends: 

Suppl. Table 1. Clinical characterization of 20 CMS patients with distinct severity levels, namely severe 

and not-severe (mild and moderate). The annotation of clinical test responses with Human Phenotype 

Ontology (HPO) (https://hpo.jax.org/) terms has been manually curated. FCV: Forced Vital Capacity, 

i.e., volume of air that can forcibly be blown out after full inspiration. Y: yes. N: no. NI: no information. 

Suppl. Table 2. Partially segregating mutations. In the table, mutations segregating at least 50% of 

one group (i.e., 5 out of 8 severe and 6 out of 10 mild patients) are reported (the mutation categories 

are described in Supplementary Information). 

Suppl. Table 3. Genes associated with CNVs and compound heterozygous variants in not-severe and 

severe phenotypes. Severe-specific genes and known CMS causal genes are reported. 

Suppl. Table 4. Estimated familiar relatedness between the analyzed patients. Only patients 

presenting positive relatedness (Methods) are shown. 

Suppl. Table 5. Functional effect prediction of Ensembl VEP (Methods) for the compound 

heterozygous variants found in the largest module within the multilayer communities of the severe 

group. Deleterious variants are highlighted in bold. 

Suppl. Table 6. Functional effect prediction of Ensembl VEP (Methods) for the compound 

heterozygous variants found in patient 3. Deleterious variants are highlighted in bold. 
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Supplementary Information 

Functions of CMS-associated genes in the neuromuscular junction 

Acetylcholine biosynthesis and release 

Acetylcholine, the main neurotransmitter involved in skeletal muscle contraction, is 

synthesized in the presynaptic neuron, by the choline acetyltransferase (enzyme 

encoded by CHAT gene), using Acetyl-CoA and choline as substrate in the reaction 

(Nachmansohn and Machado 1943). Compound heterozygous mutations in this gene 

were identified by Ohno et al. (K. Ohno et al. 2001) causing CMS in 5 patients.  

Solute carriers are critical for this process. Three genes encoding this class of 

transporters have been previously related to CMS and neuromuscular transmission 

defects, namely SLC5A7 (Bauché et al. 2016), SLC25A (Chaouch et al. 2014), and 

SLC18A3 (O’Grady et al. 2016). SLC5A7 encodes the membrane choline transporter 

(Okuda and Haga 2000; Apparsundaram, Ferguson, and Blakely 2001). Acetyl-CoA 

presence is in part dependent on malate exported from mitochondria, by the action of 

SLC25A1 transporter (Kaplan, Mayor, and Wood 1993). Finally, after CHAT 

generates the acetylcholine, this is carried into synaptic vesicles by SLC18A3 gene 

product, the VAChT transporter (Eiden et al. 2004). 

Another CMS causal gene that might have a detrimental effect at presynaptic level is 

PREPL. This gene encodes a serine oligopeptidase essential for the activation of 

clathrin associated adaptor protein 1 (AP1), which is needed by VAChTr to fill the 

synaptic vesicles with acetylcholine (Radhakrishnan et al. 2013). Régal et al. (2014) 

described a CMS case caused by a heterozygous deletion. Rabphilin 3a (RPH3A) is 

also involved in vesicle trafficking in the presynaptic element (Guillén et al. 2013; 

Shirataki et al. 1993) and has recently been described as causative of a specific form 

of CMS (Ricardo A. Maselli et al. 2018). 

Other genes described as causal of CMS related to the vesicle generation and 

exocytosis are SNAP25 (Shen et al. 2014), VAMP1 (Salpietro et al. 2017; Shen et



Chapter 3: Supplementary Information 

138 
 

al. 2017), SYT2 (Herrmann et al. 2014; Whittaker et al. 2015) and UNC13B (Andrew 

G. Engel et al. 2016). SNAP25 encodes synaptosomal-associated protein 25 

(Sørensen et al. 2003), which is a part of the SNARE complex, where also 

synaptobrevin 1 (VAMP1) is allocated (Liu, Sugiura, and Lin 2011). This SNARE 

complex is key for the Ca²⁺-induced exocytosis of synaptic vesicles, a process in 

which Synaptotagmin 2 (SYT2), the Ca2+ sensor, is also critical (Pang et al. 2006). 

UNC13B encodes a homolog protein to rat Munc13-1. This protein has a calmodulin 

site and also regulates synaptic vesicles by mediating in the SNARE complex 

conformation (Ma et al. 2011, 13). 

Acetylcholine Receptor clustering 

While acetylcholine is the main neurotransmitter in the neuromuscular junction 

contraction process, another important molecule, the proteoglycan agrin (AGRN), is 

released by exocytosis from the motor neuron into the synaptic cleft, where it binds 

the LRP4 receptor. A special type of myosin, MYO9, is known to affect agrin 

exocytosis upon depletion, causing a characteristic type of CMS (O’Connor et al. 

2016; 2018). Agrin binding to LRP4 leads to MuSK self-phosphorylation. Activated 

MuSK recruits Dok-7, which in the end stimulates Rapsyn for AChRs (acetylcholine 

receptors) clustering at the skeletal muscle fiber membrane (Burden, Yumoto, and 

Zhang 2013). MuSK, Dok-7 and Rapsyn (RAPSN) absence have been previously 

reported to result in AChR deficiency, poor neuromuscular junction development and 

causal of some CMS cases (Chevessier et al. 2004; Azulay et al. 1994; Kinji Ohno et 

al. 2002; Kumar et al. 2018). Interestingly, promoting MuSK activity has been 

described as capable of preserving neuromuscular synapses in Amyotrophic Lateral 

Sclerosis mice models (Cantor et al. 2018). 

Plectin, encoded by the gene PLEC, is essential in the AChR clustering process as it 

bridges AChRs to the postsynaptic intermediate filament network (IF) via interaction 

with rapsyn (Mihailovska et al. 2014). Mutations in this gene are also described to 

cause CMS (Banwell et al. 1999; Selcen et al. 2011). MuSK is also required for the 
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anchoring of endplate acetylcholinesterase (AChE) at the NMJ extracellular matrix 

(ECM), via a collagenic-like peptide encoded by COLQ gene (Cartaud et al. 2004). 

AChE is involved in terminating impulse transmission, by hydrolysis of acetylcholine. 

Mutations in COLQ have been reported as causative for a specific form of CMS (K. 

Ohno et al. 1998; Donger et al. 1998). 

The acetylcholine receptor itself is the main source of CMS-related mutations. In adult 

individuals, the receptor acts as a cation ligand-gated ion channel formed by 5 

homologous subunits, being α2βδε its stoichiometry, with ε subunit replacing 

embryonic γ. The channel is mainly permeable to Na⁺ and K⁺, and to Ca²⁺ in a lesser 

way. When acetylcholine binds to AChR, the channel opens triggering the membrane 

depolarization (Brisson and Unwin 1985). All the genes encoding the receptor 

subunits (CHRNA, CHRNB, CHRND, CHRNE and CHRNG) have been described as 

causal for different CMS types (A. G. Engel et al. 1982; Quiram et al. 1999; Brownlow 

et al. 2001; K. Ohno et al. 1995; Morgan et al. 2006). CHRNE, which encodes the ε 

subunit of the AChR receptor, accounts as causative for ~50% of all reported CMS 

cases, although frequencies might vary depending on ethnicity (Abicht et al., 1993; 

Finsterer, 2019). The high prevalence of ε subunit mutations may be the result of 

partial compensation of its functionality by the embryonic γ (encoded by CHRNG), 

which is substituted after birth given its lower conductance levels. Mutations in other 

subunits reduce patient survival as no compensation mechanism occurs (Engel et al., 

1996). Both Fast-Channel CMS (abnormally short AChR opening time) and Slow-

Channel (abnormally long AChR opening time) CMS have been reported for 

mutations on CHRNE. 

The SCN4A gene encodes the α subunit of the voltage-gated sodium channel 

(Nav1.4), which is key for the generation and propagation of action potentials through 

the skeletal muscle fiber, what causes Ca²⁺ release and fiber contraction. Many 

SCN4A mutations have been associated with different muscle channelopathies (Wu 

et al. 2016; Zaharieva et al. 2016; Tsujino et al. 2003), including CMS. 
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Another process related to AChR clustering is the Endoplasmic Reticulum 

glycosylation pathway. Normally, mutations in genes that are part of these processes 

cause congenital disorders of glycosylation (CDG)  (Jaeken and Matthijs 2009). 

However, mutations in some of the pathway components (DPAGT1, ALG2, ALG14, 

GFPT1 and GMPPB) have been described as causal of some CMS variants (Belaya 

et al. 2012; Cossins et al. 2013, 2; Senderek et al. 2011; Belaya et al. 2015). 

As for the ECM, collagens are also involved in the receptor clustering process. 

Collagen XIII (encoded by COL13A1 gene) is known to be a key regulator of NMJ 

maturation process and AChR clustering (Latvanlehto et al. 2010). Logan et al. 

(Logan et al. 2015, 19) reported a specific form of CMS being caused by mutations 

on this gene. Laminins α5 and β2 are also involved molecules in AChR clustering 

(Rogers and Nishimune 2017). Each one of the different laminins have its own role 

during NMJ maturation and development, with mutations in LAMA5 (Ricardo A. 

Maselli et al. 2017) and LAMB2 (R. A. Maselli et al. 2009, 2) being causative of the 

CMS disease. 

Segregation analyses 

We employed Rbbt (Vázquez et al. 2010) framework to stratify CMS patients based 

on mutations, aiming to assess whether non-severe (n=12) and severe (n=8) patients 

segregate any of the following mutation types (Figure S1): 

'overlapping' = the mutation overlaps the span of the gene, from first exon to last, 

including introns 

'mutated_isoform' = the mutation produces a mutated isoform, i.e., an AA change 

(on one isoform or just the principal isoform, depending on the options used) 

'splicing' = the mutation falls within a splicing site, they are deemed to break the 

protein function 

'affected' = the mutations affects the encoded protein, by introducing a mutated 

isoform or a splice site mutation 
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'damaged_mutated_isoform' = the mutation makes a specific protein isoform 

damaged as predicted by damage or pathogenicity predictions 

'broken' = the mutation seems to break the protein function, due it introducing a 

damaging mutation or a splice site mutation 

'TSS' = the mutation falls within a transcription starting site (1000 bases from TSS) 

'compound' = the gene has at least two mutations that affect it 

'homozygous' = the gene is affected by a homozygous mutation 

'missing' = the genes function may be entirely missing due to a homozygous or a 

compound mutation possibly affecting both alleles 

'gc19_pc' .promCore' = core promoter of protein coding gene (hg19) 

'gc19_pc.promDomain' = promoter domain of protein coding gene (hg19) 

'gc19_pc.5utr' = 5'UTR of a protein coding gene (hg19) 

'gc19_pc.3utr' = 3'UTR of a protein coding gene (hg19) 

'gc19_pc.ss' = splicing site of a protein coding gene (hg19) 

'lncrna.promDomain' = core promoter of a long noncoding RNA with coding potential 

'lncrna.promCore' = core promoter of a long noncoding RNA with coding potential 

'lncrna.ss' = splicing site of a long noncoding RNA with coding potential 

'lncrna.ncrna' = long noncoding RNA 

'smallrna.ncrna' = small RNA 

We define complete segregating mutations that are present in one group and not in 

the other. No complete segregating mutations were observed (Figure S1), while 

partial segregation mutations (i.e., present in at least 50% of the patients of one group 

and not in the other) can be appreciated (Suppl. Table 2). 
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Figure S1. Segregation analysis of several mutation types (described in the text). The number of 

mutations that overlap in the two groups (Non-severe and Severe) are reported for sets of individuals 

(0 to 12 for non-severe individuals, 0 to 8 for severe individuals).  
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Multilayer community detection analysis 

In this work, we performed a multilayer community detection analysis using MolTi 

software  (Didier, Brun, and Baudot 2015), which adapts the Louvain clustering 

algorithm with modularity maximization to multilayer networks. The algorithm is 

parametrized by the resolution parameter γ: the higher the value of γ, the smaller the 

size of the detected multilayer communities. Given the intrinsic resolution limit of 

modularity, the reliability of community detection should be assessed ad hoc using 

quality functions that are able to capture the actual community structure of a network 

(Fortunato and Barthelemy 2007). In this work, we were interested in the identification 

of communities that robustly express functional relationships among the CMS linked 

genes (i.e., known CMS causal genes, and severe and non-severe compound 

heterozygous variants and CNVs). Accordingly, we sought to determine the largest 

module of CMS linked genes that are found in the same multilayer communities at 

any value of resolution within the parameter range in which the community structure 

is more variable (see Supplementary Figure 12). The adopted procedure is 

illustrated in Figure S2. 

 

Figure S2. Module identification based on detected multilayer communities. Genes that are found in 

the same community at n values of the resolution parameter γ are represented as fully connected 

modules (upper panel). The resolution range considered is γ∈(0,4] with intervals of 0.5 (Methods). The 

module corresponding to the highest n contains genes that are systematically found in the same 

community across the entire range of resolution.
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Chapter results summary 

The main concepts introduced in the research article presented in this chapter are the 

following: 

1. Resolution limit is an open problem in community detection. Community detection 

at different levels of resolution allows for discovery of alternative co-existing modular 

structures, describing alternative levels of data specificity. Therefore, discovery of 

meaningful biology is heavily impacted by the initial choice of resolution.  

2. Persistent partitions identify strong modular relationships, therefore overcoming 

such limitation requires of analyzing stable partitions at alternative resolution levels 

where the most meaningful changes in community composition and size occur. 

3. We demonstrate the potential of a new complex graph theory concept, the 

multilayer community trajectory, as methodology for dimensionality reduction and 

feature selection in patient classification scenarios, presenting its effectiveness for 

independent cohorts from a rare brain tumor, medulloblastoma. 

4. The concept of multilayer community trajectory reflects on how communities 

change upon modularity resolution variations, identifying nodes (in this case, the 

genes) sharing community membership across a given resolution range of interest. 

5. Multilayer community trajectories provide a framework to achieve optimal feature 

selection with limited sample sizes, achieving high performances.  

6. Initial exclusion of patients presenting partial molecular information from the 

optimization procedure enhances the dimensionality reduction process, allowing for 

an accurate a posteriori classification after applying the optimal parameters learnt 

using patients presenting complete molecular data.  

7. Multilayer networks provide a powerful framework for dimensionality reduction and 

feature selection, while keeping high levels of explainability for biomedical studies, 

especially for rare disease scenarios.
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Transparent methods 

Multilayer network definition 

A network (i.e. a graph or a monoplex) is defined as a tuple 𝐺 = (𝑉, 𝐸), where denotes 

the set of nodes (or vertices) in the network and 𝐸 ⊆ 𝑉 × 𝑉 denotes the set of edges 

(or links) connecting them (Bollobás 1998). A graph composed of multiple networks, 

called layers, is referred to as a multilayer network. A multilayer network is defined as 

a quadruplet 𝑀 = (𝑉 , where denotes the set of nodes in the 𝑀 , 𝐸 𝑀 , 𝑉, 𝐿) 𝑉 multilayer 

network, 𝐿 denotes the set of layers , 𝑉 denotes the sets 𝑀 ⊆ 𝑉 × 𝐿 of nodes 𝑣 ∈ 𝑉 

contained in each layer, and 𝐸 denotes the sets of 𝑀 ⊆ 𝑉 𝑀 × 𝑉 𝑀 edges connecting 

tuples of nodes and layers (𝑣, 𝑙), (𝑣', 𝑙') ∈ 𝑉 (Kivela et al. 2014) 𝑀 (Figure S1). In a 

multilayer network, an edge can be intra-layer, i.e., it connects nodes in the same 

layer (𝑙 = 𝑙'), or inter-layer, i.e. it connects nodes from different layers (𝑙 ≠ 𝑙'). We built 

a multilayer network consisting of 5 layers and inter-layer edges imposed only 

between the same nodes, if any, on different layers. 

Multilayer community detection 

Communities in the multilayer network have been detected using MolTi software 

(Didier, Valdeolivas, and Baudot 2018; Didier, Brun, and Baudot 2015), which is 

available at https://github.com/gilles-didier/MolTi-DREAM. MolTi adapts the Louvain 

clustering algorithm with modularity maximization to multilayer networks. The Louvain 

algorithm for community detection consists of two recursive steps. In the first step, 

nodes are assigned to communities and then moved to others until no increase in 

modularity is observed. In the second step, the identified communities are aggregated 

so that a new graph is created, and the entire process starts again and proceeds until 

convergence. 

A community (𝑐) is defined as a group of densely connected nodes in the different 

layers 𝑙 ∈ 𝐿. The algorithm is parametrized to the resolution parameter γ: the higher
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the value of γ, the smaller the size of the detected multilayer communities. In MolTi, 

modularity of a multilayer network X is defined as: 

 

where the first sum runs over all layers of the multilayer network and the second over 

all edges {i,j} of each layer l. X(l)
i,j is the weight of the edge {i,j} in a layer l; S(l) 

i is the 

sum of the weights of all the edges involving vertex i in that layer; m(l) is the sum of 

the weights of all the edges of that layer; δci,cj is equal to 1 if i and j belong to the same 

community (ci = cj) and to 0 otherwise; γ is the resolution parameter; w(l) is the user-

defined weight associated to the layer l. In our calculations, w(l) and X(l)
i,j are both equal 

to 1, so that m(l) represents the total number of edges in l and S(l)
i and S(l)

j represent 

the degree of nodes i and j, respectively. 

Data sources for the construction of the multilayer networks 

We created a multilayer network consisting of five layers in which nodes represent 

genes (Entrez identifiers), intra-layer edges represent different types of associations 

retrieved from publicly available knowledge bases and inter-layer edges exist 

between the same nodes in the different layers (Figure S2). All the data was 

downloaded on October 19, 2019, and it is available at 

https://github.com/cirillodavide/gene_multilayer_network. 

Molecular associations. In this layer, two genes are connected if a physical or genetic 

association exists. Molecular associations between human genes were obtained from 

BioGRID, release 3.5.177. BioGRID (Oughtred et al. 2019) is a multi-species 

database of interactions, curated from high-throughput datasets and individual 

studies. Among other prominent primary databases, BioGRID shows the highest 

coverage for both interactions and proteins (Bajpai et al. 2019). 
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Drug-target associations. In this layer, two genes are connected if they are both 

targets of the same drug. Drug-target associations between human genes were 

obtained from KEGG BRITE “Target-based Classification of Compounds”, release 

br08310. KEGG BRITE (Kanehisa et al. 2019) is a manually curated database of 

functional hierarchies of various biological objects, such as Drug classifications. The 

Target-based Classification of Compounds consists of six categories (Protein-

coupled receptors, Nuclear receptors, Ion channels, Transportes, Enzymes, Others). 

One-to-one and unclassified gene-target associations were excluded. 

Variant-disease associations. In this layer, two genes are connected if they are both 

reported to be associated with the same disease in genome-wide association studies 

(GWAS). Variant-disease associations between human genes were obtained from 

Monarch Disease Ontology (MonDO), released 2019-09-30. MonDO (Mungall et al. 

2017) is a multi-species ontology generated by merging and harmonizing multiple 

disease resources (ORDO/Orphanet, DO, OMIM, MESH, etc.). In MonDO, gene-

disease associations are inferred by integrating gene variants (SNPs, SNVs, QTLs, 

CNVs, among others) from significant GWAS hits. We retrieved MonDO entries with 

associated OMIM identifiers from the OWL file, filtering for evidence code 

ECO:0000220 (sequencing assay evidence) through the Monarch Solr search 

service. 

Pathway associations. In this layer, two genes are connected if they are both 

annotated to the same pathway. Pathway associations between human genes were 

obtained from Reactome, release 70. Reactome (Fabregat et al. 2018) is a manually 

curated pathway database. Associations were retrieved from the lowest level pathway 

diagram of Reactome hierarchy. We found that all annotations are associated with 

IEA (inferred from electronic annotations) and TAS (traceable author statement) 

evidence codes. 

Metabolic reaction associations. In this layer, two genes are connected if they are 

involved in metabolic reactions where product metabolites of one reaction are 
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reactant metabolites of the other one. Metabolic reaction associations between 

human genes were obtained from Recon3D (Brunk et al. 2018) through BiGG Models 

(http://bigg.ucsd.edu), released 2019-09-12. Recon3D is the largest human metabolic 

network model. Super connected metabolites (e.g., ATP, CO2 , H2O) (Croes et al. 

2006) were excluded. 

Data sources of medulloblastoma genes 

We aim to study the community structures of a multilayer network that contains 

medulloblastoma-associated genes. We selected genes for our study from two 

sources: (1) genes mentioned in scientific publications about medulloblastoma 

identified via text mining; (2) genes that are altered in medulloblastoma patients based 

on two recent proteogenomic studies (Forget et al. 2018; Archer et al. 2018). The text 

mined data has been used as a proof-of-concept for the multilayer community 

structure analysis. The proteogenomic datasets have been used to identify the 

minimal sets of genes that characterize the medulloblastoma subgroups. 

Text mined medulloblastoma genes. PubTator Central (PTC) (Wei et al. 2019) was 

used to retrieve gene mentions in abstracts of scientific publications indexed in 

PubMed with the MeSH term “medulloblastoma” (D008527) in February 2020 (see 

Resource Availability: “Data and Code Availability”). 

Medulloblastoma genes from proteogenomic data. Subgroups of 38 medulloblastoma 

patients (WNT, SHH, G3, G4) were retrieved from (Forget et al. 2018). While 35 

patients present DNA methylation, RNA sequencing, proteomic and 

phosphoproteomic profiles, 3 patients (MB10, MB21, MB33) present only partial 

molecular information (the three lack RNA sequencing) and were used for validation. 

Gene methylation levels were mapped from CpG sites using the biomaRt package in 

R. When multiple CpG sites fell on a gene position, the median value was considered; 

when it fell on a region that is not annotated, the nearest gene was considered. Based 

on these pre-processed datasets (Forget et al. 2018), lists of genes, henceforth called 

“altered genes”, were obtained by selecting the top 30% of the distribution of each 
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data type. All the items of such lists were converted to Entrez identifiers, resulting in 

a total of 14039.6 altered genes per patient on average (see Resource Availability: 

“Data and Code Availability”). 

Subgroups of 45 medulloblastoma patients (WNT, SHHa, SHHb, G3a, G3b and G4) 

were retrieved from (Archer et al. 2018). While 39 patients present DNA acetylation, 

RNA sequencing, proteomics and phosphoproteomics profiles, 6 patients lack RNA 

sequencing information, including all 3 patients of the WNT subgroup. When multiple 

DNA acetylation measurements were linked to the same gene, the median value was 

considered. Altered genes were obtained with the same criterion as previously 

described and gene symbols converted to Entrez identifiers, resulting in a total of 

11608.6 (SD= 2264.524) altered genes per patient on average. 

Multilayer community structure analysis 

We analyzed how the multilayer community structure varies within a range of 

modularity resolution (γ) where the most dramatic changes in size and composition 

of the communities are observed before both reach a plateau.  

We identified the endpoint of this range as the value where the average community 

size, as a function of the number of communities, establishes a plateau, i.e., where 

the first derivative equals zero with 0.05 margin of error (Figure S3).  

The endpoint was found at γ=12 (964 multilayer communities), indicating that γ∈(0,12] 

is the range of interest for our study. 

To compare the trajectories of each gene along the communities, we computed the 

pairwise Hamming distance (Hamming 1950) among the vectors of communities 

visited by each gene in the range γ∈(0,12] with an interval of 0.5. We refer to these 

vectors as multilayer community trajectories. The higher the distance, the more times 

two genes belong to different communities within this range (Figure 2). 
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Identification of the minimal set of genes that define 

medulloblastoma subgroups 

The biomedical goal of the study is to identify the minimal number of genes that 

recapitulate the four biomedically relevant medulloblastoma subgroups (WNT, SHH, 

G3, and G4) (Forget et al. 2018). Identifying a minimal set of genes is crucial for both 

the definition of diagnostic signatures and the research on disease mechanisms. To 

achieve this goal, we performed a series of hierarchical clustering analyses (Ward’s 

linkage method) where the similarity between two patients (A and B) was measured 

as the Jaccard index (J) of sets of altered genes selected using two parameters, θ 

and λ: 

 

The parameter θ defines the maximum Hamming distance allowed to include genes 

in the analysis, while the parameter λ defines the maximum number of them that must 

co-occur in the same communities along their trajectories. For dimensionality 

reduction purpose, small values of θ and λ guarantee a selection of genes with similar 

trajectories and in minimal numbers.  

For instance, with θ = 2 and λ = 4, patient similarity is computed using sets of at most 

four genes that did not belong to the same communities at most twice along their 

trajectories. For each of these clustering analyses, we identified the optimal number 

of clusters using the partitioning around medoids (PAM) algorithm (Kaufman and 

Rousseeuw 1987) (Table S1). 

Based on this approach, we formulated an optimization procedure to systematically 

evaluate values of θ and λ to identify the ones that maximize the accuracy of 

recapitualiting patient stratification into the four medulloblastoma subgroups (WNT, 

SHH, Group 3, and Group 4). We defined accuracy as: 
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where true positives (TP) are patients of the same subgroup who are clustered 

together, true negatives (TN) are patients of different subgroups who are not clustered 

together, false positives (FP) are patients of different subgroups who are clustered 

together, and false negatives (FN) are patients of the same subgroup who are not 

clustered together. The same optimization procedure can also be formulated to 

maximize the Matthews Correlation Coefficient (MCC), which is defined as 

 

In both cases, the optimal parameters found are θ = 0 and λ = 6, corresponding to an 

accuracy of 94.94% (Figure 4 and Table S2) and an MCC 87% (Table S3). The 

optimal number of clusters based on PAM is 5, suggesting the existence of subtle 

differences in a few patients (see Results: “Medulloblastoma patient stratification 

through multilayer structure analysis”). 

Multilayer networks enrichment analysis 

To detect overrepresented features (drugs, pathways, etc.) that characterize each 

cluster, we performed a network enrichment analysis test (NEAT) (Signorelli, Vinciotti, 

and Wit 2016) in each layer of the multilayer network. NEAT tests whether the number 

of edges between two groups of nodes is significantly higher (over-enriched) than by 

chance, assuming a hypergeometric null distribution. In our analyses, the two groups 

of nodes are (a) the minimal set of genes of a patient that are present in a layer, and 

(b) the genes annotated to a certain feature of that layer (e.g., the genes annotated 

to a specific drug in the drug layer). In the specific case of the molecular interaction 

layer, the annotation feature consists of the neighborhood of each gene of the minimal 

set of a patient. Once we identify significant hits for each patient using a p-value cutoff 
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of 0.01 (Benjamini-Hochberg correction for multiple testing), we select those features 

that are enriched in all the patients of a cluster and unique to each cluster (Table S6). 

Computational resources 

All calculations were performed using the R statistical environment, in particular the 

packages stats (hierarchical clustering), fpc (k-medoids clustering), pvclust (clustering 

significance by multiscale bootstrap resampling), sigclust2 (clustering significance by 

Monte Carlo procedure), and neat (network enrichment analysis). To ease the 

detection and analysis of the multilayer community trajectories, we developed the R 

package CmmD, which is openly available at https://github.com/ikernunezca/CmmD.
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Supplemental Figures 

 

Figure S1. Multilayer network definition, Related to Figure 1 and Figure 2. A multilayer network 

M, such as the one represented inside the grey area, is defined as a quadruplet of four elements (VM, 

EM , V, and L). V and L are the sets of nodes and layers of M, respectively. VM and EM are the sets 

of nodes contained in each layer and edges connecting them within (intra-layer) and between (inter-

layer) layers, respectively. As the one represented here, we build a multilayer network where inter-

layer edges only connect the same nodes in each layer. 

 

Figure S2. Gene-gene association represented in the fiver layers of the multilayer network, 

Related to Figure 1 and Figure 2. Gene entities are represented as hexagons. Associations retrieved 

from the databases in squared parentheses are represented as curved lines. Red asterisks indicate 

mutations. 
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Figure S3. Identification of the resolution range of interest, Related to Figure 2. The modularity 

resolution parameter (γ) determines the number of communities and their size. The most dramatic 

changes in both size and number of communities occur in an initial range of resolution, which enables 

us to detect genes that are strongly associated. We identified the endpoint of this range (γ = 12) as the 

value where the average community size, as a function of the number of communities, establishes a 

plateau (i.e., its first derivative equals zero with 0.05 margin of error). 

 

Figure S4. Operations on dynamic communities, Related to Figure 3. Count of dynamic events 

(birth, death, and resurgence) in the multilayer communities that contain text-mined medulloblastoma 

genes.
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Figure S5. Gene shuffling test, Related to Figure 4 and Figure S6. The bar plots show the 

comparison between the highest accuracy achieved with the optimization procedure (94.94%, “Original 

gene associations”) and the average accuracy achieved by shuffling the genes in the cohort 10,000 

times (54.76%, SD = 0.11, “Mean Randomized”), maintaining the same number of genes for each 

patient as in the original data and using the optimal parameters θ = 0 and λ = 6. 

 

Figure S6. Distributions of optimization accuracies, Related to Figure 4 and Figure S4. The 

distribution of the optimization accuracies in the original data is reported in green, and the distribution 

of the average optimization accuracies after shuffling the altered genes across the cohort 10,000 times, 

maintaining the same number of genes for each patient is reported in red. 
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Figure S7. Recursive exclusion test, Related to Figure 4. The plot shows the iterative removal of 

selected genes in the cohort of 38 medulloblastoma patients. At every iteration, the minimal set of 

genes, found at optimal values of θ (purple line) and λ (red line) corresponding to highest accuracy 

(green line), is removed and the optimization procedure is repeated. The cumulative average number 

of genes per patient that are removed at every iteration is reported (grey line). 

 

Figure S8. Clustering significance, Related to Figure 5. Significance assessment of hierarchical 

clustering (Ward method) of medulloblastoma patients using multiscale bootstrap resampling (Suzuki 

and Shimodaira, 2006). AU p values (%), or approximately unbiased probability value (pvAU), is 

reported in red on top of each cluster. 
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Figure S9. Clustering significance, Related to Figure 5. Significant assessment of hierarchical 

clustering (Ward method) of medulloblastoma patients using a Monte Carlo procedure (Kimes et al., 

2017). (A) empirical p-value and (B) Gaussian approximate p-value are reported in red on top of each 

cluster. 
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Figure S10. Hierarchical clustering of medulloblastoma patients from Archer et al. 2018, Related 

to Figure 2 and Figure S11. Ward’s linkage hierarchical clustering obtained at λ = 3 and θ = 0 for 

patients with complete multi-omics data (Archer et al., 2018). Rectangles indicate the 5 clusters 

suggested by PAM (partitioning around medoids) criteria. The color of each cluster indicates the 

original patient stratification into the five medulloblastoma subgroups: SHHa (red), SHHb (purple), 

Group 4 (G4, green), Group 3a (G3, yellow), Group 3b (G3b, orange). Patient MB136, originally labeled 

as SHHb subgroup and highlighted with a purple lower level rectangle, clusters within the SHHa 

subgroup. 
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Figure S11. Hierarchical clustering of medulloblastoma patients from Archer et al. 2018, Related 

to Figure 2 and Figure S10. Ward’s linkage hierarchical clustering obtained at λ = 5 and θ = 1 for 

patients with complete and incomplete multi-omics data (Archer et al., 2018). Rectangles indicate the 

7 clusters suggested by PAM (partitioning around medoids) criteria. The color of each cluster indicates 

the original patient stratification into the six medulloblastoma subgroups: WNT (blue), SHHa (red), 

SHHb (purple), Group 4 (G4, green), Group 3a (G3, yellow), Group 3b (G3b, orange). Patients with 

missing data cluster together (MD, Missing Data). Misclassified patients are highlighted with lower-

level rectangles indicating their original subgroup.
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Supplemental Tables 

 

 

Table S1. Optimal number of clusters, Related to Figure 4. The matrix shows the optimal number 

of clusters, based on the partitioning around medoids (PAM) algorithm, for combinations of 

parameters θ (rows) and λ (columns).  

 

Table S2. Optimization accuracies, Related to Figure 4. The matrix shows the accuracies of the 

optimization procedure (see Methods: “Identification of the minimal set of genes that define 

medulloblastoma subgroups”) for combinations of parameters θ (rows) and λ (columns). The maximum 

accuracy achieved is highlighted in bold. 
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Table S3. Optimization MCC, Related to Figure 4. The matrix shows the Matthews Correlation 

Coefficient (MCC) of the optimization procedure (see Methods: “Identification of the minimal set of 

genes that define medulloblastoma subgroups”) for combinations of parameters θ (rows) and λ 

(columns). The maximum MCC value achieved is highlighted in bold.
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Table S4. Classification of patients with partial datasets, Related to Figure 5. The table reports 

the values of the Jaccard Index (J), parametrized by the optimal θ and λ, between the 3 patients with 

partial datasets (MB10, MB21, MB33) and the 35 patients with complete datasets (see Methods: “Data 

sources of medulloblastoma genes”). 
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Table S5 *. Minimal set of genes, Related to Figure 5 (attached dataset). Minimal sets of altered 

genes associated with each one of the 38 medulloblastoma patients from (Forget et al., 2018). The 

labels of the original subgroups (clusters) and the ones assigned after the optimization procedure are 

reported.  

Table S6 *. Multilayer network enrichment analysis, Related to Figure 5 (attached dataset). The 

table reports those associations (edges) among the minimal sets of genes that are enriched in all the 

patients of a cluster and unique of each cluster (WNT, SHH, G3, G4, G3-G4) for a specific layer of the 

multilayer network (see Methods: “Multilayer network enrichment analysis”). Association IDs are 

grounded in databases (see Methods: “Data sources for the construction of the multilayer network”). 

* Available online at: https://doi.org/10.1016/j.isci.2021.102365.  
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1. Addressing data scarcity using multilayer networks 

The research presented in this PhD thesis pursued the main goal of exploring the 

potential of network biology approaches, and in particular, multilayer network 

analysis, to provide an efficient and interpretable integrative framework for the 

biomedical scenarios affected by data scarcity, specifically, rare diseases and 

precision oncology. 

Starting to address such a challenge required of an extensive review of the current 

literature related to data granularity (Chapter 2) “Artificial intelligence in cancer 

research: learning at different levels of data granularity” (194), which focus on 

current applications and challenges of machine learning and AI when dealing with the 

different granularities of the present cancer data landscape. 

During recent years, biomedical research has quickly evolved thanks to the capability 

of machine learning and AI-based approaches to not only deal but efficiently generate 

new biomedical knowledge from ever-growing resources (Chapter 1, Section 2). 

While this applies not only to oncology but to many other biomedical research fields, 

data-hungry algorithms only solve one part of the whole picture, with a major question 

arising: How do we address knowledge discovery in scenarios characterized by 

data scarcity? 

This question became the central motivation of the research presented in this PhD 

thesis. Indeed, although the discussion introduced in Chapter 2 has a particular focus 

on the application to precision oncology, the presented challenges can be 

extrapolated to the study of other medical areas, such as rare disorders.  

Data scarcity not only limits common biomedical analysis such as interpretation of 

disease classification and subtyping (Chapter 4) but largely keeps other equally 

important questions mostly unexplored (such as the study of the molecular 

determinants of disease severity, Chapter 3). 
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The methodologies introduced in this PhD thesis were developed around the clear 

necessity of introducing complementary biomedical knowledge to overcome the 

challenges of limited data availability. This way, the first step towards discovering 

novel, meaningful functional relationships in data-scarce contexts is the integration 

of additional biomedical information sourced from external databases.  

A number of existing methodologies may provide efficient frameworks to achieve this 

task (Introduction, Section 2). Among them, a network biology perspective, based 

on multilayer networks, is chosen as it provides a robust and meaningful way for the 

integration of the relevant biomedical resources. Furthermore, the gene multilayer 

network structure (Introduction, Section 3.4. Multilayer and complex networks) 

facilitates the second step: mapping the limited available patient information on 

multilayer networks and leveraging the associations displayed in this framework 

for a transparent modeling of human disease.  

Figure 10. Overview of the main results and objectives tackled in the research presented in 

chapters 2, 3 and 4. Chapter 2 presented the main challenges of the ML applications in the biomedical 

fields related to data scarcity. Chapters 3 and 4 deeply delve into the potential of network biology to 

address such challenges. 
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The whole perspective to tackle the data scarcity challenge is introduced, and applied 

to two independent rare disease scenarios, with the multilayer network-based 

approaches presented in Chapters 3 (‘Rare disease research workflow using 

multilayer networks elucidates the molecular determinants of severity in 

Congenital Myasthenic Syndromes’)  (195) and 4 (‘The multilayer community 

structure of medulloblastoma’) (196) (Figure 10). Detection of persistent 

associations within network community structures is introduced in Chapter 3 and is 

the main concept implemented in the developed algorithms (for both Chapters 3 and 

4) used in different biomedical scenarios.  

Globally, the novel systems biology approach presented in this PhD Thesis consists 

of 3 main stages (Figure 11): 

1) Integrative modelling of prior knowledge of interest: The various relevant 

databases considered in the study are represented as individual networks, 

interconnected in a multilayer network. 

2) Candidate gene selection from multi-omics data: A personalized analysis 

of patient omics information is performed to identify candidate genes of interest 

for the study. Within the context of the presented research articles, this analysis 

led to a selection of genes to be mapped to the multilayer network for further 

investigations. In Chapter 3, this selection of candidate genes is extracted from 

the Whole Genome Sequencing (WGS) data (i.e., specific genomic variants of 

each CMS patient). In Chapter 4, it corresponds to genes identified through 

differential analysis performed over the available patient multi-omics data.  

3) Identification of functional relationships to address specific biomedical 

tasks: Persistency of network community membership (also known as 

multilayer community trajectories) is computed over the nodes of the multilayer 

network, resulting a measure of the strength of functional relationships among 

genes. The information provided by the multilayer community trajectories is 

explored in order to solve specific analytical and learning tasks, such as gene 

priorization (Chapter 3) and feature selection (Chapter 4). 
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In this view, the goal of this approach is to both integrate relevant biomedical 

knowledge and identify the information needed to overcome the limitations of data 

scarcity in analytical and modeling tasks. 

The presented methodology can be viewed as a way to address this open problem, 

harnessing the power of graph representations to tackle emerging relevant questions: 

How can the importance of the employed knowledge resources can be 

rationally evaluated? How should this knowledge be optimally exploited in the 

multilayer network beyond community detection?. 

Figure 11. Schematic representation of the methodology introduced to address data scarcity. 

In the example, a disease cohort with two different subtypes is presented (depicted as orange and 

green patients). The first step of the methodology consists in building a multilayer network representing 

relevant biomedical information from external resources. Candidate information is identified for each 

patient’s available omics information, prioritizing different target nodes for downstream analysis. 

Finally, the relationships existing among the target information are identified via network community 

analysis at various resolution (γ) levels. 

The research article presented in Chapter 4 (‘The multilayer community structure 

of medulloblastoma’) solves these questions by presenting an optimization 

technique on top of the methodology introduced in Chapter 3, while also providing an 
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efficient feature selection approach using a multilayer network built on prior 

knowledge from databases, in order to achieve accurate patient stratification.  

The concept of community trajectories, introduced in Chapter 4, within monolayer or 

multilayer networks, can be considered as a way of hierarchically classifying the 

nodes of a given graph, based on the identified community structures. The proposed 

optimization approach iterates over these structures to find the optimal selection of 

nodes that best recapitulates a ground truth (e.g., disease subtyping classification). 

 

Figure 12. Pseudocode for the first two stages of the systems biology methodology presented 

for the analysis of cohorts affected by data scarcity. Highlighted in orange, is the analysis of the 

community structure of the multilayer network at multiple levels of modularity resolution (γ). Highlighted 

in purple, is the identification of candidate data for the patients of a given disease cohort. 
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Figure 13. Pseudocode for the downstream analysis based on multilayer community 

trajectories. (A) Detection of gene modules found to share community through a whole range of 

modularity resolution (γ), the main approach undertook in Chapter 3. (B): Optimization procedure 

performed in Chapter 4 to perform optimal feature selection given a known patient sub-stratification.  



Discussion: Addressing data scarcity using multilayer networks 

205 
 

In this sense, the first two stages of the presented approach (i.e., network modeling 

of relevant external database information and the identification of personalized 

candidate information) can be considered common to the analysis of any given cohort 

(Figure 12). The use of the identified topological relationships and their importance 

to solve specific biomedical tasks, on the other side, is specific to the particular 

scenario (i.e., analysis of persistent community associations for gene priorization -

Chapter 3- and feature selection -Chapter 4-) (Figure 13).  

Overall, the main advantages provided by the usage of the multilayer network are 

related to the flexibility in modelling of biomedical associations across multiple 

data types (Table 3).  

 

Table 3. Advantages, limitations, and future perspectives of the presented research. The 

multilayer network framework provides a highly adaptable framework for biomedical knowledge 

representation, enhancing and simplifying medical interpretation. Primary constraints stem from the 

utilization of Louvain as community detection algorithm, and the dependency on prior knowledge for 

downstream evaluation. As for future aspects to tackle, we can highlight the integration of longitudinal 

information, the production of synthetic datasets, and the careful assessment of the potential 

contributions of each relevant biomedical aspect for the task under study. 
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As we commented in section 3.2 of the introduction (Network-based 

representation of biomedical data), graphs allow for the codification of multiple 

types of biological relationships existing across biomedical data, conveniently 

accommodating the model to the particular context under analysis. 

Integrating these networks into a multilayer system provides a straightforward, natural 

approach to model relationships among different data levels, represented as network 

layers. Particularly, the gene multilayer network structure, and the detection of 

persistent community associations across the layers is a perfect fit for the analysis of 

biomedical knowledge, as gene relationships are expected to exhibit persistence 

across various biological facets. Incorporating gene-associated knowledge using 

multilayer networks simplifies the identification of genes that consistently associate 

layers, facilitates the clear interpretation of these relationships and enables the 

assessment of the contribution of each level of information. 
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2. Limitations of the presented research 

2.1. Alternative community detection algorithms 

The introduced advances from our approach present a series of limitations and future 

perspectives (Table 3) that we discuss in this section. The first issue we should 

comment about is the limitations associated with the usage of the Louvain algorithm 

as the main method for community detection. The Leiden community detection 

algorithm (197) has been recently introduced to solve a primary problem from the 

stochastic nature of the Louvain method: the identification of internally disconnected 

communities. Louvain only guarantee is to provide mutually exclusive communities, 

sometimes providing internally disconnected instances.  

The Leiden algorithm solves this issue by adding a refinement step to the Louvain 

method before running Louvain algorithm’s aggregation stage (Introduction, Section 

3.1.). At each iteration, this refinement step checks for potential sub-strata within each 

detected community, thereby ensuring the existence of dense connectivity between 

nodes before merging. Additionally, the Leiden algorithm provides the means for a 

deeper exploration of the graph. This is achieved by allowing random merging of the 

nodes to one of the different possibilities that increase modularity, not only to the one 

providing the highest increase on modularity. This renders a broader analysis of the 

network. The new paradigm set by Leiden algorithm should then be acknowledged. 

While by the time research presented in Chapters 3 and for 4 started production 

Leiden approach was not available, its recent introduction entails an obvious need for 

adapting the analysis presented in those chapters to this novel update of modularity-

based network community detection.   

2.2. Ground truth availability and exploration of community 

size boundaries 

The major strength of the methodology introduced in Chapter 4 is the refinement of 

the knowledge coming from the input personalized multi-omics data, making use of
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the external biomedical information, integrated as a multilayer network. However, this 

approach presents two main problems. The first limitation is the evaluation procedure. 

Despite learning steps of the feature selection task are unsupervised, evaluation is 

dependent on the existence of a target feature for optimization. Although it provides 

an efficient approach to obtain lists of prioritized genes that best recover a particular 

label classification (in the particular case of Chapter 4, a previously known robust 

patient molecular stratification), such target label might not exist a priori, a typical case 

for rare disorders.  

The second problem is related to the suitability of the lambda parameter (λ) for 

exploration of multilayer community trajectories. In the context of the specific 

application of multilayer network community trajectories for feature selection tasks, 

the utilization of this parameter provides an upper bound for prioritizing communities 

depending on the number of nodes of interest. While a reasonable strategy would be 

based on the user’s choice, a heuristic to elucidate the best range of lambda values 

to analyze is not provided, thus potentially increasing the computational costs for the 

analysis. 

Overcoming both limitations is critical for the potential application of this approach to 

any patient sample cohort, both in supervised and unsupervised scenarios. Focusing 

on solving these issues, a new version of this feature selection pipeline is currently 

under development, within the context of an ongoing collaborative effort with the 

Computational Biology Group of the Department of Biosystems Science and 

Engineering (D-BSSE) from ETH Zürich (Basel, Switzerland). Initial results of the 

approaches aiming to address both limitations mentioned earlier are presented and 

discussed in Annex II. 
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3. Future perspectives 

3.1. Overlapping communities 

An interesting perspective to address in multilayer network community detection is 

the analysis of overlapping modular structures. Classically, community detection 

algorithms such as Louvain or Leiden, center on the analysis of disjoint 

communities (i.e., each element belongs to a unique module) (198). Although we 

presented the considerable utility of such concept, many real networks present nodes 

that belong to multiple communities, which can be described to be overlapping.  

Although the participation of biomedical interactors in several biological processes is 

well-known, only recently overlapping community detection has become a trending 

subject in network science (199), with some algorithms already adapting this 

functionality to the multiplex network level. Indeed, many biological interactors have 

roles in multiple biological processes, and therefore overlapping communities may be 

able to keep information that mutually-exclusive modules may lose (200). An 

interesting example is provided with the Infomap algorithm, a community detection 

procedure based on the minimization of an alternative quality function, the map 

equation (201), which describes the description length of flows obtained via random 

walks. Overall, Infomap provides a framework for the identification of multilayer 

community trajectories) by varying the time of the Markov-chain process. Selection of 

lower Markov time values favor the identification of community structures with higher 

number of lower size modules, while longer Markov times will favor lower number of 

modules with bigger sizes, as some of the nodes will not be encoded in the descriptors 

(202). Application of overlapping multilayer community detection to the medical field 

is yet in initial stages but could represent a way to overcome potential biases and 

biological information loss coming from the identification of disjoint communities. This 

way, the introduction of overlapping community identification to the research 

presented in chapters 3 and 4 should be a primary objective for future studies. 
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3.2. Integration of temporal multi-omics data 

Modelling of multiple simultaneous aspects is an additional feature of multilayer 

network frameworks (190). One of the most prominent aspects for application is the 

analysis of temporal-varying networks. Many biological processes (e.g., gene 

expression, protein interaction, gene regulation and disease spreading) present 

changing dynamics over time, yet graph-based modelling of biological processes 

tends to focus on static frameworks (209), losing the information related to the 

temporal dimension.  

Modelling of time-dependent biological processes has been subject of huge interest 

during the last decade: patient networks for example, allow for detection of individuals 

sharing molecular and phenotypic features (138). As features characterizing patient 

clusters may change over-time, patient clusters may present dynamical cluster 

identity. Tracking those variations has enable the inception of the concept of disease 

trajectories, which identify patients that follow similar evolution in their analyzed 

features (203), allowing for a finer recovery and understanding of longitudinal 

biomedical data (204). Extension of the methodologies presented in this PhD 

dissertation to include longitudinal information should be a main objective for future 

studies: identification of disease trajectories is key for obtaining finer knowledge on 

the processes underlying disease progression in complex disorders. 

3.3. Synthetic data generation  

Another potential application of the presented methodologies is on the generation of 

synthetic rare disease data (205). The usage of synthetic data has recently attracted 

the attention of researchers as it holds great potential to enhance the training of deep 

learning technologies in cases of highly unbalanced data (206). The approach 

presented for gene priorization (Chapter 4) may be helpful for the efficient selection 

of features for synthetic data generation, contributing to mitigate the problems caused 

by a high dimensionality of the search space to the small amount of available data. 
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3.4. Evaluation of layer contributions  

While the presented methods have their major strength in discovering novel 

relationships between limited patient data, making use of external information, there 

is not an optimal a prori procedure for selecting such external data. As a result, the 

solution often relies on the usage of general resources and, when having a proper 

justification, specific meaningful resources for the disorder.  

For example, in the article presented in Chapter 3, we modeled our multilayer network 

based on information from metabolomics, interactome and biological pathways. This 

is because CMS affects proteins mediating the signaling processes leading to normal 

neuromuscular junction development, thus giving a clear rationale for the focus on 

those three layers. Such explanations are also accompanied by an evaluation of the 

individual involvement of each layer to the detected multilayer communities. 

Indeed, using additional target layers is always in the scope of integrative biomedical 

studies, and may provide promising new insights when such studies are of a more 

exploratory nature (for example, Buphamalai et al. (27) provided a remarkable 

analysis to find rare disease-specific patterns across a multiplex network including 46 

unique database layers).  

However, there is a general need for the network biology field for addressing the 

absence of a proper way for predicting the importance of each data layer, which may 

help provide new ways for careful selection of relevant external information, and most 

importantly, understand the way in which this information selection can affect the 

resulting topological structure of the network. This may prevent undesired effects 

coming from redundant biomedical information, potentially avoiding biased results.  
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4. Closing remarks: Implications for precision 

medicine 

The research highlighted in this PhD thesis demonstrated the potential of network-

based data integration to overcome the limitations associated with data-scarce 

scenarios.  Providing solutions for the analysis of such biomedical scenarios, is crucial 

not only because of the impact it has for the patients suffering those conditions, but 

for the application of precision medicine to similar cases and other diseases 

presenting molecular relationships.  

The knowledge stored in biomedical databases emerges as the pivotal target for 

addressing data-scarce scenarios. These knowledge resources serve as the starting 

point for uncovering previously undetected relationships among the available patient 

information, effectively assisting in the reconstruction of the 'missing information' that 

often impedes research in these specific cases (207). 

In this sense, modelling and integration of external biomedical information with the 

patient-specific data emerges as the key solution for the data scarcity challenge in 

precision medicine. Although we have chosen multilayer networks for this integration 

due to their advantages in interpretability, there are several approaches that can 

efficiently accomplish the same task (as discussed in Section 2 of the Introduction). 

However, it is important to note that all these equivalent frameworks must always be 

constructed upon the foundation provided by existing biomedical knowledge. 

The presented research has multiple potential implications of multilayer network 

modelling for the successful application of precision medicine. These studies can be 

thought as examples of the benefits coming from the usage of external biomedical 

information for obtaining a more predictive, preventive, and personalized standard for 

clinical research, helping to establish the P4 medicine paradigm pursued by precision 

medicine.  
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Let us consider the applied research presented in Chapters 3 and 4 as illustrative 

examples. In terms of predictive power, the presented methodologies allowed us 

new target genes for predicting severe manifestations of CMS and the identification 

of clinical subtypes of medulloblastoma. These prioritized genes can thereby be used 

for the prognostic analysis and prevention of severe clinical evolution of these rare 

diseases. Moreover, the identified molecular interactors, additionally offer new 

insights into understanding the underlying reasons for the observed beneficial effects 

of drugs with no prior biomedical explanation. This scenario is of particular interest 

since discovery of personalized treatments for cohorts with limited availability of 

patients often relies on ‘trial and error’ testing, based on clinical expertise. In this 

sense, the methodologies introduced with this PhD Thesis hold huge potential for 

drug repurposing, which is crucial in a context where production of new, 

personalized treatments for cohorts presenting limited patient numbers is clearly 

hindered by its low cost-effectiveness. 

An additional aspect to consider in rare disease research is the importance of the 

analysis of diseases presenting overlapping features. For example, the identified 

candidate genes in Chapter 3 were known to be involved in multiple disorders with 

features overlapping CMS manifestations (i.e., other rare myopathies, Ehler-Danlos 

syndrome, myasthenia gravis). This fact highlights the medical impact of the study of 

information exchange between rare diseases and conditions with higher prevalence. 

In this sense, the usage of the multilayer network system can help identify shared 

mechanisms between multiple diseases, providing new insights at multiple levels, 

such as the identification of new therapeutic targets and the analysis of the molecular 

biology underlying disease comorbidities. 

Overall, the ongoing progress of multilayer network-based methodologies is 

pioneering a whole new set of approaches for the analysis of biomedical information 

in multiple precision medicine contexts, enhancing our understanding of the molecular 

biology underlying disease complexity. 
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1. This PhD thesis shows the importance of the integration of the limited available 

data from small size cohorts with external biomedical information coming from 

relevant large-scale knowledge resources, to solve the challenge posed by data 

scarcity. This essential principle is the building foundation for the development of 

novel computational approaches focused on solving biomedical contexts constrained 

by patient-specific data availability.  

2. Multilayer networks are a highly valuable methodology for the integration of patient-

specific data with complementary information extracted from relevant biomedical 

resources, allowing for a more comprehensive understanding of the specific 

biomedical processes underlying the complex manifestations of a particular disease. 

3. In the case of the study centered on the analysis of severity in Congenital 

Myasthenic Syndromes, our results show that topological analysis of multilayer 

networks (particularly, detection of persistent community associations across multiple 

levels of resolution) can be used for the discovery of novel genetic disease modifiers 

affecting relevant functional processes in the disease, enabling for a finer 

interpretation of the molecular biology leading to the differences in phenotypic severity 

in these rare diseases.  

4. In this sense, we identified patient-specific gene variants on damaged 

neuromuscular junction (NMJ) interactors affecting patients with severe phenotypic of 

the disease. These genes are functionally connected to known causative processes. 

Furthermore, our study revealed compound heterozygous variants affecting post-

synaptic acetylcholine receptor presentation, providing insights into potential 

therapeutic targets. Additionally, we uncovered a previously unknown functional role 

of the gene USH2A at the NMJ level, supported by experimental evidence using a 

zebrafish model. 

5. In the case of the study on medulloblastoma, the introduction of a novel concept in 

complex graph theory -the multilayer community trajectory- shows the potential of 
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multilayer networks in feature selection tasks. The multilayer network, and more 

particularly, this new topological feature, offer a new way of achieving high 

performances in the recovery of known disease subtypes, minimizing the feature 

space employed for patient clustering.  

6. The research studies presented in this PhD thesis also revealed new challenges to 

be addressed by the systems biology field. This includes the need of alternative 

community detection heuristics applicable to multilayers, new methods for time-

dependent dynamical processes, and in general new approaches combining the 

power of multilayer networks with the state-of-the-art developments in AI, namely 

generative AI. In summary, the significant developments introduced can help to 

pioneer approaches for the application of precision medicine in multiple new 

biomedical research areas. 
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This annexed chapter presents and discusses the initial results towards solving the 

limitations related to the pipeline introduced in Chapter 4 and commented in the 

Section 2.2. of the Discussion of this PhD thesis.  

This ongoing collaborative effort, started during an internship period awarded with an 

EMBO short-term fellowship, aims to address the main limitations of the mentioned 

approach.  This collaboration involves the Computational Biology Group of the 

Department of Biosystems Science and Engineering (D-BSSE) from ETH Zürich 

(Basel, Switzerland) as hosting institution. During the early stages of the internship, 

the primary focus of the work was to leverage the pipeline presented on Chapter 2 for 

the analysis of a hepatocellular carcinoma (HCC) cohort provided by the host group 

(1,2).  

To address the first of the previously mentioned limitations (i.e., the dependency on 

the availability of a ground truth patient stratification), the pipeline is applied in a 

fully unsupervised manner, utilizing an unsupervised clustering of the patient cohort 

instead of relying on the already known sample classification. The evaluation process 

involves two stages: analyzing the accuracy of the unsupervised clustering recovery, 

and secondly, conducting the comparison of the enriched functional activities shared 

between both clustering structures. The original clustering of the target cohort, 

described in (2) and based on Bayesian mixture modeling, is compared with the 

optimized unsupervised clustering derived from our pipeline, which takes advantage 

of the multilayer network structure analysis.  

With this goal in mind, the optimization pipeline was applied to an unsupervised 

hierarchical clustering of the samples derived from patient multi-omics data. Available 

omics data for the cohort include proteomics, RNA-seq, phosphoproteomics and 

whole exome sequencing, considering single nucleotide variants (SNVs) and copy 

number variation (CNVs). This way, the methodology performance is also tested 

using mixed data types.   
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Using Monte-Carlo based bootstrapping resampling (3), the unsupervised clustering 

identified four significant clusters. Subsequently, we applied the optimization pipeline 

from Chapter 4 to this clustering structure, identifying optimal values of 3 and 33, 

respectively, for parameters θ and λ. The results yielded high accuracy 

(approximately 92%) on the recovery of the unsupervised clustering, with a gene 

dimensionality reduction of approximately 65% (Figure 1A). Strikingly, network 

enrichment analysis (4) revealed that the prioritized genes associated to each cluster 

exhibited enrichments in functional characteristics related to those previously 

described for the clusters detected in (2) (Figure 1B-C). However, although the 

pipeline demonstrated its capability to recover meaningful disease knowledge for the 

identified HCC clusters, it also highlighted the challenge of predicting the optimal 

range of λ values for exploration. 

Figure 1. (A) Parameter optimization for the HCC sample cohort. Values next to each point 

highlight the corresponding [θ,λ] combination. Y axis represents the accuracy for the recovery of the 

unsupervised hierarchical clustering structure, X axis indicates the average number of altered genes 

per patient sample used for the unsupervised hierarchical clustering. (B) Enriched functional pathways 

for each patient sample cluster obtained with the optimal values for dimensionality reduction. (C) 

Enriched pathways for the clusters observed in (2). 
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To enhance the methodology and explore the space of the identified multilayer 

community trajectories further, our current work is focused on developing a new 

version of the pipeline where we evaluate the importance of the found trajectories at 

each value of the θ (which controls the changes in modularity resolution, with lower 

values representing increasingly more intimate association at the multilayer network 

level) for each sample under optimization. The aim is to prioritize genes found within 

the most valuable multilayer community trajectories for the given cohort. 

As a way of replacing the exploration introduced with the λ parameter, the new 

iteration of the algorithm is based on distance assessment using the Random Walk 

with Restart (RWR) metric. Our approach is based on the removal of altered patient’s 

genes that are found in the multilayer community trajectories existing at a particular 

level of resolution. We generate patient-specific multilayer networks where the altered 

genes of the sample under optimization are absent, and evaluate how the connectivity 

of the genes of the same trajectories (that are not altered in the patient) are affected. 

This assessment is computed as the mean of the RWR probability ratio scores of the 

trajectory genes (𝝮), between the original multilayer network and the patient-specific 

multilayer network (Figure 2).  

With the implementation of this novel approach, we are now able to score the entire 

space of multilayer community trajectories existing at a specific θ value. This allows 

to filter genes based on the distribution of the mean 𝝮 RWR score for the 

corresponding multilayer community trajectories, thereby effectively exploring 

tentative distribution thresholds (Figure 3).  

Strikingly, the new pipeline highlighted 2 and 70% as the optimal combination of 

parameters for θ and the 𝝮 RWR score threshold, respectively. With these optimal 

values, accuracy for the recovery of the unsupervised hierarchical clustering 

increased to approximately 94%, and most importantly, the gene dimensionality 

reduction also increased to about 75% (Figure 3).  
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Figure 2. Schematic representation of the patient-wise RWR multilayer network analysis. The 

RWR score for a given node represents the probability of reaching the node when performing random 

walks through the multilayer network from a given set of starting nodes, which are called seeds. In our 

analysis, the target nodes under evaluation are the genes found in the same multilayer community 

trajectories as the genes that are found to be altered in any of the patient’s proteogenomic data (nodes 

depicted in green). Seed nodes for the RWR include the union of the altered genes from the patient 

under optimization (nodes depicted in red) and the other genes from the multilayer network that 

happen to be outside of multilayer community trajectories with altered genes (nodes depicted in 

white). For each target node, we obtain its RWR probability score. In parallel, we build a second 

multilayer network where the altered genes from the patient (nodes in red) are removed, and 

recompute the RWR probability score for the target nodes. We compute the ratio of the RWR score (𝛕) 

for each target node between both multilayer networks, and the overall RWR score for each trajectory 

(𝝮) as the mean of the 𝛕 score of each target node of the trajectory. 

Summing up, development of the new version of our previous feature selection gene 

pipeline is independent of previously existent patient sub-stratifications for the 

evaluation of the optimization procedure, effectively making the whole process an 

unsupervised technique.  
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Figure 3. Parameter optimization results for the patient-wise RWR multilayer network analysis. 

Values next to each point highlight the corresponding [θ,𝝮 threshold] combination. The best performing 

combination is highlighted in green.  

Moreover, we defined a new way for evaluating the importance of the multilayer 

community trajectories for a given cohort in this procedure, exploring the whole space 

of functional implication of the genes from each multilayer community trajectory in a 

personalized manner. Both facts are important milestones for this procedure because 

they enhance the potential general usage for any patient sample cohort with available 

personalized omics data, both in supervised and unsupervised scenarios.  

As for future work to be undertaken, the main priority is on reducing the computational 

costs of the new pipeline. Ideally, this would allow for general parallelization of the 

approach in HPC environments with minimal resource usage, considerably easing 

and accelerating the generation and RWR evaluation of the patient-wise multilayer 

networks, which is the main current drawback of the procedure. 
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supervisors,  the protein specificity significance analysis described in section 2.4. 

(Involvement of E-P protein interactomes in tumor-related functional 

processes)  (Methods: Enriched intermediate nodes within each cluster) as well 

as the functional gene set enrichment analysis described in the same section 

(Methods: Functional gene set enrichment analysis). 
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Article abstract  

Here we introduce Promoter-ENhancer-GUided Interaction Networks (PENGUIN), a 

method to uncover protein-protein interaction (PPI) networks at enhancer-promoter 

contacts. By integrating H3K27ac-HiChIP data and tissue-specific PPI information, 

PENGUIN enables cluster enhancers-promoter PPI networks (EPINs) and pinpoint 

actionable factors. 

Validating PENGUIN in cancer (LNCaP) and benign (LHSAR) prostate cell lines, we 

observed distinct CTCF-enriched clusters, which identifies diverse chromatin 

conformations. In LNCaP, we found an EPIN cluster enriched with oncogenes and 

prostate cancer-associated SNPs. We uncovered a total of 208 SNPs in LNCaP 

EPINs and used CRISPR/Cas9 knockout and RNAi screens to confirm their 

relevance.  

PENGUIN's application in prostate cancer demonstrates its potential for studying 

human diseases. The approach allows exploration in different cell types and 

combinations of GWAS data, offering promising avenues for future investigations. In 

conclusion, PENGUIN provides valuable insights into the interplay between 

enhancer-promoter interactions and PPI networks, facilitating the identification of 

relevant genes and potential intervention targets. 
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1. Introduction 

Enhancer-promoter (E-P) interactions play a crucial role in orchestrating gene 

expression and ensuring the proper regulation of cellular processes. DNA-binding 

proteins (DBPs), including transcription factors (TFs), act as key players in this 

regulatory network by binding to enhancers and bridging additional protein 

interactions between enhancers and promoters. In this work we define Enhancers-

Promoter protein-protein Interaction Network (EPIN) as the local interactome 

connecting a single promoter with all its interacting enhancers. EPIN interactions are 

facilitated by various types of intermediate proteins, such as co-activators (e.g., 

mediators), chromatin structural proteins (e.g., cohesin), and noncoding RNA-binding 

proteins. 

While protein-protein interactions (PPIs) have been extensively studied (1,2), the 

integration of chromatin architecture information, specifically through chromosome 

conformation capture (3Clike) techniques, with PPI analysis is still in its early stages. 

Joint investigations of chromatin loops and PPIs are crucial for prioritizing functional 

interactions (3). However, it is important to note that many of these studies often lack 

the necessary biological context at various levels. 

As of today, the characterization of context specific intermediate PPIs involved in 

disease pathways and their association with DBPs remains largely unanswered (4). 

Previous studies have highlighted the significance of disrupted E-P loops in several 

human disorders (5–7). In cancer, enhancers are frequently subject to sequence and 

structural variations, leading to the dysregulation of TFs and chromatin modifiers, 

which contribute to oncogenesis (8). Consequently, targeting these enhancer-driven 

mechanisms holds great promise for therapeutic interventions in cases such as 

Prostate Cancer (PrCa) (9). In this context, advanced techniques such as HiC and its 

derivative HiChIP (10), in combination with ChIP-seq, could enable the identification 

and characterization of specific chromatin interactions between enhancers and 

promoters. In particular, H3K27ac-HiChIP has emerged as a powerful tool designed 
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to detect and amplify E-P interactions and has been successfully employed to uncover 

susceptibility genes associated with cancer, including PrCa (11).  

To characterize protein interactions that take place at the E-P contacts, we developed 

the Promoter-ENhancer-GUided Interaction Networks (PENGUIN) approach. For 

each promoter annotated in the genome and covered by at least one HiChIP 

interaction, PENGUIN builds an EPIN by integrating several sources of information: 

(1) high-resolution chromatin interaction maps enriched for a marker of active E-P 

activity (H3K27ac-HiChiP); (2) tissue-specific physical nuclear PPIs; (3) high-quality 

curated binding motifs of protein-DNA interactions; (4) tissue specific gene 

expression, used as a filter of protein data.  

To prove the usefulness of our PENGUIN approach, we applied it to uncover EPINs 

in a PrCA cell line, androgen-sensitive human prostate adenocarcinoma cells 

(LNCaP), and validate our findings in comparison to a benign prostate epithelial cell 

line (LHSAR). PrCa is the 2nd most common cancer in men (12). Its distinct hormone-

dependent nature is characterized by high expression and frequent genetic 

amplification of AR. AR is a regulator of homeostasis and proteases transcription, 

such as KLK3 encoding PSA (Prostate-Specific Antigen).  

AR gene is also a principal therapeutically targeted oncogene in PrCa (13). Increased 

genetic instability resulting in chromosomal rearrangements and high frequency of 

mutations are deemed indicative of PrCa aggressiveness (14) for which there is need 

of ad hoc treatments (15). Recurrent mutations in FOXA1, involved in prostate 

organogenesis and regulator of AR transcription, have been observed in several 

populations (16,17). Hundreds of PrCa-associated single nucleotide polymorphisms 

(SNPs) have been identified by genome-wide association studies (GWAS), including 

genomic regions within tumor suppressor genes and oncogenes, such as MYC (18). 

However, the functional relationship between most of these SNPs and PrCa 

pathophysiology is unknown. This missing part of the picture, together with the 

growing evidence of abnormal transcriptional programs driven by genetic instability, 
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led us to investigate the role of chromatin architecture in PrCa. In particular, we 

focused on the nuclear proteins potentially involved in transcriptional regulation 

through the interaction of promoters and non-coding regulatory elements, enhancers. 

By clustering together promoters with similar EPIN structures, PENGUIN identified 

273 promoters whose genes are enriched in PrCa fine-mapped SNPs, known PrCa 

oncogenes, and ChIP-Seq-validated binding sites of transcriptional repressor CTCF. 

The proteins that populate such EPINs constitute putative PrCa-related factors, some 

of which have not been previously described to be associated with PrCa SNPs or 

oncogenes. Moreover, the EPINs detected by PENGUIN enable the characterization 

of distinct molecular cascades enriched in PrCa SNPs at E-P contacts. These 

represent new potential molecular targets in PrCa that cannot be identified through 

conventional analytical procedures, such as E-P contacts and GWAS overlap. To 

explore our results we made a dedicated server available at 

https://penguin.life.bsc.es/. 

Our methodology, focusing at the specific EPIN resolution level, reveals a new 

relation between 3D genome conformation and disease phenotype. This new relation 

allows PENGUIN to propose new directions in the molecular characterization of 

chromatin interactions as well as in the definition of potential targets for molecular 

screening towards disease treatment.



 

 

 

  



Annex III: Results 

265 
 

2. Results 

2.1. The PENGUIN framework 

PENGUIN builds EPINs by leveraging multiple sources of information. Specifically, it 

integrates diverse datasets: 

 (1) High-resolution chromatin interaction maps that capture active promoter-

 enhancer interactions, highlighting the dynamic nature of gene regulation.  

 (2) Tissue specific physical nuclear protein-protein interactions (PPIs), 

 enabling the exploration of the intricate molecular associations within the 

 nucleus.  

 (3) Curated binding motifs of protein-DNA interactions, providing insights into 

 the specific interactions between proteins and DNA. 

 (4) Gene expression levels, identifying active elements with the interaction 

 networks (Figure 1).  

With this comprehensive approach, PENGUIN reconstructs EPINs by clustering 

enhancers that interact with the same promoter based on PPIs. Each EPIN consists 

of three distinct types of nodes: promoter-bound nodes, encompassing proteins with 

DNA binding motifs present in the promoter region; enhancer-bound nodes, 

comprising proteins with DNA binding motifs in the enhancer sequences; and 

intermediate nodes, representing proteins that interact with either the promoter-bound 

or enhancer-bound nodes but lack direct DNA binding motifs on the promoter or 

enhancers.  

By integrating these diverse nodes, PENGUIN provides a holistic view of the intricate 

molecular landscape within EPINs. This approach enables the exploration of the 

interplay between DNA-binding proteins, enhancers, and intermediate proteins, 

shedding light on the regulatory mechanisms that shape gene expression and 

ultimately influence cellular functions. 
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Figure 1. General overview of the PENGUIN workflow and downstream analyses. PENGUIN input 

consists of HiChIP data (in this work, H3K27ac in LNCaP or LHSAR cell lines), tissue-specific nuclear 

protein-protein interactions, PPIs (in this work, cancer and normal prostate PPIs from IID database), 

curated DNA-binding motifs (in this work, motifs from JASPAR database), and gene expression profiles 

(in this work, RNA-sequencing data in LNCaP or LHSAR cell line). PENGUIN output consists of 

Enhancer-Promoter protein-protein Interaction Networks (EPINs). Downstream analyses are designed 

to address specific questions related to prostate cancer (PrCa), namely the identification of clusters of 

promoters based on EPIN similarity, their enrichment in distinct annotations (CTCF binding from ChIP-

seq peaks, PrCa associated SNPs, and PrCa oncogenes), and finally the formulation of mechanistic 

hypothesis based on SNPs path analysis. In the inset, we report a schematic representation of an 

enhancer-promoter protein-protein interaction network (EPIN) reconstructed with PENGUIN for a given 

E-P contact detected by H3K27ac-HiChIP. Promoter and enhancer DNA binding motifs found in 

HiChIP regions after enhancer prioritization and the corresponding bound proteins are indicated in 

orange; their physical interactions with other factors of the EPIN (in gray) are represented as gray lines. 
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2.2. PENGUIN identifies PrCa clusters of protein interaction based on 

chromatin contacts 

We leveraged 24,547 E-P contacts (30,416 after refinement and prioritization, 

Methods; Figure S1) identified using H3K27ac-HiChIP data in LNCaP, 810 binding 

motifs from 639 DNA-binding proteins, and 31,944 prostate-specific, experimentally 

validated, physical and nuclear PPIs (filtering out proteins from unexpressed genes, 

Methods; Figure S2) to construct 4,314 EPINs using the PENGUIN clustering 

approach outlined in Figure 2 (Methods). Each EPIN is centered around one 

promoter that we found to be contacted by a median of 4 enhancers, with a maximum 

of 93 enhancers for the promoter of the gene CRNDE (Table S1). Altogether, the 

4,314 EPINs contain a total of 8,215 interactions (edges) among a total of 885 

proteins (nodes) that are expressed in LNCaP (Methods). A mean of 36% proteins 

found in these EPINs are encoded by differentially expressed genes in LNCaP versus 

LHSAR (Methods and Table S1). Overall, 751 out of the 885 proteins represent 

intermediate nodes, with 127 of them acting both as intermediate and as DNA-bound 

nodes in different EPINs (Table S2). 261 unique DNA-binding proteins have predicted 

binding sites in at least one of the anchors of enhancers and promoters. A mean of 

32.8 (s.d. 11.5) distinct DBPs were identified per promoter anchor with SP1, EGR1, 

SP2 being the most represented; and a mean of 24.8 (s.d. 7.69) were predicted per 

enhancer anchor with SP1, IRF1 and TFAP2A being the most represented. A mean 

of 1.43 (normalized) promoters (0.88 s.d.) are shared among enhancers, with a 

maximum of 15 promoters for the same enhancer. To identify communalities and 

differences among the 4,314 EPINs in LNCaP, we performed an unsupervised, 

hierarchical clustering based on edge composition (Ward’s linkage method, 

Methods). Using this approach, we identified 8 clusters of promoters with specific 

networks (Table S1,Table S3, Figure 2 and Figure S3 and Figure S4). The decision 

to divide the hierarchical tree into 8 clusters was based on the analysis of cluster 

characteristics, achieved by varying the number of clusters (Figure 2C). 
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Figure 2. Clustering of the promoters originating the PENGUIN reconstructed EPINs. Clustering 

is based on edge composition of the EPINs. Leaf radius is proportional to network size. Color code 

(two-sided Fisher’s exact test): red, enriched; blue, depleted; The figure is generated using ETE3 68. 

(A) Enrichment of PrCa SNPs in enhancers. We identified one PrCa SNP enriched cluster (GWAS+; 

cluster 8), and multiple PrCa SNP depleted (GWAS-; clusters 1, 2) and neutral (GWAS=; clusters 3, 4, 

5, 6, 7) clusters. (B) Enrichment of CTCF ChIP-seq binding sites. We identified multiple CTCF enriched 

(CTCF+; clusters 3, 7, 8), depleted (CTCF-; clusters 1, 2, 6) and neutral (CTCF=; clusters 4, 5) clusters. 

(C) Clustering analysis on LNCaP (Top) and LHSAR (bottom) reconstructed EPINs. Pie-charts 

represent clustering results for a distinct total number of clusters used to partition the hierarchical 

clustering tree (4, 8, 16). Numbered pie-slices represent the different clusters, and their color gradients 

encode the significance of enrichment (shades of red), depletion (shades of blue) or neutral (gray) of 

the overlap with distinct annotations (ChIP-Seq CTCF peaks, predicted CTCF binding sites by FIMO, 

PrCa-associated SNPs from fine-mapping and GWAS). Clusters significantly enriched with previously 

known oncogenes are annotated with black arcs. All enrichments have been estimated using two-sided 

Fisher's exact test. 
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2.3. Characterization of PrCa clusters identified by PENGUIN 

We characterized the 8 clusters using PrCa specific annotations. We used the 

previously described 95% credible set of SNPs (henceforth referred to as PrCa SNPs) 

across 137 PrCa associated regions fine-mapped from the largest publicly available 

GWAS summary statistics (N=79,148 cases and 61,106 controls (19)). By comparing 

each cluster with all other clusters, we found a significant enrichment of PrCa SNPs 

in one specific cluster (cluster 8 or GWAS+ cluster; two-sided Fisher’s exact test, 

Methods). Interestingly this enrichment is exclusively due to SNPs in enhancers 

(Table 1). Our results show that E-P interactions containing PrCa SNPs are clustered 

together (red branches in Figure 2A) indicating that they have similar characteristics 

in the way their PPI networks are wired. We found that most pairwise interactions 

(67.5%, or 5,550 out of 8,215 edges) are found in all clusters but establishing different 

topologies.  

 

Table 1. Enrichment of PrCa SNPs in cluster 8 (GWAS+) when considering SNPs overlapping 

enhancers, promoters, either or both. 

We identified the protein interactions that are enriched in each cluster and estimated 

the significance of overrepresentation of each edge in a cluster compared to all others 

(Methods). GWAS+ cluster (cluster 8 in Figure 2; Figure S5) exhibits the lowest 

number of promoters and distinctive network characteristics (Table S3A, Figure S3). 

Nonetheless, per promoter, it displays the largest number of edges (p-value < 1e-16) 

and intermediate nodes (p-value < 1e-16), in line with its greater number of enhancers 

per promoter (p-value < 1e-16), see Figure S4. 
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We then assessed whether PENGUIN clustering was influenced by super-enhancer-

like regions sharing target promoters in given clusters. Although the distribution of 

enhancers per hotspots is similar among our 8 clusters (Figure S4G), the GWAS+ 

cluster has fewer single enhancers (enhancer at more than 15 kb from any other 

enhancer). The average number of promoters targeted by each hotspot for all our 

3,752 defined enhancer hotspots was 1.83 promoters targeted per hotspot. When 

measured considering only the promoters in given EPIN clusters, the values were: 

1.29 for cluster 1, 1.28 for cluster 2, 1.25 for cluster 3, 1.24 for cluster 4, 1.22 for 

cluster 5, 1.21 for cluster 6, 1.34 for cluster 7 and 1.27 for cluster 8. In this case, 

values were very similar between EPIN clusters. 

Moreover, the EPINs of the GWAS+ cluster have the lowest values of node-level 

centrality measures, namely betweenness and degree (Figure S3). The degree of a 

node measures the amount of connections it has, while the betweenness centrality 

measures the amounts of shortest paths that pass through it. Low values of 

betweenness and degree indicate a lower amount of connections among different 

nodes of the network. Betweenness and degree are significantly different across 

clusters (Kruskall-Wallis test p-value < 1e-16), but not with respect to the ensemble 

of all EPINs, which indicates that, despite the high number of shared pairwise 

interactions (67.5% of edges), the wiring of the cluster-specific EPINs are distinctive. 

Since CTCF is a major actor in the formation and maintenance of transcriptionally 

productive E-P interactions (20,21), we tested the clusters identified by PENGUIN for 

enrichment in CTCF binding. For this analysis we used CTCF ChIP-seq peaks, from 

the same cell line (LNCaP), from the ENCODE project instead of predictions based 

on DNA-binding motifs (Methods).  

We found that the enriched interactions with CTCF peaks, that we call CTCF+, cluster 

together (red branches in Figure 2C, Figure S5), suggesting that the presence of 

CTCF in chromatin interactions results in the formation of characteristic PPI networks 

between the promoter and its enhancers. 
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CTCF+ clusters overlap the GWAS+ cluster (Figure 2C, Figure S5), suggesting that 

CTCF mediated interactions could be more functionally relevant to PrCa. In particular, 

GWAS+ cluster (representing 6% of the total number of promoters considered) is the 

only one presenting the unique and significant enrichment in CTCF binding, PrCa 

SNPs, and oncogenes coincidentally (Table 2, Table S3 , Figures S5).  

Table 2. Enrichment of PrCa SNPs, CTCF ChIP-seq binding sites (“CTCF” in the header), and other 

PrCa annotations (oncogene promoters and PrCa SNPs from GWAS Catalog) across the eight clusters 

identified by PENGUIN. Cluster 8 is enriched in CTCF binding, PrCa SNPs, and oncogenes. Symbols 

code: +, enriched; -, depleted; =, neutral. OR: Fisher’s exact test Odds Ratio. 

This cluster is enriched in the Hippo signaling pathway (KEGG:04390) (Bonferroni-

corrected p-value=1.56e-3), WNT Signaling Pathway (KEGG:04310) (Bonferroni-

corrected p-value=9.57e-3) and Pathways in cancer (KEGG:05200) with genes such 

as BCL2L1, MYC, FOS (Bonferroni-corrected p-value = 0.047) (Methods, Table S5). 

Interestingly GWAS+ cluster, or any other cluster, did not significantly stand out in 

terms of overall expression level (Figure S2) or, notably, in terms of fraction of 

differentially expressed genes (Figure S2). 
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To explore the potential connection between our clustering approach and the 

presence of trans-eQTLs, we used the trans-eQTLs reported from the largest eQTL 

study available (large-scale meta-analysis in up to 31,684 blood samples from 37 

eQTLGen Consortium cohorts in Whole Blood, (22)) and defined a region an ‘eQTL 

hotspot’ when associated to more than 3 genes (Methods). We observed an 

enrichment of eQTL hotspots across all clusters (Figure 5SE, empirical p-value < 

0.0001), but not specifically for cluster GWAS+ (Figure 5SF).  

In conclusion, PENGUIN enabled the identification of a cluster of E-P contacts whose 

EPINs are uniquely enriched in PrCa SNPs, ChIP-seq CTCF peaks, and oncogenes 

(a.k.a. GWAS+ cluster or cluster 8, Figure 2 and Table 2). It should be emphasized 

that our findings demonstrate consistent results also when employing PrCa-

associated SNPs from the GWAS catalog, in which case we also identified cluster 8 

as significantly enriched (Methods, Table S6). 

2.4. Baseline comparisons and assessment of PENGUIN specificity 

Among the 273 promoters belonging to the identified GWAS+ cluster (cluster 8 in 

Figure 2A), 11 belong to known oncogenes, FOXA1, ZFHX3, CDKN1B, KDM6A, 

BRCA2, CDH1, CCND1, NKX3-1, BAG4, MYC, GATA2 (Methods).  

We compared enrichment of PrCa functional annotations in the reconstructed 

networks with and without inclusion of intermediate proteins. Including intermediate 

proteins allows increasing the number of retrieved PrCa-related oncogenes in 

GWAS+ cluster from 6 to 11 and increasing significance of enrichment indicating 

improved specificity (Table S4). We then compared our results with the simple 

overlap of the genomic regions of E-P contacts and known oncogene promoters [see 

Table S1, which also reports on the overlaps of E-P contacts with CTCF peaks (in 

both enhancers and promoters, see Methods), and PrCa SNPs (in enhancers)].  

In this scenario, only 30 promoters (12 overlapping the GWAS+ cluster) would be 

identified that overlap both PrCa SNPs and CTCF peaks. Of these, just 3 are 

promoters of known oncogenes (and only one, ZMYM3, is not in the GWAS+ cluster). 
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To explore the cell and disease-specificity of our results we applied PENGUIN on 

LHSAR, a benign prostate epithelial cell line. We performed H3K27Ac HiChIP 

experimental data and applied the PPI clustering procedure to explore functional 

relationships within the clusters. We then proceeded to apply PENGUIN to identify 

clusters of EPINs based on their edges (Methods). As the selection of an exact 

number of clusters in a given tree could be considered an important variable in our 

analysis, we examined various cluster numbers (4, 8, 16). We investigated the 

presence of cluster enrichment in GWAS and CTCF (Table S3B). Our analysis did 

not reveal any cluster enrichment in GWAS and CTCF within the benign prostate 

control LHSAR. Moreover, we did not observe a significant increase in the number of 

identified oncogenes in LHSAR (Figure 2B). These results lead us to conclude that 

PENGUIN, along with the integration of intermediate PPI networks, significantly 

enhances the identification of candidate PrCa-related SNPs affecting key elements in 

chromatin architecture. 

Despite the high similarity in PPIs between LHSAR and LNCaP cells (Jaccard index 

of 0.85), their clustering based on H3K27Ac HiChIP data revealed distinct EPINs 

(Figure 2B). This finding highlights the sensitivity of our method in capturing subtle 

differences within EPINs. To further validate this, we conducted additional statistical 

analyses on PPIs across different cancer cell types.  

By examining the overlap between PPI networks, we discovered significant variations 

that were highly specific to each cell type (Figure S6). This observation not only 

reinforces the reliability of the differences found in LHSAR and LNCaP cells but also 

suggests that our results can be expected in other cellular contexts provided the 

required H3K27ac-HiChIP information, which is currently unavailable in most cases. 

To further investigate the significance of intermediate PPI networks, we conducted 

clustering analysis exclusively based on HiChIP interactions. Specifically, we utilized 

the list of enhancer IDs, denoted by their genomic coordinates, within each EPIN 

(Figure S7).  
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Our findings unequivocally demonstrate that the exclusion of intermediate PPI 

networks substantially diminishes the number of identified oncogenes. This outcome 

strongly suggests that the information conveyed by the PPI network plays a crucial 

role in the classification of EPINs and their correlation with phenotypic traits. 

2.5. Involvement of E-P protein interactomes in tumor-related 

functional processes  

We analyzed the functional enrichment of the set of 885 proteins composing the 

universe of nodes used in the EPINs of LNCaP. 43 out of these 885 proteins are 

encoded by one of the 122 known PrCa oncogenes (32 intermediates, 7 DBPs among 

which MGA, ETV4, ETV1, GATA2, ETV3, ERF, NKX3-1, and 4 of both types among 

which TP53, MYC, FOXA1, AR; see Methods and Table S2). In total, 11 out of 885 

have been targeted by PrCa-specific drugs (source: DrugBank; protein targets: ESR2, 

ESRRA, AR, PARP1, NFKB2, NFKB1, NCOA2, NCOA1, AKT1, TOP2A, TOP2B; 

drugs: Estramustine, Genistein, Flutamide, Nilutamide, Bicalutamide, Enzalutamide, 

Olaparib, Custirsen, Amonafide); and 190 out of 885 are targets of non-prostate drugs 

indicating the possibility of re-purposing. 

Considering the genes encoding for 477 out of 751 intermediate proteins with 

annotations for KEGG pathways retrieved using g:Profiler (23), 41 were annotated in 

the prostate cancer pathway (KEGG:05215) (adjusted p-value = 3.62E-24), which 

annotates a total of 97 genes (Methods and Table S7). We next studied specific 

protein enrichments in the nodes of the EPINs of each identified cluster (Table S8). 

Although intermediates are ubiquitous and generally shared among all clusters, we 

could identify 22 significantly specific proteins enriched in the GWAS+ cluster 

(Methods).  

Functional enrichment analysis of these 22 proteins revealed significant relationships 

with tumorigenic processes (Table S9). KEGG Prostate cancer pathway 

(KEGG:05215) appears highly enriched (adjusted p-value = 1.27e-2) together with 

other pathways related to tumors such as Colorectal cancer (KEGG:05210, adjusted 
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p-value = 3.20e-5), Pancreatic cancer (KEGG:05212, adjusted p-value = 9.54e-4) and 

Breast cancer (KEGG:05224, adjusted p-value = 7.06e-4). KEGG pathway 

KEGG:04919 (Thyroid hormone signaling pathway) is an additional highly enriched 

pathway (adjusted p-value = 2.57e-4). Thyroid hormones have been previously 

described as modulators of prostate cancer risk (24–27). Pathway KEGG:05200 

(called Pathways in cancer) appears as the fourth most enriched KEGG concept 

(adjusted p-value= 3.63e-4). Other classical tumorigenic pathways, such as WNT 

signaling pathway (KEGG:04310, adjusted p-value = 1.27e-2) and TGF-beta 

signaling pathway (KEGG:04350, adjusted p-value = 8.21e-4) appear to be enriched. 

In this regard, recent studies analyzed the involvement of WNT signaling in the 

proliferation of prostate cancer cells (28,29), as well as the involvement and TGF-beta 

signaling (30,31). 

Furthermore, we examined the functional enrichment of significantly central proteins 

across all other clusters. This analysis was conducted to facilitate functional 

comparisons across different clusters (Methods ‘Functional gene set enrichment 

analysis’). This analysis revealed no enrichments for clusters 1, 2, 4, 5, and 6 (cluster 

5 does not have significantly central proteins). This observation can be attributed to 

the higher number of central proteins in these clusters (365 in cluster 1, 283 in cluster 

2, and 318 in cluster 6) compared to the other clusters (3 in cluster 3, 7 in cluster 7, 

and 22 in cluster 8). Despite having a similar number of significantly central proteins 

to cluster 8 (30 proteins), cluster 4 does not show any enrichment. 

Moreover, of the clusters presenting enrichments (i.e., clusters 3 and 7), only cluster 

7 presents enrichments related to those observed in cluster 8 (for example, KEGG 

prostate cancer pathway is enriched, adjusted p-value = 2.041e-2; Figure S8). As 

commented, cluster 7 presents only 7 significantly central intermediate proteins 

(CREBBP, CTNNB1, GSK3B, KAT5, MAPK1, PIN1, SMAD2), out of which, 6 overlap 

with those significantly central in cluster 8 (only PIN1 is absent). 
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2.6. SNPs path analysis in the E-P protein interactomes 

Next, we sought to perform an analysis of the SNPs found along the paths within each 

EPIN (Methods). In this analysis, a path in a network is a sequence of edges joining 

a sequence of nodes connecting the promoter and the enhancers of an EPIN (Figure 

3A). We distinguish between two possible scenarios based on the location of the 

SNPs within the paths:  

 (1) PrCa SNPs fall in the DNA binding motifs found in enhancers, indicating a 

 possible dysregulation of TFs binding and activity (Figure 3B). 

 (2) PrCa SNPs in the genomic regions of the genes that encode for the 

 intermediate nodes of the EPINs, indicating a possible alteration of the PPIs 

 (Figure 3C).  

The first analysis aims to identify the location of enhancers that could be targeted by 

genetic perturbation techniques such as CRISPR/Cas9. The second analysis aims to 

identify the proteins that are potentially affected by mutations so as to enhance our 

understanding of prostate cancer biology. Overall, we characterized all PrCa SNPs 

falling within any path that connects enhancers to a promoter (rs4962419 was found 

in both scenarios analyzed). In the following, we discuss the two scenarios and report 

on the MYC, CASC11 and GATA2 promoters as illustrative examples. 

2.7. Network paths with PrCa SNPs in enhancer binding motifs 

We sought to detect SNPs located in the DNA binding motifs found in the enhancers 

of the EPINs. Based on previous evidence (32,33), our hypothesis is that SNPs in 

enhancers could disrupt the binding of proteins such as TFs having an impact on their 

interactome. In Table S10 we list the 36 PrCa SNPs falling within 60 DBP motifs in 

enhancer regions linking 34 different promoters whose EPINs include 5,184 edges. 

Among these, we identified 17 PrCa SNPs falling within 16 EPINs (1,894 edges) 

belonging to the GWAS+ cluster that had at least one PrCa SNP in their enhancers. 
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Figure 3. Schematic representation of different types of network paths found in the EPINs 

reconstructed by PENGUIN. In general, a network path is defined by an intermediate protein (gray 

circle), encoded by a gene (dark red line; Genei), that interacts with DBPs (orange circles) with binding 

motifs (orange lines) on the enhancer (green line) and the promoter (red line) of another gene (dark 

red line; Genej) (A). If a PrCa SNP (asterisk) falls in the enhancer binding motif, the interaction between 

the DBP and the enhancer may be disrupted and possibly its interactions (B). If a PrCa SNP (asterisk) 

falls in the gene that encodes for the intermediate protein, the gene product could be affected and 

possibly its interactions (C). Colors are consistent with Figure 1. 

Several of these EPINs have promoters of differentially expressed genes (such as 

DLL1, STOM and SEC11C in the GEPIA tumor/normal dataset; ID2, RPS27, 

SEC11C, CASZ1, CRTC2, C5 and STOM in the LNCaP/LHSAR dataset; see 

Methods, Differential Gene Expression). 

To establish the biological significance of the identified SNPs, we leveraged data from 

previous pooled genome-wide CRISPR/Cas9 knockout and RNAi screens conducted 

in prostate cancer LNCaP cells, available in the DepMap database 

(https://depmap.org/, DepMap ID: ACH000977). These screens provide essentiality 

scores, which quantify the relevance of specific gene networks to the proliferation of 

LNCaP cells. In our analysis, we retrieved essentiality scores for genes in prostate 

tissue from DepMap and compared three distinct gene sets:  

 (1) The genes (EPIN promoters) prioritized in Table S10; 

 (2) All genes (EPIN promoters) included in our analysis and; 

 (3) All genes available in the DepMap database.  
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Remarkably, we observed significant differences in the essentiality scores (Z-scores) 

among these sets, with lower Z-scores indicating a higher degree of gene essentiality 

(Figure 4A). This analysis aligns with the RNAi findings, demonstrating a significant 

decrease in essential scores for genes containing the SNPs listed in Table S10 

(Figure 4B). Furthermore, the GSEA analysis unveiled a noteworthy enrichment (p-

value = 0.0017) for these EPIN promoters that harbor intermediate nodes with SNPs 

at their genomic location (as indicated in the supplementary Table S10) (Figure 4C). 

Among the top essential genes, the CRISPR/Cas9 and RNAi screens prioritize the 

following ones : GATA2-AS1, CASZ1, MYC, KRT8, GTPBP4-AS1, MFN2, CTBP2, 

and ID2. 

Finally, at the level of intermediate proteins, we also found some encoded by genes 

reported to be differentially expressed. We observed that the mean proportion of 

intermediates that are differentially expressed is on average 40% (Figure S4). We 

tested whether promoters belonging to the GWAS+ cluster were significantly enriched 

for intermediate protein encoding for differentially expressed genes (Methods). 

Among the 16 EPINs belonging to the GWAS+ cluster that had at least one PrCa SNP 

in their enhancers, 11 contain expression data to study potential direct effects of the 

SNPs. In this subset we found 4 EPINs differentially expressed in promoters (3 also 

differentially expressed in intermediates: CASZ1, ID2, SEC11C), and 4 EPINs only 

differentially expressed in intermediates: MIIP, MRPL14, MYC, TMEM63B (Table 

S1). The differential expression of intermediates makes it easier to identify interesting 

and potentially novel cases. For instance, MYC is not differentially expressed but it 

has differentially expressed intermediates. 

2.8. Network paths with PrCa SNPs in the genes coding for EPIN nodes 

In this analysis, we identify EPINs with PrCa SNPs falling within genes that encode 

either for intermediate or anchor bound nodes (Table S11), indicating a potential 

alteration of PPIs involved in E-P contacts.  
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Figure 4. Validation of SNPs prioritized by PENGUIN. CRISPR/Cas9 knockout and RNAi screens 

provide Z- scores to quantify the relevance of a specific gene network to proliferation of LNCaP cells. 

(A) CRISPR/Cas9 knockout analysis indicates that intermediate SNPs prioritized by PENGUIN occur 

in genes essential for LNCaP (significance calculated with Mann-Whitney test). Genes with the 

strongest effect are displayed. (B) RNAi analysis shows milder but significantly consistent results with 

CRISPR/Cas9 knockout. (C) Gene Set Enrichment Analysis (GSEA) indicates that SNPs prioritized by 

PENGUIN occur in the most essential genes identified by CRISPR/Cas9 knockouts. (D) GSEA 

indicates that SNPs prioritized by PENGUIN occur in the most essential ones based on the RNAi 

screen. for C and D, the statistical significance of the enrichment of a gene set within the ranked gene 

list is reported. 

We found that the GWAS+ cluster has the highest proportion of PrCa SNPs in these 

nodes compared to all other clusters (mean = 53.2, SE = 18.0, p-value <= 0.01, Table 

S12). The EPINs of STK40 and GATA2 promoters in GWAS+ cluster display the 

highest fraction of EPIN nodes with PrCa SNPs in their corresponding genes 

encoding them (Table S1). We use the SNP paths to link 172 PrCa SNPs falling within 

the gene bodies of 26 genes of which 7 are known oncogenes (MAP2K1, CHD3, AR, 

SETDB1, ATM, CDKN1B, USP28).  

We identify edges that are most enriched in our GWAS+ cluster which could be 

pointing to essential links between the gene encoding for the node and containing a 

PrCa predisposing SNP at a particular EPIN. For example, we identify the link 

between MDM4 containing SNP rs35946963 (PrCa p-value 1e-24) and TP53 (34) and 



Annex III: Results 

280 
 

between KDM2A containing SNP rs12790261 (PrCa p-value 1e-7) and BCL6 (35) 

and ARNT continuing SNP rs139885151 (PrCa p-value 3e-13) and HIF1A (36). 

We integrated information from pQTL associations between the 172 PrCa SNPs and 

protein levels (Methods). Two intermediate proteins (CREB3L4, MAP2K1) were 

associated with PrCa SNPs falling within the gene encoding for them (p-value of 

association with proteins were 7.75e-86 for CREB3L4 and 2.40e-5 for MAP2K1). We 

identified 3 out of 26 promoter EPINs (TRIM26, MEIS1, POU2F2) with suggestive 

evidence (p-value < 1e-5) of association between the PrCa SNP with the PENGUIN-

linked promoter EPIN, pointing to the cancer promoting mechanistic action of these 

variants: gene with SNPs in POU2F2 linked to the EPIN promoter of gene PHGDH 

(SNP with lowest p-value rs113631324 = 3.80e-8); gene with SNPs in TRIM26 and 

EPIN promoter of gene RRM2 (SNP with lowest p-value rs2517606 = 2.69e-7); gene 

with SNPs in MEIS1 and EPIN promoter of gene STOM (SNP with lowest p-value 

rs116172829 = 8.19e-6). 

We note that, unlike SNPs in enhancers, whose effect can be directly assessed by 

CRISPR/Cas9 or RNAi assays, the impact of SNPs on intermediate nodes is more 

complicated to estimate due to their shared involvement in multiple gene networks.  

In fact, it is worth mentioning that among the 885 proteins identified by PENGUIN, 

751 serve as intermediate nodes (section PENGUIN identifies PrCa clusters of 

protein interactions based on chromatin contacts). This overlapping functionality 

further complicates the prediction of SNP effects on these intermediate nodes. 

2.9. Examples: SNPs path analysis of MYC, CASC11 and GATA2 promoters 

From HiChIP data, the MYC promoter (chr8:128747814-128748813) is in contact with 

73 enhancer regions among which one holds the SNP rs10090154 (p-value of 

association with PrCa = 1.4e-188). This SNP is located in the binding motif of the 

transcription factor FOXA1 on the MYC EPIN enhancer. The integration of PrCa SNPs 

information highlights paths in the EPIN of MYC that are particularly compelling in the 

context of the disease (red line in Figure 5; Figure S9).  
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The promoter region of MYC binds 8 proteins TFAP2C, KLF5, RBPJ, SP1, ZBTB14, 

ATF6, ZBTB7A, PRDM1 and contains 17 protein interactors (dots in Figure 4) that 

might be affected by the possible disruption of its binding motif, namely, HMGA1, 

RCC1, TFAP4, NFIC, PBX1, HOXB9, NFIX, NACC1, RARA, PIAS1, RPA2, H2AFY, 

RECQL, SATB2, CREB1, AR. The gene encoding for FOXA1 is differentially 

expressed, along with other interactors (Table S10; Methods). Interestingly, 24 PrCa 

SNPs fall within the genomic region of AR (marked by an asterisk next to the gene 

name), all with p-values of association with PrCa below 1e-11 (Table S11).  

AR is targeted by several drugs used in the treatment of prostatic neoplasms, such 

as apalutamide, bicalutamide, diethylstilbestrol, enzalutamide, flutamide, and 

nilutamide (triangle in the Figure 4A, source: DrugBank). Notably, mutations in 

FOXA1 enhancers were previously shown to alter TF bindings in primary prostate 

tumors (33). And, also in line with our observations, FOXA1 enhancer region has been 

previously reported to be coupled to MYC (37) and has been shown to have a strong 

binding of AR (38). 

We report two additional examples, the EPINs for the promoters of CASC11 (Figure 

S10A) and GATA2 (Figure S10B). The EPIN of CASC11 promoter is also affected 

by variant rs10090154, the same well-known variant associated with risk of 

developing prostate carcinoma that we introduced with MYC EPIN (39,40) (Table 

S10). Interestingly, CASC11 is known to enhance prostate cancer aggressiveness 

and is regulated by C-MYC (41), while being close to the MYC gene on chromosome 

8. The promoter binds 6 proteins: TFAP2C, SP3, SP1, PKNOX1, NR2C2 and KLF5.  

Potentially affected protein interactors of the EPIN include: HMGA1, PIAS1, AR, 

RARA, and PBX1. GATA2 is an interesting case given its essentiality score from 

DepMap (Z-score=-7.01). Its EPIN presents up to 11 intermediates affected by PrCa 

related SNPs, namely TCF4, CTBP2, AR, ARNT, TCF7L2, CDKN2A, NEDD9, 

ANKRD17, MEIS1, MDM4 and CHD3. 
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Figure 5. Reconstructed protein interactions between MYC promoter and its enhancers. DBPs 

with binding motifs on the promoter region are aligned on the left, while those with binding motifs on 

the enhancers are aligned on the right. In the middle, proteins that connect DBPs through a shortest 

path. Each dot represents a protein. Color, size and shape codes are explained in the Tutorial section 

of the PENGUIN web service at https://penguin.life.bsc.es/. In this figure, only the edges of network 

paths with PrCa SNPs in enhancer binding motif are represented (orange lines). Such PrCa SNPs are 

indicated beside the name of the enhancer-bound DBP (e.g., FOXA1-rs10090154); PrCa SNPs in 

intermediate proteins are indicated with an asterisk (e.g., AR); the proteins found to be enriched in the 

GWAS+ cluster are highlighted in bold (e.g., PIAS1); druggable proteins from DrugBank are indicated 

as triangles. 

The role of GATA2 as mediator of AR signaling in AR-dependent prostate cancer, as 

well as its role as a potential target for treatment development (42) has been 

previously described, as silencing of the gene is known to affect other relevant genes 

such as C-MYC and AURKA (Chiang et al., 2014). Proteins bound to the promoter 

region include: ZBTB7A, ZBTB33, TCF3, SF1, NR2C2, KLF3, EGR1, E2F1 and 

CREB1, but most importantly, the EPIN presents AR bound to the enhancer region, 

which, as we pointed out with MYC EPIN, is the target of several PrCa treatments.     
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3. Discussion 

Here we introduced the PENGUIN approach that operates on the premise that the 

EPIN network structure connecting a promoter and its enhancers can serve as a 

distinctive signature associated with specific functional profiles and diseases. Our 

assumption is grounded in earlier research that has demonstrated the correlation 

between 3D loop topology and chromatin state or gene expression (43). We propose 

PENGUIN as a molecular approach to study variations in structural characteristics of 

chromatin loops, establishing a direct link to disease-related phenomena. By 

integrating the PPI network information, the method offers valuable insights into the 

underlying mechanisms driving these distinctive features and their relevance to 

disease progression. 

Previous approaches have already incorporated PPI networks with GWAS hits to 

enhance their analysis. For instance, Ratnakumar et al. (44) identified proteins that 

exhibited an enrichment of PPIs with GWAS hits. In a recent study, Dey et al. (45) 

demonstrated the benefits of employing strategies that capture both distal and 

proximal gene regulation in prioritizing disease-related genes. In addition, alternative 

methods have amalgamated information from 3D chromatin interactions and GWAS 

SNPs to establish connections between intergenic SNPs and gene regulation in 

cancer contexts (3,46,47).  

These approaches have contributed to unraveling the relationship between genetic 

variations, chromatin organization, and disease. In contrast, our method takes a 

unique approach by being completely agnostic to the presence of SNPs. It combines 

information from PPI networks and enhancer-promoter interactions derived from 

H3K27ac-HiChIP data within a unified framework. This integrative approach allows 

us to leverage both the protein interaction landscape and the regulatory interactions 

between enhancers and promoters, leading to a comprehensive understanding of the 

molecular mechanisms underlying disease. 
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By utilizing PPI networks, we were able to reveal a distinct set of genes associated 

with PrCa that would have remained undiscovered using other methods. Notably, the 

intermediate nodes within this PPI network possess intrinsic properties that can be 

leveraged for the classification and characterization of E-P chromatin loops. Thus, our 

study demonstrates the capability of PENGUIN to group genes based on their 

involvement in PrCa, even in the absence of any prior information.  

This breakthrough opens up an uncharted avenue towards comprehending and 

identifying unsuspected biological markers in disease. In particular, the genes 

identified within the cluster exhibiting the highest enrichment in SNPs associated with 

PrCa (the GWAS+ cluster) can be considered promising candidate oncogenes or 

potential partners of oncogenes. It is conceivable that these genes may share "onco-

enhancers," which are enhancers contributing to tumorigenic activity.  

For instance, PENGUIN can be used to identify trans-acting factors (e.g., interaction 

cascades of TFs and chromatin regulators) that could be targeted by drugs, or cis-

acting factors (e.g., DBPs with binding motifs in regulatory elements) whose DNA 

binding affinity could be modified through knock-outs via CRISPR for therapeutic 

intervention. Moreover, unlike traditional TF enrichment analysis which detects 

general enrichments of particular proteins, PENGUIN can help identify the specific 

protein cascade potentially disrupted at enhancer loci for the disease under study.  

Overall, our findings highlight the potential of PENGUIN in unveiling previously 

unknown gene networks and provide valuable insights into the identification and 

characterization of biomarkers in various diseases, including PrCa. 

To validate our findings, we have used cell-line specific datasets, androgen-sensitive 

human prostate adenocarcinoma cells (LNCaP) or a normal prostate epithelial cell-

line (LHSAR). Each of the sources of information could be directly or indirectly related 

to the specific cell-lines used in this study:  
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 (1) H3K27ac-HiChiP in LNCaP and in LHSAR; 

 (2) Prostate-specific PPIs; 

 (3) DNA binding motifs extracted from publicly-available datasets but filtered 

 by our cell-type specific interacting 1 kb promoter-enhancer regions and; 

 (4) gene expression on cell-line for filtering PPI networks.  

The comparison of the results in cancer cell-line (LNCaP) to the results in a benign 

cell line (LHSAR) support our PrCa cell-specific findings. In LHSAR we found a 

significant association between the obtained clusters and the presence of CTCF, 

pointing towards the correct classification of EPINs into biologically relevant 

categories. However, this same clustering in the benign LHSAR cell-line did not reveal 

any association to PrCA, neither at the level of PrCa-SNPs, nor at the level of specific 

oncogenes. Future analyses could explore the use of clustering E-P loops with 

PENGUIN using other methods and sources for each of these layers. For example, 

we have used as input enhancer-promoter loops cell-specific H3K27Ac HiChIP 

experiments (strict calling of loops and prioritization), to maximize our true positives 

in the input data. The input for the PENGUIN clustering approach can also be 

constituted by enhancer-promoter links measured from other experimental methods 

aside from HiChIP or even using computational methods. We leave this for 

subsequent analyses. 

In this work, we use a targeted approach and use the information on association of 

SNPs from fine-mapping as an annotation to our clusters. Specifically, we identify 

potential SNP paths from defined PrCa associated regions. SNP paths link genes in 

a network through a path that either starts from TF binding sites in enhancers or 

passes through proteins from the intermediate EPIN network that would have SNP in 

their gene bodies. This approach adds a new dimension in the contextualization of 

GWAS-associated SNPs using the EPIN looping realm. 
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It is important to mention our primary objective was to shed light on specific links that 

could be disrupted by PrCa-predisposing variants, such as CTCF bindings that 

connect promoters to their enhancers, or intermediate structural proteins that play a 

role in the E-P network. Further investigation is required to gain a comprehensive 

understanding of the biology and mechanisms underlying these crucial links. For this 

purpose, and to facilitate the exploration of SNP pathways associated with prostate 

cancer, we developed a user-friendly web interface accessible at 

https://penguin.life.bsc.es/.  

This platform serves as a tool for convenient investigation into the pathways 

influenced by SNPs in the context of prostate cancer. It is also intriguing to observe 

that, while PENGUIN successfully identifies clusters of EPINs significantly associated 

with PrCA, the gene expression analysis did not reveal any significant trends. At first 

glance, this observation may appear contradictory to our definitions of EPIN clusters 

and the core concept of EPIN itself. However, considering the evidence presented by 

our analysis, we believe that PENGUIN enables the detection of cancer associations 

with heightened sensitivity compared to traditional differential expression analyses. 

The ability of PENGUIN to capture intricate associations between EPINs and cancer 

surpasses the limitations of relying solely on gene expression changes, offering a 

more comprehensive understanding of the underlying molecular mechanisms 

involved in cancer development and progression. 

Our analysis comes with some caveats to keep in mind. Firstly, we relied on data from 

the HiChIP technique for capturing enhancer-promoter (E-P) interactions, protein-

DNA interactions from FIMO, and tissue-specific protein-protein interactions from the 

integrated interactions database (IID). The comprehensiveness of these datasets is 

inherently limited by the scope and constraints of the underlying databases and 

methodologies employed. Furthermore, our approach focuses on networks involving 

proteins with known edges, resulting in a consideration of only those proteins. 

Additionally, for the purpose of visualization, we have condensed the number of 
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reported proteins and have presented only one intermediate protein (expanded one 

edge away).  

Moreover, it is worth mentioning that our study focuses on E-P interactions within a 

stable environment (LNCaP cells), representing a snapshot in time. While this field is 

still undergoing active research and further exploration, existing literature suggests 

that E-P interactions can exhibit minimal and quantitatively small changes in these 

conditions. Thus, while interpreting our findings, it is essential to consider the 

limitations of the utilized databases and methodologies, the specific protein selection, 

the condensed visualization approach, and the stable cellular context in which the E-

P interactions were examined. 

In conclusion, the PENGUIN approach employed in this study to investigate PrCa in 

LNCaP cells has the potential to be applied to the study of other human diseases, 

given the availability of similar data. This approach can be extended to explore 

different scenarios, such as different cell types or combinations of GWAS data, 

offering a promising avenue for future investigations.  

For instance, utilizing E-P dataset from another prostate cancer cell line would allow 

the identification of target genes regulated by enhancers from diverse cell types. 

These target genes can be prioritized using a genome-wide collection of disease-

specific risk SNPs. The networks generated by PENGUIN provide a molecular 

understanding of the associations involved in cancer-related chromatin dynamics, 

making them well-suited for training advanced machine learning models like graph 

neural networks (GNNs). We propose potential intermediates in PrCa that engage in 

E-P networks within cancer cells and present opportunities for therapeutic 

intervention. High-throughput functional studies could validate the impact of genetic 

perturbations on thousands of enhancers simultaneously. As shown in our analysis, 

leveraging CRISPR-Cas9 technology would enable precise editing of specific 

genomic regions, facilitating targeted investigations and further elucidating the 

functional consequences of these genetic perturbations. 
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Methods 

Conformation capture and E-P interactions  

We used Hi-C followed by chromatin immunoprecipitation (HiChIP) targeting 

H3K27Ac in LNCaP cells (androgen-sensitive prostatic carcinoma cell line) across 5 

biological replicates including 1 billion reads as previously described (11) (Table 3). 

As a comparison, we also performed H3K27Ac HiChIP on LHSAR (Prostate epithelial 

cells overexpressing androgen receptor), across three replicates including 309 million 

reads. HiChIP, an efficient proteinmediated chromatin-conformation assay, was 

performed following the procedure described (10). The alignment, processing and 

loop calling from raw fastq files (paired-end data) was performed as previously 

described (11). Briefly, HiC-Pro (48) was used to map the HiCHiP trimmed reads and 

extract unique interactions; FitHiChIP (49) was used to identify significant interactions 

with a predefined set of peaks from H3K27ac ChIP-seq in LNCaP to refine accurate 

anchor ranges.  

 

Table 3. Genomic datasets used in the work. Data with no references was generated for this study. (*) 

Not from LHSAR but from human epithelial cells of the prostate. 

We used q-value < 0.01 and a 5 kb resolution and considered only interactions 

between 5 kb and 3 Mb as previously described (11). In this analysis, we restricted to 

a stringent global background estimation to reduce as much as possible the number 

of false-positive interactions. The corresponding FitHiChIP specifications used were 

“IntType=3” (the peak-to-all) for the foreground, meaning at least one anchor to be in 

the H3K27 peak, and “UseP2PBackgrnd=1” (the peak-to-peak (stringent)) for the 
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global background estimation of expected counts and contact probabilities for each 

genomic distance for learning the background and spline fitting. We identified 49,565 

significant interactions (FitHiChIP, FDR < 0.01) for LNCaP, and 12,053 for LHSAR. 

We categorized interactions by overlapping anchors with transcription start sites 

(TSS) and enhancers identified by H3K27ac ChIP-seq as previously described (11). 

Briefly, we first extended anchors by 5 kb on either side; we defined promoter regions 

around the TSS (+/- 500 bases) using RefSeq hg19 (see Data Availability); we defined 

enhancer regions using regions from H3K27ac ChipSeq in the same cell.  

Specifically, these were 49,638 and 53,561 enhancer regions, respectively from 

H3K27ac LNCaP in regular media (union of narrow and broad peaks) and from 

H3K27ac LHSAR. We note that the enhancer anchors at this stage of the analysis 

are of length 15 kb, due to 5 kb resolution of the HiChIP data analysis and additional 

5 kb padding added to anchors on either side. We labeled the promoters and 

enhancer regions that overlap either right or left anchors, and considered E-P if only 

one anchor overlaps a promoter and the other an enhancer region. For LNCaP, out 

of the 49,565 significant interactions, we considered 18,151 E-P interactions. For 

LHSAR, out of the 12,052 significant interactions, we considered 5,435 E-P 

interactions. It is important to emphasize that our study relies solely on enhancers 

defined by our own HiChIP experiments, rather than relying on annotated enhancers 

or external definitions from ENCODE. We further prioritized E-P interactions to 1 kb 

regions and discarded from enhancers the 1 kb bins with fewer HiChIP interactions 

with the promoter (see E-P HiChIP prioritization section). We obtain 30,416 and 4,497 

E-P interactions of 1 kb each for LNCaP and LHSAR respectively. The 15 kb original 

E-P interactions dataset contained a mean of 1.6 (1.3 s.d.) promoter anchors per 

enhancer anchor (after prioritization of enhancer anchor to 1 kb region, mean of 1.4 

(0.9 s.d.) promoters per enhancer). There were 11,127 (17,683 prioritized 1 kb 

regions) enhancer anchors in total; 7,341 (12,385 prioritized 1 kb regions) enhancer 

anchors are contacted by one promoter anchor with a maximum of 21 promoter 

anchors (15 using prioritized enhancer regions) sharing the same enhancer. 
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E-P HiChIP prioritization 

In order to reduce experimental artifacts in the context of our EPINs, we developed a 

specific prioritization method. This prioritization starts by normalizing the data 

assuming, as most used capture-C normalizations (ICE (52), Vanilla, or KR (53)) that 

all biases (e.g., GC content, number of restriction sites, mappability, or in the case of 

HiChIP, immunoprecipitation bias) can be corrected together. For this normalization 

step, we assume that there is a specific bias per any 1 kb genomic loci (see Figures 

S1A and S1B). This bias causes the difference between a theoretical expected 

number of interactions (Exy between loci X and Y) and the observed number of 

interactions (Oxy between loci X and Y). In this representation we can define a system 

of 9 equations involving three 1 kb loci in the promoter (exactly from TSS -1 kb to TSS 

+2 kb) and fifteen 1 kb loci on the enhancer side. This system of equations is then 

solved using Sequential Quadratic Programming (SQP) (54). The procedure is 

repeated in an overlapping window manner along the 15 kb of the enhancer, always 

against the target 1 kb of the promoter and its two 1 kb neighboring loci. Before the 

normalization step, we observed a different interaction pattern for interactions below 

10 kb (Figure S1C) due, in part, to the contiguity of restriction-enzyme fragments or 

chromatin persistence length. As these interactions may also be a source of bias in 

the construction of a PPI network, we removed them from our study. We applied the 

normalization to the remaining interactions and observed a better correlation between 

genomic distance and interaction count (Figures S1D). 

In order to compare with standard normalization procedure we applied the ICE 

normalization52 to our dataset (using TADbit (55) 1 kb resolution; filtering bins with 

less than 100 di-tags - 75% of the genome lost even using a threshold 10 times below 

the recommended (53)). Because of the sparsity of the genomic matrix the 

normalization did not fully converge (ICE was not able to completely balance the 

average di-tag counts per bin (52)). Next we applied the following normalization to our 

loops dataset, with few modification in order to rescue as much signal as possible: 1- 

in the promoter site, as our definition of promoter is exact (TSS to TSS +1 kb), we 
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corrected using the average of the two bins spanning over this 1 kb region 2- on the 

enhancer site, as most of the 1 kb loci were excluded by the normalization filter we 

also averaged the ICE bias over the whole region. Even with these modifications, only 

half the original data was recovered. However, the correlation between genomic 

distance and number of interactions was significantly improved with respect to raw 

data. Overall, the correlation value observed with ICE was similar to the one 

measured for our normalization (Figure S1E). We believe however that, for this 

dataset and for our methodology, our normalization procedure represents an 

improvement as it considers the exact promoter regions (not partially overlapping 1 

kb bins) and minimizes the loss of promoter-enhancer data. 

The normalized profile of interactions was finally used to prioritize the most interacting 

1 kb loci on the 15 kb enhancer (Figure S1F). The selected 1 kb regions are referred 

to as prioritized enhancer regions. 

DNA binding motifs 

DNA binding motifs were retrieved from JASPAR (Fornes et al. 2019), an open-

access database of curated, non-redundant binding profiles of DBPs (a.k.a. motifs) 

stored as position frequency matrices (PFMs). To detect the binding motifs, we used 

FIMO from the MEME-suite software (Grant et al. 2011), with p-value <= 1e-4 and q-

value <= 5e-2 cutoffs. JASPAR contains 810 DNA binding motifs of 640 proteins 

that overlap the E-P contacts identified with HiChIP. 

Gene expression data 

We assayed RNA sequencing (RNA-seq) in the cell line LNCaP and LHSAR for two 

replicates using the VIPER pipeline as previously described (11), and fragments per 

kilobase of transcript per million mapped reads (FPKM) values were calculated for 

20,114 RefSEQ genes. Genes with expression levels above the threshold of 0.003 in 

both replicates were considered in the entire analysis (Figure S2).  
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Depending on the dataset, this expression lower-bound may be modified in different 

use cases, for instance based on specific insights or based on a differential analysis 

between conditions. In this work, we used FPKM instead of more direct measures as 

we set our threshold very low and did not want to enrich our dataset with very long, 

virtually unexpressed, transcripts.  

Protein-protein interaction network 

We obtained protein-protein interactions (PPIs) from the Integrated Interactions 

Database (IID) (56). To better contextualize the interactome information, we 

combined the annotations of the PPIs from IID database with the LNCaP gene 

expression data. As for the IID annotations, we applied the following selection criteria. 

First we selected interactions annotated as “experimental” in the “evidence type” field 

and identified by at least two independent biological assays reported in the “methods” 

field. Then, we filtered only for interactions in the prostate or in prostate cancer cells 

and between nuclear proteins. Finally, we retain proteins whose gene expression 

levels were FPKM > 0.003 in both replicates (this cut-off removes ~30% of the genes). 

In total, 14,221 proteins from a pool of 20,111 human protein coding genes meet the 

gene expression criteria. The combination of the above filtering criteria (gene 

expression, using only nuclear, prostate cancer or prostate and experimentally by 2 

methods) resulted in an unweighted network of 31,944 prostate-specific nuclear 

PPIs among 4,295 proteins (56). 

Similarly, for the comparison with the LHSAR cell line we reconstructed the PPI 

interaction networks with PPIs from the same database (IID) having the following 

annotation criteria: “experimental” in the “evidence type” field and identified by at least 

two independent biological assays reported in the “methods” field. Then, we filtered 

only for interactions in the prostate cells and between nuclear proteins. Finally, we 

retain PPIs between proteins whose LHSAR gene expression levels were FPKM > 

0.003 in both replicates. In total 29,316 PPIs representing 4,363 proteins were used 
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for the EPIN reconstruction in the LHSAR cell line. The Jaccard Index between the 

two resulting PPIs between LNCaP and LHSAR is 0.852. 

The PENGUIN pipeline 

We set up graph-based approach, called Promoter-ENhancer-GUided Interaction 

Networks (PENGUIN), to reconstruct individual networks of protein interactions that 

might occur between one promoter (P) and its contacting enhancers (E), that we call 

E-P protein-protein Interaction Networks (EPINs). To reconstruct the EPINs, 

PENGUIN integrates information about chromatin contacts, protein-DNA binding, and 

protein-protein interactions (PPIs).  

For the case under study in this work (prostate cancer, PrCa), chromatin contacts 

information comes from H3K27Ac HiChIP of LNCaP cells (4,314 promoters and 5,789 

enhancer regions; see Methods, “Conformation capture and E-P interactions''), 

protein-DNA binding information (53,54) comes from the JASPAR database (810 

DNA binding motifs of 640 proteins; see Methods, “DNA binding motifs”), and PPIs 

information comes from the IID database (31,944 prostate-specific nuclear PPIs 

among 4,295 proteins; see Methods, “Protein-protein interaction network”) further 

filtered using LNCaP RNA-seq data (see Methods, “Gene expression data”). 

The reconstruction of EPINs follows these steps: for each E-P contact, (1) DNA 

binding motifs are detected in the corresponding sequences of promoter and 

enhancer regions; (2) a subnetwork of PPIs is selected containing all promoter-bound 

proteins, all enhancer-bound proteins, and all their intermediate interactors, with a 

maximum of 1 intermediate node between enhancer and promoter bound DNA 

binding proteins; (3) intermediate interactors are discarded if they only connect 

promoter-bound proteins or enhancer-bound proteins.  

Using the provided PrCa information, PENGUIN reconstructed 4,314 EPINs 

consisting of a total of 9,141 PPIs among 885 proteins of which 751 are intermediate 

proteins linking promoter-bound and enhancer-bound proteins. 
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Node centrality measures 

In several analyses we employed two measures of node centrality, namely 

betweenness and degree. Betweenness is a measure of centrality in a graph based 

on shortest paths. For every pair of nodes in a connected graph, there exists at least 

one shortest path between the vertices such that either of the number of edges that 

the path passes through is minimized.  

The degree of a node in a network is the number of connections it has to other nodes; 

the degree distribution is the probability distribution of these degrees over the whole 

network. 

Clustering EPIN 

We defined EPIN clusters by taking into account their edge content. Each edge 

consists of an individual pairwise PPI as defined previously. We collected the full 

universe of edges using all existent edges between all promoter EPINs (the union 

graph). Then we computed the distance between EPINs by counting the number 

edges shared over the total number of edges in our predefined universe of edges.  

Finally, we performed clustering using this distance matrix from all possible 

combinations of EPIN pairs. The clustering was performed using Ward’s linkage 

method. Each leaf in the obtained cluster represents a promoter EPIN. 

Identifying enriched functional annotations in EPIN clusters 

We performed two-sided Fisher’s exact tests on every single branch of the 

dendrogram representing the obtained hierarchical clustering. We evaluated the 

enrichment of any feature (CTCF binding sites by ChIP-seq, PrCa SNPs from curated 

GWAS, PrCa oncogenes) in the leaves under a branch of interest compared to those 

in the rest of the tree. For the enrichment in CTCF binding, we used CTCF peaks from 

an external dataset but in the same cell line (see CTCF ChiP-Seq peaks). We 

considered an EPIN to be CTCF-positive (CTCF+), if a CTCF peak was found in a 10 

kb region around its promoter and around 10 kb of at least one of its enhancer regions.  
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For the GWAS feature, we require the presence/overlap of a PrCa-associated SNP 

(see Genome-wide association data) in at least one of the enhancers of an EPIN. 

Two-sided Fisher’s exact tests were used to calculate the odds ratio (OR) and 

enrichment p-values for presence of PrCa annotations within the identified clusters. 

Druggability information  

We extracted information for target druggability from DrugBank (57). The use of each 

drug was obtained from the Therapeutic Target Database (58). We annotated each 

protein node that is a target of drugs that are assigned as Approved or under Clinical 

Trials (Phase 1, 2, 3) or Investigable for Prostate Cancer, as PrCa druggable.  

CTCF ChiP-Seq peaks  

CTCF ChIP-seq peaks for LNCaP cell line were retrieved from ENCODE51 project 

(https://www.encodeproject.org/) for the same Genome assembly, hg19 (GEO 

references: GSM2827202 and GSM2827203). Overlaps of the CTCF binding sites 

with enhancer and promoter anchors allowed a 10 kb gap between them. Since CTCF 

ChiP-seq peaks for LHSAR cell line were not available in ENCODE, we retrieved from 

ChIP Atlas (https://chip-atlas.org/) two distinct sets (GEO references: GSM2825573 

and GSM2825574) of CTCF peaks (of same Genome assembly hg19) for prostate 

epithelial cells at a q-value of 1e-10 (Table 3). We used these two sets independently 

and in concatenation when comparing the clustering results between LNCaP and 

LHSAR. These narrow peaks were mapped on the enhancer regions using the python 

package PyRanges (see “E-P contacts” section). For both cases, LNCaP and LHSAR, 

the narrow peaks were considered as the CTCF binding sites.  

PrCa SNPs 

To explore enrichment of SNPs associated to PrCa across the identified clusters, and 

to identify the SNP paths, we used the previously reported 95% credible set (11) from 

fine-mapping 137 previously-associated PrCa regions using a Bayesian statistical 

method PAINTOR (59) employing the largest PrCa genome-wide association studies 
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(GWAS) (N = 79,148 cases and 61,106 controls) (60). This set was composed of 

5,412 distinct SNPs (rsid). We will refer to these as PrCa SNPs. Note that this set 

also includes SNPs that do not reach genome-wide-filters of p-value significance. We 

illustrate the location of the associated PrCa regions and number of PrCa SNPs in 

Figure S11.  

We did not find a significant correlation between the number of PrCa SNPs in the 

regions and the number of PrCa SNPs we prioritized in this work (Pearson r=0.2, p-

value=0.06 and Pearson r=0.1, p-value=0.3 for Tables S10 and S11, respectively). 

We mapped the SNP location to prioritized enhancer regions anchor locations with a 

window of 10 kb. 518 out of 5,412 overlap our prioritized enhancer regions; 18 of them 

overlap our promoter regions. In total 218 prioritized enhancers and 14 promoters 

overlap a PrCa SNP. 

SNP paths (PrCa SNPs in enhancer binding motifs)  

A path in a network is a sequence of edges joining a sequence of nodes. We detected 

PrCa SNPs located in the DNA binding motifs in the enhancers, and identified the 

corresponding SNP paths (linked edges and nodes) for each EPIN promoter. For SNP 

paths analyses and the web-browser, we used all PrCa SNPs in the 95% credible set. 

There were 36 PrCa SNPs falling in enhancer binding motifs across clusters 3, 4, 5, 

6, 7, 8. To report the most interesting cases in the Tables and Results, we used the 

subset of those passing genome-wide significance of p-value for PrCa association < 

5e-8. There were 15 PrCa SNPs falling in enhancer binding motifs across clusters 3, 

5, 6, 7, 8. 

SNP paths (PrCa SNPs in intermediate proteins)  

We detected PrCa SNPs falling within genes that encode for intermediate nodes, and 

identified the corresponding SNP paths (linked edges and nodes)for each EPIN 

promoter. For SNP paths analyses and the web-browser, we used all PrCa SNPs in 

the 95% credible set.  
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PrCa GWAS enrichment using GWAS Catalog and comparison with 

other diseases  

This analysis had two aims: 1) explore whether we could replicate our finding and 

identify the GWAS enriched cluster using a different source for the GWAS; 2) to 

compare the GWAS signal for different diseases. We estimated enrichment of SNPs 

overlapping the enhancers in each of the identified clusters by exploring the NHGRI 

GWAS Catalog associations (61). First, we retrieved GWAS data and filtered the traits 

according to their “umlsSemanticTypeName” as defined in DisGeNet database (62) 

to one of the following: "Mental or Behavioral Dysfunction", "Neoplastic Process", 

"Disease or Syndrome", "Congenital Abnormality; Disease or Syndrome", "Disease 

or Syndrome; Congenital Abnormality", "Disease or Syndrome; Anatomical 

Abnormality".  

We considered only traits with at least 10 genome-wide-significant SNPs (unadjusted 

p-value < 5e-8). We mapped the SNP location to prioritized enhancer anchor 

locations with a window of 10kb. 104 diseases had SNPs overlaps and 17 of them 

have more than 10 SNP overlapping (Table S5). For each cluster, we tested 

enrichment of disease-associated SNPs using Fisher tests and considered significant 

p-value < 0.01 and OR > 1. 

Trans-eQTL hotspots 

We retrieved trans-eQTLs reported in the largest meta-analysis with up to 31,684 

blood samples from 37 eQTLGen Consortium cohorts in whole blood in (22). We 

grouped enhancers by collapsing when they were separated by less than 20 kb, 

thereby creating ‘enhancer clusters’. To qualify as a trans-eQTL hotspot, the 

enhancer clusters had to contain a SNP associated with at least 3 different genes. 

We quantified the normalized mutual information (NMI) between the hotspot-related 

enhancer clusters and our 8 EPIN clusters.  

In order to infer deviation from expected by chance and estimate an empirical p-value, 

we randomized 10 thousand times the association between each enhancer and its 
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corresponding EPIN cluster and computed the NMI between each randomized EPIN 

clustering and the observed hotspot-related enhancer clustering. Additionally, we 

checked if a given cluster was significantly enriched in trans-eQTL hotspots. For this 

purpose we applied a Fisher test to our pool of enhancers comparing the two 

contingencies, inside/outside a given cluster, and inside/outside a trans-eQTL 

hotspot.  

Oncogenes Gene list  

We used a previously identified list of 122 Genes ("PrCa_GeneList_Used.csv") known 

to be somatically mutated in PrCa oncogenesis (37 out of 4,314 promoters 

considered). As previously described (11), the 122 oncogenes are a set of prostate 

cancer–genes curated from three large-scale PrCa studies that show evidence of 

somatically acquired mutations, at both localized and advanced prostate cancer, 

known and recurrently altered in localized prostate cancer and metastatic prostate 

cancer. 

Super-enhancer-like regions 

We defined enhancer hotspots as groups of enhancers separated by less than 15 kb, 

and identified 3,752 enhancer hotspots using bedtools cluster. 

Enriched edges within each cluster  

Two-sided Fisher’s exact tests were used to compute odds ratios and p-values of the 

edges and nodes in the eight different clusters. Specifically, each edge or node was 

tested for presence/absence in a cluster compared to all others. Therefore, one edge 

or node can be enriched in one or more than one cluster, it cannot be enriched in all 

clusters. 

Enriched intermediate nodes within each cluster 

We computed protein importance for each cluster in terms of two network centrality 

measures: betweenness and degree. For each protein we obtain both betweenness 
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and degree specificity ratios in order to equitably quantify internal protein centrality 

differences between the clusters. For each of the found clusters we independently 

estimated the specificity of the observed protein centrality measures (“Betweenness” 

and “Degree”). For a given protein (Pi) in a particular cluster (Cj), we define the 

specificity as the ratio between the mean centrality value of Pi inside the fraction of 

networks belonging to Cj ; divided by the mean centrality value of Pi for the fraction 

of networks outside of the cluster Cj. 

Specificity ratio (Pi, Cj) = (mean (Pi centrality in Cj networks) + 1) / (mean (Pi centrality 

in non-Cj networks) + 1) 

We assessed protein specificity ratio significance for each cluster upon random 

network cluster generation. Aiming to assess the significance of the different 

specificity ratios for the proteins within each cluster, we developed a significance 

analysis test based on random cluster subsamplings. In order to compute the 

significance of a given protein specificity ratio (Pi) within a particular cluster of analysis 

(Cj), we performed 1000 random network samplings to produce random network 

clusters containing the same number of networks as the real cluster being analyzed 

(i.e., if the real cluster contains 100 networks, the random clusters generated will 

contain 100 random networks out of the 4,314 clustered networks). Within each of 

those 1000 random clusters, we compute the corresponding protein specificity ratios, 

with the p-value representing the probability of finding the protein specificity ratio to 

be higher or equal to the real value computed for the particular cluster of interest (Cj). 

We also performed Fisher tests to assess enrichment for the presence of the node in 

the cluster (Fisher test p-value < 0.01). EP300 was excluded from the enrichment test 

as the presence of that node was not significantly enriched (Fisher test p-value <0.01). 

22 proteins (SMAD2, KAT5, NCOR2, MAPK8, SMAD4, CREBBP, CTNNB1, PGR, 

HDAC3, HDAC2, GSK3B, UBA52, UBE2I, JUND, PIAS1, XRCC5, CDK6, XRCC6, 

MAPK1, FOS, HIF1A and MAPK3) were found to be significantly specific for both 

betweenness and degree ratios (p-value < 0.01 for both centrality measures and over-
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represented in this cluster using Fisher tests) and used as input for the functional 

gene set enrichment analysis presented as Table S9). 

We provide the full results of the centrality significance analysis for each cluster in 

github: 

https://github.com/bsc-life/penguin_software/tree/main/Protein_Significance_analysis 

Functional gene set enrichment analysis  

Functional enrichment analysis was performed using the g:GOST module from 

g:Profiler, a web tool to perform simultaneous gene set enrichment analysis across 

multiple biomedical databases (23). We query the web service using the R 

implementation available from gprofiler2 package. g:GOST performs cumulative 

hypergeometric tests of an input gene set against preprocessed database-specific 

gene sets. The code for this analysis is available as a Jupyter Notebook that can be 

accessed in github:  

https://github.com/bsc-

life/penguin_software/tree/main/gProfiler_GSEA/Supplementary_Tables_5_7_9_and_Sign 

ificantly_Central_Protein_Enrichment_Analysis.ipynb 

We set alternative backgrounds for the gene set enrichment analysis, depending on 

the analysis. For the analysis presented as Table S5, where we run the web service 

to test functional enrichment of the genes associated to the promoter networks from 

cluster 8, the background is set to the 4,314 genes associated with the clustered 

EPINs. For the analysis presented as Table S7, where we test for general functional 

enrichment of all different proteins forming the EPINs, we run the web service 

considering only annotated genes for the statistical domain scope. Finally, for the 

analysis presented as Table S9, where we test the functional enrichment of the 

significantly central (p-value < 0.01 for both degree and betweenness centrality) 

proteins of networks from GWAS+ cluster, the background is formed by the very 

limited set of 751 unique intermediate proteins forming the EPINs. We additionally 

provide, within the very same Jupyter Notebook, comparative dot plots presenting the 
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functional enrichment analysis of significantly central proteins of each cluster under 

Table S9 setting.  

Reported adjusted p-values correspond to Benjamini-Hochberg correction for multiple 

testing, with adjusted p-values ≤ 0.05 considered to be significant. Gene set 

enrichment analysis results are provided for KEGG pathways, Reactome, Gene 

Ontology, Wikipathways, TRANSFAC, miRTarBase, Human Protein Atlas, CORUM 

and Human Phenotype Ontology. For the enrichment analysis of significantly specific 

proteins of the GWAS+ cluster, we provided as input the 22 previously described 

proteins. For the enrichment analysis of the GWAS+ cluster, we provided as input all 

genes associated with the EPIN promoters in cluster GWAS+. 

Differential Gene Expression  

We integrated data from EPIN promoters with differential gene expression (DE) from 

two sources. DE analysis on prostate cancer tumor versus normal was downloaded 

from GEPIA: http://gepia2.cancer-pku.cn/#degenes, which use the TCGA and GTEx 

projects databases to compare gene expression between tumor and normal tissues 

under Limma, both under and over expressed. We used the default thresholds of 

log2FC of 1 and qvalue cut-off of 0.01. These data covered 84 out of 885 genes 

encoding for intermediates in PENGUIN and 413 out of 4,314 promoter EPINs. DE 

analysis of RNA-Seq on LHSAR (an immortalized prostate epithelial line 

overexpressing androgen receptor) versus LNCaP was performed as previously 

described. Briefly, RNA-seq data were processed using the VIPER pipeline (63). 

Reads were aligned to the hg19 human genome built with STAR. FPKM values were 

calculated with Cufflinks for 20,114 RefSEQ genes included in the VIPER repository. 

Differential expression analysis was performed with the DESeq2 R package (64). 

15,650 genes with DE data covered 884 of the 885 genes encoding for intermediates 

in PENGUIN and 3,286 genes out of 4,314 promoter EPINs. 

We annotated whether the EPIN promoters themselves and the genes encoding the 

intermediate proteins in our data were DE using either of the two databases. We 
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considered as DE those genes passing |log2 fold change| > 1 and adjusted p-value 

<= 0.01. For the LNCAP/LHSAR dataset, we could compute a Fisher test of 

enrichment of differentially expressed genes encoding for intermediate proteins within 

each EPIN promoter versus within the SNP paths (we could not compute this for the 

GEPIA since we did not have the full dataset of covered genes). The genes that were 

not passing these filters were considered non-DE and the genes not covered by the 

two datasets were excluded from the enrichment analysis described next. For each 

EPIN we calculated the fraction of DE intermediates within the SNP paths, and we 

estimated the enrichment of those compared to the fraction of DE intermediates in 

the full EPIN network.  

To find the enrichment of DE genes in SNP paths (PrCa SNPs in intermediate 

proteins) compared to those in the entire EPIN, we computed as enrichment the ratio 

of Fraction1 / Fraction2, where: 

Fraction1 = (number of DE intermediates within SNP paths) / (number of 

covered intermediates within SNP paths) 

Fraction2 = (number of DE intermediates the EPIN) / (number of covered 

intermediates in the EPIN).  

We identify as enriched EPIN genes those passing enrichment ratio 

(“enrichment_DE_deseq_SNP.bs.TF.path”) > 1. 

pQTL look-up  

We downloaded summary statistics with genome-wide association between SNPs 

and 4907 proteins reported in the deCODE study (Ferkingstad et al. 2021) and 

annotated with pQTL association the SNPs we identified falling in either in enhancer 

binding sites or in node genomic locations. The deCODE pQTL summary statistics 

data contained information on 4,907 proteins and 186 (201 PrCa SNPs out of the 213 

PrCa SNPs we looked up were in the data and 186 also matched by alleles). 808 out 

of the 4,314 genes promoters ("Gene_network") and 278 out of the 885 gene 
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intermediates (in total 997 out of 4,918 genes promoters and coding for intermediates 

in our networks) have information on associations with their respective coded proteins 

covered by the pQTL deCODE data. 

Gene dependency and gene effect metrics 

Gene Effect and Gene Dependency metrics were downloaded from the DepMap 

portal (https://depmap.org/portal/). We used both the RNAi (66) and CRISPR (67) 

datasets. 

Data availability 

RefSeq hg19 from UCSC Genome Browser is available at the following URL: 

http://genome.ucsc.edu/cgi-

bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db

=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionTy

pe=genome&position=&hgta_outputType=selectedFields&hgta_outFile Name=knownGene.gtf  

All EPINs and related statistics can be downloaded through the PENGUIN web 

service at https://penguin.life.bsc.es/. 

All the raw listed in Table 3, as well as the corresponding processed and metadata 

for LHSAR and LNCaP related to H3K27ac (HiChIP) and RNAseq have been 

deposited in GEO. CTCF ChIP-Seq data used in this work comes from ENCODE51 

with references GSM2827202, GSM2827203 for LNCaP and GSM2825573, 

GSM2825574 for the human epithelial cells or prostate that we use to infer CTCF-

bindings in LHSAR GSM2825573, GSM2825574. 

Code availability 

Source code of the related to the PENGUIN protocol is available at github: 

https://github.com/bsc-life/penguin_software.  

Source code of the related to the PENGUIN web service is available at github: 

https://github.com/bsc-life/penguin_analytics  
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R (v.4.2.0) and Python were extensively used to analyze data and create plots. 

biomart / ensembl from biomaRt package Ensembl hg19 data for overlaps of SNPs 

with intermediates.  

None of the authors have competing financial or non-financial interests.
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Supplementary Figures 

 

Figure S1: HiChIP promoter-enhancer loop prioritization. (A) Schematic representation of a 

promoter enhancer loop, where the promoter is represented by a 1kb bead surrounded by two neighbor 

beads, and the enhancer by fifteen 1kb beads. (B) Representation of the parameters taken into account 

to compute the expected number of interactions between a 1 kb loci from the enhancer and the 1kb 

loci from the promoter. (C) Correlation between the genomic distance between enhancer and promoter 

and the number of interactions. (D) Same as (C) but with data normalized by the strategy explained in 

B, (E) Same as (C) but with data normalized by ICE (F) Example of profile of raw interactions along an 

enhancer (top), and normalized interactions (bottom). Only beads highlighted in blue in the bottom plot 

would be used (prioritized) in the PENGUIN analysis.  
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Figure S2: General statistics on gene expression analysis. (A) Gene expression per cluster and 

per EPIN’s representative gene. (B) Fraction of differentially expressed promoter EPINs (DEG) in each 

cluster. Positive DEG in blue, negative DEG in red. (C) Distribution of expression, showing, per gene, 

the minimum value between the two RNA-seq replicates (methods). The red dotted line represents the 

threshold to consider a gene to be expressed. 
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Figure S3: Descriptive statistics on EPIN clusters. (A) number of EPINs per cluster, each EPIN is 

composed of one promoter and at least one enhancer. (B) Total number of DNA binding proteins 

(DBPs) potentially bound to enhancers (left), intermediate nodes from the PPI network between the 

promoter and its enhancers (center), and DBPs potentially bound to promoter (right), per EPIN cluster. 

(C) Centrality measures on intermediate nodes of EPINs per cluster. Namely betweenness (left) and 

degree (right); stars on the top indicate the degree of significance after a t-test test (*: p-value<0.0001). 
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Figure S4: Statistics on EPIN edges. (A) Number of edges per EPINs grouped by clusters (boxplots). 

(B) Same with enriched edges (Fisher enrichment test in one cluster with respect to the others, see 

methods). (C) Same as B filtered by edges containing a druggable (see methods) target protein. (D) . 

(E). (F). Significance levels depicted represent the same as in Figure S3. (G) Number of prioritized 

enhancers per enhancer hotspots. Hotspots are defined as groups of enhancers separated by less 

than 15kb. Dotted red line shows the proportion of enhancers that are isolated. The different panels 

show enhancers in the whole genome (left), and in each of our 8 defined clusters (smaller panes on 

the right). 
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Figure S5: Enrichment of EPIN clusters in biologically relevant features. (A) CTCF. (B) GWAS 

SNPs. (C) GWAS SNPs paintor. (D) Oncogene Odd ratio. In all panels, stars represent significance of 

a fisher test against all clusters (*: p-value <0.05; **: p-value<0.01; ***: pvalue<0.001; ***: p-

value<0.0001). (E) Relationship between trans-eQTL hotspots and the 8 clusters using the concept of 

normalized mutual information. We focused on enhancers derived from our EPINs, which were 

associated with trans-eQTL hotspots located within a proximity of less than 20kb. A relatively weak 

correlation coefficient of 0.0546 if found between the 8 clusters and the hotspots defined by their 

proximity to trans-eQTL hotspots. Randoms were generated by shuffling the association between 

enhancers and EPIN clusters. (F) We investigated whether a specific cluster exhibits a significant 

enrichment of trans-eQTL hotspots. For this employed a Fisher test, comparing two contingencies 

within our list of enhancers: those within or outside a given cluster, and those within or outside a trans-

eQTL hotspot. 
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Figure S6. PPI networks comparison. Statistical analyses on PPIs across cancer cell types available 

at http://iid.ophid.utoronto.ca/. Using the Jaccard index we studied the overlap between PPI networks 

observing significant variations that were highly specific to each cell type. The results show that the 

PPIs used in PENGUIN vary significantly depending on the cell types of interest. 
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Figure S7. Comparison between clustering based on full EPINs (blue) and using only HiChIP 

data (no intermediate PPI network) (red). For each clustering strategy, only the cluster most enriched 

in PrCa SNPs and CTCF peaks is used in the comparison. The comparison is conducted in terms of 

the proportion of known PrCa oncogenes in the two sets, considering various cluster numbers within 

the red set (2, 4, 8, and 16 clusters), and only one cluster set (8 clusters for the blue set). Each panel 

(A-D) illustrates a Venn diagram showing the intersection (purple) between the red set and the blue 

set, and the corresponding fraction of oncogenes as a bar plot. The fraction of oncogenes that are 

unique to the red set ("HiChIP only") is consistently lower than the fraction of oncogenes that are unique 

to the blue set ("EPIN only"). Moreover, when compared with 8 and 16 clusters of the red set, the 

fraction of oncogenes of the "EPIN only" subset is higher than the intersection, indicating a relative 

gain in oncogenes retrieval when PENGUIN is employed. The significance of the intersection was 

estimated with a hypergeometric test considering the union of the two sets as the background. 
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Figure S8. Functional enrichment analysis using g:Profiler to compare the central proteins 

across different clusters. Two databases of pathways were interrogated, WikiPathways (left 4 ), and 

KEGG (right 5 ). Overall clusters 1, 2, 3, 4, and 6 did not show any enrichments, possibly due to their 

higher number of central proteins compared to clusters 5, 7, and 8. Among the clusters with 

enrichments, only cluster 7 showed similarities to cluster 8, such as enrichment in prostate cancer 

(adjusted p-value = 2.0e-2). Cluster 8 also shows a significant prostate specific WikiPathway Androgen 

receptor network in prostate cancer. 
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Figure S9. PENGUIN web server. (A) Screenshot of the main page of the PENGUIN web server 

where the EPIN of the MYC promoter is visualized with SNP paths highlighted (orange, PrCa SNPs in 

enhancer binding motifs; green, PrCa SNPs in intermediate proteins; purple, both). (B) Example of 

displaying node filtering options based on gene expression (deregulated genes, DEGs, identified using 

Gepia resource, LHSAR versus LNCaP). (C) Option to download network and associated statistics for 

each of the over 4 thousands PrCa EPINs available. 
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Figure S10A. The CASC11 example. The EPIN of CASC11 promoter is affected by variant 

rs10090154, the same well-known variant associated with risk of developing prostate carcinoma that 

we introduced with MYC EPIN. The promoter binds 6 proteins: TFAP2C, SP3, SP1, PKNOX1, NR2C2 

and KLF5. Potentially affected protein interactors of the EPIN include: HMGA1, PIAS1, AR, RARA, 

and PBX1. The yellow lines represent the set of edges that bridge promoter-bound DBPs and 

intermediate proteins with enhancer-bound DBPs with PrCa SNPs falling in their binding motif. 
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Figure S10B. The GATA2 example. GATA2 EPIN presents up to 11 intermediates affected by PrCa 

related SNPs, namely TCF4, CTBP2, AR, ARNT, TCF7L2, CDKN2A, NEDD9, ANKRD17, MEIS1, 

MDM4 and CHD3.Proteins bound to the promoter region include: ZBTB7A, ZBTB33, TCF3, SF1, 

NR2C2, KLF3, EGR1, E2F1 and CREB1, but most importantly, the EPIN presents AR bound to the 

enhancer region, which, as we pointed out with MYC, is the target of several PrCa drugs. The green 

lines represent the set of edges that bridge promoter-bound DBPs with enhancer-bound DBPs through 

intermediate proteins with PrCa SNPs falling in the genomic region of the corresponding coding gene. 
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Figure S11. Fine mapped regions. x-axis illustrates 137 regions previously associated with PrCa; y-

axis the number of PrCa SNPs (95% credible set) in each region, across ALL (5,412 PrCa SNPs) in 

red. Color-coded parallel bars in green and blue illustrate the location of the PrCa SNPs identified in 

ST10 and ST11 and characterized by PENGUIN. No significant correlation (Pearson r=0.2, p-

value=0.06 and Pearson r=0.1, p-value=0.3, for ST10 and ST11, respectively) was identified between 

the number of PrCa SNPs in the regions and the number of PrCa SNPs we prioritized in this work.



 

 



 

 

 


