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Introduction: This study aimed to develop an individualized artificial intelligence
model to help radiologists assess the severity of COVID-19’s effects on patients’
lung health.

Methods: Data was collected from medical records of 1103 patients diagnosed
with COVID-19 using RT- qPCR between March and June 2020, in Hospital
Madrid-Group (HM-Group, Spain). By using Convolutional Neural Networks, we
determine the effects of COVID-19 in terms of lung area, opacities, and pulmonary
air density. We then combine these variables with age and sex in a regression
model to assess the severity of these conditions with respect to fatality risk (death
or ICU).

Results: Our model can predict high effect with an AUC of 0.736. Finally, we
compare the performance of the model with respect to six physicians’ diagnosis,
and test for improvements on physicians’ performance when using the prediction
algorithm.

Discussion: We find that the algorithm outperforms physicians (39.5% less error),
and thus, physicians can significantly benefit from the information provided by the
algorithm by reducing error by almost 30%.
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1 Introduction

During the last 3 decades, extraordinary achievements have been
obtained in the field of Artificial Intelligence (AI). AI has been able
to further improve its precision and the accuracy of its measures and
predictions, due to the introduction of boosting models and the
development of deep learning. Nowadays, AI has proven to be
capable of performing tasks that previously were thought only
humans could do (Fry, 2018).

Several disciplines have greatly benefited from these advancements
(Grover et al., 2015; Kato et al., 2015; Zou, 2020). In these regards, thefield
of Medicine has not lagged behind. Many algorithms have been born in
the recent years to help physicians improve their daily practice, mostly in
the area of diagnosis for heart disease (Chen et al., 2020a), emphysema
(Fischer et al., 2020), pulmonary nodules (Tandon et al., 2020), stroke
(Lee et al., 2017), skin cancer (Kubota, 2017), breast cancer (Chen et al.,
2010) or diabetic retinopathy in retinal fundus photographs (Gulshan
et al., 2016).

A great change in healthcare needs has been observed in the last
2 years. The coronavirus (COVID-19) outbreak has imposed a great
economic, political, social andmedical challenge. The urgency to attend to
an intense and sudden demand from COVID-19 has required a quick
adaptation in diagnosis and treatment strategies, mostly in critical care
intubated patients with oxygen therapy requirements. The saturation of
human resources and medical materials requires innovation in the
procedures and technologies used in patient management (Agazzi and
Velázquez González, 2020; Mannucci et al., 2020).

In this paper, we propose to use convolutional neural networks,
an innovative approach, to assess the severity of lung impact of
COVID-19 patients by using exclusively chest radiographs and
demographic patient data. Oxygen saturation is used to
determine lung function, as it is the strongest known predictor of
intensive care unit (ICU) use and death risk, with a relative weight of
20, 3%, once it is standardized by blood analysis data, comorbidities,
age and sex/gender. Thus, we can infer how differentials in oxygen
saturation correlate to lung health (Álvarez-Mon et al., 2021).

By using convolutional neural networks, the model identifies the
lungs and extract three variables: pulmonary air density, pulmonary area,
and presence of pulmonary opacities. These variables, selected to avoid a
black-box algorithm and help medical interpretability, together with age
and sex, are combined to assess the oxygen saturation level of the patient.

The main objective of the AI model is to determine the severity of
lung affectation in COVID-19 patients. Our algorithm is parametric and
fully interpretable, in contrast to other black box based approaches seen in
the literature (Arun et al., 2020; Zhu et al., 2020; Ebrahimian et al., 2021;
Mushtaq et al., 2021). Because of that we are able not only to achieve a
high accuracy, but also to provide an estimated of the relative importance
of each factor in the overall lung affectation.

Moreover, we undergo an experiment to find the best way of
physician-algorithm cooperation, delving into a yet to expand
field of how humans and algorithms can interact to attain better
outcomes. Hence, we propose and evaluate two ways by which the
model could help physicians to improve their diagnosis. First,
when providing only the score of the algorithm. Second, when
physicians get the score as well as the predictive variables used by
the model. Finally, the results of these experiments are analysed.

The paper is organized as follows. First, we present the patients
and methods used for the study. Then we present results of the

predictive model, comparing them with respect to the results
achieved by the human control group (composed by
4 radiologists and 2 internists) working alone and in the two
trials that include different inputs of the model. Finally, we
discuss our main results and conclude.

2 Patients and methods

2.1 Study design and patient’s cohort

The present study is designed as a two-stage study. The first
stage corresponds to an observational, analytical, retrospective
cohort study with longitudinal follow-up, to build an artificial
intelligence-based algorithm to diagnose the level of oxygen
saturation of a patient as a proxy of severity, based on
radiographic images of the lungs. The second part aims to
compare the performance of the model relative to a physician’s
control group (composed by 4 radiologists and 2 internists), and to
determine to what extend the combination of both (humans and
artificial intelligence) could lead to better results. The conduct of the
research and the dynamics of the study were carried out in
accordance with the STARD Guidelines (Cohen et al., 2016).

The study population consists of retrospective consecutive
recruitment of 1103 adult patients diagnosed with COVID-19
using polymerase chain reaction (PCR) test between March and
June 2020. All patients were treated at HM Group, a group of seven
hospitals in Spain. For each patient, available data consists of
electronic medical records with age, sex, and at least one lung
radiography taken within a 24-hours-time window before or after
a measurement of basal oxygen saturation.

2.2 Modelling methods

2.2.1 Image segmentation algorithm
To extract such information from radiographs, an algorithm

involving image segmentation to identify lungs was designed.
The algorithm is a four-step segmentation. First, a preliminary
identification of lungs is performed using a lung detection deep
learning algorithm. Second, given that the selected boundaries
tend to contain irregular shapes and separated segments, the
convex hull of the polygonal identification is computed. Third, a
matching of an ideal mask representing the average lungs is
performed on top of the previous prediction. Finally, a
combination of the three previous segmentation is used as the
final identification of the lungs. Next, we explain each of these
steps in more detail.

Firstly, to identify the lungs from a given radiography, a
Convolutional Neural Network (CNN) with U-net architecture
has been trained consistent with Mineo and Mader (Mader,
2019; Mineo, 2019) using chest images from two datasets, the
Montgomery County (Candemir et al., 2013) and the Shenzhen
Hospital (Mineo, 2019)These datasets have as a target lung
segmentation. Previous segmentation methods such as the work
of Novikov et al. (2017) (Novikov et al., 2017) train a CNN to also
segment the heart to detect better the lungs. However, since our
training datasets did not have heart segmentation data, we
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segmented only lungs and refine the predictions with the convex hull
and the ideal mask transformation. Our training strategy relies on
the strong use of data augmentation to improve the efficiency of the
available annotated samples from both datasets. All chest
radiographies are pre-processed inverting the radiographies
depending on their photometric interpretation, resized to
512x512 pixels and scaled to a 0–1 scale (i.e. 1 the brightest pixel
and 0 the darkest in order to standardize the image intensity in each
of the images). Data augmentation and pre-processing has been
created based consistent with previous work (Mineo, 2019;
Candemir et al., 2013). The CNN achieved over 90% binary
accuracy (defined as whether two pixels in the image match or
not) on both the training and validation data of both datasets.

Secondly, the convex hull (that it is, the smallest convex polygon
enclosing all the points of a given shape) of each of the two principal
components of the previous segmentation are selected. The convex
hull is performed using the OpenCV implementation of Sklansky’s
algorithm (Sklansky, 1982).

Thirdly, on top of the net prediction, it is found the best affine
transformation A that minimizes a similarity measure, the
enhanced correlation coefficient criterion between the
standard morphology of a lung selected from a very clear
chest radiography and segmented in detail by a group of
physicians and the net segmentation following the
optimization algorithm proposed by Evangelidis (Evangelidis
and Psarakis, 2008) as implemented in OpenCV (Bradski and
Kaehler, 2000). Since the sample of patients consists of adult
people (mean 66 ages, standard deviation 15 years, and a
minimum of 20 years), there is no need for a pediatric ideal
lung segmentation. Then, the standard morphology is

transformed according to A obtaining a third lung
segmentation. As a robustness check, this step was validated
by quantifying the amount of rotation in terms of the L2-norm of
the rotation matrix. Manual inspection of the distribution of this
value found that most of data lied in the 0–1 interval. In addition,
values greater than 2 were found to be outliers with an incorrect
lung identification and were dropped.

The final prediction of our algorithm is the weighted average of the
three previous steps. Optimal weights were found by themaximization of
the Jaccard index in a 10% resolution grid with respect to the manual
labelled data in the Montgomery County dataset (Álvarez-Mon et al.,
2021). These weights are 30% standard morphology, 60% U-Net
prediction and 10% convex hull. Figure 1 shows an example of the
different steps and its outputs of our lung identification algorithm. The
example shows how the CNN-U-Net prediction improved by the convex
hull and the transformed standard lungs (Match). Empirical results show
a decrease of a 10% of relative error on the labelled data from
Montgomery County Dataset (Candemir et al., 2013). Moreover, the
convex hull and the standard morphology helps the physicians, in the
sense that the output lung segmentation has a full lung shape instead of a
shape with holes on it. Details of the estimation of the sample size needed
to achieve a certain level of signification are provided in the appendix. In
particular, see Supplementary Table SA for this case where the
improvement has approximately an 80% significance (Supplementary
Appendix SA).

2.2.2 Oxygen saturation predictive model
Here we describe the variables used to build a predictivemodel of the

oxygen saturation of the patients, based on their radiographic images of
the lungs.

FIGURE 1
Lung segmentation of a 21-year-old male with adequate saturation level. Segmentation steps include the U-Net prediction, the standard lung
matching and the convex hull of the prediction. Results are combined into the final identification.
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2.2.2.1 Variables
For each patient, we have medical records including age, sex, and

results of basal oxygen saturation level at an interval of 24 h before or
after the radiology were taken.

2.2.2.2 Target
In the context of the first coronavirus outbreak (from March to

May 2020), four-level categories were established for the target of
our model, the oxygen saturation, as predictors of ICU admission or
death, based on our previous work (Álvarez-Mon et al., 2021).

1. Extremely low level corresponds to less than or equal to 80%.
2. Low level between 81% and 90%.
3. Medium between 91% and 94%.
4. Adequate to >94%.

The model target is then calculated as a transformation of the four
categories into a numeric value standing for severity. The severity is
constructed using the coefficients of the EM-8 model from a previous
study using the same data to predict the risk of ICU admission or death
(Álvarez-Mon et al., 2021). Specifically, coefficients 2.4006, 1.0468,
0.6528 and 0.0000 were assigned to extremely low, low, medium,
and adequate saturation, respectively. Assigning the same target
value to each patient of a group helps minimizing the variance of

the model error and better identifying different groups. Moreover,
having a high value for the extremely low patients helps the model by
improving the distinction of highly affected patients.

Pneumonia-affected lungs or low saturation lungs tend to present
visual signal in terms of overall brightness, lower transparency areas and
presence of brighter spots or opacities (Cura, 2011). Following this
evidence, three variables were computed from the lung segmentation
analysis, which are the pulmonary air density, the lung area and the
opacity area. These variables were also interesting to use as themodel has
medical interpretability, avoiding making it a black box for physicians.

2.2.3 Pulmonary air density
The pulmonary air density corresponds to the global level of air

density observable in the radiography. We estimate this value as the
difference of the median pixel intensity of the body and the median
intensity of the identified lungs. That is, computing the median pixel
intensity in the 0–1 scale of the body and the identified lungs, and
then performing the difference of such two values. For the difference
variable, the values are in the −0.6–0.5 range with an average value of
0.14 and standard deviation of 0.06. For healthier patients, this value
is expected to be positive, as the lungs appear darker than the rest of
the body in most radiographies. Figure 2 shows two examples of
images with opposite densities. Values are standardized with respect
to the average density of a healthy patient.

FIGURE 2
Comparison of radiographswith opposed values on the diagnosis variables. For each image, the patient’s data is included. Yellow boxes indicate lung
opacity detection. Image (A) corresponds to a 47-year-old woman, with medium saturation; (B) to a 53-year-oldman with adequate saturation; (C) to an
82-year-old man with extreme saturation; (D) to a 72-year-old woman with low saturation.
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2.2.3.1 Lung area
Lung area corresponds to the ratio of lung area with respect to the

total image, as detected by the lung segmentation algorithm. While this
value could be partially incorrect due to different zoom in the images, it
constitutes a good approximation of the lung area aswe show in the results
section. The values are in the 21.1%–50.2% range with an average value of
33.1% and standard deviation of 7.2%. Figure 2 shows two examples with
very different lung area.

2.2.3.2 Opacities
Opacities are brighter spots in the image that could correspond to

visual signal of pneumonia affectation. To detect lung opacities, a Mask
Region-based CNN designed by He et al. (He et al., 2017) was trained to
detect visual signal of pneumonia in medical images on the dataset
provided by the Radiological Society of North America (RSNA) (Mader,
2019; Mineo, 2019; Mader, 2019; Mineo, 2019). The dataset contains
30,000 images. In 6,012 of those images, 9,555 lung opacities were
identified and labelled, with their corresponding bounding boxes.
Training was performed following the open-source work of H.
Mendonça (2019) (Rsna, 2019) using the pre-trained weights with the
COCO dataset (Lin et al., 2014). All the hyperparameters and the training
strategy were replicated from his previous work, resizing the chest
radiographs to 256x256 pixels and using the same data augmentation
as a training strategy. The Mask placed top 10% on the RSNA
2018 Challenge R-CNN, and achieved a 20% mean average precision,
slightly below the bestmodel (25%mean average precision) (G. Shih et al.,
2019) (Shih et al., 2019).

In Figure 2 we compare radiographic images with clear visual signal
of opacities and healthier examples, with undetectable affectation.

2.2.2.3 Model and interpretation
The model consists of a multivariable linear regression estimated

through Ordinary Least Squares (OLS). The target is the numerical value
of the oxygen saturation levels, and the covariates were age, sex,
pulmonary air density, opacities and lung area. The model was trained
using 1578 radiographies from 892 patients, selected from a group of
hospitals withinHM, and tested with 374 radiographies from 211 patients
from another group of hospitals. The train and test datasets were selected
randomly using an 80%–20% split.

To interpret the model beyond the significance of the
parameters, we estimate the relative importance of each variable
included in the model, by modelling the oxygen saturation level in a
linear regression including the covariates stated in 2.2.2.1. and using
SHAP (SHapley Additive ExPlanation) values (Lundberg and Lee,
2017; Lundberg et al., 2018).

2.3 Experiment design for human-AI
collaboration to assess the diagnosis
predictive values

The experiment was performed in three parts. Each of them was
conducted on a set of 100 radiographs formed by 50 pairs of
radiographs of the same patient to evaluate both, oxygen
saturation (Extremely low, Low, Medium, or Adequate) and
evolution (Worsen, Stable, Improve) of the COVID-19
pneumonia affectation. Six physicians evaluated the saturation
level of the first 50 radiographs of each patient, and then they

evaluated the remaining 50 radiographs and patient’s evolution,
based on both radiographs, without sharing their answers with each
other, allowing us to check their diagnostic agreement.

Finally, a total of 900 radiographs from 450 patients were
evaluated by only two of the six physicians. Each physician
evaluated 300 radiographs from 150 patients for a total of
1800 evaluations. To avoid bias, the radiographs used for testing
the experiments had not been used previously neither for training
the model nor seen by any of the six physicians.

Experiment 1: Comparison of algorithm versus physicians without
assistance.

For the first sample of 100 radiographs, physicians only had
patients’ lungs radiograph and information about their age and sex,
without any guidance from the model output.

Experiment 2: Comparison of algorithm versus physicians with
assistance of the algorithm’s final score.

For a different sample of 100 radiographs, physicians had to
diagnose the saturation level as in the previous experiment, but they
also hadmodel’s predicted saturation level to guide their decision for
the final diagnostic.

Experiment 3: Comparison of algorithm versus physicians with
assistance of the algorithm’s final score and the diagnostic variables.

The last experiment consisted of a new sample of 100 radiographs,
where physicians had the same information as in the Experiment 2 and
other relevant information: a picture overlapping patient’s radiograph
identifying lungs’ area, a picture overlapping the radiograph identifying
lungs’ opacities, and a summary table with patients’ percentage of
opacities, lungs’ area and predicted saturation compared with the
mean values of healthy people of the same gender and age.

To assess the impact of the algorithm on physicians’ performance
depending on the level of assistance, we calculated the Root Mean
Square Error (RMSE) and the Area under the Curve (AUC; considering
the target as whether the patient has low or extreme saturation) of the
assessments made by the physicians in the different experiments and
compared with those of the algorithm. For unbiased comparison, the
algorithm was neither trained with the radiographs of the experiment,
nor retrainedwith physician’s answers.Moreover, since physicians were
asked to label the level of oxygen saturation in four groups, the
prediction of the model was also categorized by assigning a
threshold to each of the four categories of saturation, keeping the
original proportion of each label in the training set and the predictions.
That is, threshold values were selected tomatch the same proportions in
the predictions as in the original classes. Namely, we selected the
severity to be < 0.6 adequate, 0.6–0.8 medium, 0.8-1 low
and >1 extremely low.

2.4 Ethics and approval

This study was conducted according to basic principles of ethics
(autonomy, harmless, benefit, and distributive justice). The protocol
was in line with the standards of Good Clinical Practice and the
principles of the last Declaration of Helsinki (2013) and the Oviedo
Convention (1997). Ethics committee approval was obtained from
the University Hospital Príncipe de Asturias (HUPA-04062020).
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3 Results

3.1 Development of a diagnostic algorithm
for the assessment of pulmonary
involvement in COVID-19 pneumonia

We began our study by investigating the incidence of alterations
in the three elements of our model measurement in 1103 patients
diagnosed with COVID-19. The COVID-19 patients were stratified
according to their pulmonary functional severity as measured by the
oximetry they presented at the time of radiography (Table 1).
Specifically, 575 patients have only one radiography, while
528 patients have at least two radiographies; for a total of
1952 radiographies.

Table 2 shows the average value of the different values
according to the saturation levels of the different patients. For
better interpretability, data is standardized with respect to the
average healthy patient having adequate level saturation. The
percentages represent the existence of alterations in the
radiographs of patients in advanced stages of pneumonia with
respect to those with normal saturation. The mean age and the
percentage of female gender in each of the stages of COVID-19
pneumonia are included.

As shown in Table 2, it was observed that the detection of
alterations in the three variables analyzed in the model increased
with the severity of the functional repercussion of the patient’s
pneumonia. As expected, the lower the oxygen saturation, the lower
the density, the lower the lung area, and the higher the opacities. Of
note it was the marked increase in pulmonary opacity, reaching 89%
in the most severe forms.

To evaluate the severity of COVID-19 pneumonia on patients
based on chest-radiographs, we built a regression model to analyse
the importance of the five variables, which included the patient’s age

and sex, the surface area, density and opacity of the lung
radiograph with respect to the saturation estimate presented
by the patient. Older age, male, smaller the lung area and greater
the surface area with lung opacity were associated with lower
oxygen saturation. However, lung density was not significant.
We also calculated the predictive value, measured as AUC of the
model, on the diagnosis of saturation states below 81% and 91%
obtaining a score of 0.792 and 0.736, respectively on the
1578 images of the training dataset. The RMSE was 0.505
(Table 3). On the test dataset, consisting of 374 images, the
results have been found to be consistent, with an 0.779 and
0.724 AUC and a 0.603 RMSE.

It is important to highlight that the average inflation factor (VIF)
of the covariates was 1.20 and the maximum was 1.33 suggesting
that there was no evidence of multicollinearity.

Finally, to gain a complete understanding of the model
beyond the significance of the parameters, we estimated the
relative weight of each variable included in the model using
SHAP values Equation 1. Table 4 represents the relative
importance of each variable in the diagnostic severity model.
The highest relative importance is for Age (31.8%), followed by
opacity area (20.6%) and Lung area (22.8%). However, smaller
values of sex (16.0%) and pulmonary air density (5.8%) have
relative low importance.

TABLE 1 Description of the characteristics (%) for COVID-19 patients included
in the study.

Total patients (n = 1103)

Age (SD) 66.0 (15.6)

Female 38.2

Oxygen saturation extremely low 2.6

Oxygen saturation low 22.4

Oxygen saturation medium 43.0

Oxygen saturation correct 32.0

TABLE 2 Average values (%) of the study variables per saturation level. Gender is expressed as the percentage of women. For better interpretation, image
diagnostic variables are expressed in terms of deviation from the average healthy patient (hence, the 0% values in the adequate level).

Saturation (%) Age Sex (%) Pulmonary air density Lung area Opacity (%)

Adequate 96.0 59.6 52.1 0.0% 0.0% 0.0

Medium 92.7 64.9 32.1 −2.7% −3.6% 18.8

Low 87.3 69.0 30.9 −13.2% −5.9% 72.2

Extreme 77.8 78.3 25.0 −19.8% −15.4% 89.9

TABLE 3 Relationship of the model variables with oximetry. In a total of
1578 radiographs, the association of these variables was analyzed bymeans of
multiple linear regression with the figures obtained in pulse oximetry.
Estimated parameters of the models. Standard errors in brackets. AUC = area
under the curve, where the target is “Extreme” or “Low” saturation.

Estimates p-value

Age 0.0081 (0.0008) <0.0001

Sex −0.1329 (0.0283) <0.0001

Lung area −1.2367 (0.1858) <0.0001

Pulmonary air density −0.3690 (0.2188) 0.0919

Opacity area 0.8272 (0.1446) <0.0001

Train: Number of observations 1578 -

Train: RMSE 0.505 -

Train: AUC (Extreme or Low) 0.736 -

Test: Number of observations 374 -

Test: RMSE 0.603 -

Test: AUC (Extreme or Low) 0.724 -
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3.2 Diagnosis enhancement experiment

We investigated the potential diagnostic value as a unique or
radiologist support tool of our algorithm in the severity assessment
of radiological imaging of COVID-19 pneumonia. First, we analyzed
a total of 300 radiographs each interpreted by two different
physicians. For this assessment, physicians only had patients’
lungs radiograph and information about their age and sex.
Figures 3, 4 show that the predictive ability of the algorithm to
predict patient severity was significantly higher than that of the
individual physicians and even higher than the mean of those
performed by each pair. Comparison of algorithm versus
physicians without assistance.

We then investigated the impact of knowledge of the
application of the diagnostic algorithm on the radiologists’
assessment of severity. In 300 new radiographs examined by
pairs of physicians, we found that the predictive ability of the
patient’s oximetry was significantly lower both in the individual
physician analysis and when acting in pairs than that achieved by
the algorithm. However, there was a marked improvement in the
radiologists’ assessment. In assessment test 3, a similar approach
to test 2 was followed, with another 300 new radiographs, but the
physicians had both the numerical data and their graphical

representation. The results show that significant differences
persist in the predictive ability of the physicians with respect
to the algorithm, but the differences are attenuated and improved
with respect to the previous assessments.

As it can be seen, the algorithm outperformed the physicians in
the three experiments. Remarkably, physician’s performance
improved with the more the information they get from the
algorithm, but they were not able to surpass the algorithm. Even
if we considered the average of the predictions made by two
physicians (Figures 3, 4), the combined score cannot outperform
the algorithm alone.

3.3 Experiment to improve the diagnosis of
clinical evolution

We calculated the percentage of cases where the physician
evaluation of a pair of radiographs of the same patient at
different time, when presented individually, was not consistent
with the evaluation of patient’s evolution. For instance, this
would be the case when the physician initially diagnosed as
“Low” a radiograph of a patient, then 2 days later labelled as
“Extreme” a radiograph for the same patient, but when asked for
the evolution of the patient comparing the two images, answered
that the patient had a “Positive” evolution.

The inconsistency of intra-physician rating was considered
whether either the physician stated that the patient was “Stable”
in terms of evolution (when having the two radiographs at the same
time) but labelled the radiographs differently when assess them
separately (that is, for instance, labelled the first one as “Medium”

and the second as “Extreme”), or the physician stated that the
patient had a “Positive” or “Negative” evolution, but labelled the
radiographs as it was the opposite. In another words, the first
radiograph received a better label than the second one when

TABLE 4 Relative importance (%) of the variables in the total cohort of COVID-
19 patients based on SHAP values.

Age 31.8

Lung area 22.8

Opacity area 20.6

Gender 16.0

Pulmonary air density 5.8

FIGURE 3
Difference in RMSE with respect to the algorithm of the stratification made by the physicians only, and the mean of two physicians. Horizontal lines
represent the 95% CI of the difference. See Supplementary Table SA of the Appendix for the procedure to build the 95% CI.
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evaluated separately for “Positive” the evolution, or the other way
around in case she stated a “Negative” evolution. Due to the model’s
assistance, there is a 55.4% and 61.1% reduction of inconsistences
due to the assistance of the model (Table 5).

Regarding inter-physician inconsistencies, we calculated the
percentage of cases where the two physicians who evaluated the
same radiograph in the same experiment were not consistent
(i.e., their evaluations of the saturation level were different),
especially those cases with relevant inconsistences (i.e., two or
more saturation levels of difference). The results show a 25.9%
and 31.5% of inconsistences’ reduction, and 77.4% and 92.5% for
relevant inconsistences (Table 5).

4 Discussion

In this paper, first we develop an individualized artificial
intelligence model to help radiologists assess the severity of

COVID-19’s effects on patients’ lung health, including prediction
for fatality (death or ICU admission). Then we use the developed
algorithm to test different ways of physician-algorithm cooperation,
finding that, in this specific case, the algorithm outperforms
physicians (39.5% less error), and thus, physicians can
significantly benefit from the information provided by the
algorithm by reducing error by almost 30%.

In healthcare practice, the interpretation of radiological
images is subject to variations among the professionals who
perform them (Onder et al., 2021). Consistent with previous
studies regarding radiologic bias and human error (Singh et al.,
2013), we found a discrepancy in inter-observer and intra-
observer rating severity assessment of radiological imaging of
COVID-19 pneumonia among physicians of 60% and 6%,
respectively. In the case of discrepancies between two
physicians, there was a 13% discrepancy rate involving two or
more levels on the severity scale of COVID-19 pneumonia, which
could resolve in a change of the patient’s management. These
findings were similar to the discrepancies found in previous
studies (Buchanan et al., 2004; FitzGerald, 2005; Al-Khawari
et al., 2010; Cohen et al., 2020). In this regard, when assisted
by the algorithm, we found a large reduction in inter and intra-
physician discrepancies, meaning that the model assistance tends
to unify physicians’ decision on COVID-19 pneumonia patients’
diagnostic.

It is important to highlight that, besides achieving a higher
goodness of fit than physicians, the algorithm is also consistent, in
the sense that it always evaluates the images the same way. In
contrast, physicians are not that consistent, either with respect to
themselves in previous time (intra-physician inconsistencies) or
with respect to their colleagues (inter-physician inconsistencies),
as previously indicated.

Many previous studies compare the AI radiologic findings with
the Radiographic Assessment of Lung Edema (RALE) score, which
was designed to measure the extension and severity of acute

FIGURE 4
Difference in AUC with respect to the algorithm of the stratification made by the physicians only, and the mean of two physicians. Horizontal lines
represent the 95% CI of the difference. See Supplementary Table SB of the Appendix for the procedure to build the 95% CI. Please see comment on
previous figure regarding footnote.

TABLE 5 Intra-physician, Inter-physician and Physicians compared with
algorithm percentage of inconsistences (I, %) and relevant inconsistences (RI,
%) in each experiment. For experiments 2 and 3 also expressed relative
reduction of inconsistences with respect to experiment 1 expressed in column
“% diff”. For intra-physician, the percentage of inconsistences is estimated
over the 50 sets of two radiographs of the same patient (150 sets in each
experiment), while for the inter-physician is over the 100 radiographs (300 in
each experiment).

Intra-
physician

Inter-physician

I (%) % diff I (%) % diff RI (%) % diff

Experiment 1 6.0 - 60.3 - 13.3 -

Experiment 2 2.7 −55.4% 44.7 −25.9% 3.0 −77.4%

Experiment 3 2.3 −61.1% 41.3 −31.5% 1.0 −92.5%
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respiratory distress syndrome (ARDS) (Lundberg et al., 2018). In
our multicentre experience, this scale is rarely used in day-to-day
hospital practice, hence, we chose to let the physicians in our study
to determine the stage of severity based on their own professional
experience. This fact led to an increased variability in the human
radiologic report of results, but also correlates better with the
hospital reality.

In this work to identify the lungs from a given radiography, a CNN
with U-net architecture has been trained (Mineo, 2019) (Mader, 2019)
using chest images from two available datasets (Mineo, 2019) (Candemir
et al., 2013). These datasets have as a target lung segmentation. Thus, we
performed a novel analysis method that segmented only lungs and refine
the predictions with the convex hull and the ideal mask transformation
(Arun et al., 2020; Chen et al., 2020b;HuYuan andZhangming, 2020;Wu
et al., 2020; Zheng et al., 2020; Zhu et al., 2020; Ebrahimian et al., 2021;
Mushtaq et al., 2021; Roberts et al., 2021; Chao, 2023). Furthermore,
despite relying on deep learning for the segmentation of the lungs, in
order to increase the amount of trust a physician could have on the
predicted COVID lung disease prognosis, we decided to not rely on a
complete black box system. Thus, we decided to include only features
from the radiographs that can be understood from the medical
perspective and use them later as features for an interpretable model.
Other studies using AI to enhance chest radiograph COVID-19
diagnostics are black box based (Arun et al., 2020; Zhu et al., 2020;
Ebrahimian et al., 2021; Mushtaq et al., 2021; Yang et al., 2022). Other
published papers extract handcrafted radiomic features (Chen et al.,
2020b; HuYuan and Zhangming, 2020; Wu et al., 2020; Zheng et al.,
2020). All these papers aimed to predict patient prognosis, using
endpoints such as death, ICU admission, need for ventilation, or
progression to acute respiratory syndrome. None of the
aforementioned papers took the interpretability and understandability
of the AI models as a main objective. Conversely, at the opposite end of
the spectrum, in contraposition of the black box based AI, a new research
topic is emerging, known as explainable AI (XAI) (Ye et al., 2021; Wu
et al., 2020). In high responsibility fields such as medicine, the need of
understandable AI models is crucial for decision-making. Following this
emerging trend, the development of a parametric AI such as the one
designed in this study, not only considers the overall comprehensiveness
of the algorithm by its user, but the possibility to learn from the AI
become readily available for the physician using it. For instance, as a result
of this approach, we are able to know that demographic patient data (age,
with a 31,8% of relative weight, and sex, with a relative weight of 16%)
accounts for 47.8% of the weight in predicting fatality outcomes, and
radiographic variables for the remaining 52.2%. When focusing on
radiographic data, lung area becomes the most important predictor,
with a 22, 8% of the relative weight, followed by the total area of opacities,
with 20, 6%. Those two variables are extensively more important than
pulmonary air density, which accounts for 5,8% of the relative weights.
The capacity to measure the importance of a radiologic finding for the
patient’s outcome conforms a very useful tool for the radiologist and the
multidisciplinary patient’s management.

This suggests that the design of algorithms using clear
parametric data to achieve its results are better trusted by
physicians, and can help to learn, train and improve
physician’s performance. Unfortunately, in this study we did
not quantify the improvement in performance of physicians
without assistance before and after having interacted with the
algorithm.

Amongst the limitations of this study, it is important to remark that
this AI is not intended to replace the role of radiologists or the serialized
oxygen saturation tests. It was created as a complement to aim in the
management decision, as a tool to extract parametric radiologic
knowledge, and as an instrument to test better ways to enhance
human-AI interactions. Second, we did not test the accuracy of the
algorithm in non-COVID patients. Further research may verify its utility
in the assessment of other pathological contexts of lung affectation. Third,
we did not compare the performance of our algorithm versus other
algorithms. Another limitation arises when we try to compare our results
with other papers with similar objectives. For instance, in our study, using
demographic data, SpO2 and chest radiographs we reach an AUC of
0.736. In another study (Wu et al., 2020) with similar objectives as ours
(prediction of fatality as death or ICU admission), they found an AUC of
0.884, using CT scan, wider arrange of laboratory data and demographic
data. Another comparable study (Xie, 2020) in terms of defined objectives
of algorithm prediction, found an AUC of 0.862 using only CT scan data.
Yet another study found in the literature (Driggs, 2021), with similar
endpoints, reached anAUCof 0.880, based onCT scan, demographic and
other laboratory data. Any attempt to make a reliable comparison
between these studies becomes very difficult due to the use of
different population samples, different protocols of ICU admission
and different variables used in prediction model construction. As a
side note, despite the fact taht our model achieves a lower AUC than
the previously mentioned studies, we’d like to stress that our variables
(age, sex, chest radiograph and SpO2) are quicker to obtain and more
cost-efficient in an emergency room admission context, finding a similar
AUC than those other studies.

Finally, another limitation we should take into account is that our
database includes exclusively patients of the first COVID-19 wave,
which consisted mainly of elderly people. In the following COVID
waves other age groups were also affected. For this reason, our results
are mainly focused on older people. Characteristics of younger groups
may not be addressed in our algorithm.

In front of the many AI and COVID related papers that have
been published in the recent years, concerns about development
of AI in medical imaging have been raised and renewed (Chao,
2023). The need for checklists that guarantee the quality and
reproducibility of such AI models is of the utmost importance.
This study aspired to meet those requirements: robustness checks
were made, demographics of our data partitions was reported, as
well as the statistical tests used to assess significance of results, and
a multidisciplinary team of physicians, physicist and
mathematicians was ensembled for this project.

5 Conclusion

Additionally, it is important to note that the assessment of
COVID-19 severity based exclusively on radiographs is not
performed in the day-to-day hospital practice, and thus, further
research should be conducted to show if cooperation between
radiologists and algorithms in rutinary image diagnostics can
outperform the results of either one alone.

Finally, we can conclude that the use of models, visual and
numerical, generated by AI have been shown to be useful both in
improving the diagnosis of pneumonia severity and in decreasing
variability, becoming a useful aid for clinicians.
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