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Abstract. A new application of a fast CCD drift scanning technique that allows us to perform speckle imaging of binary stars
is presented. For each observation, an arbitrary number of speckle frames is periodically stored on a computer disk, each with
an appropriate exposure time given both atmospheric and instrumental considerations. The CCD charge is shifted towards the
serial register and read out sufficiently rapidly to avoid an excessive amount of interframe dead time. Four well-known binary
systems (ADS 755, ADS 2616, ADS 3711 and ADS 16836) are observed in to show the feasibility of the proposed technique.
Bispectral data analysis and power spectrum fitting is carried out for each observation, yielding relative astrometry and pho-
tometry. A new approach for self-calibrating this analysis is also presented and validated.
The proposed scheme does not require any additional electronic or optical hardware, so it should allow most small professional
observatories and advanced amateurs to enjoy the benefits of diffraction-limited imaging.

Key words. instrumentation: detectors – binaries: visual – techniques: interferometric –
techniques: high angular resolution – astrometry

1. Introduction

Over the last few years, CCDs have been used with increasing
frequency for speckle imaging. This work actually started more
than a decade ago with the work of Beletic & Zadnik (1993),
and has more recently been extended by Horch et al. (1997,
1999) and Kluckers et al. (1997).

There are three main reasons for this change. First,
CCDs have dramatically improved in terms of their readout
noise and speed characteristics. Second, it has been realized
that changing the readout pattern allows one to use large-format
CCDs effectively in speckle imaging. Finally, there has been
the hope that CCDs would allow diffraction-limited photome-
try in a way that intensified cameras, such as ICCDs and other
microchannel–plate-based devices have not been able to do up
to the present.

In this paper, we show that CCD-based speckle imag-
ing can be extended to a relatively inexpensive detection sys-
tem, namely the Santa Barbara Instruments Group (SBIG)
ST-8 camera, which in particular does not have the speed and
readout flexibility that other CCDs being used for the same pur-
pose have.

Fast drift scanning has already been shown to be a useful
technique for recording lunar occultations at millisecond sam-
pling rate (Fors et al. 2001, 2003).
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In the case of speckle observations, a fast drift scanning
acquisition scheme is adapted to meet the specific needs of
speckle imaging. The data are read out off the chip as fast as
possible, but with pauses in readout corresponding to the col-
lection of speckle patterns. In addition, we introduce a method
of self-calibration of speckle data in the Fourier plane which
makes possible to make reconstructed images without taking
data on an unresolved point source. Finally, we make some
recommendations which may be valuable for small observato-
ries or advanced amateurs should they wish to carry this work
forward.

2. Proposed technique basis

Fors et al. (2001, 2003) showed that fast drift scanning can
be applied to obtain high-resolution measurements by means
of lunar occultation (LO) observations. In that approach, the
occultation lightcurve was recorded by reading out every mil-
lisecond the small fragment of the CCD in which the object was
situated. This procedure was continuously maintained until the
occultation event took place.

In this paper we present a variation of the former acquisi-
tion technique. As in the LO approach, the telescope tracking
is turned on and the shutter remains open throughout the ob-
servation. To perform speckle imaging, the continuous column
readout is periodically interrupted by an amount of time which
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Fig. 1. Raw strip image of ADS 755 as observed when following the proposed technique. Specklegrams are 20 × 20 pixels in size and the
exposure time is 39 ms.

is the effective speckle frame exposure time. The resulting im-
age of this process is an arbitrarily long strip with a series of
speckle frames.

Of course, the camera spends some measurable time read-
ing out all columns of each speckle frame. As a result of that
unavoidable dead time between consecutive speckle frames, a
low-level streaking appears between speckle images. In gen-
eral, the importance of this effect will depend on the camera
specifications, namely digitization and data transfer rate.

The proposed acquisition scheme is directly applicable to
any full frame CCD camera for which it is possible to set read-
out column rate and size by software means. No hardware or
optical modification has to be made to the telescope to make
this technique possible.

Large format CCDs had already been used for speckle
imaging in the past by one of us (Horch et al. 1997). In that
approach, called fast subarray readout, ten to twenty speckle
frames were stored in a subarray strip of the KAF-4200 chip
until it became filled. Afterwards, the shutter was closed and
the whole subarray was readout. The proposed technique in
the current article exhibits one advantage and one disadvantage
with respect to fast subarray readout. On the one hand, one can
now obtain as many speckle frames as desired without period-
ically closing the shutter: it is not limited by CCD chip size as
in the subarray-readout mode. On the other hand, it is neces-
sary to read out all the columns of the CCD between consec-
utive speckle frame exposures. This yields a longer dead time,
which increases low-level streaking. However, it is likely the
dead time will be significantly reduced in the very near future
with new faster CCD cameras available on the professional and
high-end amateur market (see Sect. 6.1 for further discussion
on this topic).

The term fast drift scanning for both speckle imaging and
lunar occultations may seem somewhat ambiguous. In a strict
sense, term should only be used when the RA tracking drive
is turned off and, as a result, the imaged scene drifts over the
CCD chip at the same rate the column charge is clocked to-
wards the serial register. However, to be consistent with Fors
et al. (2001) we will adopt the same designation.

3. Observations

Speckle observations were conducted at the 1.5 m telescope
of the Observatorio Astronómico Nacional at Calar Alto
(Spain) in October, 2001. The same camera employed by LO
at Fors et al. (2001, 2003) was used. This is a Texas
Instruments TC-211 CCD, set inside an SBIG ST8 camera as
the tracking chip. It is a full frame front-illuminated CCD

with 13.75 × 16 µm pixels and a 192 × 164 pixel format. It
is read out through a parallel port interface and its electronic
module can be operated at 30 kHz with 12 electrons rms read-
out noise. The camera was directly attached at the Cassegrain
focus of the telescope without any magnification optics. This
configuration yields an effective focal length of 12 280 mm.

Four binary systems were observed during 5 nights (see
Cols. 1–6 in Table 1 for details), under median seeing condi-
tions of 1.3′′. Those objects were selected because they have
well determined orbits which allow us to validate the acquisi-
tion technique described in Sect. 2. Several speckle frame se-
quences were obtained for every object. Each sequence consists
of a few hundreds of frames.

All speckle observations were conducted with a
Cousins R filter (λ = 641 ± 100 nm). At this wavelength,
the diffraction-limited spot size is equal to 108 mas. On the
other hand, the scale calibration was carried out by means of
a standard plate solution of long exposure frames, and was
found to be 9.375 mas mm−1. Thus, our data is undersampled
and this will be taken into account in the reduction process
(see Sect. 4).

Data acquisition was performed using an implementation
of the proposed technique into a DOS-based program called
SCAN1. This program offers satisfactory relative timing accu-
racy when scheduling column readout at millisecond rates.

In CCD-based speckle imaging there is a competition be-
tween readout noise and atmospheric correlation time. On the
one hand, longer frame integration times give you more pho-
tons, which gives better contrast of the speckle pattern with the
readout noise. On the other hand, you lose speckle contrast if
too long frame time is used. Therefore, it is not just an instru-
mental readout limitation that forces us to use a frame time
longer than the correlation time, but it is desirable to minimize
the effect of CCD read noise.

In Fig. 1 we show a subset of a typical sequence of speckle
frames obtained by means of this technique. For this particu-
lar case, a 20-pixel column is stored every 1.8 ms on average,
yielding a dead time of 36 ms. This must be added to the expo-
sure time, 39 ms. Note that this is significantly larger than the
typical atmospheric coherence time for seeing of 1.3 arcsec,
which has been estimated at several observatories to be on
the order of 4−8 ms. The choice of this longer exposure time
and its consequences for data quality is justified and discussed
in Sect. 4.

1 Available at http://www.driftscan.com
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Fig. 2. A reconstructed image of WDS 00550+2338 = ADS 755 =
STF 73AB. North is down, East is to the right. Contours are drawn
at −0.05, 0.05, 0.10, 0.20, 0.30, 0.40, and 0.50 of the maximum value
in the array. The dotted contours indicate the value −0.05. The sec-
ondary star appears below and to the left of the primary, which is lo-
cated in the center of the image. The feature in the upper part of the
figure is not real and appears to be related to the mismatch between
the seeing profile of the binary observation and the radially generated
point source.

4. Data analysis and self-calibration

Once the raw data are read out of the camera, pixels around the
object of interest are extracted and converted to FITS format.
The FITS file is stored as an image stack where each image
contains a 20 × 20 pixel speckle pattern. Approximately 500
of such images are contained in the stack of a single obser-
vation. These files are then analyzed in exactly the same way
as described in Horch et al. (1997). Briefly, the method is to
subtract the bias level and the streak between images caused
by the readout scheme, and then to compute the autocorrela-
tion and low-order bispectral subplanes needed for subsequent
analysis.

In the case of reconstructed images, the relaxation tech-
nique of Meng et al. (1990) is used to generate a phase map
of the object’s Fourier transform, and this is combined with
the object’s modulus obtained by taking the square root of the
power spectrum. By combining the modulus and the phase and
inverse transforming, one arrives at the reconstructed image.
An example of such an image is shown in Fig. 2.

In the case of deriving relative astrometry of binary stars,
the weighted least squares approach of Horch et al. (1996) has
been used. This method fits a power spectrum deconvolved by a
point source calibrator to a trial fringe pattern and then attempts
to minimize the reduced chi-squared of the function. The un-
dersampling correction of Horch et al. (1997) is applied.

For all data discussed here, an estimate for an unresolved
point source power spectrum was constructed from that of a
binary star. This has the advantage of allowing binary star ob-
servations to be taken without interrupting for measurements
of the speckle transfer function. A synthetic point source es-
timate can be generated first by forming the power spectrum
of any binary (see Fig. 3), and then extracting a trace from the

Fig. 3. A surface plot of the power spectrum of one of the observing
runs for ADS 755. Note the fringe pattern due to binarity of the object.

Fig. 4. Power spectrum for a calculated point source following the
self-calibration scheme. Compared to Fig. 3, the central peak due
to seeing remains approximately the same and fringes in the speckle
shoulder are not present, as expected.

image along the central fringe. Since the binary is not resolved
along this direction, this is essentially a one-dimensional esti-
mate of an unresolved source. This one-dimensional function
is then rotated about the origin of the frequency plane to fill
a two-dimensional array. This generates a radially symmetric
function, as indeed a true unresolved source should show un-
der perfect conditions (see Fig. 4). The method has limitations
as we will discuss in Sect. 6.2 after the main body of results has
been presented, but provides a way to make the deconvolution
needed without recourse to point source observations.

As noted in Sect. 3, the speckle frame exposure time was
chosen to be larger than the coherence time. This choice is jus-
tified by the competition between readout noise and correla-
tion time when performing CCD-based speckle imaging. On
the one hand, speckle frames show the highest possible signal-
to-noise ratio when the integration time is in fact longer than
the coherence time. One of us (E.H.) has shown that 50 ms is
the exposure time where the maximum in the signal-to-noise
ratio occurs at the WIYN telescope, which uses a CCD with a
readout noise of 10 electrons. That probably implies a factor
of 4 to 5 larger than the coherence time (Horch et al. 2002). On
the other hand, in general speckle contrast decreases as longer
exposure time are used. Therefore, it is not just an instrumen-
tal readout limitation that forces us to use a frame time longer
than the correlation time, but it is desirable to minimize the
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Table 1. Double star speckle measures.

ADS Discoverer HD HIP WDS Date θ ρ ∆m

Designation (α, δ J2000.0) (BY) (◦) (′′)

755 STF 73AB 5286 4288 00550 + 2338 2001.8127 311.5 0.935 1.17 b

2001.8178 310.5 0.936 0.43

2001.8207 311.0 0.936 0.53

2616 STF 412AB 22091 16664 03344 + 2428 2001.8208 175.8 0.651 0.35 a

2001.8261 176.2 0.646 0.58 a

3711 STT 98 33054 23879 05079 + 0830 2001.8157 319.8 0.743 0.52

16836 BU 720 221673 116310 23340 + 3120 2001.8124 95.8 0.560 0.57 b

2001.8208 97.2 0.585 0.36

2001.8260 92.8 0.589 0.90 b

a There is an ambiguity of 180 degrees in the position angle compared to previous observations.
b Observation was taken at low elevation. This may affect the quality of the result.

Fig. 5. Comparison of cutoff frequencies of observed and simulated
1-D speckle transfer functions. The former (solid line) was generated
from the ADS 2616 point source. The latter represents the diffraction
limited power spectrum obtained at 641 nm using a 1.5 m aperture.
Three different values of the Fried parameter r0, 5 cm (dashed), 10 cm
(dotted), and 15 cm (dash-dotted), have been considered. Note that the
better the seeing, the larger r0 and so the higher the curve on the plot.

effect of CCD read noise, while still preserving sufficient con-
trast on speckle patterns.

In addition, interframe dead time contributes to low-level
streaking. However, note that the light contributing to streak-
ing is distributed far more uniformly and over more pixels than
those forming the speckle pattern itself. As a result, the ratio
between intensity peaks is much more favorable than the ratio
between dead time and atmospheric coherence time.

All this introduces attenuation in the higher frequencies of
our data. To illustrate how this affects resolution, a plot with
four 1D power spectrum curves has been made. As shown
in Fig. 5, one corresponds to an observed point source and the
other three to the diffraction limited spot one would obtain with
the instrumental conditions of current paper. The attenuation
factor used for generating such simulated profiles is given by:

A = 0.435(r0/D)2, (1)

where r0 is the Fried parameter and D the telescope diameter.
The 0.435 is a geometrical factor derived by Korff (1973) and
Fried (1979).

Ideally, the high-frequency portion of the speckle trans-
fer function should overlap to the simulated curve attenuated
with the r0 value which best matches the real seeing. However,
due to the significant undersampling of our data, the observed
power spectrum does not span up to the theoretical diffraction
limit (near ±10 cycles arcsec−1). It is worth mentioning that our
reduction software does account for the aliasing effect of the
undersampling and, in principle, is able to extract part of those
frequencies which are aliased to lower frequencies. However,
this last is somewhat limited by the low signal-to-noise which
these high frequencies show. Thus, we see that the impact of
longer exposure time is relatively small, and does not handicap
our data quality.

5. Results

In Table 1 we show all speckle measures obtained during our
five night observing run after applying the self-calibration anal-
ysis as explained in the previous section. Column headings are
as follows: (1) the Aitken Double Star number; (2) the dis-
coverer designation as it appears in the Washington Double
Star Catalog (WDS); (3) the Henry Draper Catalogue number;
(4) the HIPPARCOS Catalogue number; (5) the Washington
Double Star Catalogue number, which is the same as the po-
sition in 2000.0 coordinates; (6) the date in fraction of the
Besselian year when the observation was made; (7) the po-
sition angle (θ) with north through east defining the posi-
tive sense of the angle; (8) the separation (ρ) in arc seconds;
and (9) the magnitude difference as judged from the speckle
observations. Position angles are not corrected for precession
and are therefore valid for the epoch of observation shown.
Every (ρ, θ, ∆m) triplet in the table is the result of averaging
the result of 5 frame sequences, which were exposed within a
few minutes of each other. As indicated in the table, some ob-
servations were taken at low elevation. Note that position an-
gle, separation, and magnitude differences for these measures
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(b)

(c) (d)

(a)

Fig. 6. A comparison of the position angle and separation measures presented here with the work of other observers. In all plots, North is down
and East is to the right. In all cases, the object has an orbit listed in the 6th Catalog of Orbits of Visual Binary Stars (Hartkopf et al. 2003), and the
orbital trajectory is plotted. Observations of previous observers, compiled by Hartkopf et al. (2002), are marked with small plus symbols, with
a line segment drawn from the point to the ephemeris prediction for that epoch. The observations presented here are marked with the solid dots,
again with line segments joining the point to the predicted location given the orbital elements. a) WDS 00550+2338 = STF 73AB = ADS 755.
The orbit plotted is that of Docobo & Costa (1990), rated as a Grade 2 orbit in the Sixth Catalog. b) WDS 03344+2428 = STF 412AB =
ADS 2616. The orbit plotted is that of Scardia et al. (2002), rated as a Grade 3 orbit in the Sixth Catalog. c) WDS 05079+0830 = STT 98 =
ADS 3711. The orbit plotted is that of Baize (1969), rated as a Grade 3 orbit in the Sixth Catalog. d) WDS 23340+3120 =BU 720 =ADS 16836.
The orbit plotted is that of Starikova (1982), rated as a Grade 3 orbit in the Sixth Catalog.

appear discrepant from the rest of values. Therefore, the self-
calibration point source method should be used only at modest
zenith angles (less than thirty degrees, if no atmospheric dis-
persion compensation is performed). Further discussion about
this limitation will be given in Sect. 6.2.

In Fig. 6 we compare the obtained results with those from
other observers and the predicted orbit for each object. In
general, our measure orbit offsets are within the global scat-
ter of all other positions. Those that are farthest from the or-
bital ephemeris positions correspond, again, to observations
performed at low elevation. The point source calibrator in all
cases was generated from a high signal-to-noise observation
of ADS 755.

Assuming no major systematic errors, the total uncertainty
for the measures in Table 1 can be estimated by combin-
ing the uncertainty generated from night-to-night scatter when

using the same point source and the variation in the result ob-
tained by using different point source calibrators. Errors result-
ing from the fitting procedure are not considered since they
have been found to be an small fraction (∼5%) of the overall
uncertainty of a given measure of ρ, θ and ∆m. Although the
data set here does not permit definitive uncertainty estimates
due to the small sample of objects observed, we can nonethe-
less make first order estimates of these quantities. Firstly, we
obtain the night-to-night scatter (σnn) by computing the stan-
dard deviations of the two objects in Table 1 with the largest
number of observations, and averaging those two quantities.
Secondly, we estimate point source error (σps) by making use
of the values in Table 2, which are also displayed in Fig. 7.
This table includes (ρ, θ, ∆m) results obtained when using dif-
ferent point source calibrators for one single speckle sequence.
The average of the two rows designated as σ represents an
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Table 2. Comparison of results obtained with different point source power spectra.

ADS Discoverer HD HIP WDS Date θ ρ ∆m

Designation (α, δ J2000.0) (BY) (◦) (′′)

755 STF 73AB 5286 4288 00550 + 2338 2001.8207 311.7 0.939 0.76

2001.8207 312.5 0.945 0.98

2001.8207 311.7 0.936 0.73

2001.8207 311.1 0.938 0.59

σ 0.6 0.004 0.16

2616 STF 412AB 22091 16664 03344 + 2428 2001.8261 178.4 0.674 0.58

2001.8261 174.5 0.642 0.31

2001.8261 176.2 0.664 0.23

2001.8261 173.5 0.634 0.35

2001.8261 178.4 0.672 0.70

σ 2.2 0.018 0.20

(a) (b)

Fig. 7. Comparison of astrometric results using different point source calibrations. Point sources generated from observations of ADS 3711
and ADS 755 were used in both cases. The plot symbols and orbital trajectories are the same as in Fig. 6. a) WDS 00550+2338 = STF 73AB =
ADS 755. b) WDS 03344+2428 = STF 412AB = ADS 2616.

estimate of the point source error for one observation (σps
1 ).

Whereas, (ρ, θ, ∆m) derived in Table 1 proceed from 5 consecu-
tive speckle pattern sequences. As a result, to obtain a σps fully
comparable with σnn, σps

1 has been divided by
√

n − 1, n = 5.
Finally, assuming statistical independence, we obtain

the following expected uncertainties in each coordinate by
adding σps in quadrature with σnn:

Position angle: σθ = 1.5◦;
Separation: σρ = 0.017′′;
Magnitude difference: σ∆m = 0.34 mag.

The separation number is very similar to the result in Douglass
et al. (1999) (US Naval Observatory obtained speckle results
with σρ = 0.018′′ using 66-cm telescope). However, σθ is
higher in our case (Douglass et al. obtained 0.57◦ for a 1′′ sep-
aration, although 1◦ is a typical uncertainty in well-calibrated

speckle work). σ∆m is probably large because of the small win-
dow used and self-calibration technique limitations.

As stated above, the point source from ADS 755 was used
for the analysis of all objects. To find the degree of validity of
this assumption, and to determine how significant the change
in atmospheric conditions is, we have divided the point source
1D power spectrum of ADS 755 by those from ADS 16836
and ADS 755, obtained on different nights. Ideally, the result-
ing curves should be constant and equal to unity for all fre-
quencies. As shown in Fig. 8, the curves appear to be quite
flat over the whole frequency domain. Only marginal residuals
in the range of seeing wings are visible for the two upper plots.
Those are due to region of the seeing peak not being considered
when the power spectrum fits are performed. The information
in Fig. 8 is complementary to what is shown in Table 2.
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Fig. 8. Comparison of 1D point source power spectrum of ADS 755
on the 5th night of observation with respect to: a) ADS 16386 on
5th night; b) ADS 16386 on 6th night; c) ADS 755 on 2nd night;
and d) ADS 755 on 4th night.

6. Discussion

6.1. New CCDs improvements

The performance of the fast drift scanning technique depends
on camera readout rate, which directly fixes the minimum dead
time attainable. If this is excessive, streaking could handicap
the scientific usefulness of the data. In general, the readout rate
of a camera will depend on its digitization level and data trans-
fer rate. The digitization rate is fixed by CCD microcontroller
design and digitization depth. The data transfer rate is spec-
ified by the port architecture being used between the camera
and computer.

In the case of the camera used in current paper, its read-
out rate of 30 kpix s−1 can be considered as moderately low
compared with CCDs currently in the market. The fact that it is
controlled through parallel port interface fairly limits the final
readout rate. This is not surprising, since SBIG-ST8 was de-
signed for general CCD stare imaging purposes, where a long
download time was not the main concern.

However, in the last few years, technologies directly re-
lated to CCD performance have undergone significant devel-
opments. Taking into account only those which apply to full
frame CCDs, i.e. the type used most in astronomy, we can con-
sider the following advances:

• readout noise, which has been continuously dropping in all
kind of cameras. Still on the edge of the professional market,
the recently available L3Vision technology is able to offer
cameras with sub-electron readout noise (e2v Technologies,
2002);
• multi output CCD, which increases the frame rate by divid-

ing the data stream to be readout into several channels;

Table 3. Data transfer rate for different port architectures.

Type Data transfer rate

(Mbit s−1)

Serial 0.115

Parallel Port EPP/ECP 0.5–1

Firewire 200

USB 2.0 480

Ethernet 10/100/1000

• new data transfer interfaces, which have noticeably in-
creased the throughput in comparison to parallel port (see
Table 3). Apogee (2003), SBIG (2002) and Ethernaude
(2001) constitute recent examples of this improvement, with
the application of USB 2.0 and Ethernet interfaces to CCDs
in the high-end amateur market. These kinds of initiative can
supply readout rates typically 10 to 30 times faster than that
offered by our port-parallel camera.

Therefore, the benefits to the fast drift scanning technique from
all CCD improvements above are straightforward. On the one
hand, lower readout noise will increase the SNR of the speck-
legrams. On the other hand, a faster readout rate will certainly
decrease dead time and, as a result, low-level streaking between
speckle frames would be effectively reduced.

6.2. Limitations of the self-calibration technique

The self-calibration method used here cannot be used in all
situations. Indeed, the principal limitation is due to the zenith
angle. As the zenith angle increases, the dispersion of the atmo-
sphere elongates the speckles so that the speckle transfer func-
tion is no longer radially symmetric, and therefore the point
source estimate generated is not an appropriate representation
of the speckle transfer function at high zenith angles. This in
turn can affect the relative astrometry and photometry derived
from such data.

In considering differential photometry, one would expect
that this is more sensitive to calibration effects than the astro-
metric results, since the process of deriving the magnitude dif-
ference amounts to estimating the fringe depth in the Fourier
plane. If one uses a symmetric point spread function estimate
to deconvolve an asymmetric binary power spectrum, the fringe
depth can be severely affected while the fringe spacing and ori-
entation would remain essentially the same.

It is also quite likely that in the case of a faint binary star,
it is probably better to use a brighter binary to obtain the one-
dimensional trace simply due to signal-to-noise considerations.

7. Summary and final remarks

A new approach to performing CCD-based speckle imaging
has been presented. Data obtained by those means have enough
quality to give real scientific results, as shown for objects ob-
served for this paper.
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In addition, a new approach for calibrating the power spec-
trum analysis has been introduced. It does not require point
source observations, which gives a more effective use of ob-
servation time. Some limitations have been observed for this
method for zenith angles above 30◦ related to atmospheric dis-
persion. These conclusions can gain even more importance for
the case of large telescopes. On the one hand, as they have
the highest observing time pressure, self-calibration techniques
would obviate point sources observations. On the other hand, if
conveniently equipped with Risley prisms, they could be used
to observe objects at low elevations without serious effects on
the shape of speckles due to atmospheric dispersion. Thus, self-
calibration would presumably not be limited by elevation.

CCDs, far from being specialized detectors, are very com-
mon among instrumentation available in most astronomical ob-
servatories. The fast drift scanning enables low budget profes-
sional and high-end amateur observatories, which routinely use
full-frame CCDs for stare imaging, to perform CCD speckle
imaging as well. The performance of this technique will be sig-
nificantly higher with new faster and less noisy cameras which
are becoming available in the CCD market.
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