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Abstract 12 

 13 

Mutations in human cells exhibit increased burden in heterochromatic, late DNA replication time 14 

(RT) chromosomal domains, with variation in mutation rates between tissues mirroring variation 15 

in heterochromatin and RT. We observed that regional mutation risk further varies between  16 

individual tumors in a manner independent of cell type, identifying three signatures of regional 17 

mutagenesis in >4000 tumor genomes. The major signature reflects domain-scale remodeling of 18 

heterochromatin and of the RT program seen across tumors, tissues and cultured cells, and is 19 

robustly linked with higher expression of cell proliferation genes. Regional mutagenesis is 20 

associated with loss-of-activity of the tumor suppressor genes RB1 and TP53, consistent with 21 

their roles in cell cycle control, with distinct mutational patterns for the two genes. Loss of regional 22 

heterogeneity in mutagenesis associates with deficiencies in various DNA repair pathways. These 23 

mutation risk redistribution processes modify the mutation supply towards important genes, 24 

diverting the course of somatic evolution. 25 

 26 

 27 

Introduction 28 

 29 

Mutation rates in human somatic cells are highly heterogeneous across megabase-scale 30 

segments, with higher mutation rates in late DNA replication time (RT), inactive, heterochromatic 31 

DNA. This is largely due to higher activity and/or accuracy of various DNA repair pathways in 32 

early-replicating, active chromosomal domains 1,2.  33 

 34 

These segments with variable mutation rates tend to correspond to topologically associating 35 

domains (TADs) and, similarly, to RT domains 3–5. Regional mutation density (RMD) strongly  36 

correlates with the later RT of the domain, as well as with lower gene expression levels, lower 37 

chromatin accessibility (e.g. as measured by DNAse hypersensitive sites (DHS)), higher levels of 38 

inactive histone marks such as H3K9me3 and, in the opposite direction, with active chromatin 39 

marks such as H3K4me3 1,6–8. The global RMD landscape in somatic cells is to some extent 40 

tissue-specific, sufficiently so that it can be used to predict cancer type at high accuracy 9,10. The 41 

tissue-specificity of RMD in a domain is paralleled in the tissue-specificity of RT and 42 

heterochromatin in the domain. For instance, the domain that switches from late-RT to early-RT, 43 
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or where genes increase in expression levels, or that gets more accessible chromatin in a 44 

particular tissue, also exhibits a reduced rate of somatic mutations in that tissue 1,6; this property 45 

can identify the cell-of-origin of some cancers 11. 46 

 47 

Apart from variation in active chromatin and RT between tissues, there is variation in chromatin 48 

within the same tissue/cell types, but across individuals or across cells. For instance, studies of 49 

quantitative trait loci (QTL) have demonstrated genetically determined local changes in RT, 50 

chromatin accessibility and DNA methylation 12–15. Further, gene expression programs exist that 51 

are variably active between tumors originating from the same tissue (and also between individual 52 

cells), but are recurrently seen across many different tissues 16,17. Such recurrent expression 53 

programs may conceivably drive, or be driven by chromatin remodeling that activates or silences 54 

chromosomal domains.  55 

 56 

Indeed, chromatin remodeling can occur during tumor evolution, and this can manifest as changes 57 

in RT between normal and cancerous cells, loss of regional DNA methylation, or changes in 58 

heterochromatin marks in some chromosomal domains upon cancerous transformation 18–22. This 59 

large-scale, global heterochromatin remodeling occurring across various chromosomal domains 60 

of cancer cells may plausibly affect local and regional DNA damage and repair processes, which 61 

are linked with different features of chromatin organization 1,2,20,23–25.  62 

 63 

Here, we hypothesized that chromatin remodeling that occurs variably between tumors may 64 

generate variation in regional mutation rates, beyond the known cell-of-origin identity effects on 65 

mutagenesis. We study the domain-scale regional profiles of somatic mutations from ~4200 tumor 66 

whole-genome sequences, modeling them as a mixture of several underlying regional 67 

distributions, which correspond to different mutation risk mechanisms acting preferentially in some 68 

genomic domains. Some of these RMD signatures represent the expected differences between 69 

tissues/cell types stemming from chromatin organization in the cell-of-origin, or consequences of 70 

common DNA repair failures. However other commonly-occurring RMD signature patterns were 71 

associated with large-scale chromatin remodeling and with changes in RT programs. This 72 

chromatin and RT remodeling, in turn, associated with activity of cell cycling gene expression 73 

programs. The resulting wide-spread mutation risk redistribution across chromosomal domains 74 

can increase or decrease mutation supply towards regions harboring cancer genes, potentially 75 

generating driver events and genetic interactions. 76 

 77 

 78 

Results and Discussion 79 

 80 

A statistical method to quantify variation in megabase-scale regional mutation density  81 

 82 

We performed an exploratory unsupervised analysis of diversity in one megabase (1 Mb) mutation 83 

density patterns across 4221 whole-genome sequenced tumors, controlling for confounding 84 

factors such as arm-level CNA, possibly selected regions, and trinucleotide  mutational signatures 85 
26 (Methods).  86 

 87 
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A Principal Component (PC) analysis on the RMD profiles yielded clusters largely reflecting 88 

identity of tissues and subtypes, as expected 1,6 (Fig. 1ab; Extended Data Fig. 1f).We note a 89 

similarity of RMD profiles between related cancer types, and conversely RMD profiles may 90 

subdivide some cancer types into plausible subtypes, as exemplified in breast (Fig 1b) and head-91 

and-neck cancers (Fig. 1c; Extended Data Fig. 1).  As a control, we captured two known examples 92 

of redistribution of mutation rates: one affects somatic hypermutation regions in B-lymphocytes 93 

(Extended Data Fig. 1gh), and the other causes a global homogenization (‘flattening’) of the RMDs 94 

in MMR-deficient tumors 1 (Extended Data Fig. 1g). While the RMD profiles expectedly reflect cell 95 

type-specific signals, the PCA suggests additional systematic RMD variability (Extended Data 96 

Fig. 1b).  97 

 98 

Aiming to separate the tissue-specific RMD variability from the mutation patterns independent of 99 

tissue-of-origin, we devised a methodology based on non-negative matrix factorization (NMF), 100 

analogous to that used for extracting trinucleotide SNV mutational signatures 26–28, however here 101 

applied to 2540 megabase-sized domains instead of the typical 96-channel trinucleotide SNV 102 

spectrum. Each of robustly extracted NMF factors corresponds to one “RMD signature” of 103 

mutation risk redistribution across domains, with a spectrum consisting of RMD window weights 104 

(for all 2540 windows). Additionally the RMD signature has data on ‘exposure’ or activity for each 105 

tumor genome.  106 

 107 

To test whether our NMF method is sufficiently powered to capture RMD inter-individual 108 

variability, we simulated cancer genomes containing ground-truth patterns of RMD. These were 109 

generated to affect a variable number of domains, to be present in a variable number of tumor 110 

samples, and to be present at variable intensity (fold-increase over default mutation rate at each 111 

window) (Extended Data Fig. 2a, see detailed description in Methods). Upon running our NMF 112 

methodology, we selected the number of factors and clusters based on the silhouette index (SI), 113 

estimating reproducibility over repeated bootstraps and runs of NMF (Table S1), and assessing 114 

accuracy of match to the ground-truth signatures (Methods, Table S2, example in Fig 1d).  115 

 116 

Encouragingly, we observed that even with a small fraction of tumor samples affected by a 117 

signature (5%), the ground-truth RMD signatures can be identified reliably, as long as the 118 

contribution of the RMD signature to the total mutation burden is reasonably high (>=20%) 119 

(Extended Data Fig. 2b). In addition, the NMF setup is usually able to recover RMD signatures 120 

that affect as little as 10% of all 1 Mb windows. The signature exposure strength (fold-enrichment 121 

over baseline mutation rate) does affect power to recover RMD signatures (Extended Data Fig. 122 

2b).  123 

 124 

 125 

A catalog of tissue-specific mutation patterns in human cancer types 126 

 127 

We applied the NMF methodology to the somatic RMD profiles of 4221 tumor WGS with ≥ 3 128 

mutations/Mb, allaying noise in RMD profiles (as a limitation, this depletes low mutation burden 129 

cancer types). A simulation indicated that 3 mutations/Mb are well sufficient for 1 Mb analysis 130 

https://www.zotero.org/google-docs/?o7ibS5
https://www.zotero.org/google-docs/?6jy3Hr
https://www.zotero.org/google-docs/?pQgC8F


4 

(Extended Data Fig. 2c-d). In total, we extracted 13 RMD signatures based on optimizing SI, 131 

which scores the reproducibility of solutions (Fig. 1ef, Extended Data Fig. 3). 132 

 133 

The RMD signatures span a continuum from very tissue-specific (high Gini index, Fig. 1f), to 134 

global signatures seen across many cancer types (low Gini index). We named the 10 tissue-135 

specific RMD signatures according to the tissue or tissues they affect (e.g. RMD_upper-GI, 136 

RMD_liver), while the three global signatures were named RMDglobal1, RMDglobal2 and 137 

RMDflat (Fig. 1f, Extended Data Fig. 3); the latter has in part known mechanisms (see below). 138 

 139 

While some RMD signatures are tissue-specific and capture the genomic regions with high 140 

mutation risk only in that particular organ, many RMD signatures are observed in several related 141 

cancer types (Fig. 1f, Extended Data Fig. 3). For instance, tissue activity spectra of RMD_upper-142 

GI and RMD_lower-GI signatures are broadly consistent with the subdivision by developmental 143 

origin into the foregut and the midgut/hindgut (Fig. 1f). The RMD_squamous signature unites 144 

some squamous lung cancers, head-and-neck cancers, some bladder cancers (consistent with 145 

reports based on gene expression data 29 ), also expectedly some cervical and esophageal 146 

tumors, however surprisingly includes some sarcomas and uterus cancers, suggesting similarity 147 

of chromatin organization in these samples. Thus our 2540-channel RMD signatures support the 148 

proposed uses of mutational  profiles for elucidating cell-of-origin and cancer development 149 

trajectories (metaplasia and/or invasion) 6,9,11. 150 

 151 

 152 

Three patterns of megabase-scale mutation risk observed across most somatic tissues 153 

 154 

In addition to tissue-specific RMD landscapes, we identified 3 global RMD signatures that 155 

occurred in a substantial subset of tumors within most cancer types (Fig. 1f, Extended Data Fig. 156 

3). 157 

 158 

Firstly, the profile of the RMDflat signature captures the known pattern of reduced variation in 159 

mutation rates, previously associated with MMR and NER deficiencies 1,2 and with high 160 

APOBEC3A mutagenic activity 30 . These known associations explained 52% RMDflat-high 161 

tumors in our data (Extended Data Fig. 4) , and we hypothesized that the remainder may also 162 

result from DNA repair deficiencies. Indeed we found that homologous recombination deficiencies 163 

(HRd)  were commonly associated with RMDflat, and this was the case for both the BRCA1 and 164 

the BRCA2-subtypes of HRd ascertained by the CHORD method 31 (Extended Data Fig. 4b). This 165 

is consistent with reported enrichment of HRd trinucleotide signature SBS3 towards early-166 

replicating domains 32, opposite of the canonical RMD distribution; same distribution of the SBS3-167 

like mutation spectrum, particularly C>G changes, is observed in our data (Extended Data Fig. 168 

4h)Thus different DNA repair defects converge onto the RMDflat mutational phenotype, with 169 

varying prevalence depending on the cancer type: in colorectal tumors the main mechanism is 170 

the MMR deficiency, while in ovary and pancreas it is the HR deficiency, and the main mechanism 171 

in bladder and lung is APOBEC mutagenesis (Extended Data Fig. 4c). For the remaining 28% of 172 

RMDflat tumor samples that are not explained by the above mechanisms, we find they are unlikely 173 

to be caused by false-negative calls for MMR or HR deficiency (based on indel spectra in 174 
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Extended Data Fig. 4i), therefore additional mutational mechanisms involving DNA repair 175 

deficiency or evasion are likely to be relevant in those tumors.  176 

 177 

Unlike the homogeneous pattern resulting when the RMDflat signature profile is superimposed 178 

onto the canonical RMD landscape, the RMDglobal1 and RMDglobal2 profiles have a complex 179 

pattern with peaks scattered throughout the chromosomes. We can rule out that RMDglobal1 and 180 

2 resulted from random noise, because their SI and autocorrelation are comparable to the tissue-181 

RMD signatures, which have a known biological basis (Extended Data Fig. 5ab). The RMD 182 

signatures were determined using single-nucleotide variant (SNV) mutations; as a validation, their 183 

regional biases were  similarly observed in indel and SV mutation distributions (Extended Data 184 

Fig. 5c-f). 185 

 186 

Tissue-specific NMF analyses also robustly recovered  the three RMDglobal signatures (Table 187 

S3), which thus capture inter-tumoral RMD heterogeneity in mutation risk of chromosomal 188 

domains that is recurrently observed in various human somatic tissues. 189 

 190 

 191 

RMDglobal1 mutation risk in regions with plastic replication timing and heterochromatin 192 

 193 

We were interested in the mechanism underlying the widespread RMDglobal1 signature, which 194 

was significant in ~25% of the tumor genomes (Fig. 1f; using a conservative threshold, see 195 

Extended Data Fig. 3), and which contributed variable mutation burden across individual tumors 196 

(Fig. 1g).  Because tissue-specific RMD patterns reflect tissue-specific chromatin organization 197 
1,6,9, we hypothesized that other, tissue-independent variation in chromatin across domains may 198 

underlie the tissue-independent RMDglobal1. We tried to predict the RMDglobal1 signature 199 

spectrum (1 Mb window weights) from epigenomic features relevant to megabase-scale mutation 200 

rates  (reviewed in 33): replication timing (RT), density of accessible chromatin (DNAse 201 

hypersensitive sites, DHS) and ChipSeq data for histone modifications including the 202 

heterochromatin marks H3K9me3 and H3K27me3. The average of each feature (either RT, or 203 

DHS, or heterochromatin mark per 1 Mb window) across many epigenomic datasets did not 204 

predict (Fig. 2a), and predicting from each sample individually identified only moderate 205 

associations (R2 ~= 0.2) for certain datasets with regional density heterochromatin (H3K27me3, 206 

H3K9me3 marks) (Fig. 2a). 207 

 208 

In stark contrast, RMDglobal1 spectrum can be accurately predicted (R2 up to 0.7) from either RT, 209 

or DHS, or either of the two heterochromatin marks, if predicting using multiple tissue samples 210 

jointly (Fig. 2a). This suggests that RMDglobal1 spectrum is explained by some pattern in the 211 

variation across the cell/tissue samples for a chromatin feature (individual examples shown in Fig. 212 

2b). As a validation we observed the same trend using regional density of chromHMM 213 

segmentation states (Extended Data Fig. 5g).  214 

 215 

 216 

Heterochromatin restructuring at the domain scale across human cell types 217 

 218 
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Next, we quantified the systematic variation in heterochromatin states at the domain level, 219 

recurrently observed across diverse human tissues and cell types including tumor cells in the 220 

ENCODE repository, with the goal of identifying heterochromatin variation that predicts 221 

RMDglobal1 mutation risk. We performed PCAs on the megabase-window signal of the H3K9me3 222 

and H3K27me3 marks, RT, DHS, and Hi-C compartments 34. While each feature was analyzed 223 

independently, the PCs that resulted -- representing chromatin restructuring across domains -- 224 

were often recurrently observed across the analyses (Fig. 2c). In particular the RMDglobal1 225 

mutagenesis pattern was in a tight cluster of chromatin restructuring PCs, most correlated with 226 

the H3K9me3_PC3, Hi-C_PC2 and DHS_PC3 (R=0.53, -0.53 and 0.43, respectively), and 227 

additionally also with RT_PC4 and H3K27me3_PC2 (Fig. 2c). These chromatin PCs exhibited a 228 

regional distribution whose peaks collocated with the peaks in RMDglobal1 regional mutagenesis 229 

(example shown in Fig. 2d).  230 

 231 

Next, to understand the mechanism driving the H3K9me3_PC3 heterochromatin restructuring 232 

program, we analyzed gene expression levels of ENCODE samples with higher versus lower 233 

H3K9me3_PC3. Interrogating the MSigDB hallmarks 35 revealed associations with expression of 234 

MYC target genes, E2F target genes and G2M checkpoint genes (all GSEA FDRs ≤ 10-33; Fig. 235 

2e), implicating increased anabolism, DNA replication, and mitotic processes, respectively. 236 

Similarly, enrichment of cell cycling-associated genes was observed using the single cell-derived 237 

RHP gene programs 16 (Extended Data Fig. 6a). These enrichments were consistent with gene 238 

expression analysis from contrasting ENCODE samples by the chromatin accessibility 239 

(DHS_PC3) or by Polycomb repressive mark shifts (H3K27me3_PC2) across domains (all 240 

FDR<1% by GSEA, Fig. 2e), thus converging onto a model of genome-wide chromatin 241 

restructuring program linked with rapid cell proliferation. 242 

 243 

Chromatin restructuring program PCs were differentially active between ENCODE intact tissues 244 

(lower scores) and cultured primary cells (higher score) (p=10-12 and 10-23 for H3K9me3 and DHS, 245 

respectively, by Mann-Whitney test Fig. 2f); cell culture selects for proliferation-competent cells 246 

and is expected to have a higher proportion of cycling cells than intact tissues. Consistently, 247 

immortal cell lines were more similar to the primary cell cultures than to tissues (Fig. 2f). 248 

Comparing the cancerous cell lines to noncancerous cell lines however reveals considerable 249 

overlap, both in the H3K9me3 mark PC and also in DHS density PC (Fig. 2f), suggesting these 250 

chromatin restructuring programs do not reflect cancerous transformation per se (Fig. 2f). 251 

 252 

We further asked if these particular chromatin remodeling programs linked with RMDglobal1 253 

mutation risk reflect tissue specificity, but did not find evidence thereof (Extended Data Fig. 6de. 254 

Table S4). Samples from different tissues overlapped each other in the intensity of the chromatin 255 

remodeling signatures, and not even the nervous system nor the muscle cells (known to have 256 

distinctive tissue-specific patterns of active chromatin 36) showed a notable difference.. 257 

 258 

Differences in levels of some selected cell proliferation genes were striking when comparing the 259 

ENCODE samples on the two ends of either the H3K9me3_PC3 constitutive heterochromatin 260 

reorganization, or DHS accessible chromatin domain-level reorganization (Fig. 2g; 261 

H3K27me3_PC3 Polycomb reorganization, Extended Data Fig. 6c). Taken together, this data 262 
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suggests that likely the cell proliferation itself, rather than the tissue/cell type identity or the 263 

oncogenic transformation status, predicts the domain-scale heterochromatin reorganization that 264 

is mirrored in RMDglobal1 mutation risk.   265 

 266 

 267 

RT profiles of tumors and cells link chromatin changes with mutation risk signature  268 

 269 

The above analyses of chromatin features at the domain-scale was performed over data from 270 

ENCODE, which does include some cancer cell lines (74 out of 256 H3K9me3, and 153 out of 271 

676 DHS datasets), but does not include tumor tissue per se. Therefore we turned to examine 272 

chromatin domain restructuring directly in tumors, drawing on accessible chromatin (via ATAC-273 

Seq) measurements in 410 TCGA tumors 37. The local distributions of accessible chromatin sites 274 

can be used to accurately infer RT programs 38, as applied to large-scale studies of RT in various 275 

nontumoral tissues 39,40. Here we perform a large-scale analysis of RT in tumors (“predRT-276 

TCGA”); the tumoral RT predictions using Replicon tool 38 were deemed accurate and relevant to 277 

mutation risk modeling (), based on several observations. The tool was accurate in our tests 278 

(mean R between predicted RT and RepliSeq = 0.87; Extended Data Fig. 6f) (see Methods), and 279 

the modeling of RMDglobal1 mutagenesis is similarly accurate using predicted RT (from 280 

ENCODE DHS) as is with experimental RT (from various datasets) (Fig. 3a). Additionally, the 281 

predicted RT profiles are relevant to analysis of tumor mutation data: the predRT-TCGA better 282 

models the RMDglobal1 mutagenesis than predicted RT profiles from ENCODE diverse cell types 283 

do (predRT-ENCODE Fig. 3a). This suggests that our global RT analysis of TCGA tumors may 284 

capture tumor-relevant RT switching programs that reflect in RMDglobal1 mutagenesis.  285 

 286 

To understand the mechanism underlying variability in RT that predicts RMDglobal1 mutagenesis, 287 

we systematized trends in RT profile variation of tumors using a PCA with the predRT-TCGA 288 

dataset.  Expectedly, the TCGA RT PCs with most variance explained represent the average RT 289 

profile (predRT-TCGA-PC1 and 2), or the cancer type-associated RT programs (3 and 4, 290 

separating breast from kidney and brain tumors, Extended Data Fig. 6g). However, the following 291 

pattern of systematic RT variation (e.g. TCGA-RT_PC5) did not exhibit a tissue signal (Extended 292 

Data Fig. 6h). 293 

 294 

Independently, we also performed PCAs on experimentally measured RT data (expRT, n=158), 295 

and on predicted RT in nontumor tissues and primary cells and varied cell lines (predRT-296 

ENCODE, n=597). Certain RT-PCs from varied datasets converge onto the same global pattern 297 

of alteration in the RT program, exemplified in the predRT-TCGA_PC5 (Fig. 3b). They also 298 

correlated with the heterochromatin remodeling PCs highlighted above (DHS_PC3, 299 

H3K27me3_PC2, H3K9me_PC3 and HiC_PC2) (Fig. 3b; median pairwise correlation R = 0.43); 300 

thus these RT PCs represent the remodeling of the RT program and heterochromatin that can be 301 

observed across tumors, cultured cells (either cancerous or not), and healthy tissues.  302 

 303 

Additionally, a data set of RT measured in single cells 19 (scRT) generated a scRT-PC5 which 304 

correlates moderately (R=-0.36) with the TCGA RT program (Fig. 3b), thus the variation of RT 305 

programs between individual cells 40 -- presumably indicating those chromosomal domains that 306 
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have more labile RT -- may predispose these domains to the systemic RT switches between 307 

tumors. 308 

 309 

Next, we asked whether shifts in RT observed across tumors can explain the shifts  in domain 310 

mutation risk across tumor WGS as per profile of RMDglobal1. The TCGA-RT_PC5, which did 311 

not exhibit a tissue signal (Extended Data Fig. 6gh), correlated strongly with RMDglobal1 mutation 312 

risk redistribution (R=-0.49) (Fig. 3b). and  affected the RMDglobal1-relevant domains where 313 

mutation rate changes notably (example cancer types in (Fig. 3c)), compared with next best PC6 314 

at R=0.35, and other RT-PCs up to PC10 at R<0.2.  315 

 316 

Importantly in a multiple regression test not only RT but other chromatin features were 317 

independently predictive of RMDglobal1 mutagenesis (with exception of H3K27me3, which is 318 

dispensable; Extended Data Fig. 6i). Upon “orienting” these various PCs from chromatin or RT 319 

remodelling analysis (Fig. 2c, Fig. 3b), we infer that chromosomal domains with highest 320 

RMDglobal1 mutation rate increase become later-replicating and heterochromatinized in cells 321 

exhibiting a stronger signal of proliferation in gene expression.  322 

 323 

 324 

Cell proliferation-associated RT shifts in tumors are mirrored in mutation risk  325 

 326 

To understand the biology underlying this tumoral RT-PC5 that mirrors RMDglobal1 mutagenesis, 327 

we asked how gene expression changes between the TCGA tumors with high values of a RT-PC 328 

versus tumors with low values. As with heterochromatin analysis, both the RT-TCGA_PC5 and 329 

the independently derived RT-ENCODE_PC3 strongly associate with gene expression of E2F 330 

target, MYC target and G2M checkpoint genes in Hallmark sets (all FDR<0.1%, Fig. 3d). Thus, 331 

this RT switching pattern represents a RT program characteristic of tumors bearing programs of 332 

rapid cell cycling. This was supported in an independent analysis of single-cell derived RHP gene 333 

sets 16, where the TCGA  RT-PC5 correlated strongly with expression of cell cycle genes 16 (G2/M 334 

and G1/S genes, correlated at GSEA FDR=10-20 and 10-10, respectively) (Extended Data Fig. 6j), 335 

while the expression of other RHP gene sets correlated less well with TCGA RT-PC5 (next 336 

strongest 5·10-5). 337 

 338 

To more directly support the association of the RMDglobal1 mutation redistribution with cell cycle 339 

gene expression in the same tumor samples, we next considered the subset of WGS where 340 

matched RNA-Seq was available. Expression of E2F target genes and of G2M checkpoint genes 341 

in tumors associated with their RMDglobal1 mutagenesis status (at FDR<1%; Fig. 3d), and 342 

expression of MYC target genes had a positive trend (FDR=31%). Prominent genes linked to cell 343 

division and with potential uses as cell proliferation markers were associated with mutagenesis-344 

relevant RT programs, both in TCGA tumors with predicted RT and in ENCODE tissues (Fig. 3e) 345 

and this also independently validated in their direct association with RMDglobal1 mutagenesis 346 

pattern in our set of tumors with RNA-Seq and WGS (Fig. 3f). 347 

 348 
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Overall, the  chromosomal domains with higher mutation rate changes in RMDglobal1 are those 349 

domains that undergo changes in RT in tumor samples with more proliferative-like transcriptomes, 350 

compared to tumor samples with less proliferative-like transcriptomes.  351 

 352 

 353 

Spatial chromatin compartments that are plastic are prone to mutation risk changes 354 

 355 

We further asked what characterizes these domains where heterochromatin and RT are more 356 

malleable (and which mirror the RMDglobal1 mutation rates). To this end, we analyzed data from 357 

diverse epigenomic assays  (studies listed in (Table S5)) with reported correlations with RT. We 358 

compared the regional density of each epigenomic feature with our RMDglobal1 spectrum window 359 

weights (Table S5). Consistently with the chromatin/RT restructuring analyses above, we noted 360 

strong correlations with Hi-C subcompartments (Fig. 3g)41.  In particular, the B1 inactive 361 

subcompartment, rather than B2 and B3 inactive heterochromatin, was most associated with 362 

RMDglobal1. B1 replicates during middle S phase, and correlates positively with the Polycomb 363 

H3K27me3 mark suggesting that it represents facultative heterochromatin 41. Next, we observed 364 

a positive correlation with two SPIN states (Fig. 3h) intranuclear territories 42. classified as  “Interior 365 

repressed” 42, marking inactive regions that are (unlike other heterochromatin) located centrally 366 

in the nucleus, rather than lamina-associated 42. Additionally RMDglobal1 windows are enriched 367 

in subtelomeric parts of chromosomes (Fig. 3j).  368 

 369 

In addition to RMDglobal1 mutagenesis, also the chromatin and RT restructuring programs that 370 

we identified (Fig 2, H3K9me3_PC3, DHS_PC3, H3K27me3_PC2; Fig 3, predRT-TCGA_PC5 371 

and predRT-ENCODE_PC3) were enriched in the same nuclear territories (Extended Data Fig. 372 

7a-d)., suggesting they contain chromatin prone to restructuring that is associated with expression 373 

of cell proliferation genes (Fig 2, Fig 3).  We additionally  found a correspondence between the 374 

“CORES” regions 43 i.e. domains that change chromatin conformation upon whole-genome 375 

duplication, and our RMDglobal1 mutation redistribution domains (Fig 3j) and also the chromatin 376 

restructuring PC signatures (Extended Data Fig. 7a-d).  377 

 378 

In summary, this analysis suggests that certain heterochromatin compartments may be 379 

intrinsically more malleable, undergoing remodeling that determines mutation rates. 380 

 381 

 382 

RMDglobal1 mutagenesis associates with RB1 pathway alterations 383 

 384 

We further hypothesized that genetic alterations may drive changes in RT/heterochromatin 385 

accompanied by cell cycling gene expression and the RMDglobal1 mutation risk redistribution. 386 

We thus performed a genome-wide association analysis, linking somatic copy number alteration 387 

(CNA) events and deleterious point mutations with RMDglobal1 mutation risk ( adjusting for 388 

cancer type and for confounding between linked neighboring CNAs; qq plots in Extended Data 389 

Fig. 8a; Methods for details). Here, we considered a set of 1543 chromatin modifiers, cell cycle, 390 

DNA replication and repair genes and cancer driver genes, compared against a background of 391 

1000 random genes (Methods).  392 
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https://www.zotero.org/google-docs/?tSdBHr
https://www.zotero.org/google-docs/?5wHhWy
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 393 

For CNA, we found a strong positive association of RMDglobal1 with deletions of the RB1 tumor 394 

suppressor, which has key roles in cell cycle control and also in chromatin organization 395 

(FDR=0.05%, better p-value than all 1000 control genes)  (Fig. 4abc, Extended Data Fig. 7e). 396 

Because CNA often affects large chromosomal segments, we also tested associations with RB1 397 

neighboring genes (Fig 4d), noting that RB1 is at the CNA frequency peak, meaning it is the likely 398 

causal gene in the CNA segment. Strength of RMDglobal1 association with RB1 alterations is 399 

gene dosage dependent (Extended Data Fig. 7f), and moreover the effect of (rarer) RB1 point 400 

mutations shows a (nonsignificant) supporting trend in the same direction as the RB1 deletions 401 

(Extended Data Fig. 7g). As independent evidence, we identified deletions in CDK6, a negative 402 

regulator upstream of RB1, as the CNA event negatively associated with RMDglobal1 with the 403 

strongest p-value, exceeding all control genes (Fig. 4b).  404 

 405 

The RB1 alterations were anticipated to associate with certain gene expression patterns; indeed 406 

in two tumor datasets, we observe RB1 deletions associated with higher expression of E2F target 407 

genes (as expected from pRb function in inhibiting the E2F transcription factors), G2M checkpoint 408 

genes and MYC target genes (GSEA all FDR<1%; Fig. 4i; additionally the mitotic spindle genes 409 

and DNA repair genes were upregulated here). Thus gene expression signatures of RB1 deletion 410 

are consistent with gene expression signatures of RT/heterochromatin restructuring above ( 411 

H3K9me3_PC3 or predRT-TCGA_PC5, Fig. 2e, 3d).  412 

 413 

In addition to cell cycle regulation, pRb has additional roles in chromatin organization 23,44–46, and 414 

RB1 deletions were reported to change H3K9me3 and H3K27me3 marks, affecting more the 415 

regions enriched at subtelomeres and associating with propensity to DNA damage in those 416 

regions23. We found these same two heterochromatin marks more highly correlated to 417 

RMDglobal1 than other tested marks (Fig. 2a), and the RMDglobal1 domain weights were strongly 418 

enriched in the approximately ¼ of chromosome arm  proximal to telomere (Fig. 3i).  419 

 420 

Prompted by the above, we asked if the location of heterochromatin restructuring upon RB1 421 

perturbation by experiment 23 matches the locations of the RMDglobal1 mutation risk changes in 422 

cancer genomes. Indeed, overlap with H3K9me3-switching regions in RB1 k.o. cells 23 is 423 

substantial (OR=3.25, 95% C.I [2.3-4.5], p<10-13 for overlap in the top-10% regions), however 424 

there is no enrichment with H3K27me3-switching regions (Fig. 4e). Next, we asked if the 425 

RMDglobal1 mutation risk results, at least in part, from the increase in DNA damage in these 426 

regions upon RB1 perturbation (measured as CPD lesions after UV exposure 23). The overlap 427 

between the top-10% RMDglobal1 mutation risk domains and the top-10% DNA damage-428 

sensitized domains (upon RB1 KO) was strong (OR=5.05, p<10-29), and similarly the overlap in 429 

bottom-10% RMDglobal1 and the top-10% damage-protected domains (OR=8.17, p<10-54; Fig. 430 

4f). The overlap was seen in regional mutation risk both in skin cancers, which are UV 431 

mutagenized, but similarly so in lung cancers, which are tobacco smoking chemical-mutagenized 432 

(Extended Data Fig. 8c), suggesting the link extends to multiple types of DNA damage. Further, 433 

the telomere-proximal enrichment of RMDglobal1 mutation risk (Fig. 3i) associated with the DNA 434 

damage-increase upon RB1 KO 23, with a clear gradual increase in RMDglobal1 mutation risk 435 

towards the telomere spanning ~10 Mb telomere-proximal DNA on average (Fig. 4g). Overall, this 436 

https://www.zotero.org/google-docs/?4bCn0V
https://www.zotero.org/google-docs/?4IuNSO
https://www.zotero.org/google-docs/?sk8Wd7
https://www.zotero.org/google-docs/?MugXs0
https://www.zotero.org/google-docs/?WXzwsw
https://www.zotero.org/google-docs/?PhXI1v


11 

overlap of heterochromatin remodelling loci as well as DNA damage sensitive loci upon RB1 loss-437 

of-function 23 with the RMDglobal1 mutation risk loci in tumors underscores RB1’s role in shaping 438 

the somatic mutation rate landscape. 439 

 440 

In addition to the CNA analysis above, we also tested associations with the presence of 441 

deleterious somatic point mutations and identified the KRAS mutation to positively associate with 442 

RMDglobal1, at FDR=1% (Fig. 4h), consistently across individual cancer types (Extended Data 443 

Fig. 8d);  Extended Data Fig. 8e-f). he KRAS gene is known to act downstream of RB1  in 444 

developmental and in tumor mouse phenotypes 47,48. Consistently, KRAS mutation and RB1 loss 445 

(either deletion or mutation) are mutually exclusive in our tumor dataset (chi-square p < 2.2e-16), 446 

supporting that the driver alterations in RB1 and KRAS may converge onto the same mutation 447 

rate redistribution phenotype, the RMDglobal1. Consistently, we found the subclonal, later-448 

occurring mutations are enriched in the RMDglobal1 pattern compared to the clonal mutations in 449 

various cancer types (Extended Data Fig. 8g-h). 450 

   451 

 452 

Mutation supply towards cancer genes is altered by RMD signatures 453 

 454 

Since RMDglobal1 captures a redistribution of mutation rates genome-wide, it follows that this will 455 

affect the local supply of mutations towards loci harboring some cancer genes. To test this, we 456 

considered 460 cancer genes and the intronic mutation rate thereof (to avoid effects of selection), 457 

contrasting tumors with a high RMDglobal1 activity (top tertile) versus low RMDglobal1 activity 458 

(bottom tertile) (Fig. 4jk).  When compared to a randomized baseline (95th percentile of the 459 

random distribution used as cutoff; Methods), the mutation supply was significantly increased 460 

towards 28% of the 460 cancer genes in RMDglobal1-high tumors (Fig. 4k). These genes 461 

increase mutation rates on average by 1.21-fold in the RMDglobal1-high tertile tumors, with bigger 462 

increases for some genes ( example in Fig. 4l) such as BAP1   1.78-fold, KMT2C 1.79-fold, and 463 

ATM 1.18-fold increase in median mutation supply. Importantly, the mutation supply measured 464 

does not reflect selected mutations but instead only the relative risk of mutations appearing in the 465 

given region. 466 

 467 

Next, we similarly considered the redistribution effects of the RMDflat signature, associated with 468 

DNA repair deficiencies (see above), increasing relative mutation rates in early replicating, 469 

euchromatic regions 30,33 (Extended Data Fig. 4d).  These early RT regions also have a higher 470 

gene density. Indeed, RMDflat commonly affects the mutation supply to many cancer driver 471 

genes, with 75% of the cancer genes 49 exhibiting an increased supply comparing RMDflat-low to 472 

RMDflat-high tumors (Extended Data Fig. 4e). The converse case was rare, with 9% cancer 473 

genes decreased in relative mutation supply. As one example driver gene (Extended Data Fig. 474 

4f), the ARID1A tumor suppressor gene, located in a lowly-mutated region in chromosome 1p, 475 

has  mutation supply increased 1.8-fold, 2.1-fold and 2.4-fold in MSI (i.e. MMR-deficient), HR-476 

deficient and APOBEC tumors (all cases of RMDflat-high), respectively (Extended Data Fig. 4f-477 

g). As another example, the BRAF oncogene (where driver mutations are highly enriched in MSI 478 

compared to MSS colorectal tumors 50) has a considerably increased mutation supply in the 479 

RMDflat-high tumors (Extended Data Fig. 4f-g).  480 

https://www.zotero.org/google-docs/?kVCx3U
https://www.zotero.org/google-docs/?HSLBKL
https://www.zotero.org/google-docs/?FBrf0p
https://www.zotero.org/google-docs/?2jfklK
https://www.zotero.org/google-docs/?PG6CRl
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 481 

 482 

TP53 disruption reduces mutation supply towards late replicating regions 483 

 484 

In addition to RMDglobal1 and RMDflat, there exists a third, commonly occurring mutation rate 485 

redistribution signature observed across 21% of tumor genomes across multiple tissues (Fig. 1f, 486 

Extended Data Fig. 3), the RMDglobal2. Its 1 Mb domain mutation rates do follow a distribution 487 

increasing mutation density in later RT overall, except for latest RT windows, which acquire fewer 488 

mutations than expected in the RMDglobal2 pattern (Fig. 5ab). As a consequence, mutation rates 489 

increase approximately linearly with RT bins in tumors with high RMDglobal2, while in tumors with 490 

a low RMDglobal2 exposure the RT relationship to mutation rates is better described by a 491 

quadratic function (Fig. 5c, Extended Data Fig. 9a). In other words, the RMDglobal2 redistribution 492 

“linearizes” the association of RMD to RT, by suppressing the prominent RMD peaks. 493 

 494 

We aimed to identify the causal event behind RMDglobal2 redistribution, again testing for 495 

associations of RMDglobal2-high (top tertile) versus low (bottom tertile) tumor samples with CNAs 496 

and deleterious coding mutations. Strikingly, we found TP53 mutation to be uniquely strongly 497 

associated with RMDglobal2 signature (FDR = 9·10-10; next strongest positive association is 498 

PKHD1 FDR=2.2·10-6) (Fig. 5d). TP53 deletions were also positively associated (Fig. 5e) and 499 

these trends were observed consistently across many cancer types (Extended Data Fig. 9b). As 500 

independent supporting evidence, the amplifications in oncogenes that phenocopy TP53 loss 501 

(MDM2, MDM4 and PPM1D) are all also positively associated with the activity of the RMDglobal2 502 

mutation redistribution signature (Fig 5e, Extended Data Fig. 9b). This rules out that the TP53 503 

driver mutation occurrence is the consequence of the RMDglobal2 redistribution redirecting local 504 

mutation supply, but rather provides evidence for a causal effect of TP53 inactivation in 505 

RMDglobal2 mutation risk redistribution. 506 

 507 

Since TP53 mutations are associated with increased burdens of CNA events 51, we tested whether 508 

RMDglobal2 RMD signature could be due to confounding from a multiplicity of focal CNAs. 509 

However, there is only a weak correlation between the CNA burden and RMDglobal2 signature 510 

levels upon stratifying for TP53 status (R<=0.11) (Extended Data Fig. 9c-d). As with RMDglobal1, 511 

also RMDglobal2 is enriched in subclonal, late-occurring mutations (Extended Data Fig. 8g-h), 512 

consistent with it being triggered by TP53 alterations, which are unlikely to be present in 513 

noncancerous cells while they accumulate mutations. The activity of the RMDglobal2 signature, 514 

inferred from SNV mutations, is also mirrored in the regional pattern of indel and SV mutations 515 

(Extended Data Fig. 5c-f).  516 

 517 

Overall, the above convergent genetic associations strongly implicated the deficiencies in TP53 518 

pathway in the RMDglobal2 mutation risk redistribution, similarly as the deficiencies in RB1 519 

pathway -- another cancer gene controlling the cell cycle -- were implicated in the RMDglobal1 520 

mutation redistribution (Fig. 4). Interestingly, RMDglobal2 was negatively correlated with the 521 

clock-like trinucleotide mutational signature SBS1 (C>T changes at CpG dinucleotides), 522 

consistently across cancer types (Extended Data Fig. 10ab), and there was also a positive 523 

association with the SBS93 trinucleotide signature (Extended Data Fig. 10ac). We did not identify 524 

https://www.zotero.org/google-docs/?7iuDgv
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associations of similar magnitude and consistency between the RMDglobal1 redistribution and 525 

trinucleotide SBS signatures (Extended Data Fig. 10a; some tentative associations are in 526 

Extended Data Fig. 10de). 527 

 528 

Interestingly, changes to local mutation supply because of  risk redistribution can result in 529 

epistasis-like phenomena.  For instance, 26% of cancer genes including ARID1A and GATA3  530 

exhibited a decreased relative mutation supply in high-RMDglobal2 tumors (which are often TP53 531 

mutant). (Fig. 5fg).  532 

 533 

Apparent genetic interactions -- for example mutual exclusivity with TP53 mutations that are 534 

drivers of RMDglobal2 -- might arise therefore. Indeed, considering13 genes known to bear 535 

coding mutations mutually exclusive with TP53 mutations 52 , nearly half (6/13) were below the 536 

5th percentile of the random distribution of local mutation rates, implicating RMDglobal2. What 537 

appears to be epistatic interaction is in fact commonly just a diversion of the mutational supply by 538 

a TP53-dependant redistribution (Fig. 5fh), resulting in RMD profiles with a difference in the local 539 

mutation supply towards the ARID1A locus (Fig. 5i). Overall, this illustrates how a change in local 540 

mutation risk, here mediated by TP53 loss, can create apparent genetic interactions that may not 541 

indicate selection on functional effects, and should be explicitly controlled for in statistical studies 542 

selection and epistasis in cancer genomes. 543 

 544 

 545 

Concluding remarks 546 

Mutation rates are lower in early-replicating, euchromatic DNA compared to late-replicating 547 

heterochromatic DNA 8,53–56. If either RT or heterochromatin (or both) are causal to mutation rates, 548 

which is likely the case and is often mediated by differential DNA repair 1,2,6,57,58 and/or differential 549 

DNA damage 25,59 then local changes in RT or in heterochromatin status would change local 550 

mutation risk. We provides robust evidence this is commonly the case, plausibly reflecting various 551 

molecular consequences of accelerated and/or dysregulated cell cycling on RT and 552 

heterochromatin organization, with downstream effects on mutation risk in chromosomal domains 553 

that affects mutation supply towards disease genes and steers the course of somatic evolution. 554 

 555 

 556 

Methods 557 

WGS mutation data collection and processing 558 

Our research complies with all relevant ethical regulations. We collected whole genome 559 

sequencing (WGS) somatic mutation data from 6 different studies (Table S6). First, we 560 

downloaded somatic single-nucleotide variants (SNVs) from 1950 WGS from the Pan-cancer 561 

Analysis of Whole Genomes (PCAWG) study at the International Cancer Genome Consortium 60 562 

Data portal (https://dcc.icgc.org/pcawg). Second, we obtained somatic SNVs for 4823 WGS from 563 

the Hartwig Medical Foundation (HMF) study 61 (https://www.hartwigmedicalfoundation.nl/en/). 564 

Third, we downloaded somatic SNVs from 570 WGS from the Personal Oncogenomics (POG) 565 

project 62 from BC Cancer  (https://www.bcgsc.ca/downloads/POG570/). Fourth, we obtained 724 566 

https://www.zotero.org/google-docs/?Jw21vc
https://www.zotero.org/google-docs/?zyWnw4
https://www.zotero.org/google-docs/?E5pvrZ
https://www.zotero.org/google-docs/?31GOPX
https://www.zotero.org/google-docs/?ap9W6M
https://www.zotero.org/google-docs/?zFumJv
https://www.zotero.org/google-docs/?IUnT6A
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WGS somatic SNVs from The Cancer Genome Atlas (TCGA) study as in 9; we applied 567 

QSS_NT>=12 mutation calling threshold in this study. 568 

Finally, we downloaded alignments (BAM files) for 781 WGS samples from the Clinical Proteomic 569 

Tumor Analysis Consortium (CPTAC) project 63,64 and BAM files for 758 tumor samples from the 570 

MMRF COMMPASS project 65 from the GDC data portal (https://portal.gdc.cancer.gov/). Somatic 571 

variants were called using Illumina’s Strelka2 caller 66, using the variant calling threshold 572 

SomaticEVS >=6. Additionally, for these samples we performed a liftOver from GRCh38 to the 573 

hg19 reference genome. 574 

Subtype assignment 575 

We collected the sample metadata (MSI status, purity, ploidy, smoking history, gender) from data 576 

portals and/or from the supplementary data of the corresponding publications. Additionally, we 577 

harmonized the cancer type labels across studies. Here, since lung tumors in HMF data are not 578 

divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) types, we 579 

used a CNA-based classifier to tentatively annotate them in the HMF data. We downloaded copy 580 

number alteration data from HMF and TCGA for lung tumor samples and adjusted for batch effects 581 

between studies using ComBat as described in our recent work 67. We trained a Ridge regression 582 

model with TCGA data to discriminate between LUSC and LUAD and applied the model to predict 583 

LUSC and LUAD in the HMF lung samples. We did not assign a label to samples with an 584 

ambiguous prediction score between 0.4 and 0.6. 585 

Similarly, since POG breast cancer (BRCA) samples are not divided into subtypes (luminal A, 586 

luminal B, HER2+ and triple-negative) we used a gene expression classifier to annotate them. 587 

We downloaded gene expression data for TCGA and POG breast tumors and adjusted the data 588 

for batch effect using ComBat as previously described 67. We trained a Ridge regression model 589 

with TCGA data to discriminate between the breast cancer subtypes (one-versus-rest) and 590 

applied the model to the POG breast cancer samples to assign them to a subtype. We did not 591 

assign 23 samples that are predicted as two subtypes and 8 that are not predicted as any subtype. 592 

Defining windows, filtered regions and matching trinucleotides 593 

We divided the hg19 assembly sequence of the human genome into 1 Mb-sized windows. These 594 

divisions are performed on each chromosome arm separately. To minimize errors due to 595 

misalignment of short reads, we masked out all regions in the genome defined in the “CRG 596 

Alignability 75” track 68 with alignability <1.0. In addition, we removed the regions that are unstable 597 

when converting between GRCh37 and GRCh38 69 and the ENCODE blacklist of problematic 598 

regions of the genome 70.  599 

Additionally, to minimize the effect of known sources of mutation rates variability at the sub-gene 600 

scale we removed CTCF binding sites (downloaded from the UCSC Table Browser), ETS binding 601 

sites (downloaded from http://funseq2.gersteinlab.org/data/2.1.0) and APOBEC mutagenized 602 

hairpins 71. Finally, we removed all coding exon regions (+- 2nts, downloaded from the Table 603 

Browser) to minimize the effect of selection on mutation rates.  604 

https://www.zotero.org/google-docs/?nDqDP6
https://www.zotero.org/google-docs/?PYtCEP
https://www.zotero.org/google-docs/?W30Xr1
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https://www.zotero.org/google-docs/?AiHa51
https://www.zotero.org/google-docs/?ew2inl
https://www.zotero.org/google-docs/?sfThk2
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To minimize the variability in mutational spectra confounding the analyses, we adjusted for the 605 

trinucleotide composition of each window. For this, we removed trinucleotide positions from the 606 

genome in an iterative manner to reduce the difference in trinucleotide composition across 607 

windows. We selected 800,000 iterations that reach a tolerance <0.0005 (difference in relative 608 

frequency of trinucleotides between the windows). After the matching, we removed all windows 609 

with less than 500,000 usable bp remaining. The final number of analyzed windows is 2,540. 610 

Calculating the regional mutation density (RMD) of each window 611 

For our WGS tumor sample set (n=9,606 WGS) we counted the number of mutations in the above-612 

defined windows. We required a minimum number of mutations per sample of 5,876, which 613 

corresponds to 3 muts/Mb (total genome = 1,958,707,652 bp). In total, 4221 tumor samples 614 

remain, which we use for the downstream analyses. 615 

To calculate the RMD, we normalized the counts of each window by: (i) the nt-at-risk available for 616 

analysis in each window and (ii) the sum of mutation densities in each chromosome arm, to control 617 

for whole arm copy number alterations. 618 

To calculate the RMD applied to NMF analysis, we first subsampled mutations from the few 619 

hypermutator tumors, to prevent undue influence on overall analysis. We allow a maximum of 20 620 

muts/Mb, that is 39,174 mutations. If the tumor mutation burden is higher we subsample the 621 

mutations to reduce it to that maximum value. Then, as above, we normalized the RMD by: (i) the 622 

nt-at-risk in each window [ RMD = counts * average_nt_risk / nt_at_risk ] and (ii) the sum of 623 

mutation density in each chromosome arm [ RMD * row_mean_WG / rowMeans by chromosome 624 

arm ]. We multiplied by the average nucleotides at risk in (i) and by the mean of the whole genome 625 

in (ii) to keep the bootstrapped values in the same range as the original values in each sample.  626 

Applying NMF to extract RMD signatures 627 

We applied bootstrap resampling (R function UPmultinomial from package sampling v2.10) to the 628 

RMD scores that we calculated for NMF, as above. The result for each tumor sample is a vector 629 

of counts with a total mutation burden close to the original one but normalized by the nucleotides 630 

at risk by window and also for possible chromosome arm-level copy number alterations (CNA). 631 

Next, we applied NMF (R function: nmf) to the bootstrapped RMD matrices, testing different 632 

values of the rank parameter (1 to 20), herein referred to as nFact. 633 

 634 

We repeated the bootstrapping and NMF 100 times for each nFact. We pooled all results by nFact 635 

and performed a k-medoids clustering (R function pam), with different number-of-clusters  k 636 

values (1 to 20). We calculated the silhouette index (SI), a clustering quality score (which here 637 

measures, effectively, how reproducible are the NMF solutions across bootstrapped runs), for 638 

each clustering parameter set, to select the best nFact and k values. Additionally, we also applied 639 

the same NMF methodology to each cancer type separately (n = 12 cancer types that had  >100 640 

samples available). 641 

 642 

Simulated data with ground-truth RMD signatures 643 
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For each cancer type, we calculated a vector of RMD values (i.e. regional mutation density mean 644 

of all samples from that cancer type) based on observed data, and superimposed the simulated 645 

ground-truth RMD signatures onto these cancer type-derived canonical RMD patterns. We 646 

generated 9 simulated ground-truth RMD signatures with different characteristics, varying the 647 

number of windows affected by the signature (10, 20 or 50% of 2540 windows total) and the fold-648 

enrichment of mutations in those windows (x2, x3 or x5) over the RMD window value in the 649 

canonical RMD pattern for that tissue. 650 

 651 

In particular, we tested 9 different scenarios, varying the RMD signature contribution to the total 652 

mutation burden (10%, 20% or 40%) and the number of tumor samples affected by the RMD 653 

signature (5%, 10% or 20%). We randomly assigned the ground-truth signatures to be 654 

superimposed onto each tumor sample (e.g. tumor sample A will be affected by RMD signature 655 

1 and 3, while tumor sample B will be affected by signature 4). In total, we have simulated 656 

genomes for 9 different scenarios (different RMD signature contributions and number of tumor 657 

samples affected), each of them containing the 9 simulated ground-truth RMD signatures. 658 

 659 

We applied the NMF methodology for the 9 different scenarios independently, and obtained NMF 660 

signatures. For each case, we selected an NMF nFact parameter and k-medoids clustering k 661 

parameter, based on the minimum cluster  SI quality score. To assess the method, we compared 662 

the extracted NMF signatures with the ground-truth simulated signatures. In particular, we 663 

considered that an extracted NMF signature matches the ground-truth simulated RMD signatures 664 

when the cosine similarity is >=0.75 only for that ground-truth simulated RMD signature, and < 665 

0.75 for the rest. 666 

 667 

Analysis of differential mutation supply towards cancer genes 668 

For 460 cancer genes from the MutPanning list 49 (http://www.cancer-genes.org/), we tested if 669 

they are enriched in intronic mutations in tumor samples with high RMDflat, RMDglobal1 or 670 

RMDglobal2. An enrichment will mean that there is a higher supply of mutations in the intron 671 

regions of those genes when the RMDsignature is high. For this, we considered the counts of 672 

mutations in the intronic regions of the gene, normalized to the number of mutations in the whole 673 

chromosome arm, comparing groups of tumor samples having a RMD signature high versus the 674 

group with RMD signature low activity, by tissue. Note that the possibly different number of 675 

nucleotides-at-risk in the central window, nor the length of the flanking chromosome arm are 676 

relevant in this analysis, because they cancel out when comparing one group of tumor samples 677 

to another group of tumor samples (here split by RMD signature activity). We binarized the tumor 678 

samples by activity of RMDflat, RMDglobal1 and RMDglobal2 by dividing each of them into 679 

tertiles, and keeping 1st tertile versus 3rd tertile for further analysis. We applied a Poisson 680 

regression with the following regression formula: 681 

count_gene_intron ~ offset(count_chr_arm) + RMDflat + RMDglobal1 + RMDglobal2 + tissue 682 

where “count” refers to mutation counts. By including the tissue as a variable in the regression, 683 

we controlled for possible confounding by cancer type. The log fold-difference in mutation supply 684 

between RMD signature high versus low tumor samples is estimated by the regression 685 

https://www.zotero.org/google-docs/?kskdYd
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coefficients for RMDflat, RMDglobal1 and RMDglobal2 variables. As a control, we repeated the 686 

same analysis but randomizing the high or low tertile assignment for the three RMD signatures 687 

prior to the regression. 688 

 689 

Association analysis of gene mutations with RMD global signatures 690 

We assembled a set of 1543 genes of interest: cancer driver genes from the MutPanning list 49 691 

and Cancer Gene Census list 72, and furthermore we included genes associated with chromatin 692 

and DNA damage 73. As control, we used a subset of 1000 random genes selected as in 73. 693 

 694 

We applied the analysis for two different features: copy number alterations (CNA) and deleterious 695 

point mutations. For CNA, we use the CN values by gene, using a score of -2, -1, 0, 1 or 2 for 696 

each gene. We considered a gene to be amplified if CNA value was +1 or +2 and deleted if the 697 

CNA value was -1 or -2. For deleterious mutations, we selected mutations predicted as moderate 698 

impact or high impact in the Hartwig (HMF) variant calls, 699 

(https://github.com/hartwigmedical/hmftools). We binarized the feature into 1 if the sample has 700 

the feature (CNA present, or deleterious mutations present) or 0 if it has not. We considered CNA 701 

deletions and amplifications in two independent analyses.  702 

We fit a linear model to test whether the binary genetic feature considered in a particular analysis 703 

(amplification CNA, deletion CNA or deleterious mutation in a particular gene) can be explained 704 

by the RMD signatures activity being high versus low (i.e. upper tertile versus lower tertile). We 705 

adjusted for tissue by including it as covariate. The regression formula was: 706 

genetic_feature ~ RMDflat + RMDglobal1 + RMDglobal2 + tissue 707 

We used the regression coefficients, and p-values (according to the R function summary) from 708 

the variables RMDflat, RMDglobal1 and RMDglobal2 to identify genetic events associated with 709 

high levels of each RMD global signatures, suggesting possible RMD signature-generating 710 

events. In case of CNAs, to adjust for the linkage between neighboring CNA resulting in 711 

confounding, we added to the regression the PCs from a PCA on the CNA landscape across all 712 

genes. We calculated the lambda (inflation factor) for the p-value distribution of associations, 713 

while including PCs from 1 to 100 to decide the best number of PCs to include so as to minimize 714 

lambda. We included the first 55 CNA PCs for the deletion CNA and the first 63 CNA PCs for the 715 

amplification CNA association study. 716 

Epigenomic and related data sources 717 

ENCODE data. We downloaded from ENCODE (https://www.encodeproject.org/) all data 718 

available for Homo sapiens in the genome assembly hg19 for DHS, H3F3A, H3K27me3, 719 

H3K4me1, H3K4me3, H3K9ac, H3K9me3, HiC, DNA methylation (WGBS), H2AFZ, H3K27ac, 720 

H3K36me3, H3K4me2, H3K79me2, H3K9me2 and H4K20me1 marks. Data is described in Table 721 

S7. For each of these features, we downloaded the narrow peaks, calculated their weighted 722 

density for each 1Mb window as the width of the peak multiplied by the peak value. 723 

 724 

HiC data. We downloaded chromatin domain hierarchies and compartment scores generated by 725 

the Calder method from Hi-C data from 114 cell lines 34.   726 

https://www.zotero.org/google-docs/?TY2HFS
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 727 

ChromHMM chromatin states. We downloaded the 25 ChromHMM state segmented files 728 

(“imputed12marks_segments”) for the 129 cell types available from Roadmap epigenomics 729 
74(http://compbio.mit.edu/ChromHMM/). We calculated the density of each state for each 1Mb 730 

window as the fraction of the window covered by the chromatin state. 731 

 732 

Other epigenomic data. We downloaded RT variability genomic data describing RT heterogeneity 733 
75, the constitutive and developmental RT domains 76, RT changes upon overexpression of the 734 

oncogene KDM4A 77, RT signatures of replication stress 78, RT signatures of tissues 79, RT states 735 
80, changes in RT upon RIF1 knock-out 81 and RT changes due to RT QTLs 82. In addition, we 736 

downloaded data for variability in DNA methylation 19,83, HMD and PMD regions 20, CpG density, 737 

gene density, lamina associated domains (LADs), asynchronous replication domains 84, early 738 

replicating fragile sites 85, SPIN states 42, A/B subcompartments 41, DHS signatures 86 and 739 

H3K27me3 and H3K9me profiles for RB1 wild-type and knock-out 23. Data described in Table S5. 740 

We calculated the density for each feature for each 1 Mb window, and correlated this with the 741 

RMDglobal1 signature 1 Mb window weights.  742 

 743 

Replication timing data sources and generation 744 

We downloaded experimental RT data, from RepliChip or RepliSeq assays, from the Replication 745 

Domain database (https://www2.replicationdomain.com/index.php) 76 in multiple human cell types 746 

(n = 158 samples). In addition, we predicted RT using the Replicon software 38 from two types of 747 

datasets: (i) in noncancerous tissues, cultured primary cells and cell lines including cancer and 748 

stem cells (n = 597 samples) using the DHS chromatin accessibility data downloaded from 749 

ENCODE (https://www.encodeproject.org/); and (ii) in human tumors (n = 410 samples, most of 750 

them with technical replicates) using ATAC-seq data of TCGA tumors downloaded from 37. We 751 

used the Replicon tool with the default settings.  752 

 753 

Gene expression data and analyses 754 

 755 

For the genomes from the HMF study, we downloaded gene expression data (as adjusted TPM 756 

values) from Hartwig 61, which were available for a subset of samples for which we derived the 757 

RMD signatures. In total, we had gene expression data for 1534 samples with RMD and 18889 758 

protein coding genes therein. For the genomes from the TCGA study, we downloaded gene 759 

expression data (as TPM values) from the Genomic Data Commons data portal 760 

(https://dcc.icgc.org/pcawg) for the same TCGA samples for which we predicted RT. In total, we 761 

have gene expression data for 399 overlapping tumor samples and 20092 genes therein.  762 

 763 

For the samples from the ENCODE data set, we downloaded RNAseq gene expression levels 764 

(as TPM values) from ENCODE (https://www.encodeproject.org/). We linked the RNAseq 765 

experiments with the DHS and chromatin marks by the donor id and the tissue of origin. There 766 

are several cases for which we have more than one experiment per donor id -  tissue combination; 767 

in those cases we matched at random the replicates from RNAseq with the replicates from the 768 

DHS or chromatin marks with the same donor id (without repeating any experiment id). 769 

https://www.zotero.org/google-docs/?AYcEIn
https://www.zotero.org/google-docs/?U0TDVQ
https://www.zotero.org/google-docs/?PRyN88
https://www.zotero.org/google-docs/?7zyo3x
https://www.zotero.org/google-docs/?XQtSQG
https://www.zotero.org/google-docs/?CHl7Vy
https://www.zotero.org/google-docs/?Lh94J1
https://www.zotero.org/google-docs/?5Cx4aM
https://www.zotero.org/google-docs/?cV2LYZ
https://www.zotero.org/google-docs/?RMNNQi
https://www.zotero.org/google-docs/?Z1HNb4
https://www.zotero.org/google-docs/?61k9uj
https://www.zotero.org/google-docs/?7tlXhh
https://www.zotero.org/google-docs/?Y1Wl7C
https://www.zotero.org/google-docs/?pPkrET
https://www.zotero.org/google-docs/?b1J244
https://www.zotero.org/google-docs/?8st81M
https://www.zotero.org/google-docs/?8Rpv07
https://www.zotero.org/google-docs/?ODpe1V
https://www.zotero.org/google-docs/?eDC6Py
https://www.zotero.org/google-docs/?7hTAAN
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 770 

Gene expression association with the RMDglobal1 and chromatin signatures. For the activity 771 

profile of each RMD/epigenomic signature across samples (RMDglobal1_exposures, 772 

H3K9me3_PC3, etc) we predicted the signature from the gene expression of one gene;the 773 

coefficient from this regression indicates the gene effect (upregulated or downregulated) with 774 

respect to the signature and the p-value. We performed this analysis for every gene individually. 775 

 776 

Gene Set Enrichment Analysis (GSEA).  We used the regression coefficients for the association 777 

with a particular signature to order the genes and applied a GSEA analysis. We consider two 778 

gene sets: MSigDB Hallmarks gene set 35 and the Recurrent Heterogeneity Pathways (RHP) from 779 

a single-cell gene expression study 16.  780 

 781 

PCA and clustering of RMD profiles 782 

For RMD profiles we applied a PCA to the centered data, where rows were tumor samples and 783 

the columns were megabase windows. Next, we applied a clustering on the PC1 to PC21 using 784 

the R function tclust for robust clustering. We tested different numbers of clusters and alpha value 785 

(number of outliers removed). In addition, we tested the clustering using all PCs (PC1 to PC21) 786 

and without PC1 (PC2 to PC21), selecting the clustering for k = 18 and alpha = 0.02 without PC1, 787 

based on the log likelihood estimate. 788 

 789 

RMD signature exposures for clonal vs subclonal mutations 790 

 791 

We separated putatively /subclonal mutations using a heuristic: mutation VAF<0.4*sample purity 792 

for Hartwig, and a generic threshold of VAF<0.3 for CPTAC-3 (purity data not available). Per 793 

tumor genome, we next randomly sampled the mutations to have the same number in the clonal 794 

and subclonal category, to equalize noise stemming from low mutation counts. Next, we 795 

calculated the RMD mutation risk profiles (number of mutations per each 1 Mb window) for the 796 

subclonal mutations and the clonal mutations separately. 797 

 798 

Each RMD profile is a mixture of mutations arising from different processes (modeled by our RMD 799 

signatures). We used a regression to model their relative activity (“exposure”) to the observed 800 

RMD profile of each tumor. We compared the exposures for RMD signatures, thus inferred, from 801 

the clonal mutations versus the subclonal mutations in each tumor sample.  802 

 803 

Software and packages 804 

 805 

The analyses were performed using R (version 3.6). Relevant R packages are liftOver v1.18.0, 806 

GenomicRanges v1.46.1, sampling v2.10, NMF v0.26, glmnet v4.1-6, tclust v1.5-4, dplyr v1.1.0 807 

and tidyr v1.3.0.  808 

 809 

Statistics and Reproducibility 810 

https://www.zotero.org/google-docs/?820dT4
https://www.zotero.org/google-docs/?pZpc2z
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No statistical method was used to predetermine sample size; the maximum number of samples 811 

available was used. Data exclusion criteria were as described in the Methods section; principal 812 

exclusion is that of tumor genomes with low mutation burden, thus focussing on genomes with 813 

less noisy mutation rate estimates. The statistical methods applied largely do not have 814 

assumptions regarding data distributions.  In this observational study there were no experiments 815 

performed to collect data, therefore randomization to conditions/groups does not apply; we note 816 

statistical tests based on randomization were used to determine statistical significance via 817 

generating permuted control data. The investigators were not blinded to allocation during 818 

analyses and assessment. 819 

 820 

Data availability 821 

In this study, published datasets were reanalyzed. WGS somatic mutation calls for the PCAWG 822 

study were downloaded from the International Cancer Genome Consortium (ICGC) Data portal 823 

[https://dcc.icgc.org/pcawg]. Restricted-access WGS somatic mutation calls for the HMF project 824 

were accessed via request number DR-260; details at 825 

[https://www.hartwigmedicalfoundation.nl/en/]. WGS somatic mutation calls for the POG project 826 

were downloaded from BC Cancer [https://www.bcgsc.ca/downloads/POG570/]. We downloaded 827 

restricted-access bam files for the TCGA (dbGaP accession phs000178.v11.p8), CPTAC 828 

(phs001287.v17.p6) and MMRF COMMPASS (phs000748.v7.p4) projects from the Genomic 829 

Data Commons (GDC) data portal [https://portal.gdc.cancer.gov/]. 830 

 831 

We downloaded from ENCODE [https://www.encodeproject.org/] all data available for Homo 832 

sapiens in the genome assembly hg19 for DHS, H3F3A, H3K27me3, H3K4me1, H3K4me3, 833 

H3K9ac, H3K9me3, HiC, DNA methylation (WGBS), H2AFZ, H3K27ac, H3K36me3, H3K4me2, 834 

H3K79me2, H3K9me2 and H4K20me1 marks (described in Table S7). We downloaded 835 

experimental RT data from the Replication Domain database 836 

[https://www2.replicationdomain.com/index.php]. We downloaded ATAC-seq data of TCGA 837 

tumors [https://pubmed.ncbi.nlm.nih.gov/30361341/]. We downloaded the chromatin domain 838 

hierarchies and compartment scores generated by the Calder method from Hi-C data from 114 839 

cell lines [https://pubmed.ncbi.nlm.nih.gov/33972523/]. We downloaded the 25 ChromHMM 840 

states segmented files (“imputed12marks_segments”) for the 129 cell types available from 841 

Roadmap epigenomics [http://compbio.mit.edu/ChromHMM/].  842 

 843 

Additionally, we downloaded other epigenomic data from various studies. The replication timing 844 

heterogeneity calculated as Twidth and Trep from high-resolution (16 phases) Repli-Seq data 845 

was from Ref. 73. The RT changes under overexpression of the oncogene KDM4A was from Ref. 846 

75. Five RT signatures of replication stress were from Ref. 76. Ten RT cell type-specific signatures 847 

during development were from Ref. 77. Fifteen RT states were from Ref. 78. The changes (late 848 

to early or retain late) in RT upon RIF1 knock-out were from Ref. 79. The RT changes due to RT 849 

QTLs were from Ref. 80. The differences in RT between an hypomethylated cell line versus a 850 

control cell line were from Ref. 19. The regions with variability in methylation across individuals 851 

were from Ref. 81. The partially methylated domains (PMDs) and highly methylated domains 852 

(HMDs) were from Ref. 20. The CpG density, gene density and lamina associated domains 853 

https://dcc.icgc.org/pcawg
https://dcc.icgc.org/pcawg
https://www.hartwigmedicalfoundation.nl/en/
https://www.bcgsc.ca/downloads/POG570/
https://www.bcgsc.ca/downloads/POG570/
https://portal.gdc.cancer.gov/
https://www.encodeproject.org/
https://www2.replicationdomain.com/index.php
https://pubmed.ncbi.nlm.nih.gov/30361341/
https://pubmed.ncbi.nlm.nih.gov/33972523/
http://compbio.mit.edu/ChromHMM/
https://www.zotero.org/google-docs/?VmnPr8
https://www.zotero.org/google-docs/?EH3VK1
https://www.zotero.org/google-docs/?mx3xyj
https://www.zotero.org/google-docs/?msXRs8
https://www.zotero.org/google-docs/?zDquwZ
https://www.zotero.org/google-docs/?QjHwCA
https://www.zotero.org/google-docs/?NkUNKf
https://www.zotero.org/google-docs/?OBRk5N
https://www.zotero.org/google-docs/?kf4NkU
https://www.zotero.org/google-docs/?vVZsXj
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(LADs) were from the table browser [https://genome.ucsc.edu/cgi-bin/hgTables] (assembly Feb. 854 

2009 GRCh37/hg19). The asynchronous replication domains were from Ref. 82. The early-855 

replicating fragile sites were from Ref. 83. The SPIN states were from Ref. 40. The A/B 856 

subcompartments were from Ref. 39. Sixteen signatures generated from applying NMF to DHS 857 

peaks were from Ref. 84. The H3K27me3 and H3K9me profiles for RB1 wild-type and knock-out 858 

were from Ref. 23. The constitutive early, constitutive late and developmental domains were from 859 

http://www.replicationdomain.org. 860 

 861 

In a FigShare repository [https://doi.org/10.6084/m9.figshare.c.6911140.v1], we provide data 862 

generated in this study: the RMD values across 2450 one-megabase windows for the 4221 tumor 863 

genomes analyzed (rmd_counts.zip), and the final RMD signatures extracted from this RMD 864 

matrix using NMF (RMDsignatures_exposures_k=13_nFact13_n=4221.csv and 865 

RMDsignatures_window_weights_hg19_k=13_nFact=13.csv). In addition, we provide the RT and 866 

chromatin remodeling PC-signatures (PCA_chrom_RT.zip). Finally, we provide the predicted 867 

DNA replication timing data at 1 Mb resolution using the Replicon tool for TCGA tumors (predRT-868 

TCGA_1Mb.zip) and for ENCODE samples (predRT-ENCODE_1Mb.zip). Other data can be 869 

made available from the authors upon request. 870 

 871 

 872 

 873 

Code availability 874 

Custom code is available in a Github repository: https://github.com/marina-salvadores/RMDsig 875 

 876 
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 902 

Figure Legends  903 

 904 

Figure 1. Identifying RMD signatures by an NMF-based method to megabase-scale 905 

mutation density profiles. a) A principal component (PC) analysis of RMD profiles in 2540 non-906 

overlapping 1 Mb windows for breast, head-and-neck and lung tumor WGS (n=1408). b) Mean 907 

RMD profiles on chromosome 1q for breast cancers in the PCA cluster 6 (n = 76) and cluster 9 908 

(n= 211), shows enrichment of the triple-negative subtype in the former. Stars mark windows that 909 

are significantly different at FDR<25% by Mann-Whitney test (two-tailed). c) Mean RMD profiles 910 

on chromosome 1p for head-and-neck squamous cell cancers in the PCA cluster 11 (n = 81) and 911 

PCA cluster 13 (n= 41), where the former cluster with skin cancers and the latter with lung 912 

cancers, see Extended Data Fig. 1e. d) Example RMD signature from a simulation study (see 913 

Methods), comparing 1 Mb window weights for an extracted NMF signature and its matching 914 

simulated ground-truth signature along chromosome 1p. See Extended Data Fig. 2 and Tables 915 

S1-2 for additional simulation data. e) Clustering quality scores for various parameters for NMF 916 

run on 4221 tumor genomes. The minimum silhouette index (SI) across clusters (RMD signatures) 917 

for different numbers of NMF factors and clusters from k-medoids. The selected case (nFact=13, 918 

k=13) is marked with a cross. f) Overview of the distributions of the 13 extracted RMD signatures 919 

(rows) across different cancer types (columns). The circle size corresponds to the fraction of 920 

tumors in a cancer type exhibiting a high activity of a specific signature (defined as exposure >= 921 

0.12, corresponding to the 1st percentile of the exposure of the RMDflat signature in 922 

microsatellite-instable [MSI] cancers). Total number of samples per cancer type written beneath 923 

table. Gini index quantifies the cancer type specificity, where lower Gini means signature is shared 924 

across different cancer types (i.e. the “global” RMD signatures). g) Relative contribution of each 925 

RMD signature to the total mutation burden across the 4221 tumor genomes analyzed. The 926 

RMDsig-tissue category represents all 10 tissue-specific RMD signatures, pooled together. The 927 

MSI tumors from various cancer types are all shown together. 928 

 929 

Figure 2. RMDglobal1 mutation risk signature associates with domain-scale variability in 930 

heterochromatin. a)  Modeling the RMDglobal1 spectrum (2540 window weights) using genome-931 

wide profiles of various epigenomic features (x axis) using either the whole dataset, or selecting 932 

the best-predicting individual sample, or using the average across the samples. Dataset described 933 

in Table S7. b) Correlation between RMDglobal1 spectrum, and the differences between each 934 

pair of H3K9me3 profiles from ENCODE (blue) and randomized profiles (grey). Right: difference 935 

in H3K9me3 density for 3 example pairs of samples. Vertical lines mark the top 5% and bottom 936 

5% windows of the RMDglobal1 spectrum (i.e. where changes in mutation risk are highest and 937 

lowest, respectively). c) ,Correlations between chromatin remodeling PCs (one PCA performed 938 
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per epigenomic feature) and the global RMD signatures. Black square denotes the cluster of 939 

RMDglobal1-associated PCs. d) Window weights on chromosome 1p for the four RMDglobal1-940 

associated chromatin PCs and RMDglobal1 mutagenesis itself. Vertical bars as in panel b. e) 941 

Gene expression associated with the 3 relevant chromatin PCs. Gene set enrichment analysis 942 

(GSEA) scores for the MSigDB hallmark gene sets for an ordered list of genes associated with 943 

chromatin PC levels (Methods). f) Differences in activities of the H3K9me3_PC3 and DHS_PC3 944 

chromatin signatures between the biosample types in ENCODE, **** is p<=0.0001 by two-sided 945 

Mann-Whitney test. H3K9me3 p-values: p = 6.2·10-7 (cancer CL vs tissue), p = 3.0·10-11 (other 946 

CL vs tissue) and p = 1.6·10-12 (primary cell vs tissue); with H3K9me3 n = 74 cancer CL; 40 other 947 

CL, 35 primary cell; 107 tissue. DHS p-values: p < 2.2·10-16 (cancer CL vs tissue), p = 2.3·10-7 948 

(other CL vs tissue) and p < 2.2·10-16 (primary cell vs tissue); with DHS n = 153 cancer CL; 151 949 

other CL, 229 primary cell; 143 tissue. g) Gene expression (square root TPM) for example genes 950 

from the proliferation-associated categories, comparing ENCODE samples with high versus low 951 

chromatin remodeling signatures. DHS_PC3 was inverted, denoted by “(-)”, as an interpretation 952 

aid. H3K9me3 n = 12 PC3-high-10%; n = 13 PC3-low-10%. DHS n = 10 PC3-high-10%; n = 11 953 

PC3-low-10%. f-g) Boxplots: the center line is the median, the box bounds the 25th and 75th 954 

percentiles and the whiskers the largest/smallest value within 1.5 times the interquartile range 955 

(IQR). 956 

 957 

Figure 3. RMDglobal1 mutation risk redistribution is linked with RT program remodeling in 958 

cancers. a) Modelling the RMDglobal1 spectrum (2540 window weights) using genome-wide 959 

profiles of various RT features as described in Fig. 2a. Dataset described in Table S7. b) 960 

Correlations between the RT PCs, the 3 RMDglobal signatures, and the 4 relevant chromatin PCs 961 

from Fig 2 (in blue). Square denotes the cluster of RMDglobal1-associated RT/chromatin PCs. c) 962 

Median RT profiles across tumor samples with high versus low predRT-TCGA_PC5 remodelling 963 

signature. Windows with top 5% and bottom 5% RMDglobal1 mutagenesis marked with vertical 964 

lines. d) Gene expression associated with RT PCs (in TCGA and in ENCODE), as well as with 965 

RMDglobal1 (in HMF). Gene set enrichment analysis (GSEA) as in Fig. 2. e) Replicated 966 

associations of gene expression in ENCODE and the RT signature predRT-ENCODE_PC3 (y-967 

axis) and gene expression in TCGA tumors and RT signature predRT-TCGA_PC5 (x-axis). The 968 

distribution for the genes in two significant sets are shown in orange. f) Associations of gene 969 

expression with a RT remodeling signature in TCGA (x axis, same as panel e), but here replicated 970 

in association of gene expression with the RMDglobal1 mutation risk redistribution in the Hartwig 971 

Medical Foundation WGS (y-axis) g) RMDglobal1 spectrum (window weights for n=2540 972 

windows) across Hi-C nuclear subcompartments. **** denotes p<=0.0001 by two-sided Mann-973 

Whitney test. p-values: p < 2.2·10-16 (B1 vs A1), p < 2.2·10-16 (B1 vs A2), p = 1.6·10-9 (B1 vs B2) 974 

and p < 2.2·10-16 (B1 vs B3). h) RMDglobal1 spectrum across SPIN nuclear positioning states. 975 

**** denotes p<=0.0001 by two-sided Mann-Whitney test. p-values: p < 2.2·10-16 (Interior_Repr2 976 

vs Interior_Act3), p < 2.2·10-16 (Interior_Repr2 vs Lamina) and p = 2.9·10-14 (Interior_Repr2 vs 977 

Near_Lm1). g-h) Boxplots: the center line is the median, the box bounds the 25th and 75th 978 

percentiles and the whiskers the largest/smallest value within 1.5*IQR. i) RMDglobal1 and 979 

RMDflat signature window weights, stratified by distance to telomeres. Mean value across all 980 

chromosomes shown, separately for p and q arms. j) Correlation of RMDglobal1 spectrum with 981 

the CORES score describing Hi-C alterations that a domain undergoes during a whole genome 982 
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doubling 43. The line represents the linear regression and the gray shadow the 95% intervals of 983 

the linear regression. 984 

  985 

 986 

Figure 4. Genetic alterations associated with the activity of RMDglobal1 (RMDg1) 987 

mutagenesis. a) Schematic of the causal gene analysis in panels b-d (Methods). b) Associations 988 

between somatic CNA deletions and a higher RMDglobal1 exposures in a pan-cancer analysis (n 989 

= 2875) (Methods). n=1543 cancer genes and chromatin-related genes (dots), control set of 990 

n=1000 randomly chosen genes (crosses). P-values from two-sided Z-test on regression 991 

coefficient (see Methods). c) Differences in RMDglobal1 exposures between RB1 deletion (-1 or 992 

-2 CNA state) and the RB1 wild-type tumors; separated by cancer type in Extended Data Fig. 7e-993 

g. n=1662 tumors. P-values from Mann-Whitney test, two-tailed. d) Mean local CNV profile in 994 

groups of tumors, binned by RMDglobal1-high (n=81) and low exposure (n=93), in the segment 995 

of chromosome 13 containing the gene RB1. Each dot represents one gene. e-f) Overlap between 996 

the RMDglobal1 redistribution-affected domains, and the domains affected by heterochromatin 997 

remodeling (e) or DNA damage redistribution (f) in an isogenic pair of RB1 k.o. cell lines 23.  g) 998 

RMDglobal1 weights near telomere, separately by chromosome arms with a RB1 k.o. > WT 999 

change versus a WT > RB1 k.o. change by DNA damage. h) Associations between deleterious 1000 

SNV and indel mutations in genes as in panel b, and the RMDglobal1 activity of tumor samples 1001 

(n = 2785, pan-cancer; Methods). P-values from two-sided Z-test on regression coefficient (see 1002 

Methods). i) Expression level associations the MSigDB hallmark gene sets with RB1 deletions (in 1003 

Hartwig Medical Foundation and in TCGA studies), and with the RMDglobal1 mutation risk 1004 

redistribution itself. j) Schematic of the analysis in panels k-m (Methods). k) Distribution for the 1005 

difference in intronic mutation density for 460 cancer genes, comparing between RMDglobal1-1006 

high and low tumors. Shown separately using the actual values of RMDglobal1 and a randomized 1007 

baseline. Vertical lines show 5th and 95th percentile of the random distribution, used as cutoffs 1008 

for significance. l) Intronic mutation density for RMDglobal1-high versus low tumor samples (top 1009 

tertile versus bottom tertile) at 5 example genes (common cancer drivers with the highest effect 1010 

size). Points are cancer types: n = 4 RMDg1_high and 4 RMDg1_low. m) RMD profile in a region 1011 

on chromosome 3p, showing the mean RMD across the RMDglobal1-high versus low tumor 1012 

groups (here, top and bottom decile). Vertical lines mark the position for the BAP1 tumor 1013 

suppressor gene. c,l) Boxplots: the center line is the median, the box bounds the 25th and 75th 1014 

percentiles and the whiskers the largest/smallest value within 1.5*IQR. 1015 

  1016 

 1017 

 1018 

Figure 5. TP53 loss-of-function underlies the RMDglobal2 mutation risk redistribution 1019 

signature. a) A quadratic and linear association of RMDglobal2 spectrum (window weights, 1020 

n=2540) with RT. The blue lines represent the regression and the gray shading the 95% 1021 

confidence intervals. b) Mean mutation density profiles on chromosome 4q for the RMDglobal2-1022 

high (n=7) versus low (n=129) tumors in esophagus cancer. Latest RT windows are marked with 1023 

black dots. c) Relative RMD profile across 10 RT bins, showing the mean RMDglobal2-high 1024 

(exposure > 0.17, n = 30) versus RMDglobal2-low tumor (exposures < 0.01, n=78). Cancer types 1025 

with high RMDglobal2 considered: breast, lower-GI, upper-GI and prostate. P-values (*** denotes 1026 

https://www.zotero.org/google-docs/?9W2iSD
https://www.zotero.org/google-docs/?49UxcY
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p<10-6) from two-sided Z-test on the regression coefficients (mean_RMD ~ RT_groups + 1027 

RT_groups2). d) Associations between RMDglobal2 in 2785 tumors, and deleterious mutations in 1028 

cancer genes and chromatin genes and control genes (gray dots); p-values from two-sided Z-test 1029 

on regression coefficient. e) RMDglobal2 exposures of 2785 tumors stratified by: TP53 wild-type 1030 

(wt), with 1 mutation (TP53_mut), with 1 deletion (TP53_del), TP53-loss phenocopy via CNA gain 1031 

in MDM2, MDM4 or PPM1D (TP53_pheno), or TP53 with any two hits (TP53_2hit). P-values from 1032 

two-sided Mann-Whitney test. n = 297 wt; 919 TP53_mut, 124 TP53_del, 416 TP53-loss 1033 

phenocopy; 973 TP53_2hit. f) Relative intronic mutation density for 460 cancer genes, comparing 1034 

between RMDglobal2 high and low tumors. Histograms are shown using the actual values of 1035 

mutation supply difference , and using a randomized baseline. Genes known to have mutually 1036 

exclusive mutations with TP53 mutations are marked with crosses. g) Log2 relative intronic 1037 

mutation density (normalized to flanking DNA, see Fig 4j), estimating mutation supply, for 1038 

RMDglobal2-high versus RMDglobal2-low tumors for two example TP53 mutually exclusive 1039 

genes. The dots are cancer types. For ARID1A n = 12 RMDg2_high and 12 RMDg2_low. For 1040 

GATA3 n = 13 RMDg2_high and 11 RMDg2_low. h) Percentage of genes with significantly 1041 

lowered mutation supply (below 5th percentile of random) upon RMDglobal2 redistribution. i) 1042 

Mean RMD profile across the RMDglobal2-high versus low tumors in a region of chromosome 1p 1043 

harboring ARID1A. e,g) Boxplots: the center line is the median, the box bounds the 25th and 75th 1044 

percentiles and the whiskers the largest/smallest value within 1.5*IQR. 1045 
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