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Abstract 

Background Whole‑exome sequencing (WES) and whole‑genome sequencing (WGS) have become indispensable 
tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algo‑
rithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage 
of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene‑
phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real‑world patient 
cohorts.

Methods We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal vari‑
ants based on the patient’s standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algo‑
rithm propagates the data through an interactome network‑based prioritization approach. This algorithm was thor‑
oughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, 
real‑world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA).

Results ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our 
real‑world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were 
functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interac‑
tome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes.

†Agatha Schlüter, Valentina Vélez‑Santamaría and Edgard Verdura contributed 
equally to this work.

*Correspondence:
Carlos Casasnovas
carloscasasnovas@bellvitgehospital.cat
Aurora Pujol
apujol@idibell.cat
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-023-01214-2&domain=pdf
http://orcid.org/0000-0002-9606-0600


Page 2 of 19Schlüter et al. Genome Medicine           (2023) 15:68 

Conclusions ClinPrior is an algorithm that uses standardized phenotype information and interactome data 
to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease‑
causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our 
understanding of human illnesses.

Keywords Algorithm, WES/WGS, HPOs, Variant prioritization, Interactome, Hereditary spastic paraplegia, Cerebellar 
ataxia, Candidate gene

Background
In the past few years, the clinical application of next-
generation sequencing (NGS) techniques (whole-exome 
sequencing (WES) and whole-genome sequencing 
(WGS)) has significantly increased both the diagnostic 
yield and our knowledge of hereditary diseases. In par-
ticular, WES has enabled a striking increase in the dis-
covery of novel disease-causing genes and a broadening 
of disease phenotypes [1]. However, the overall diagnos-
tic yield of WES in neurological diseases ranges from 
approximately 25% in heterogeneous cohorts to over 
50% in enriched, curated cohorts (i.e., cohorts defined 
by well-defined phenotypes, positive family histories, or 
consanguinity) [2] (Additional file  1: Table  S1). Despite 
continuous advances, the analysis of NGS data poses the 
challenges of variant selection and interpretation, which 
are especially relevant for cases in which the causal gene 
has not yet been associated with a disease.

Several computational methods have recently been 
developed to use patient phenotype information for 
disease-gene prioritization of genomic data [3, 4]. These 
methods generally compute the similarity between a 
patient’s phenotype and candidate diseases by leverag-
ing gene-phenotype associations from databases such as 
OMIM [5] or DisGeNet [6]. Several of these methods are 
combined with network-based approaches that integrate 
different levels of biological organization, ranging from 
the genome to the transcriptome and the phenome, to 
enhance finding the most phenotypically similar matches 
[7–9]. Nevertheless, these methods are limited by their 
reliance on incomplete knowledge of diseases and asso-
ciated genes and poor validation on large-scale clinical 
sequencing cohorts.

We present here ClinPrior, a new method that ranks 
candidate causal variants/genes of patients sequenced by 
NGS methods according to their phenotype (using stand-
ardized Human Phenotype Ontology -HPO- terms) by 
performing interactome network-based prioritization. 
First, we demonstrate the effectiveness of our method 
by evaluating its performance on comprehensive com-
putational simulations in synthetic cohort scenarios. 
Second, we present ClinPrior’s diagnostic performance 

in a widely heterogeneous prospective, real-world series 
of 135 families affected by hereditary spastic paraplegia 
(HSP) and/or cerebellar ataxia (CA). ClinPrior was suc-
cessfully used to prioritize pathogenic causative variants 
(mostly single-nucleotide variants (SNVs) or small inser-
tion/deletion variants (INDELs)), strongly contributing 
to a final 70% positive diagnostic yield. Finally, we gen-
erated an HSP/CA-specific interactome using previously 
generated interactome knowledge, which will enable the 
discovery of novel disease genes in the future.

Methods
ClinPrior: Interactome‑driven prioritization method
We developed a network-based prioritization algorithm 
structured by three main steps: (1) the calculation of a 
phenotype-matching metric by comparing patient phe-
notypes to data in existing human disease databases 
(referred as prior knowledge throughout this work); (2) 
iterative propagation of this phenotypic score within a 
gene‒gene network; and (3) variant filtering of VCF files 
and calculation of variant deleteriousness scores (Fig. 1).

Phenotypic score
ClinPrior compares patient clinical features with the 
phenotypic data associated with each node (gene) by 
calculating a phenotype association metric that meas-
ures the strength of association of each gene with the 
patient’s phenotype. To this aim, the patient’s clinical 
features are first translated into phenotypic ontology 
HPO terms (http:// human- pheno type- ontol ogy. github. 
io/), and compared with the 439,379 HPO-disease-gene 
associations of the phenotypic layer (OMIM, HPO site 
and DisGeNet databases [5, 6, 10]) based on a hyperge-
ometric test that compares the number of patient HPO 
terms that associate with a specific gene. In addition, we 
considered the hierarchical structure of the HPO, as we 
also included the immediate HPO ancestor and descend-
ant terms to perform the calculation (e.g. Abnormality 
of the hand > Abnormality of the finger (HPO present in 
patient) > Abnormality of the 5th finger). Then, we used 
the PRINCE logistic function to transform the pheno-
typic scores into a normalized value [0, 1] [7]).

http://human-phenotype-ontology.github.io/
http://human-phenotype-ontology.github.io/
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Generation of a multilayer interactome network
ClinPrior propagates iteratively the phenotypic metric to 
adjacent nodes within a gene–gene interaction network 
with 23,509 genes and 699,854 different connections 
(physical and functional layers) after discarding nodes/
genes with more than 1000 interactions. For the physical 
interactome layer, we integrated protein‒protein inter-
actions (PPIs) from the BioPlex 2.0 Network [11] and the 
Human Reference Interactome (HuRI) [12], including 
the curated interactions from the scientific literature Lit-
BM-13 dataset [13] and the high throughput Yeast-Two-
Hybrid human proteome binary interactions HI-I-05 
and HI-II-14 datasets [12–14]. For the functional inter-
actome layer, we integrated functional interactions from 
the HumanNet-CF v.2 database (CX: coexpression, DB: 
common pathways in databases, DP: protein domain, GI: 
gene interaction, GN: gene neighbourhood, PG: phylo-
genetic profile and PI: protein‒protein interactions) [15], 
KEGG (genes connected by substrate-product reac-
tions in metabolic pathways) [16], Recon3D metabolic 

database (discarding metabolites associated with more 
than 50 genes) [17] and Signor 2.0 database (signalling 
pathways) [18].

All gene‒gene interactions were initially assigned a 
value of 1, and afterwards, we built an adjacency matrix 
W, adjusted with node degree normalization that shows 
how specific is the association between each pair of 
genes in the interactome, both from the physical and 
functional layers.

Network propagation
Using as an input the phenotypic scores for all genes in 
the network (vector Y) and the gene‒gene interaction 
adjacency matrix (W), we calculated a network propa-
gation score for the gene vector F using the Zhou et al. 
[19] equation:  Ft+1 = αFtW + (1 − α)Y. We initialized 
 F0 = Y and ran the analysis equation iteratively to con-
vergence with α set to 0.2 (different values were tested, 
and we observed that the results were robust to the 

Fig. 1 ClinPrior pipeline. First, the algorithm calculates the phenotypic association metric for each gene in the phenotypic layer based 
on the patient’s phenotype and known HPO‑gene associations. The multilayer network is built from different data resources (see “ Methods”). 
The phenotypic layer reports HPO‑gene associations, the physical layer reports physical protein‒protein interactions (PPIs) and the functional 
layer provides coexpression, signalling or metabolic pathway, and protein domain associations. The method propagates the phenotypic metric 
in adjacent nodes of the network so that higher scores indicate a better phenotypic fit with the patient. Variants resulting from patient genomic 
sequencing are filtered by frequency, variant impact and mode of inheritance. With this method, new candidate genes not previously associated 
with disease can also be identified thanks to the propagation of the phenotypic metric through neighbourhood connections
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choice of α). This iterative propagation method is used 
in PRINCE [7] and applied in Novarino et al. [9].

Variant filtering and deleteriousness score
Patient variants extracted from a Variant Call Format 
(VCF) files from a WES/WGS experiment are analysed 
and filtered using Ensembl Variant Effect Predictor (VEP) 
and its filter tool [20]. For the real-world cohort, we 
applied the following criteria: (1) variants in the coding 
region; (2) an allele frequency lower than 1% in the auto-
somal recessive mode and lower than 0.005% in the auto-
somal dominant mode of inheritance in 1000 Genomes 
Project, NHLBI GO Exome Sequencing Project (ESP) 
and gnomAD (v2.1.1 for exomes and v3.1.2 for genomes) 
databases [21–23]; (3) genotype quality (GQ) in the VCF 
file higher than or equal to 20; (4) read depth (DP) in the 
VCF file higher than or equal to 10; (5) predicted del-
eterious effect on protein function, including frameshift 
insertions/deletions, nonsense and nonsynonymous 
amino acid substitutions and canonical splicing sites 
classified with high and moderate impact effects; and 
(5) noncanonical splicing sites, synonymous variants in 
splice regions and intronic variants less than 30 bp away 
from the splice site (in WES).

To score variant deleteriousness, ClinPrior considers 
(1) hypothesized mode of inheritance in homozygous, 
compound heterozygous, heterozygous or hemizygous 
variants; (2) variant impact classification on high, moder-
ate and low prediction according to VEP annotation; (3) 
precalculated in silico CADD v1.6 predictor scores [24]; 
(3) splicing effect prediction for canonical and noncanon-
ical variants using the MaxEntScan plugin in VEP [25]; 
(4) the gene-wide metrics pLI, pREC, Z scores for mis-
sense and loss of function from the gnomAD database 
[23]; and (5) variant constrained coding region scores 
for accurate identification of local intolerant missense 
variants with the assumption that the absence of vari-
ants in a given genomic position and its neighbourhoods 
is informative of change intolerance [26]. Finally, ClinP-
rior integrates the propagated phenotypic metric and the 
variant deleteriousness scores into a final ClinPrior score 
that determines the final order of the given variant in the 
ranked variant list for each case. We used the vcfR pack-
age to read VCF files in R [27].

The prioritization algorithm is implemented in the R 
library ClinPrior and is available at GitHub: https:// github. 
com/ aschl uter/ ClinP rior [28] and Zenodo repository: 
https:// zenodo. org/ record/ 78459 39 [29].

Patient enrolment and clinical recruitment
Study participants were identified at 19 child and adult 
neurology units from tertiary hospitals around Spain 
from April 2017 to December 2020. Informed consent 

was obtained from all patients. Patients were first clas-
sified as having (i) cerebellar ataxia, (ii) pure spastic 
paraplegia, or (iii) complex spastic paraplegia, including 
additional features such as cerebellar signs, sensorimotor 
neuropathy, white matter involvement or neurodevelop-
mental delay, among others. Extensive clinical evalua-
tion to rule out acquired causes was performed at each 
centre of origin. A molecular diagnosis could not be 
established by the referring physicians despite the appli-
cation of standard-of-care paraclinical studies (including 
mainly cranial and spinal magnetic resonance imaging 
(MRI), neurophysiological and genetic studies such as 
array comparative genomic hybridization (aCGH), tar-
geted Sanger sequencing, MLPA or NGS gene panels), 
as well as metabolic workup when considered necessary. 
Polyglutamine expansions were excluded in all patients 
with suspected autosomal-dominant (ATXN1, ATXN2, 
ATXN3, ATXN7, CACNA1A, TBP and ATN1) or auto-
somal-recessive (FXN and FMR1) ataxias (n = 23), and 
negative results for the most frequently mutated genes 
causing dominant and recessive spastic paraplegia (ATL1, 
SPAST, SPG7 and SPG11, among others) were obtained 
prior to WES in most patients with a predominant spas-
tic phenotype (n = 43).

Clinical records were reviewed by two experienced 
neurologists and one paediatric neurologist at the Neu-
rometabolic Disease Laboratory of Bellvitge Biomedical 
Research Institute (IDIBELL) and were translated into 
HPO terms. We annotated a mean of 24.4 HPOs per 
patient, with a median of 23. The minimum number of 
HPOs used in a patient was 5 and the maximum was 47. 
A novel phenotype was considered when a patient dis-
played striking clinical, radiological or biochemical fea-
tures not previously described in the literature.

Further methods related to (1) benchmarking, (2) HSP/
CA expanded network, (3) WES/WGS sequencing and 
(4) variant functional validation can be found in Addi-
tional file 1: Methods.

Results
We have developed a variant prioritization mod-
ule named ClinPrior, which identifies the most likely 
disease-causing variants in a VCF file associated with 
patient phenotypes using phenotype matching and, most 
importantly, a three-layer interactome. In this interac-
tome, the nodes in each layer represent genes, whereas 
the links represent their respective relationship at a par-
ticular scale of biological organization, namely, direct 
physical, functional and phenotypic interactions between 
gene products, extracted from different open sources, as 
depicted in Fig. 1.

https://github.com/aschluter/ClinPrior
https://github.com/aschluter/ClinPrior
https://zenodo.org/record/7845939


Page 5 of 19Schlüter et al. Genome Medicine           (2023) 15:68  

Benchmarking of ClinPrior using a synthetic WES cohort
We first evaluated the performance of the algorithm 
by analysing the prioritization of 66,800 SNVs or small 
INDELs pathogenic variants present in 3356 different 
disease-associated genes obtained from the ClinVar data-
base (December 2019) [30] (Fig.  2, VCF file in Zenodo 
[31]). For this purpose, we generated 66,800 synthetic 
exomes by inserting ClinVar pathogenic variants (one 
per exome) into a high-confidence gold standard exome 
VCF file published by the Genome in a Bottle (GIAB) 
consortium [32]. We used the HPOs linked to each gene 
containing variants, which are present in the HPO-gene 

associations in the phenotypic layer (OMIM, HPO and 
DisGeNet), to simulate the patient phenotypic features.

We assessed ClinPrior prediction performance 
through area under the receiver operating characteris-
tic (AUROC) curve graphs in three different scenarios 
(Fig.  2A): (1) using all phenotypic information in HPOs 
associated with the genes of interest, (2) using the exact 
same number of HPOs associated with each gene, but 
now randomly chosen to simulate a situation where vari-
ant deleteriousness only drives prioritization, and (3) 
using no HPO information and assigning a random pri-
oritization rank to variants in the VCF file. This third 

Fig. 2 ClinPrior performance benchmarking in a synthetic cohort. A Variant prioritization performance through the area under the receiver 
operating characteristic curve (AUROC) in the identification of known disease genes and candidate disease genes (A). ROC curves computed 
using the patient HPO terms, random HPO terms and random final ClinPrior prioritization rank in the 66,800 synthetic WES analysed. B The method 
identifies the gene that best matches the patient’s phenotype based on known HPO‑gene associations and the propagation of the phenotypic 
metrics in the multilayer interactome. When the identified gene is a novel candidate gene not previously linked to disease, there are no HPO‑gene 
associations in the phenotypic layer. For benchmarking, we simulated a candidate gene by removing the HPO‑Gene associations from each 
candidate
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scenario is used to simulate a situation in which no vari-
ant deleteriousness or phenotypic information is avail-
able for prioritization. Its AUROC curve is represented 
as a straight line and is equivalent to obtaining the same 
value for the true and false-positive result fractions, 
AUROC value = 0.5. In the first scenario (all HPOs), the 
obtained AUROC curve value was 0.9994, and in the 
second scenario (random HPOs), the AUROC curve 
value was 0.8393, indicating the importance of pheno-
typic terms accurately matching patient clinical data to 
increase prioritization accuracy.

Given that genes associated with the same group of 
diseases are more connected in interactomes [7–9], we 
decided to examine whether our network had predictive 
power to discover new candidate genes not yet associated 
with disease. To assess this possibility, we removed the 
HPO-gene associations of candidate genes from the phe-
notypic layer and then ran ClinPrior again for the 66,800 
synthetic exomes cited above (Fig.  2B). In these condi-
tions, the algorithm prioritized variants worse because 
the specific phenotypic information of the candidate 
gene had been removed from the network, thus simulat-
ing unknown genes not associated with the phenotypes. 
In this scenario, the phenotypic score of the candidate 
gene is obtained only using the network score propaga-
tion from adjacent disease genes in the interactome, 
resulting in an AUROC value of 0.7824, or 0.6489 when 
using random HPOs (Fig. 2A).

ClinPrior validation on a prospective, real‑world discovery 
cohort of 135 HSP/CA families
Clinical data
We enrolled 135 families with undiagnosed HSP and/or 
CA (Fig. 3A) after targeted screening for the most com-
mon genetic causes, as described in the “ Methods.” The 
clinical characteristics, studies performed and WES-
WGS results of every patient are summarized in Table 1 
and Additional file 1: Table S2.

Diagnostic yield of WES and WGS in the HSP/CA real‑world 
discovery cohort
All patients underwent initial WES analysis and were 
analysed using ClinPrior. At first, the diagnostic rate 
counting only pathogenic and likely pathogenic variants 
was 53/135 (39%), which increased to 60/135 (44.4%) 
after subsequent reanalysis at 12 and 24  months, thus 
confirming the previously reported importance of case 
reanalysis [33, 34]. The reanalysis included novel inter-
actomes, novel disease associations and an improved 
variant calling procedure. In addition, 4 VUS cases were 
functionally validated, which increased to 64/135 (47%). 
We also performed functional studies on candidate 
genes not previously associated with disease (validated 

candidates), thus achieving the diagnosis of 12 more 
families, increasing the diagnostic yield to 76/135 (56%). 
In 9 additional cases, we identified variants of unknown 
significance (VUS) in genes that were highly compat-
ible with the clinical picture and segregation but were 
not amenable to experimental validation. We considered 
these cases to be solved by expert assessment, and the 
diagnostic yield increased to 85/135 (63%) (Fig. 3B, C).

Next, we performed singleton WGS in 32 of the 
remaining 46 negative cases, which we prioritized 
according to the availability of DNA from the proband 
and parents. We obtained a positive result for five addi-
tional families of which three harboured a SNV variant 
in the SPG7 [35], SPTBN2 or SPTAN1 gene and two har-
boured a copy-number variant (CNV) in the SPAST gene 
(IDSPG132) of dominant inheritance (2p22.3(32337285–
32350543) × 1) or in the FARS2 gene (6p25.1(5172693–
5459957) × 1) in compound heterozygosity with a 
missense variant (IDSPG116), reaching a final diagnos-
tic yield of 90/135 (67%) (Fig.  3B, C; Additional file  1: 
Results, Table S3 and Table S4).

We examined the performance of ClinPrior in the 76 
WES and 3 WGS cases where it was instrumental to pro-
vide a direct diagnosis (presence of pathogenic or likely 
pathogenic SNV/INDEL variants after current American 
College of Medical Genetics and Genomics (ACMG) cri-
teria). ClinPrior identified 93% of pathogenic/likely path-
ogenic variants in known disease genes ranked in the top 
5 (53/57), of which 65% of variants (37/57) ranked in the 
top 1. However, in cases with causative variants in strong 
candidate genes not previously associated with disease 
and in cases with new phenotypes associated with known 
genes (both groups computed together), the causative 
variants ranked in the top 10 in 64% of the cases (14/22) 
and ranked in the top 5 in 41% of the cases (9/22), as seen 
on the bar plots (Fig. 4A). In comparison, in the synthetic 
cohort of 66,800 cases, ClinPrior identified the causative 
variants as first ranked in 99.8% of cases with known dis-
ease genes, as expected. When the variant was found in 
candidate genes, ClinPrior ranked it in the top 5 in 41% 
of cases, similar to the real-world cohort (Fig. 4A).

To compare the performance of ClinPrior with other 
existing tools, we ran Exomiser v.2302/cli-13.2.0 [36] 
and evaluated the prioritization of the 79 diagnosed 
cases with pathogenic/likely pathogenic variants from 
the real-world cohort, yielding 60/79 (75.9%) for the top 
5 in Exomiser and 62/79 (78.5%) for ClinPrior. However, 
it should be noted that in this analysis, Exomiser takes 
advantage of prior information that ClinPrior did not 
have at the start of this project. Some of the new phe-
notypes/candidate genes reported in this paper have 
been previously published by our group in international 
peer-reviewed journals, and Exomiser incorporates this 
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information as it regularly updates the HPO disease 
gene entries. Therefore, Exomiser results are signifi-
cantly higher than they should be. Nevertheless, ClinP-
rior’s results still outperform Exomiser, even when the 
HPO terms associated with each candidate gene/new 
phenotype-associated gene are removed. To make a fair 

comparison and given that we were unable to remove 
HPO disease gene entries from Exomiser, we reclassi-
fied the new phenotype and candidate genes previously 
published by our group (GFAP [37], PI4KA [38], SHMT2 
[39], PCYT2 [40], UBAP1 [41], DLG4 [42], and KCNA1 
[43]) as known disease genes. Applying these changes, 

Fig. 3 Diagnostic process diagram and diagnostic yield in a patient real‑world cohort. A Word cloud showing the most representative phenotypes 
in the 135 patients. B Number of cases included in the study and diagnostic process with C the diagnostic yield in global, WES, WGS (including 
CNVs) and RFC1 analysis
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Exomiser prioritizes 56/65 variants (86.2%) in the top 
5 for known genes, while ClinPrior prioritizes 57/65 
(87.7%); for previously disease-unrelated genes and atypi-
cal phenotypes, Exomiser ranks 4/14 variants (28.6%) 
in the top 10, while ClinPrior gives 9/14 (64.3%). There-
fore, while comparing ClinPrior and Exomiser in simi-
lar conditions, we conclude that their yield is similar for 
genes already associated to disease. However, ClinPrior 
clearly outperforms Exomiser when prioritizing variants 
in genes not yet associated to disease or with aa atypical 
phenotype.

We also compared the performance of ClinPrior in 
both the synthetic and real-world cohorts in the cumula-
tive distribution function (CDF) (Fig. 4B). While the bar 
plot shows the relative proportion of cases with causal 
genes ranked within a discrete designated range, the CDF 
display illustrates the percentage of cases with causal 
variants ranked within the top K (range between 1 and 
50) by each analysis in a continuous way [4]. As expected, 
we observed that ClinPrior better prioritizes the causal 

variants of the synthetic cohort compared with the real-
world cohort. Within the real-world cohort, ClinPrior 
performs better when causative variants are found in 
known genes compared with the variants in candidate 
genes and novel phenotypes associated for the first time 
with described disease genes (Fig. 4B). These results pro-
vide evidence of the ability of ClinPrior to identify novel 
disease genes through the combination of a phenotype-
driven propagation network and a variant deleteriousness 
score.

Discovery of novel disease‑causing genes 
through ClinPrior
This approach allowed us to identify 14 novel candi-
date genes, for which we gathered additional inter-
national cases with compatible phenotypes through 
the platform GeneMatcher [44]. We functionally vali-
dated and reported seven novel disease-causing genes 
(SHMT2 [39], UBAP1 [41], PI4KA [38], PCYT2 [40], 
SLC35B2 [45], SVBP (Launay et  al., under review), and 
DLG4 [42]) (Table  2), with three additional novel dis-
ease genes undergoing functional characterization, con-
firmed through three or more international additional 
families via GeneMatcher. Four more candidate genes are 
awaiting confirmation through the analysis of additional 
patients, while functional studies are ongoing.

A paradigmatic example of how our algorithm identi-
fies novel candidate genes through interactome network 
connections is the recently described SHMT2 gene, 
which we identified and functionally validated in 2020 
[39]. The mutation in SHMT2 in patient IDSPG26 was 
well prioritized in rank 6 in a variant call format (VCF) 
file with 1595 variants because this gene interacts func-
tionally with several one-carbon metabolism pathway 
enzymes (MTFMT, MTHFR or MTHFS), which are asso-
ciated with diseases overlapping phenotypically with our 
index SHMT2-mutated patient. The same occurred with 
a PCYT2 mutation in patient IDSPG27 [40], ranked 3 in 
a VCF file with 1738 variants, because PCYT2 protein 
interacts with other proteins associated with spastic par-
aplegia such as PNPLA6 or COASY (Fig. 5).

RFC1 expansion analysis
During our study, two reports identified biallelic pen-
tanucleotide AAGGG intronic expansion of 400 to 2000 
repeats in the RFC1 gene in patients affected by CA, 
neuropathy and vestibular areflexia syndrome (CAN-
VAS) [46, 47]. Because this is a relatively frequent expan-
sion causing up to 14% of adult sporadic ataxias [48], we 
investigated our patients with compatible phenotypes. 
We thus applied a combination of repeat-primed PCR 
(RP-PCR) targeting the AAGGG repeat unit and stand-
ard flanking PCR as described [47] on the remaining 

Table 1 Main clinical features

Baseline characteristics and main clinical features of the ataxia / spastic 
paraplegia Cohort a Targeted sequencing or repeat expansion analysis for 
spinocerebellar ataxias, information available

Characteristics Index cases (%)

Sex

 Female 50 37%

 Male 85 63%

Age at onset

 Child onset 85 63%

 Adult onset 50 37%

Familial history

 Sporadic 84 62%

 Familial 51 38%

 Consanguinity 16 12%

Main clinical features
 Pure spastic paraplegia 22 16%

 Pure cerebellar ataxia 3 2%

 Spastic paraplegia /ataxia spectrum 110 81%

Spasticity or ataxia plus other symptoms

 Neuropathy / lower motor neuron 38 29%

 Extrapyramidal symptoms 18 14%

 White matter involvement 29 21%

 Seizures 14 11%

 Cognitive impairment 58 43%

Complementary exams
 MRI 83 62%

 Metabolic assessment 52 38%

 Targeted genetic studies a 85 63%

 Karyotype / aCGH 15 11%

TOTAL cases 135
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41 negative cases. We detected the presence of a bial-
lelic mutated AAGGG repeat expansion in 5/41 patients 
(12%). One of the patients had previously been diagnosed 
with idiopathic late-onset CA (ILOCA), three had been 
diagnosed with CA and axonal sensory neuropathy, 
and only one exhibited a full CANVAS phenotype. Our 
results support the high prevalence of biallelic expansion 
of RFC1 in this clinical spectrum.

By adding this additional diagnosis through RFC1 
repeat expansion to the previous data, we obtained a 
total positive genetic diagnosis in 86 out of 135 HSP/
ataxia cases (64%), which increased to 95 (70%) when 
considering the phenotypically compatible VUS variants 
(Fig. 4B and 4C; Additional file 1: Tables S2 and S5, and 
“ Methods”).

Genetic findings in the HSP/CA real‑world discovery cohort
While our final diagnostic rate was 70% (95/135), the 
diagnostic rate by onset age was 75% (64/85) in those 
with paediatric onset (< 20  years) and 62% (31/50) in 
those with adult onset (≥ 20 years). There were no signifi-
cant differences in yield between the 84 sporadic cases 
(71%, 60/84) and the 51 familial cases (69%, 35/51). Con-
sidering the clinical pattern, the diagnostic rate was 15/22 
(68%) in the pure HSP group, 1/3 (33%) in the pure CA 
group and 79/110 (70%) in the HSP/CA spectrum group.

Although the genetic heterogeneity in our cohort was 
very high, some genes were found to be more frequently 
mutated, including POLR3A, SPG11 and RFC1 (n = 5 
each), BSCL2, SPAST and SPG7 (n = 4 each), and ATL1 

and KIF1A (n = 3 each) (Additional file 1: Table S6). New 
phenotypes were identified in three cases (LONP1, PDK3 
and SPTAN1), a new inheritance mode and associated 
novel phenotypes were identified in two patients (a bial-
lelic variant in KCNA1 [43] and heterozygous variant in 
SARS1 [49]), and atypical forms of presentation were 
identified for six genes (GFAP [37], NDUFS6, ACER3, 
KIDINS220, COL6A3 and PMM2) (Additional file  1: 
Table  S3). Finally, four patients had complex, blended 
phenotypes associated with variants in more than one 
gene (Additional file 1: Results).

Among the 95 cases diagnosed, 56 harboured bial-
lelic variants (34 homozygous variants; 16 of them in 
reported consanguineous families), 36 showed an auto-
somal-dominant mode of inheritance (11 de novo) and 
3 cases were caused by mutation in an X-linked gene. 
Moreover, we identified two uniparental disomy events 
of maternal origin: one event was observed on chromo-
some 16 in patient IDSPG10, who harboured a nonsyn-
onymous single-nucleotide variant in the FA2H gene 
[50, 51]; the other event occurred on chromosome 6 
in patient IDLNF68 with a frameshift deletion vari-
ant in the SLC35B2 gene [45]. Segregation by Sanger 
sequencing was performed in all but 10 patients due to 
the unavailability of parental samples. We found several 
variants more than once in our patients: (i) the BSCL2 
p.(Asn88Ser) variant was found in four independent 
families from a small region of the Basque Country coast, 
suggesting a founder effect (frequency: 0.000001591 in 
gnomAD (v2.1.1) [52]; (ii) the deep intronic POLR3A 

Fig. 4 ClinPrior performance yield. ClinPrior performance yield in prioritizing 66,800 pathogenic variants and in a real‑world patient cohort 
including 79 variants in known disease genes or candidates using bar plots (A) and CDF plots (B)
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c.1909 + 22G > A variant (frequency: 0.001364 in gno-
mAD (v2.1.1)) was found in 3 families, and it had previ-
ously been identified as a frequent cause of hereditary 
spastic ataxia [53]; (iii) the IRF2BPL p.(Arg188Ter) vari-
ant (frequency: 0.000000433 in gnomAD (v2.1.1)) was 
found in two independent families [54], and (iv) the 
SVBP p.(Leu49Pro) variant was found twice indepen-
dently (frequency: 0.0000019 in gnomAD (v2.1.1)) (Lau-
nay et al., under review). We identified only two CNVs in 
this series in SPAST and FARS2, most likely because the 
most frequent CNVs were excluded by candidate-gene 
testing prior to WES. An added value of our study is that 
36 of the 103 identified variants had not been previously 
reported in the literature, the Human Gene Mutation 
Database (HGMD, public access), or the ClinVar database 
(Table 3). The transfer of these novel variants to the Clin-
Var database is planned.

Management implications of a positive genetic diagnosis
Importantly, establishing the genetic diagnosis allowed 
us to improve the clinical management of 10 patients 
(Additional file  1: Table  S2). In 3 of these patients, the 
genetic diagnosis led to the consideration of a specific 
treatment option for the disease, for instance, changes in 
dietary management for a patient with branched-chain 
ketoacid dehydrogenase kinase deficiency caused by 
BCKDK pathogenic variants (OMIM # 614,923); or ame-
liorated seizure management by adding a sodium chan-
nel blocker (oxcarbazepine) for a patient with epileptic 
encephalopathy caused by a KCNA1 variant (IDLNF52), 
which markedly improved seizure control [43].

Finally, we identified and reported incidental findings 
after current ACMG guidelines in five patients across four 
genes: MYBPC3 (p.Asn1023GlnfsTer28) in IDSPG103, 
PKP2 (p.Leu92Ter) in IDSPG170, DSC2 (c.1664-1G > A) 
in IDSPG149 and (p.Arg375Ter) in IDSPG47.0 and PMS2 
(p.Arg287SerfsTer19) in IDSPG3.5. The first four patients 
underwent cardiological surveillance, whereas the fifth 
patient was referred to a specialized Cancer Genetics 
Risk Assessment and Counselling unit.

Experimental validation of variants of unknown significance
According to the ACMG and the Association for Molec-
ular Pathology (AMP) guidelines [55–57], 86 cases were 
classified as definitively diagnosed with pathogenic or 
likely pathogenic variants. To validate the pathogenic 
role of VUSs, we performed several functional assays. 
We evaluated the impact of 6 variants on splicing using 
either a minigene splicing assay and/or fibroblast or 
peripheral blood mononuclear cell cDNA sequencing of 
the SPG7 [35], LAMA1, KIDINS220 and SEPSECS genes. 
Targeted quantitative lipidomics studies confirmed a 
pathogenic role for variants in genes associated with 
lipid metabolism disorders, such as PI4KA [38], PCYT2 
[40] and ACER3, in n = 4 cases. Targeted metabolomics 
and mitochondrial respiration assays showed a signifi-
cant impairment of amino acid and folate metabolism 
and mitochondrial energy production, key pathways 
catalysed by the enzyme serine hydroxymethyltrans-
ferase encoded by SHMT2 [39]. A patch-clamp assay to 
measure potassium currents allowed us to confirm the 
pathogenic loss-of-function (LoF) role of a homozygous 
variant in KCNA1 (p.Val368Leu), unveiling a novel inher-
itance mode for the disorder [43]. The SARS1 variant 
was functionally confirmed using serylation assays and 
yeast complementation studies [49], and SLC35B2 vari-
ant pathogenicity was confirmed by mRNA and protein 
quantification, together with immunofluorescence analy-
sis. These analyses, together with quantitative real-time 
(qRT‒PCR) for CNV validation in FARS2 and SPAST 
genes, Western blots, or immunofluorescence when 
needed, identified a deleterious effect for 18 variants, 
which enabled us to classify these variants as pathogenic 
(Additional file 1: Table S5 and S7).

ClinPrior generates an expanded network for novel disease 
gene discovery in HSP/CA
Based on the principle that physically and functionally 
interacting genes may account for related biological pro-
cesses and cause similar diseases, we decided to gener-
ate an HSP/ataxia-specific interactome (Fig.  5A) [58]. 
We started with an initial list of 718 seed genes causing 

Fig. 5 HSP/CA expanded interactome. A The HSP/CA seeds + expanded network was generated by the network prioritization tool, resulting 
in 2187 proteins. The seed genes known to be mutated in HSP/CA are shown in yellow circles, disease genes not previously associated with HSP/
CA are shown in green, and new HSP/CA candidate genes are shown in blue. Comparison of the statistical connectivity strength of the HSP/
CA expanded network with 1000 permutations of randomly selected proteins from the global human network. Red dots denote the value 
of the metric on the HSP/CA expanded network constituted by 2187 proteins. Box and whisker plots denote matched null distributions (i.e. 1000 
permutations). (Left) Within‑group edge count (i.e. number of edges between members of the query set). (Right) Mean distance is the average 
path length in the network obtained by calculating the shortest paths between all pairs of proteins. B–F Zoom‑in on the network for specific 
putative candidates as illustrative examples of the potential of the HSP/CA expanded network: B serine hydroxymethyltransferase 2 (SHMT2); C 
ubiquitin‑associated protein 1 (UBAP1); D phosphate cytidylyltransferase 2, ethanolamine (PCYT2); E p2,4‑dienoyl‑CoA reductase 1 (DECR1); and F 
eukaryotic translation initiation Factor 2 subunit alpha (EIF2S1). * Indicates recently associated with HSP/CA

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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or associated with HSP/CA that were identified as hav-
ing the terms “spastic paraplegia” or “ataxia” in HPOs 
included in the OMIM database. Next, we used ClinPrior 
to obtain a list of the top 1000 prioritized genes for each 
seed gene after considering the HPO-gene associations 
of the 718 genes as the patient clinical features. With the 
most recurrent genes present among the 718 lists, we 
obtained 2187 genes that we extracted from the global 
physical and functional ClinPrior networks, resulting in a 
final HSP/CA expanded interactome of 27,759 gene‒gene 

interactions. To assess whether there was greater con-
nectivity in the HSP/CA expanded network than in the 
global network, we compared the number of connections 
and the average path length between all node pairs with 
a 1000 randomly selected set of 2187 genes derived from 
the global network. We determined that the HSP/CA 
expanded network was significantly more cohesive than 
expected by chance (p < 1E − 25).

To evaluate the functional signature of these 2187 pro-
teins, we performed an enrichment analysis of the Gene 

Table 3 New variants (not described previously in literature)

AD autosomal dominant, AR autosomal recessive, SNV single-nucleotide variant, VUS variant of unknown significance

List with the 36 SNV/INDEL new variants identified in our cohort, classification according to ACMG criteria

Gene Patient Inheritance Type Nomenclature Classification ACMG

ACER3 IDSPG75 AR Missense NP_060837.3:p.(Gly211Cys) Pathogenic

AMPD2 IDSPG78 AR Frameshift deletion NP_631895.1:p.(Ala62SerfsTer40) Pathogenic

BCKDK IDSPG47.0 AR Missense NP_005872.2:p.(Arg327Trp) Likely pathogenic

CAPN10 IDSPG47.1 AR Splicing NM_023083.3:c.1989 + 1G > A Pathogenic

DLG4 IDSPG107 AD Splicing NM_001365.4:c.1721‑1G > A Pathogenic

ERBB4 IDSPG38 AD Non‑canonical splicing NM_005235.2:c.2487 + 8_2487 + 11dell VUS

FA2H IDSPG10 AR Missense NP_077282.3:p.(Lys262Thr) Likely pathogenic

GFAP IDSPG4 AD Missense NP_001124491.1:p.(Gly18Val) Pathogenic

IFIH1 IDSPG3 AD Missense NP_071451.2:p.(Leu320Phe) VUS

KCNA1 IDLNF52 AR Missense NP_000208.2:p.(Val368Leu)) Pathogenic

KIDINS220 IDSPG118 AD Splicing NM_020738.3:c.4054‑1G > C Likely pathogenic

KIF5A IDSPG17 AD Missense NP_004975.2:p.(Gly246Val) Pathogenic

KMT2B IDSPG114 AD Missense NP_055542.1:p.(Ala1727Ser) Likely pathogenic

LAMA1 IDSPG56 AR Frameshift insertion NP_005550.2:p.(Gly2899GlufsTer18) Pathogenic

LAMA1 IDSPG56 AR Non‑canonical splicing NM_005559.3:c.1423‑12C > G Pathogenic

LONP1 IDSPG166 AR Splicing NM_004793.3:c.2154 + 1G > C Pathogenic

LONP1 IDSPG166 AR Missense NP_004784.2:p.(Leu306Trp) Likely pathogenic

PCYT2 IDSPG27 AR Missense, splicing NP_001171846.1:p.(Lys319Asn) Likely pathogenic

PI4KA IDSPG16 AR Frameshift deletion NP_477352.3:p.(Thr2053SerfsTer4) Pathogenic

PI4KA IDSPG16 AR Frameshift deletion NP_477352.3:p.(Glu1820del) Pathogenic

PI4KA IDSPG149 AR Missense NP_477352.3:p.(Val1556Met) Pathogenic

PI4KA IDSPG149 AR Missense NP_477352.3:p.(Thr1720Ile) Pathogenic

PNPLA6 IDSPG13 AR Splicing NM_006702.4:c.598‑2A > C Pathogenic

PNPLA6 IDSPG13 AR Missense NP_001159586.1:p.(Ser1138Cys) Likely pathogenic

POLG IDSPG113 AR Non‑canonical splicing NM_002693.2:c.2266‑64C > T VUS

POLR3B IDSPG66 AD Missense NP_060552.4:p.(Ala69Gly) VUS

REEP1 IDSPG12 AD Missense NP_075063.1:p.(Leu59His) Likely pathogenic

SARS1 IDSPG64 AD Splicing NM_006513.4:c.969 + 1_969 + 3del Pathogenic

SHMT2 IDSPG26 AR Missense NP_005403.2:p.(Pro499Ala) Likely pathogenic

SLC35B2 IDLNF68 AR Frameshift deletion NP_835361.1:p.Arg408SerfsTer18 Pathogenic

SPG7 IDSPG23 AR Non frameshift deletion NP_003110.1:p.(Val311del) Likely pathogenic

SPG7 IDSPG30 AR Missense NP_003110.1:p.(Met667Ile)) Likely pathogenic

SPTBN2 IDSPG125 AD Frameshift deletion NP_008877.1:p.(Asp1861ThrfsTer59) Pathogenic

SVBP IDSPG8,IDSPG46 AR Missense NP_955374.1:p.(Leu49Pro) Likely pathogenic

TAF1 IDSPG71 XL Missense NP_001273003.1:p.(Ala1732Ser) VUS

UBAP1 IDSPG76 AD Frameshift deletion NP_057609.2:p.(Phe159Ter) Pathogenic
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Ontology (GO) terms (Additional file  1: Tables S8-S10). 
In line with our hypothesis that genes associated with 
similar diseases may converge towards common biologi-
cal pathways, major modules that have previously been 
linked to HSP/ataxia pathophysiology emerged from our 
analysis: (i) anterograde transsynaptic signalling (e.g. the 
SPG11 vesicle trafficking-associated protein spatacsin); 
(ii) microtubule binding (e.g. spastin, SPAST); (iii) the 
mitochondrial oxidative phosphorylation (OXPHOS) 
system (e.g. NADH ubiquinone oxidoreductase Fe-S pro-
tein 1, NDUFS1); (iv) aminoacyl-tRNA ligase activity (e.g. 
aspartyl-tRNA synthetase 1, DARS1); and (v) the peroxi-
some biogenesis and metabolic network (e.g. peroxin 16, 
PEX16).

Among the 2187 genes conforming to this network, 
we can highlight 3 groups of genes: (i) 718 genes that 
were used as seed genes due to their direct association 
with HSP/CA, (ii) 1394 that have previously been asso-
ciated with rare diseases (but have not yet been associ-
ated with HSP/ataxia), and (iii) 75 novel candidate genes 
that were not previously associated with HSP/ataxia or 
any other disease (Additional file  1: Table  S11). Among 
these 75 new candidates, we found 17 genes predicted 
to be extremely intolerant to loss-of-function (pLI ≥ 0.9) 
and 8 genes strongly intolerant to missense variation (Z 
score ≥ 3.08) (i.e., with probability p < 0.001). This last list 
of 75 genes can be instrumental in identifying the causa-
tive mutations in undiagnosed patients, for which the 
mutated gene is not yet associated with disease, such 
as (1) DECR1 (22,4-dienoyl-CoA reductase 1) (Fig.  5E) 
and (2) EIF2S1 (eukaryotic translation initiation Factor 
2 subunit alpha) (Fig.  5F; Additional file  1: Table  S11). 
Our method prioritizes these genes because they are 
functional interactors of genes with similar functions 
that cause diseases, such as the fatty acid beta oxidation 
enzymes ACAT1 and ECHS1 and eukaryotic translation 
initiation factors EIF2S3, EIF2AK2, EIF2B4, or EIF2B5, 
respectively. In the candidate list, we found novel disease 
genes already identified in our HSP/CA patient cohort, 
such as (i) SHMT2 (OMIM #619121), mutated in patient 
IDSPG26 [39] Fig.  5B; (ii) PI4KA (OMIM # 616531), 
mutated in patients IDSPG16 and IDSPG149 [38]; (iii) 
UBAP1, (OMIM #618418), mutated in patient IDSPG76 
[41] Fig. 5C; (iv) PCYT2 (OMIM # 618770), mutated in 
patient IDSPG27 [40] Fig.  5D; and (v) DLG4 (OMIM # 
18793), mutated in patient IDSPG107 [42].

Discussion
Recent variant prioritization tools have demonstrated 
efficacy, albeit only a handful of them have been thor-
oughly validated with real-world cohorts, and none 
have been validated to identify novel disease-gene asso-
ciations [3, 4]. Here, we present a phenotype-driven 

computational tool to aid with clinical correlation and 
variant interpretation based on interactome data and 
provide proof of efficacy at novel disease-gene discov-
ery. Indeed, when applied to a synthetic cohort of 66,800 
WES cases, ClinPrior was able to identify the causative 
variants in 99.8% of cases with a gene previously associ-
ated with disease and in 41% of cases when the causa-
tive gene was a novel disease-candidate gene, being the 
causative gene ranked in the top-5 positions. A similar 
percentage of 41% was achieved with the real-world pro-
spective cohort of 135 families, thus underscoring the 
high efficiency of the method to diagnose the most chal-
lenging cases.

Overall, ClinPrior facilitated the genetic analysis in a 
series of 135 families by WES/WGS, enabling the diag-
nosis of 60 families (44.4%) carrying a pathogenic or 
likely pathogenic SNV or small INDEL variant, including 
WES re-analysis at 12 and 24  months with new disease 
associations and improved variant calling, but without 
functional validation. The diagnostic yield increases by 
almost 15% to 79 families (58.5%) when including both 
functional validation of VUSs that match the clinical 
phenotype and of VUSs in novel phenotypes/candidate 
genes. The diagnostic yield reaches 88 families (65%) if 
we include non-experimentally validated cases with VUS 
but with compatible segregation studies and specific 
clinical and MRI findings highly suggestive of the par-
ticular gene. Finally, by adding CNV identification and 
the RFC1 expansion test to all remaining undiagnosed 
cases, we reached a final diagnostic yield of 70%, which 
is, to our knowledge, the series presenting the highest 
diagnostic rate for the HSP/CA spectrum. Indeed, these 
results are superior to those recently reported in a study 
that included 260 cases studied by singleton WES, CNV 
analysis and short tandem repeat expansion analysis, 
which reached a diagnostic yield of 52% and in which 
7% of the diagnoses were obtained after reanalysis [59]. 
Their results are consistent with those reported in pre-
vious studies, where diagnostic yield excluding VUSs 
ranged between 25 and 55% (mean: 33%) (Additional 
file 1: Table S1). Altogether, our report adds to the grow-
ing body of evidence indicating that WES/WGS provides 
superior diagnostic yield compared to studies using tar-
geted gene panels or even clinical exomes (between 111 
and 6700 genes) [60–63], which solved only 19–46% of 
the cases. For instance, using PanelApp gene panels to 
analyse the obtained results from our real-world cohort 
(see Additional file  1: Methods), we would have diag-
nosed variants in 64/135 (47.4%) in contrast to ClinP-
rior’s 79/135 (58.5%) cases solved. Therefore, variants 
in 15/135 cases (11.11%) would have not been detected 
by using. Of those 15 missed cases, 6 cases carried vari-
ants in our recently validated candidate genes in 2020 
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(SHMT2 [39], 2021 (DLG4 [42], 2022 (SLC35B2 [45] and 
publications on progress, explaining absence of these 
genes from panels. The other 9 missed cases are related 
to atypical phenotypes or non-classical HSP genes 
(L2HGDH, NDUFS6, SARS1 [49], KMT2B, TRMT5, 
COL6A3, LONP1, MMUT and PDK3). Moreover, in this 
cohort, we identified 5 cases with incidental findings, 
which would have been missed in gene panels, with the 
consequent negative impact on the proband health. We 
believe this illustrates main advantages of using WES/
WGS over gene panels. It is worth noting that the high 
diagnostic yield was achieved after reanalysis and func-
tional validation of the VUSs prioritized by the algorithm. 
Therefore, we believe that functional validation is not a 
stand-alone approach, but a necessary step to validate the 
results of the prioritizer.

The number of known genes responsible for human 
disease has increased exponentially since the advent of 
NGS-based technologies, with more than ~ 300 novel dis-
ease-gene associations being reported annually accord-
ing to The Mendelian Genomic Research Consortium 
(https:// grego rcons ortium. org). The OMIM database 
reflects between 30 and 60 new entries on novel disease 
genes or phenotypes and between 300 and 900 updates 
on known genes per month (https:// www. omim. org/ stati 
stics/ update, December 22, 2022), which underscores the 
ever-changing genetic diagnostic landscape.

The incomplete knowledge of disease-gene databases, 
together with the challenge of identifying atypical phe-
notypes not yet described in the literature, hampers 
patient diagnosis. This clinical heterogeneity/variable 
expressivity is frequently encountered in rare diseases, 
across broad overlapping clinical spectra to very distinct 
phenotypes [64, 65]. Therefore, the use of tools directed 
to novel disease entities is needed to optimize diagnos-
tic yields. In this sense, ClinPrior enabled the diagnosis 
of several cases with atypical presentations (GFAP [37], 
PMM2, PDK3, KIDINS220, COL6A3), expanded the phe-
notype of recently identified genes (SPTAN1, NDUFS6, 
ACER3), described previously unknown modes of inher-
itance (KCNA1 [43] and SARS1 [49]) characterized fami-
lies harbouring variants in more than one causative gene 
with blended phenotypes (i.e., CACNA1A and POLR3A 
in the same patient), and, importantly, discovered novel 
disease entities and their novel causative genes in 16 
cases. From these, we functionally validated 9 cases to 
date (i.e., PCYT2 [40], SHMT2 [39], PI4KA [38], UBAP1 
[41], DLG4 [42], SLC35B2 [45] and SVBP (Launay et al., 
under review)), while others are currently ongoing 
(Table 2; Additional file 1: Table S2).

Furthermore, in 13 families (9.7%), we identified 
genes primarily associated with peripheral neuropathies 
(3 patients: SLC2A46, PDK3, MORC2), white matter 

disorders (3 patients: RNASEH2B, GFAP, ACER3), and 
neurodevelopmental disorders (5 patients: IRF2BPL, 
CTNNB1, DLG4, TAF1 and SPTAN1), which would have 
most likely been missed by gene panels targeting HSP/
ataxia genes. These results highlight the notion of a clini-
cal spectrum continuum between HSPs and CAs with 
these other clinical entities. Consequently, ClinPrior 
boosted the identification of novel genes responsible for 
Mendelian diseases and the recognition of clinical het-
erogeneity in atypical cases, largely surpassing diagnostic 
yields based on NGS panels and clinical WES.

WES is inefficient at detecting deep intronic vari-
ants, structural variants and repeat expansions, which 
are known to be prevalent in these diseases [47, 66]. 
Although our cohort was screened for known repeat 
expansions linked to HSP/CA prior to WES and a pos-
teriori for the repeat expansion in RFC1 [48], it is pos-
sible that some of our negative cases can be explained by 
novel, undetected structural variants or repeat expan-
sions. Indeed, while this paper was in preparation, a 
novel intronic expansion in the FGF14 gene responsi-
ble for 10–15% of adult CA cases was reported [67, 68]. 
Thus, sequencing of the remaining negative cases by 
WGS, together with upgraded methods for detecting 
repeat expansions (ExpansionHunter, exSTRa, STRetch, 
TREDPARSE) [69]) and CNVs, is warranted to solve the 
remaining negative cases.

Our method and study protocol have certain limita-
tions. The quality and number of patient HPO terms pro-
vided to ClinPrior is critical to achieving good results. 
We recommend annotating the patient phenotype with 
as many HPO terms as possible, reflecting the entire 
pathology and not just the most important aspects. To 
take advantage of the phenotypic prioritization process, 
we recommend running ClinPrior with at least 7 to 10 
specific HPOs (see benchmarking for HPO number opti-
mization in the Supplementary Results). Otherwise, the 
variant will be prioritized primarily by the variant del-
eteriousness score. In addition to HSPs, we have also 
demonstrated the performance of ClinPrior in a large 
cohort of brain white matter disorders [70], encourag-
ing the testing of this algorithm in other disease entities. 
Another limitation is the knowledge gaps in phenotypic 
data and in the multi-layered interactome that is fed by 
dynamic and changing databases. Therefore, regular 
updating of HPO-gene associations and gene–gene inter-
actions is critical to achieve better results.

In summary, we provide evidence of the effectiveness 
of ClinPrior applied to WES/WGS data to diagnose 
patients with HSP and CA and to identify new pheno-
types and novel disease genes. Those inherited disorders 
display considerable genetic heterogeneity (68 differ-
ent genes identified among the 95 diagnosed cases) and 

https://gregorconsortium.org
https://www.omim.org/statistics/update
https://www.omim.org/statistics/update
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show an evident genotypic and phenotypic overlap, thus 
supporting a unified diagnostic approach for consider-
ing spastic paraplegias, cerebellar ataxias, peripheral 
neuropathies and white matter diseases as part of the 
same continuum.

Conclusions
The phenotype-driven, interactome-based prioritization 
algorithm ClinPrior provides an opportunity to acceler-
ate and improve clinical genomic diagnostics yields, along 
with the recognition of clinical heterogeneity in atypical 
cases, shortening diagnostic Odysseys and largely sur-
passing NGS panels and clinical WES. ClinPrior is par-
ticularly well suited for boosting the discovery of novel 
disease-causing genes which allows broadening funda-
mental knowledge related to human disease. Of note, 
functional analysis increased diagnostic yield by 15%, 
underscoring the benefits of integrated functional labs in 
clinical genomic units.
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