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ABSTRACT

Traditional mesoscopic models of DNA flexibility use
a reductionist-local approach, which assumes that
the flexibility of DNA can be expressed as local har-
monic movements (at the base-pair step level) in
the helical space, ignoring multimodality and cor-
relations in DNA movements, which have in real-
ity a large impact in modulating DNA movements.
We present a new multimodal-harmonic correlated
model, which takes both contributions into account,
providing, with a small computational cost, results of
an unprecedented local and global quality. The accu-
racy of this method and its computational efficiency
make it an alternative to explore the dynamics of long
segments of DNA, approaching the chromatin range.

INTRODUCTION

DNA is a long and flexible polymer that has been typically
represented by simplistic approaches such as the elastic rod
or worm-chain-like models (1-3), which lack resolution and
neglect sequence-dependent changes. The seminal work by
Olson and Zhurkin (OZ; (4)) opened the possibility to de-
scribe DNA with sequence-dependence at base-pair step
(bps) resolution. This model assumed that the deformation
energy of DNA can be determined from that of individual
bps following a simple harmonic model, where the energy of
a full oligo is expressed in terms of a global stiffness matrix:
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where Yis a 6 x N dimensional vector Y = {X],... Xy}
with equilibrium values ¥ = Y°, and the stiffness con-
stant (K) is obtained by inverting a block covariance ma-
trix (in the helical space), something that by construction
implies the neglect of bps—bps correlations. That is global
deformability is expressed exclusively in terms of local

deformability by:
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where each bps (1 to N) defines a 6 x 6 (twist, roll, tilt, slide,
rise and shift) stiffness matrix. In the original OZ work, the
values were obtained from the analysis of the Protein Data
Bank (PDB; (4)).

As described elsewhere (5), the practical use of the orig-
inal OZ model was hampered by the low density of the
bps ensembles of naked DNA available in the PDB. For-
tunately, in another seminal work, Lankas and Langowski
(LL; (6)) demonstrated that atomistic molecular dynamics
(MD) simulations could be used to obtain dense ensembles,
from which equilibrium values and stiffness matrices could
be derived. Based on those ideas, the Ascona B-DNA con-
sortium (ABC) performed a series of MD simulations to
define deformability parameters for the ten unique bps of
B-DNA (7,8). Even though the results were affected by the
lack of accuracy of 2004 force-fields (9), they revealed the
imprecision of the bps model and the need to consider the
neighbouring steps, leading to a tetramer-based OZ model
(7,8,10,11). This model implicitly introduces the ‘static’ cor-
relation between bps, in which the equilibrium value of a
given bps is dependent on the neighbouring ones, but not
the dynamic correlation coupling the movements at two bps.

The analysis of the new generation of ABC simulations
showed the existence of multimodal behaviour for some he-
lical parameters, rising several warnings on the validity of
the harmonic approximation implicit in equation 1 (10,11).
This finding was received with some scepticism from the
community due to the shortcomings of PARMBSCO force-
field (12-14), but were confirmed by simulations using a
more accurate force filed PARMBSCI (13,14), as well as
by detailed analysis of experimental data (15-17). To ac-
count for bimodality, our group developed in 2020 a multi-
modal scheme (18,19), which uses the Gaussian finite mix-
ture clustering (GFMC) (19,20) method to define the mini-
mum number of unimodal distributions (typically between
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2 and 6 substates) that when combined reproduce the MD
helical distribution for each tetramer. According to this ap-
proach the deformation energy estimate is computed by:

N n
EXN= kT InY ¢ wGOXth) g

j=1 i=1

where the first sum extends to the N bps, and the second
from 1 to n number of substates in a given bps. Ej; is the
relative energy of state 7 at bps j (shifting values between
substates) and 1©; ]AX2 is the harmonic term, which de-
fines the deformatlon energy associated to substate 7 at bps
J (Eharm i, j)- The equation above can be rewritten in a more
compact manner as:

N n
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where P; is the probability of substate i at bps j (obtained
from the MD).

The multimodal formalism provides outstanding repre-
sentations of the helical space at the bps level (18) but ne-
glects the correlations between bps, i.e., the nearly instanta-
neous coupling between the movements at one bps and the
neighbouring ones, which means that strong perturbations
might be artifactually transferred along the duplex.

As described above, the lack of correlation was inherited
from the original assumption of the block matrix nature of
the global covariance model in OZ model. To our knowl-
edge, Maddocks et al. (21) were the first to consider cor-
relations by following the harmonic principle in equation
1, but considering that the covariance matrix is banded in-
stead of a block matrix, which allowed them to derive an
harmonic model that accounts for explicit correlations be-
tween neighbouring bps, but by construction neglects non-
harmonic deformations. More recently, Zacharias’s group
(22) presented a method to solve a reduced version of the
problem considered here, in particular, the coupling of the
BI/BII bimodality and next neighbouring correlations, but
the model is not extensible to all the other multimodalities.

We present here a new and general mesoscopic model that
combines non-harmonic descriptions of DNA deformabil-
ity with explicit consideration of correlations effects. This
model, with a computational efficiency similar to that of
previous mesoscopic models, provides local and global re-
sults of an unprecedented quality.

MATERIALS AND METHODS
The multimodal correlated model

Our previous local multimodal approach implies that each
bpsjsamples a limited number of harmonic substates 7, each
of them with probability 7;, and the total sampling at step
Jj1s just a weigthed sum of the harmonic samplings at each
substate i (equation 4). In the limit of the uncorrelated mul-
timodal approach (19,20), this concept can be extended by
considering bp-bp steps defined by the join probability of
sampling two substates (i and 7’) in two bps (j and ;°) and
can be expressed simply as a product of probabilities

PV Prjy=PF; - Py (5)

Unfortunately, as shown in this work, this equality is gen-
erally incorrect and the join probabilities P; U Py ; needs
to be determined. To this end we repeat the cluster annota-
tion in (19), but obtaining clusters in overlapping 12 x 12
rather than 6 x 6 dimensional space, obtaining pentamer-
dependent tetramer populations of substates {sj.}, each of
them with an associated probability { p;-} (see Supplemen-
tary Figure S1). Obtaining the combination of these prob-
abilities is complex due to the j — 1«<——j<«—j + 1 depen-
dence, which means that the probability of substate i at bps j
is dependent simultaneously of the substate sampled at this
specific conformation at j — 1 (given by —1 pentamer) and
that at j + 1 (given by the + 1 pentamer). That is, the local-
ity implicit to most of the mesoscopic models derived from
OZ ideas is not maintained. We solved the problem by us-
ing a 1D Ising model (23), yielding to a set of states for the
global duplex (I) defined by a set of bps substates for the
N steps. Once selected the substates for each bps j, using
Monte Carlo simulations, the effective Hamiltonian yield-
ing the states as a combination of bps substates consistent
with the expected population of correlated states can be ob-
tained by:

PUPJ+]
E ()= yZln(P Pjﬂ)—i—;ln(P/) (6)

where E(7) is the energy associated to duplex state / defined
by {iU="1,...,iU =M} where j stands for each of the N
bps and substates i € I (at bps ), and y is a real parame-
ter, that can be used to modulate the direct and correlated
effects (a value of 1.0 is used here; note that for y = 0 the
method converges to the uncorrelated multimodal scheme).

The Metropolis Monte Carlo procedure leads to a set
of representative structures (in general, 103—10* structures
are enough to provide good ensembles; (19)), each of such
structures is defined by a given substate 7 at bps j obtained
by explicitly considering correlation between substate pop-
ulations at neighbouring steps. Note that the energy for the
entire duplex can then be easily represented by:

F0= Y3 dorr (i)’ ™)

1 j=1

where @’j”/ isa 12 x 12 banded stiffness matrix of the sub-
state i at step j and substates i’ € I (at bpsj ). In practice,
the external elements out of the 6 x 6 block matrix are
rather small for a given i, i’ substates and a simple 6 x 6 stiff-
ness matrix would be accurate enough, but for the sake of
completeness 12 x 12 banded stiffness matrix (21) is consid-
ered in the model which allowed us to capture correlations
inside a given state.

Mesoscopic samplings

Sampling of duplexes was obtained using Metropolis
Monte Carlo algorithms (19,24) in the helical space. Ap-
proaches to transform these helical coordinates into Carte-
sian space have been previously developed (19) and recently
improved to provide all Cartesian details from a helical co-
ordinate ensemble (25).
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Reference calculations

Atomistic MD calculations were used as a source of pa-
rameters as well as for validation purposes. Parametrization
of the model was done from a variety of PARMBSCI (13)
trajectories covering all unique pentamers (14-18,26). Sim-
ulations 0.5-10 s long were obtained using state-of-the-
art protocols at constant pressure and temperature (P = 1
atm, 7 = 300 K). A series of additional trajectories (ob-
tained using equivalent simulation conditions) were used
for benchmarking and validation of the method, as well as
for describing the nature and magnitude of correlation ef-
fects. Analysis were carried out using NAFlex, BIGNASim
and Curves+ (26-28). Similarity analysis between trajecto-
ries were performed using Hess metrics as described else-
where (1,2,29).

Persistence lengths were calculated using the SerraNA
software (30). All trajectories are available at our BigNAsim
database (14-18,26).

RESULTS
Local correlations in the helical space

We explored first the magnitude of the instantaneous cor-
relations along the DNA using a 10 ps molecular dynam-
ics trajectory of the Drew—Dickerson dodecamer (DDD;
(14,15)), which we know reproduces well experimental du-
plex properties. Results in Figure 1 demonstrate that the
assumption of no correlation between bps, when adapted
to the tetramer description, is incorrect. Generally, the
strongest couplings between neighbouring bps are homo-
cross correlations (i.e. correlation between the same heli-
cal parameters at base step j and its neighbours) mainly in
shift, tilt and twist movements (all of them negative), but
some hetero-cross correlations (typically positive) are not
negligible. Fortunately, correlations decay quickly with se-
quence, and they are small except for the nearest neighbour
bps (j—j + 1; see Figure 1A). Very interestingly, couplings
are not uniform along the duplex (Figure 1B), suggesting a
sequence-dependent correlation pattern.

Analysis of time-convergence in the cross-correlation in-
dexes shows that even in those cases with strong correlations
(see selected cases in Supplementary Figure S2), results con-
verge in approximately 10 ns. Comparison of 1 and 10 s
simulations failed to detect any significant difference in cor-
relation pattern (data not shown), confirming that cross-
correlations are not artifacts of limited sampling. Further-
more, by using sliding time windows, we show that cross-
correlation disappear after ~100 ps, indicating that they are
coupled to fast relaxation movements of the fiber (see Sup-
plementary Figure S3).

To check for the universality of our findings we extended
the analysis to the mini-ABC dataset (18), a series of 13
MD simulations of 18-mer duplexes containing all the 136
unique tetramers. As suggested by DDD results above there
is a fast decay of correlations along sequence distance (Sup-
plementary Figure S4), and couplings are mainly linked to
shift, tilt and twist movements. Sparse cross-correlations
matrices appear (Supplementary Figure S5), with the pre-
dominance (as DDD simulations suggested) of shift, tilt
and twist couplings. Strong sequence dependence shows
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up, with higher correlations, when involving bps showing
multimodality (Supplementary Figure S5). For example,
tetramers with CpG central steps show large complexity
in the correlation maps, while movements in ApT bps are
quite uncorrelated from their neighbours. Finally, a signifi-
cant directionality is evident in the couplings, reflecting the
pentamer dependence, and compensatory effects between
homo (typically negative) and hetero (typically positive)
cross-correlations are evident, as already suggested by re-
sults obtained for DDD (see Figure 1 and Supplementary
Figure S4).

The impact of multimodality and correlations in the global
structure and flexibility of DNA duplex: the correlated mul-
timodal model

As described above, multimodal methods provide accu-
rate representations of the bps conformational space (see
examples in columns UM and CM in Figure 2), some-
thing that by construction, cannot be achieved by harmonic
models (columns OZ and CH in Figure 2), which reduce
the sampled space and might suggest structures that are
rarely sampled in the atomistic simulations (column MD
in Figure 2) as the most stable geometries for the bps.
Note that, not major differences are found at the intra-
bps helical space between correlated and non-correlated
multimodal schemes (columns UM and CM in Figure 2).
The neglect of correlation effects introduces significant er-
rors in the helical distributions beyond the tetramer, which
are very evident looking at the homo-helical distribution
maps between steps j and j + 1 (Figure 3 compare columns
MD with OZ, UM). Clearly ignoring the coupling between
the movements of neighbouring steps can lead to combi-
nations of substates that are forbidden by the physics of
DNA.

A simple harmonic correlated model (column CH in Fig-
ures 2 and 3) captures well the general shape of the inter-bps
distributions but fails to capture the details of the multi-
modal distribution at both the inter-bps and intra-bps level.
The multimodal correlated model presented here is not only
able to reproduce well the MD distribution at the intra-bps
level (Figure 2 column CM) but also matches the MD inter-
bps distributions (Figure 3, column CM).

There is not enough experimental data to corroborate the
goodness of the distributions shown in Figures 2 and 3, as it
would require a dense population of unperturbed tetramers
and pentamers in databases. However, we were able to ex-
tract a few cases from the PDB with enough data to show
that the distributions predicted by our correlated multi-
modal model are correct (see Supplementary Figure S6),
providing extra support to our new theoretical approach.

The lack of correlation in traditional models leads to
the accumulation of large helical changes in neighbouring
steps, leading to an artefactual increase in pentamer flex-
ibility, which is propagated along the entire duplex. This
overestimation is visible in the distribution of the end-to-
end distance, the magnitude of the first eigenvalues asso-
ciated to the most important deformation of DNA and
the global bending (see Figure 4A-D), as well as in differ-
ent non-local helical descriptors (see Supplementary Fig-
ure S7). This problem is largely corrected by the multi-
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Figure 1. Correlation effects in DDD simulation. (A) Correlation between helical coordinates with the distance (point with Irl >0.3 are shown in red). (B)
Heat maps showing j<>j + 1 (left panel) and j<>j — 1 (right panel) correlations for each possible bps and parameter combination along the DDD.

modal correlated functional, which not only reproduces the
magnitude (Figure 4A) but also the nature of the essential
deformation modes (Figure 4D). Better approximations to
the MD values would require the introduction of correla-
tion effects beyond the pentamer level (something which
might be explored in the future), but the current slight de-
viation from MD is in fact desirable to correct a certain
overestimation (approximately 20%) of the duplex stiffness
in PARMBSCI atomistic MD simulations. This is visible
in the persistence length (PL) of the central 36mer derived
from MD ensembles: 62.5 + 1.2 nm (as computed in (31)),

which compares with a PL equal to 49.5 + 1.1 nm, deter-
mined using the same protocol, from the Monte Carlo en-
sembles using the multimodal correlated model. Note that
the accepted experimental value for the persistence length
of a DNA with a random sequence is approximately 50
nm, and the value obtained using the uncorrelated multi-
modal method is approximately 38 nm (see Supplementary
Table S1).

To further validate the accuracy of this method, we evalu-
ated the sequence-dependent recognition by papillomavirus
E2 protein (22). Following Zacharias’ protocol, we calcu-
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Figure 2. Intra-bps ensembles using different methods. Selected examples of the intra-bps ensembles (in helical space) of the tetramer d(TCGA) sampled
using different methods: atomistic MD simulation (the reference) (MD), uncorrelated harmonic model (OZ), uncorrelated multimodal model (UM),
correlated harmonic model (CH) and correlated multimodal model (CM) presented here.

lated the deformation energy between the structure pre-
dicted by our method and the DNA sequence bound to the
protein (conformation achieved after a short MD simula-
tion). We calculated the deformation energy for each 12-
mer changing the central tetramer and comparing the defor-
mation energy with the experimental one (32). Our model
could predict the worst and the best sequence (see Supple-
mentary Table S2), while the central ones have values very
similar as in the Zacharias model. Furthermore, we com-
pared the persistence length of 200 bs-long using structured
calculated by our model and the experimental data (33). In
detail we used poly(AA), poly(TA) and poly(CC) and we
found a good correlation with experimental values (see Sup-

plementary Table S3), being the poly(TA) the most flexible
sequence and poly(AA) the stiffest.

DISCUSSION

We present here for the first time a comprehensive analysis
of anharmonicity and correlated movements in B-DNA and
the ability of our mesoscopic model to capture them. Avail-
able local models derived from the OZ (4) approach, despite
their power, fail to reproduce the bps helical space at the
tetramer level and are unable to capture the coupled move-
ments at neighbouring bps. The local multimodal approach,
previously developed in our group (19), improves dramat-
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Figure 3. Inter-bps ensembles using different methods. Selected examples of the inter-bps parameters for the step j against the neighbouring step j + 1.
Atomistic MD simulation (the reference) (MD), uncorrelated harmonic model (OZ), uncorrelated multimodal model (UM), correlated harmonic model
(CH) and correlated multimodal model (CM) presented here. Pentamers represented correspond (from top to bottom and showing only the Watson strand):
d(ATGGA), d(CTCTG), d(TTGGG), d(TCAAA) and d(TCGAG) and d(GCCGG).

20z Arenuer g uo 1senb Aq 6/9/0.2/£€£92/9/LS/eI01HE/Ieu/wod dno-olwepeoe//:sdiy woli pepeojumoq



A 0.15

Nucleic Acids Research, 2023, Vol. 51, No. 6 2639

= MD / B / = MD
W Harmonic N\ §_ 0015 <\ W Harmonic
B Multimodal ] =MD / \| @ Multimodal
B Correlated - sl | \\| @ Correlated
B Multimodal correlated g 4 B Comelated /' I\ ® Mulimodal correlated
I W Muimodal corretaled / s
0.10 & | \
g 0010 / \
g g . / ‘
§ 8 o 5 \
a - o / \
s 8 1
= i \
e g 0.005 I \
I/ \
S /]
\\ : / |
\! o | J/
\ 8 Y%
om0 = "‘ Iﬂ["]]-l}m:- i S
r T T T o T T T T T
100 105 110 1s 120 125 200 250 300 350 400
Principal components
£~ 200 | wai +1.00 z i | oo |ob +1.00 z s | oo | as | s | vase | aee | o +1.00 z +1.00
o Y B . o |-n- | am o
0.40 +0.40 | 0.40 0.40
o § SR e, s .. g o | R i
2 . wam g & amm | same g I | e | am | am | oo g 2
- == — 1020 3 — 1020 3 — 1020 2 +0.20
2 2 | amam| e wan | R () e am 2 0 s am e e am g 8
§ B § § §
=4 - o o I — -3
ISP || e oo DS el o | o e e [ LN EE B TR - .
[ J‘ ] o | oo [ S R e | o | o [ 5 e | o [ o (R 5
2 B oo | oo [Sm sz | ase +0.00 2 on [l -:uv[-!. +0.00 2 oo [Nam| oo [Sase o i +0.00 2 +0.00

1.2 3 4 S 6 7 8 1 2 3 4 5 6 7 8

Eigenvalues MonteCarlo harmonic

y=0.71

Eigenvalues MonteCarlo multimodal

vy=0.74

1 2 3 4 5 6 7 8

Eigenvalues MonteCarlo correlated

y= 0.69

Eigenvalues MonteCarlo multimodal correlated

y= 0.82

Figure 4. DNA properties and deformation compdrlsons (A) Normalized distribution of end-to-end distance (in A). (B) Eigenvalues associated with the
first seven essential movements of the duplex (in A2; error bar in MD simulations obtained by comparing the eiganvalues in first and second halves of
the trajectory). (C) Normalized distribution of global bending (computed using the roll and tilt contributions at each bps). (D) Eigenvector to eigenvector
comparison of the essential deformation modes sampled by Monte Carlo with different Hamiltonian definition (from left to right: harmonic-uncorrelated,
multimodal uncorrelated, harmonic correlated and multimodal correlated). The similarity Hess index (7y) is shown to summarize the similarity matrix
(self-similarity obtained by comparing first and second halves of the MD trajectory is 0.95). All values correspond to the central 36- of a 40-mer duplex.

ically the ability to reproduce individual bps ensembles,
but fails to reproduce dynamic correlations between neigh-
bouring bps, leading to incorrect helical distributions at the
pentamer level and to an overestimation of predicted du-
plex flexibility. The correlated harmonic model captures
well the coupling between the movement of the neigh-
bouring bps, but neither tetramer nor pentamer distri-
butions could be reproduced correctly. Our new corre-
lated multimodal approach can reproduce both local (at
tetramer and pentamer level) and global flexibility. It can
correct the errors at the base-pair step level, which ap-
pear in harmonic-based calculations, and, at the same time,
is able to correct the overestimation of global DNA flex-
ibility arising from calculations that neglect the correla-
tion in the movement of neighbouring steps. The method
has a reduced computational cost, which allows to push
the limits of mesoscopic modelling of DNA structure and
flexibility.
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