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HIGHLIGHTS 18 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• Flow regulation transformed lotic reaches into lentic reaches along the river network. 20 

• We assessed the differences in ecosystem functioning between lotic reaches and lentic 21 

reaches using wood decomposition.  22 

• The decomposition rates differed between lotic and lentic reaches in high-order 23 

streams, especially in winter, with increased rates in lotic reaches compared with lentic 24 

reaches. 25 

• In high-order streams, flow regulation reduced decomposition rates and affected stream 26 

ecosystem functioning along the river network.  27 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 50 
ABSTRACT  51 
 52 
Mediterranean rivers are extensively modified by flow regulation practises along their courses. 53 

An important part of the river impoundment in this area is related to the presence of small dams 54 

and weirs constructed mainly for water storage and hydropower development. These projects 55 

drastically modified the ecosystem morphology, transforming lotic reaches into lentic reaches 56 

and increasing their alternation along the river. The aim of this study was to assess the effect 57 

caused by the flow regulation on ecosystem functioning at the rivr network scale, using wood 58 

decomposition as a functional indicator. We studied the mass loss from wood sticks during 59 

three months in different lotic and lentic reaches located along a Mediterranean river basin, in 60 

both winter and summer. The results revealed differences in the rates of the wood mass loss 61 

between sites in summer and winter that were mainly related to the differences between stream 62 

orders. The decomposition rates were related to temperature, nutrient concentrations (NO2
-, 63 

NO3
=), water residence time, and the dissolved organic carbon concentration. High-order 64 

streams with higher temperature and nutrient concentrations exhibited increased decomposition 65 

rates compared with low-order streams. The effect of the flow regulation on the decomposition 66 

rates only appeared to be relevant in high orders, especially in winter, when the hydrological 67 

characteristics of lotic and lentic habitats widely varied. Lotic reaches with lower water 68 

residence times and increased physical abrasion exhibited increased decomposition rates 69 

compared with lentic reaches. Overall, our study revealed that the flow reduction caused by flow 70 

regulation reduced organic matter decomposition in river ecosystems, and this effect was 71 

enhanced in high-order streams.  72 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 85 
1. Introduction 86 

 87 

Many rivers and streams have been altered by different anthropogenic activities such as 88 

water extraction, canalisation, or dam construction (Malmqvist and Rundle, 2002; Nilsson et al., 89 

2005). In Mediterranean areas, the presence of these impacts is particularly significant due to 90 

the combination of a high population density, agricultural and industrial activities, and a high 91 

natural variability of the flow regime (Grantham et al., 2012). Most of the flow regulation in this 92 

area results from the construction of small dams and weirs (e.g. < 1 hm3), mainly for water 93 

abstraction purposes (Martin and Hanson, 1966; Marcé et al., 2012). In addition, flow variability 94 

is predicted to increase with climate change (Schneider et al., 2013), increasing the need for 95 

flow regulation.  96 

Flow regulation interrupts the fluvial continuity, altering the natural structure of the ecosystem 97 

along the river (Ward and Stanford, 1983). The hydro-morphology of the river network becomes 98 

highly modified, increasing the water residence time and transforming lotic reaches into lentic 99 

reaches (Sabater, 2008). The differences in water flow between these reaches also imply 100 

differences in several physicochemical factors, such as water temperature (Poff and Hart, 2002) 101 

and oxygen or nutrient concentrations (Friedl and Wüest, 2002), and ecosystem processes 102 

such as sediment transport (Vericat and Batalla, 2005; Hupp et al., 2009) and organic matter 103 

retention (Dewson et al., 2007). At the same time, these factors and processes potentially 104 

shape the presence of biological communities in each habitat (Clavero et al., 2004; Strayer, 105 

2006; Buffagni et al., 2009), directly affecting key ecosystem functions, i.e., the decomposition 106 

of organic matter (Menéndez et al., 2012; Martínez et al., 2013) and metabolism (Baxter, 1977). 107 

These forced differences between lotic and lentic habitats indicate that flow regulation can 108 

trigger important changes in river ecosystem functioning (Elosegi and Sabater, 2012). 109 

Moreover, given that flow regulation involves the interruption of the fluvial continuum, 110 

consequences may be evident along the entire river network (Ward and Standford, 1983). 111 

Different key ecosystem processes, such as organic matter decomposition (Gessner and 112 

Chauvet, 2002; Feio et al., 2010), nutrient retention (Von Schiller et al., 2008), and metabolism 113 

(Bunn et al., 1999; Young et al. 2008), have been used as indicators to assess ecosystem 114 

functioning. Organic matter decomposition is a fundamental process in stream ecosystems 115 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(Tank et al., 2010) and results from the interaction between several physical, chemical, and 116 

biological factors (Benfield, 1996; Gessner et al., 1999).  Many researchers have demonstrated 117 

the effect of water temperature (Peterson and Cummins, 1974), dissolved nutrient concentration 118 

(Ferreira et al., 2014), or oxygen concentration (Webster and Benfield, 1986) on organic matter 119 

decomposition. At the same time, decomposition is influenced by alterations of the hydrological 120 

regime, such as drastic flow reductions (Dewson et al., 2007; Schlief and Mutz, 2009), 121 

variations in flow velocity (Ferreira and Graça, 2006; Santos Fonseca et al., 2012), and 122 

damming (González et al., 2012; Menéndez et al., 2012). The decomposition process integrates 123 

this complexity and is a good indicator of changes in the ecosystem. 124 

At a watershed scale, decomposition rates depend on the river order, altitude, and/or 125 

different land uses (Benfield et al., 2000; Fleituch, 2001; Fonnesu et al., 2004; Pozo et al., 2011; 126 

Silva-Junior et al., 2014). As a consequence, several studies highlighted the importance of 127 

assessing the ecosystem response to an impact at this scale (e.g., Stanford and Ward, 1992; 128 

Allan et al., 1997; Poff and Zimmerman, 2010; Elosegi and Sabater, 2012). However, few 129 

studies considering organic matter decomposition have been performed at a catchment scale to 130 

date (see: Feio et al., 2010; Aristi et al., 2012). 131 

Various studies used the litterbag method as an approach to quantify decomposition rates 132 

(Bärlocher, 2005). However, its utilisation allows high versatility in various aspects, such as 133 

mesh size, litter species, or the initial quality of the substrate, restricting the comparisons among 134 

studies (Lecerf and Chauvet, 2008). To overcome this issue, an alternative approach involves 135 

the use of commercial wood sticks (Young and Collier, 2009; Aristi et al., 2012; Arroita et al., 136 

2012) that limits manipulation and allows standardisation of the initial chemical composition.   137 

The aim of this study was to assess the variability caused by flow regulation on 138 

ecosystem functioning at the river netowrk scale using the organic matter decomposition 139 

process as a functional indicator. To achieve this objective, we studied the mass loss from wood 140 

sticks in different lotic and lentic reaches located in a diverse range of stream orders along a 141 

Mediterranean river network. Additionally, we identified the main environmental factors 142 

potentially affecting decomposition rates along the river orders. Due to the marked seasonality 143 

of Mediterranean areas, the experiment was conducted in summer and winter. We 144 

hypothesised that there would be differences in the decomposition processes between lotic and 145 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lentic reaches along the river network given their environmental differences. We expected 146 

increased decomposition rates in lotic reaches based on increased physical abrasion due to 147 

higher flow. We predicted these rates to be particularly higher in summer when milder 148 

temperatures promote increased biological activity.  149 

 150 

2. Materials and methods 151 

 152 

2.1 Study area 153 

 154 

This study was conducted in the Fluvià River watershed, located in the northeast of the 155 

Iberian Peninsula (Fig. 1). This sixth order watershed drains an area of 990 km2. Its mainstream 156 

is 97 km in length and flows into the Mediterranean Sea. The climate is typically Mediterranean 157 

and is characterised by scarce precipitation occurring mainly in spring and autumn with drier 158 

and warmer summers. The mean annual precipitation in this region is 660 mm, and the monthly 159 

mean air temperature varies between 6°C in January and 23°C in July (ACA, http://aca-160 

web.gencat.cat). The basin is relatively pristine and is covered mainly by mixed forests (78%); 161 

some agricultural (13%) and urban (3%) areas are present, mostly associated with the lowest 162 

altitudes (Land Cover Map of Catalonia 2009, CREAF).  However, the flow is highly regulated 163 

by a total of 51 man-made watercourse interruptions of different dimensions (ACA, http:/aca-164 

web.gencat.cat). Nevertheless, all of these interruptions have less than 1 hm3 of capacity. 165 

We selected a total of 10 experimental reaches of orders ranging from 2 to 5 (Strahler, 1957) 166 

within this catchment to ensure an appropiate representation of the river network heterogeneity 167 

(Table 1). These reaches were also classified as running water reaches (i.e., lotic habitats, n=6) 168 

and stagnant waters stored in small dams and weirs (i.e., lentic habitats, n=4). The experiment 169 

was conducted during winter (November 2012 to February 2013) and summer (June 2013 to 170 

September 2013).  171 

 172 

2.2 Environmental parameters 173 

 174 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During the study period, several physical, chemical, and hydrological parameters were 175 

obtained monthly at each site (Table 2). Portable probes were used to measure the water 176 

temperature, conductivity, pH (Cond 3310, WTW, Germany), and the dissolved oxygen 177 

concentration (YSI ProODO Handheld, USA) on the field. The water samples were filtered 178 

through pre-ashed glass fibre filters (0.7-µm pore size; Whatman GF/F, Germany), transported 179 

to the laboratory under cooled conditions, and stored at 4°C in the dark until analysis. All water 180 

samples were analysed the day after their collection. The concentrations of dissolved nitrite 181 

(NO2
-), nitrate (NO3

-2), phosphate (PO4
-3), chloride (Cl-), and sulphate (SO4

-2) were analysed by 182 

ionic chromatography (IC5000, DIONEX, USA). The dissolved organic and inorganic carbon 183 

concentrations in water (DOC and DIC, respectively) were measured with a total organic carbon 184 

analyser (TOC-V CSH, Shimadzu, Japan). The sub-catchments associated with the 185 

experimental reaches were characterised for the total area and percentage of land use cover by 186 

a geospatial-processing software (ArcMap 10, ArcGIS, USA). The water residence time of the 187 

lentic reaches was estimated from digitised bathymetric maps obtained with the same 188 

geospatial-processing software. For the lotic reaches, the water residence time was obtained 189 

from the reach distance and a reach average water velocity modelled by the hydraulic software 190 

HecRas 2.2 (US Army Corps of Engineers, USA). To feed the model, we used hydraulic 191 

parameters measured in the field with an acoustic-Doppler velocimeter (Sontek, YSI, USA) and 192 

morphological data provided by the Catalan Water Agency (ACA, http:/aca-web.gencat.cat).  193 

For each parameter, the average of the monthly measures was used as the representative 194 

value of each study period.  195 

 196 

2.3 Decomposition experiment 197 

 198 

The decomposition rates were studied in all of the experimental reaches using commercial 199 

wood sticks (15×1.8×0.22 cm) of Canadian poplar wood (Populus nigra x canadienses). Before 200 

their placement in the reaches, each stick was marked with a pirographer, oven dried (70°C, 72 201 

h), and weighed. A total of 15 (five groups of three) wood sticks were placed in each selected 202 

site in November 2012 and June 2013 for the winter and summer experiments, respectively. 203 

Each group was tied with nylon threads to metal bars, branches, or roots, and lead weights 204 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were used to ensure that the sticks were completely submerged. One group of these sticks was 205 

used at each site to prevent possible losses. An extra set of five sticks was transported to the 206 

stream without being immersed in the water and returned to the laboratory to correct the initial 207 

mass value for manipulation.  208 

Five sticks (one per group) at each location were recovered after approximately 65 and 110 209 

days in both winter and summer. After their retrieval, the sticks were placed in individual zip-lock 210 

bags and transported in refrigerated containers to the laboratory, where they were immediately 211 

processed. The recovered sticks were washed with tap water and brushed to remove adhering 212 

material, oven dried (70°C, 72 h), and weighed. An aliquot of each stick was incinerated (500°C, 213 

5 h) to remove the effect of the inorganic components and obtain an ash-free dry mass (AFDM). 214 

A subsample of each recovered stick was ground into a fine powder (c.a 1-mm pore-size), and 215 

the nitrogen (N) and carbon (C) contents were analysed. Both elements were determined using 216 

a Perking Elmer series II CHNS/O elemental analyser.  217 

 218 

2.4 Data analysis 219 

 220 

The decomposition rates were estimated following the negative exponential model Mt = M0 e-221 

kt (Petersen and Cummins, 1974), where M0 is the initial AFDM corrected for manipulation, Mt is 222 

the remaining AFDM at time t, and k is the decomposition rate. A decomposition rate was 223 

obtained for each site and period (summer and winter). 224 

A linear mixed-effects model, using the R package nlme (Pinheiro et al., 2012), was used to 225 

analyse differences in water characteristics and wood decomposition over time along the river 226 

network. For wood decomposition, the proportion of the remaining AFDM was used as the 227 

dependent variable; the elapsed time (co-variable), season (winter or summer), river order 228 

(low=2-3, medium=4, high=5) and hydrologic habitat (lentic or lotic) served as the fixed-effects 229 

factors. We used the natural logarithm of the proportion of remaining AFDM to achieve a linear 230 

relationship with time. For the stream water characteristics, we applied a linear mixed-effects 231 

model for each of these characteristics (dependent variable) using the same fixed-effects 232 

factors indicated above as the independent variables, with the exception of elapsed time. The 233 

full factorial model was employed; therefore, all of the interactions were assessed. For both 234 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models, the site was fitted as a random factor with an effect on the intercept. This effect was 235 

assessed using likelihood ratio tests to compare the linear regression model without random 236 

factors (gls function) with the linear mixed model with all the fixed effects (lme function) and the 237 

random effect. The final models were selected by Akaike's Information Criterion (AIC) and fitted 238 

using the restricted maximum likelihood (REML). Model validation plots were used to assess the 239 

assumptions of the analysis. We implemented a variance function (varIdent function) in the 240 

model (Pinheiro and Bates, 2000; Zuur et al., 2009) to correct for residual heteroscedasticity. 241 

For wood decomposition, the effects of the fixed factors on the response variable were 242 

interpreted based on the statistical significance of the interaction among the fixed-effects 243 

habitat, order, and season with time (Lagrue et al., 2011). 244 

The relationship between wood decomposition and watershed characteristics was 245 

determined by correlating the environmental variables with the decomposition rates to assess 246 

linear relationships and to identify significant associations. A stepwise linear regression between 247 

the water characteristics and rates was performed with the R package MASS (Venables and 248 

Ripley, 2002) to identify which factors or factor combinations were the best predictors of the 249 

decomposition rates. Model selection was done using a bidirectional elimination based on AIC. 250 

Prior to the regression analysis, Pearson correlation coefficients between all of the variables 251 

were examined for multicollinearity. Within the higher correlated predictor pairs, we selected the 252 

pair that could provide the most ecological information. Sulphate, DIC, and phosphate were 253 

discarded because they were highly correlated with conductivity, DOC, and NOx (NO2
- + NO3

2-, 254 

>90% in NO3
2- form), respectively. 255 

Before the statistical analysis, the distributional properties of the data were assessed to 256 

identify outliers. The Shapiro–Wilk test was applied to assess normality for each variable, and a 257 

log natural transformation was performed when necessary. All statistical analyses were 258 

conducted using R version 2.15.3 (R Core Team, 2013), with a significance level set at a p<0.05 259 

for all tests.  260 

 261 

3. Results 262 

 263 

3.1 Stream water characteristics 264 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 265 

The stream water characteristics exhibited high variability between the sites along the river 266 

network in both seasons (Table 2). The interaction of habitat, order, and season was significant 267 

for NOx, dissolved oxygen, and the water residence time (Table 3). NOx concentrations varied 268 

widely between the orders with increased concentrations noted in sites from orders 4 and 5 269 

(high orders) compared with sites from orders 2 and 3 (low orders) in both seasons. Within the 270 

high-order reaches, the sites located in the middle of the watershed exhibited the highest NOx 271 

concentrations, especially in summer. However, for all of the other high-orders sites, NOx 272 

concentrations increased in winter. The average residence time of water in summer was 8.9±4 273 

h, whereas it was 34.9±18 h in winter. Lentic habitats exhibited a water residence time that was 274 

increased 4-fold compared with lotic habitats. These differences between the habitats were 275 

especially evident among the high orders in winter. Oxygen concentrations and pH were less 276 

variable among the sites. However, the oxygen concentration was generally higher in winter 277 

than in summer, and the highest values appeared in the high orders. The water temperature 278 

increased with stream order and exhibited higher values in summer compared with winter at all 279 

of the sites. The conductivity and Cl- varied between orders and seasons, with the highest 280 

values noted in high-order reaches and winter. Regarding to the DOC, significant differences 281 

were only evident between seasons, with increased DOC in summer compared with winter 282 

(except in 4th order reaches). 283 

 284 

3.2 Decomposition process 285 

 286 

The decomposition rates differed significantly between seasons (interaction time x season, 287 

Table 4), with higher rates in summer (0.0027±0.0004 d-1) than in winter (0.0009±0.0001 d-1) at 288 

all of the sites (Fig. 2). Differences were also noted between orders (interaction time x order, 289 

Table 4). The decomposition rates were increased in high orders compared with low orders in 290 

both seasons. The differences between lotic and lentic habitats was only evident in high orders, 291 

with the highest decomposition rates in lotic habitats.  292 

The seasonal variability in the decomposition rates was more important in high-order 293 

reaches compared with low-order reaches. In high orders, the decomposition rates were 294 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increased 2.9-fold in summer compared with winter (0.001±0.0003 d-1), whereas the seasonal 295 

differences in low orders were reduced until rates were only 1.57 times higher. Accordingly, the 296 

variability among sites was more pronounced in summer, with rates 6.03 times higher in high-297 

order reaches (0.003±0.0007 d-1) compared with low-order reaches (0.0006±0.00009 d-1) 298 

(interaction time x order x season, Table 4). 299 

Clear differences between lotic and lentic habitats were exclusively evident in high orders, 300 

especially in winter (interaction time x habitat x order x season, Table 4). In high orders, lotic 301 

habitats exhibited an average decomposition rate that was higher than that observed in lentic 302 

habitats. This difference between habitats was especially remarkable in winter; decomposition 303 

rates in lotic habitats (0.002±0.0005 d-1) were increased 2.5-fold compared with lentic habitats 304 

(0.0007±0.0002 d-1). In summer, lentic habitats exhibited rates that were more similar 305 

(0.003±0.0011 d-1) than the rates obtained for the lotic habitats. Conversely, low-order lentic and 306 

lotic habitats presented similar decomposition rates in both seasons (Fig. 2).  307 

The initial nitrogen content of sticks was 0.07% of dry mass, and an increase was observed 308 

during decomposition in both periods. This increase was more pronounced in winter compared 309 

with summer. After a loss of 20% of the initial mass, the amount of nitrogen in the sticks in 310 

winter was approximately 0.4% of the dry mass, whereas it was approximately 0.2% in summer 311 

(Fig. 3).  312 

 313 

3.3 Watershed characteristics and decomposition rates 314 

 315 

The stepwise regression revealed that the decomposition rates were significantly associated 316 

with stream water characteristics. The final selected model included temperature, NOx, water 317 

residence time, and DOC as the best combination of variables to predict the mass loss. The 318 

proportion of variance in the rates explained by these predictors included in the model was 319 

approximately 72% (Table 5).  320 

At the same time, we identified a significant relationship between the decomposition rates 321 

and the surface of agricultural land use in each sub-catchment in summer (Fig. 4). This 322 

relationship was unimodal at the watershed scale from low to high orders, exhibiting increased 323 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decomposition rates at intermediate levels of agricultural land use in both lentic and lotic 324 

habitats. No significant relationship was observed during the winter period.  325 

 326 

4. Discussion 327 

 328 

Wood decomposition revealed differences in ecosystem functioning along the studied river 329 

network that were more associated with differences between stream orders than with 330 

differences between habitats (lentic-lotic). Flow regulation only affected decomposition rates in 331 

high orders, where lotic and lentic habitats differed widely in their characteristics.  332 

 333 

Contradictory results related to the decomposition of organic matter along stream orders or 334 

altitudes are reported in the literature. Some authors report that the decomposition rates of leaf 335 

litter increased in the downstream direction (Benfield et al., 2000; Fleituch, 2001; Fonnesu et al., 336 

2004), whereas others report a decrease (Cortes et al., 1995) or even no trend along the river 337 

network (Tiegs et al., 2009). Regarding wood decomposition, the number of studies performed 338 

at the watershed scale is even smaller, and these results are also inconsistent. Naiman and 339 

Melillo (1987) reported increased rates in headwater streams, whereas other studies, including 340 

our study, described faster decomposition downstream (Diez et al., 2002; Aristi et al., 2012). 341 

The differences could be closely related to the characteristics of the study basin. In our basin, 342 

the nutrient concentrations and water temperature differed widely between stream orders, with a 343 

clear differentiation between high and low orders. The former exhibited higher temperature and 344 

nutrient concentrations, and these factors were positively correlated with decomposition rates.  345 

Previous studies have already indicated that elevated nutrient concentrations can accelerate 346 

wood decomposition rates (Tank and Webster, 1998; Diez et al., 2002 ), mainly via fungal and 347 

bacterial activity (Crenshaw et al., 2002). An increase in nutrient availability in the water column, 348 

especially nitrogen and phosphorus, potentially provides an extra source of nutrients, 349 

stimulating microbial activity on litter (Ferreira et al., 2014). At the same time, this stimulation 350 

effect is more pronounced in substrates with low nutrients and high lignin content, such as 351 

wood, because the microbial community is more limited by nutrients (Stelzer et al., 2003; Gulis 352 

et al., 2004; Ferreira et al., 2006b). Thus, our results revealed an increase in the nitrogen 353 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content in litter during decomposition, which was more pronounced in winter compared with 354 

summer likely due to differences in nutrient availability and microbial assemblages. Other 355 

researchers have found this increase (Menéndez et al., 2011) and attributed it to microbial 356 

nutrient uptake and immobilisation in the water column (Chauvet, 1987; Kuehn et al., 2000). 357 

The effect of nutrient concentrations on litter decomposition also depends on water 358 

temperature (e.g., Ferreira and Chauvet, 2011). As we predicted, a clear effect of the 359 

temperature on the decomposition rates was detectable in our results, with increased 360 

decomposition rates noted in summer compared with winter at all of the sites. However, despite 361 

similar increases in temperatures between reaches of different orders, the effect of temperature 362 

on decomposition rates was much greater for high orders than low orders. Similarly, Fonnesu et 363 

al. (2004) studied the organic matter decomposition in a 5th order Mediterranean watershed and 364 

found that the seasonal variation in leaf decomposition was low in reaches with low 365 

decomposition rates and high in reaches with high decomposition rates. This finding is 366 

potentially related to a synergistic effect of nutrient concentration and temperature on 367 

decomposition (Ferreira and Chauvet, 2011). Temperature stimulates metabolic activity, 368 

allowing a faster decomposition process; however, stimulation only occurs if nutrients are 369 

available, especially in substrates such as wood. In high orders with relative nutrient availability, 370 

an increase in temperature in summer potentially enhances microbial activity. By contrast, in 371 

low orders, decomposition is limited by nutrients, and rates are less independent of the 372 

temperature (Graça and Canhoto, 2006). 373 

Stream environmental parameters, such as nutrients and temperature, are strongly 374 

influenced by land uses within the watershed (Allan, 2004). Our watershed was primarily 375 

covered by forest, but increased agricultural land use was observed downstream. Agricultural 376 

activity as a consequence of runoff and deforestation is associated with elevated nutrient 377 

concentrations and increased water temperature (Townsend and Riley, 1999; Paul et al., 2006). 378 

In our study, summer decomposition rates exhibited a unimodal relationship with the amount of 379 

agricultural land use, revealing the highest decomposition rates at intermediate levels of 380 

agricultural land use. A similar relationship with leaf litter decomposition in streams was 381 

reported by Mctammany et al. (2008) along an agricultural land gradient and by Woodward et 382 

al. (2012) along a nutrient gradient. Moderate levels of agricultural runoff stimulate 383 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decomposition, which is limited by nutrients, but extreme amounts may cause decreased 384 

decomposition rates due to other pollutants or sediment inputs (Hagen et al., 2006; Lecerf et al., 385 

2006). 386 

As we predicted, significant differences in decomposition rates between habitats were 387 

observed but only in high orders; increased rates were noted in lotic habitats compared with 388 

lentic habitats, especially in winter. 389 

The only environmental variables with significant differences in the interaction among habitat, 390 

order, and season in the mixed-effects model and at the same time, related with decomposition 391 

rates in the final regression model were water residence time and NOx concentration. Given 392 

that lentic habitats are characterised by higher water residence time, we hypothesised that they 393 

experience less physical abrasion than lotic habitats. Similarly, different studies have 394 

demonstrated higher decomposition rates of leaves and twigs when flow velocity increases, 395 

suggesting that physical abrasion caused by flowing water along with transported sediment 396 

(Ferreira et al., 2006a) serves as an important breakdown factor (e.g., Chergui and Pattee, 397 

1988; Vingada, 1995; Santos Fonseca et al., 2012). Flow is also a major determinant of biotic 398 

composition (Bunn and Arthington, 2002). Fungi are considered the main decomposers of 399 

submerged wood (Gulis et al., 2004), and the current velocity can serve as an important factor 400 

regulating their assemblage structure. Ferreira and Graça (2006) reported increased aquatic 401 

hyphomycete activity in leaves exposed to high, rather than low, current velocity. Water flow 402 

supplies a continuous source of fungal spores to detritus (Bärlocher, 1992) and promotes 403 

oxygen-rich waters, preferentially colonised by aquatic hyphomycetes (Chauvet, 1992). This 404 

colonisation primarily occurs in winter when the presence of leaf litter allows the maximum 405 

fungal production (Suberkropp, 1997). Therefore, in high orders, fungal activity in lotic habitats 406 

might be stimulated. In contrast, in lentic areas, where physical abrasion and fungal activity 407 

might be low, decomposition rates remain low. This notion is primarily true in winter. However, 408 

in summer, when no difference between habitats was noted, the temperature would 409 

homogenise their decomposition rates. 410 

The wood decomposition rates measured along the river network integrated the effects of 411 

flow regulation. The reduction of flow due to small dams and weirs reduced the organic matter 412 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decomposition capacity of the river, especially in high-order streams and in the winter season, 413 

where the environmental differences between lentic and lotic reaches were more evident.  414 

This study demonstrated that small dams and weirs modify ecosystem functioning along the 415 

river network, affecting key ecosystem functions such as organic matter decomposition. These 416 

types of impoundments are especially abundant in Mediterranean areas. Despite the 417 

abundance of these impoundments, their ecological effects remain poorly understood. 418 

Moreover, Mediterranean areas are experiencing a growth of urban areas and extension in 419 

agriculture activities (Underwood et al. 2009), which could result in major flow regulation in the 420 

future and more small dams and weirs in the river basins to guarantee water supply. Under this 421 

scenario, it is especially relevant to further investigate the effects of these impacts on 422 

ecosystem functioning, and to consider these results to promote effective river management.  423 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Tables and Figures 615 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Table 1. 617 
Characterisation of the studied sites. The percentages of land use cover refer to the total sub-618 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Table 2. 675 
Stream water characteristics of the studied sites. DIC=dissolved inorganic carbon, 676 
DOC=dissolved organic carbon, NOx=NO2

-+NO3
-2, PO4

-3=phosphate, Cl-=chloride, and SO4
-2= 677 

sulphate. Values (mean ± SE) highlighted in bold correspond to the winter period, whereas non-678 
bold values correspond to the summer period.   679 
 680 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Table 3. 735 
Summary of linear mixed-effect models of stream water characteristics of the studied sites 736 
along the river network in both seasons (n=20). DIC, PO4

-3, and SO4
-2 values with correlation 737 

coefficients greater than 0.70 with DOC, NOx, and conductivity, respectively, were not included 738 
in the linear mixed-effects model. Data appearing in bold are statistically significant.  739 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Table 4. 791 
Summary of the linear mixed-effects model used to analyse differences in wood decomposition 792 
over time along the river network. The proportion of remaining AFDM was used as dependent 793 
variable. Season, hydrological habitat, river order, and time (co-variable) were used as fixed 794 
factors, whereas site was used as a random factor. Data appearing in bold are statistically 795 
significant. 796 
 797 
 798 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Table 5. 851 
Multiple regression analyses of decomposition rates (day-1) and stream water characteristics in 852 
winter and summer. T=temperature, NOx=NO2

-+NO3
-2, DOC=dissolved organic carbon. 853 

R=multiple regression coefficient. Note that residence time was negatively correlated with 854 
decomposition rates. Data appearing in bold are statistically significant. 855 
 856 
 857 
 858 
 859 
 860 
 861 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Figure 1. 907 
Locations of the study sites (letters from A to J) in the Fluvià River watershed (NE, Iberian 908 
Peninsula). Black dots denote lotic sampling reaches, whereas white dots denote lentic-909 
sampling reaches. 910 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Figure 2 967 
Decomposition rates (day-1) of each site in winter and summer. Error bars indicate standard 968 
error. 969 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Figure 3. 1025 
Nitrogen (N) content in each stick as a percentage of stick dry mass and related to the total 1026 
proportion of ash-free dry mass (AFDM) lost in each stick (n=192). 1027 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Figure 4. 1083 
Decomposition rates (day -1) of each site (letters from A to J) in summer related to total 1084 
hectares of agricultural land use presented in the sub-catchment associated with each site. 1085 
White points indicate lentic habitats, whereas black points indicate lotic habitats (n=10).  1086 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