
fpsyt-13-826111 April 6, 2022 Time: 17:9 # 1

OPINION
published: 12 April 2022

doi: 10.3389/fpsyt.2022.826111

Edited by:
Stefan Borgwardt,

University of Lübeck, Germany

Reviewed by:
Alexandra Korda,

University Medical Center
Schleswig-Holstein, Germany

Gemma C. Monté-Rubio,
University of Barcelona, Spain

*Correspondence:
Aleix Solanes

solanes@clinic.cat

Specialty section:
This article was submitted to

Neuroimaging and Stimulation,
a section of the journal
Frontiers in Psychiatry

Received: 30 November 2021
Accepted: 16 March 2022

Published: 12 April 2022

Citation:
Solanes A and Radua J (2022)

Advances in Using MRI to Estimate
the Risk of Future Outcomes in Mental

Health - Are We Getting There?
Front. Psychiatry 13:fpsyt-13-826111.

doi: 10.3389/fpsyt.2022.826111

Advances in Using MRI to Estimate
the Risk of Future Outcomes in
Mental Health - Are We Getting
There?
Aleix Solanes1,2* and Joaquim Radua1,3,4

1 Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer
(IDIBAPS), Barcelona, Spain, 2 Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University
of Barcelona, Barcelona, Spain, 3 Early Psychosis: Interventions and Clinical-detection Lab, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, London, United Kingdom, 4 Department of Clinical Neuroscience,
Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden

Keywords: neuroimaging, machine-learning (ML), risk estimating, schizophrenia, magnetic resonance imaging
(MRI)

INTRODUCTION

Schizophrenia is a mental disorder among the leading disabling conditions worldwide (1). It
affects approximately 20 million people and increases 2–3 times the probability of dying early and
decreases the life expectancy by about 20 years (2). Its onset is typically in adolescence or early
adulthood (3). Relevantly, prolonged untreated psychosis leads to poorer outcomes (4), so detecting
the disorder early could considerably improve their lives.

Neuroimaging studies have found that individuals with schizophrenia have smaller volumes in
the hippocampus, amygdala, thalamus, nucleus accumbens, intracranial space, and larger pallidum
and ventricle volumes (5–9).

Traditionally, most neuroimaging studies in psychiatry relied on mass-univariate statistical
approaches. For example, techniques like voxel-based morphometry (VBM) let researchers assess
voxel-wise differences in regional volume or tissue composition based on estimates of tissue
probability. These approaches are helpful to detect group differences. Still, they cannot yield
predictions (e.g., diagnosis, outcome, etc.) at the individual level. In recent years, the interest
in machine-learning methods in neuroimaging has increased due to its capability to handle
high-dimensional data and perform predictions at a single-subject level.

The use of machine learning algorithms such as Support-Vector Machines (10), regularized
regression (11, 12), Random Forest (13), or more recently, Deep Learning (14) to different
neuroimaging modalities has expanded the possibilities of brain imaging data much beyond the
traditional case-control group comparisons.

For example, many researchers aimed to use MRI-based data to detect mental disorders. Most
focused on classifying each MRI scan as being from a patient or a healthy control (15–17). Still,
others attempted to classify each MRI scan as being from a patient with one or another mental
disorder (18–20). A recent systematic review summarized the classification performance between
patients with schizophrenia and healthy control reported by various studies. High-performance
prediction accuracy of >70% was reported in 40 of 41 studies using structural MRI, 35 of 40 using
functional MRI scans, and 5 of 5 using diffusion-weight MRI (21). While these prediction rates may
seem impressive, most of these diagnostic tools have not been integrated into clinical practice.

Less machine learning research has been done in detecting subjects at high risk of developing
future outcomes in schizophrenia (22, 23). This is unfortunate because early detection could delay
or even prevent severe future consequences (24). Some studies used clinical data, such as the
presence of manic and negative symptoms (25–27), the diagnosis at onset together with other
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sociodemographic and clinical scales information (28, 29), or
drugs use (28, 30, 31). Others used biological information such
as blood-based biomarkers (32, 33), genetics data (34–36), or the
combination of both clinical and biological data (37).

Finally, the use of MRI data to estimate the risk of different
outcomes in schizophrenia has been even less explored. Only a
few studies have taken this path, using as predictor variables the
changes in brain volume during the 1st year after a first episode of
psychosis (FEP) (38), brain gray matter MRI (39, 40), or surface-
based data (40).

While results are still humble, we believe that these efforts
are building a base on top of which future research will create
valuable tools that will help the clinician. For example, these
tools could help detect subjects at risk or predict the response
to different treatments with the final aim to improve the patient
wellbeing (41, 42).

The following section will describe which machine learning
algorithms are currently used in neuroimaging. Then we will
review which are the most common pitfalls and errors that we
believe researchers should avoid. Finally, we will set our sights on
the future, checking some of the promises of the latest algorithms
and neuroimaging techniques.

COMMON MACHINE LEARNING
ALGORITHMS

The field of machine learning englobes an extensive list of
algorithms, each with its strengths and weaknesses. Each of
these algorithms should be tuned to obtain a trade-off between
the model not fitting the data well enough, which is called
underfitting, and excessive fitting the training data, called
overfitting (see Figure 1). An underfitted model fails to capture
the relationship between the MRI data and the outcome, for what
it performs poorly even on the training data. Overfitting occurs
when the model finds relationships between the MRI data and
the outcome that are only based on particular, random details
of the training data, and thus its performance is poor on new
data. Over the vast selection of algorithms, we will review only
the more common.

Logistic Regression
Logistic Regression (LR) is a statistical model that fits the
data to a logit or logistic function, an S-shaped sigmoid
function. It calculates a binary dependent variable from one
or more independent variables. Since neuroimaging results
in a huge number of variables and many of them may
be highly correlated, a technique called regularization is
often used to reduce the complexity. Among the most used
regularization algorithms in linear regression, we can find
Least Absolute Shrinkage and Selection Operator (LASSO)
(12), which eliminates non-important variables from the final
model that do not contribute much to the prediction task,
or Ridge (11), which instead of removing the variables,
applies a penalty to some values that result in near-zero
coefficients. A combination of both Ridge and LASSO also
exists, which is called Elastic Net (43). This algorithm

eliminates the coefficients of some variables and also reduces
others close to zero.

Despite being a simple algorithm, it has been used to predict
subjects at ultra-high risk and even performed better than more
complex algorithms (44). Elastic Net was used to detect both
functional and structural brain alterations in female patients with
schizophrenia (45). Salvador et al. evaluated the discriminative
power of some of the most commonly used algorithms on sMRI
for prediction in psychosis. They systematically compared the
different algorithms, and among them, Ridge, LASSO, and Elastic
Net classifiers performed similarly, if not slightly better, than
other classifiers (46).

Support Vector Machines
Support Vector Machine (SVM) is a supervised discriminative
classification method that creates hyperplanes for optimally
separating the data into different groups that can be used for both
classification or regression tasks. One strength of the algorithm
is the ability to perform non-linear classifications. This is done
by taking low dimensional input space data and convert them
into a higher dimensional input space so that a hyperplane can
separate the different classes. To improve the generalization of
the model and avoid overfitting, a trade-off between maximizing
the margin between the classes and minimizing the number of
misclassifications has to be considered.

SVM algorithms emerged as powerful tools for finding
objective neuroanatomical biomarkers since they can quite
effectively handle high-dimensional data, consider inter-regional
correlations between different brain regions, and make inferences
at a single-subject level with a decent classification result (47).

It is probably one of the most commonly used machine
learning classification algorithms in neuroimaging data.
A common approach has been the use of SVM to classify subjects
at ultra-high risk for psychosis from healthy controls (48, 49, 50).
Due to its capability to deal with high-dimensional data, it has
also been applied to classify between recent-onset depression and
recent-onset psychosis using both neuroanatomical information
and clinical data (51), to find neurocognitive subtypes based on
cognitive performance and neurocognitive alterations in recent
onset psychosis (52, 53), to identify schizophrenia patients based
on subcortical regions (54) or functional network connectivity
data (55). A multimodal approach combining structural MRI,
diffusion tensor imaging, and resting-state functional MRI
data was tested to classify patients with chronic schizophrenia
vs. patients with FEP comparing different algorithms such
as Random Forest (RF), LR, Linear Discriminant Analysis
(LDA), and K-Nearest Neighbor classification (KNN), and SVM,
resulting in the latter as the best performing one (56). Steardo
et al. in a recent systematic review, analyzed 22 studies using
SVM on fMRI as biomarkers to classify between schizophrenia
patients and controls, where 19 studies reported a promising
>70% accuracy (57).

The popularity of SVM and the trade-off between
performance and simplicity are its main strengths. It is
essential to consider that its performance is highly dependent on
the hyperparameters chosen, and these are usually tuned using a
grid search method (58).
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FIGURE 1 | Examples of model underfitting, model fitting good, and a model overfitting to the data on classification, regression, and deep learning models. In
classification, squares and circles represent two different classes. In Deep Learning, the figures represent the training and validation error over each iteration during
the model training process.

Linear Discriminant Analysis
Similar to SVM, linear discriminant analysis involves
transforming the dimensionality of the data. However, in
LDA, the data is projected into a lower-dimensional space where
the different data groups can be maximally separated using a
non-linear kernel (59).

It has been used on classification tasks such as Recent-Onset
Schizophrenia (ROS) vs. HC (60), patients with FEP vs. HC
(61–63), or patients with SZ vs. HC (64–67) with accuracies
over 70%. Winterburn et al. used three independent datasets to
validate the discriminative power of LDA to classify patients with
SZ from HC, using different neuroimaging data. They compared
cortical thickness data, ravens maps, and modulated VBM, and
resulted that using their larger dataset, the accuracy was slightly
lower compared to previous lower sample dataset articles (68).

The main strength of LDA is the reduction of the overfitting
problem and computational cost by reducing the dimensional
space. Despite that, its major drawback is that it requires
assuming that the covariance matrix in the groups of data is
identical, which is rare in real-world data.

Decision Trees and Random Forest
Decision trees are non-parametric supervised learning methods
used for both classification and regression. They can predict
values by learning simple decision rules inferred from the
data features. These algorithms tend to overfit, and so, to not
generalize well to new data. To overcome this limitation, a
variation on this algorithm exists called Random Forests (RF).
It is simply a collection of Decision Trees whose results are
aggregated into one single final result in the end. RF incorporates
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interactions between predictors in the model, detecting both
linear and non-linear relationships.

It has been used to classify groups, such as childhood-
onset schizophrenia patients and healthy controls (69), or
schizophrenia, bipolar disorder, and healthy controls (70, 71).

It is an algorithm that generally provides high accuracy and a
balance between bias-variance trade-off. Its major drawbacks are
that it tends to be computationally intense on large datasets. It
can be difficult to interpret the results, as it is difficult to analyze
all coefficients.

Artificial Neural Networks and Deep
Learning
Artificial Neural Networks (ANN) are a family of machine
learning algorithms inspired by the brain’s biological functioning.
Like in our brain, these algorithms have neurons that receive
a signal, process it, send a signal to the following connected
neuron, and so on until a final result is obtained. To
adjust the learning capabilities of the model, each neuron
and synapse can have weights to increase or decrease the
strength of the signal. Neurons are aggregated into layers,
and when the number of layers increases, the algorithm is
then known as Deep Learning. These advanced models can
extract complex latent features from minimally preprocessed
original data through non-linear transformations. To avoid
overfitting, a method called Dropout exists. Dropout is a
regularization method that randomly ignores or "drops out" some
layer nodes, which is similar to adding noise to the training
process. This improves the generalization of the model and
reduces overfitting.

Deep Learning is often used to classify, predict values or even
detect or segment regions in the brain.

Deep Learning is a vast topic that has increased the
performance in some classification/prediction problems due
to finding complex patterns on highly complex data. Despite
being widely used to perform automatic tumor (72) or multiple
sclerosis lesion detection (73) in brain MR images, it is still not
extensively used in mental health disorder detection or risk-
estimation of outcomes.

To overcome the black-box problem in artificial neural
networks, different approaches are being developed, such as
creating heat maps using Layer-Wise Propagation to identify
the more important features involved in the algorithm decision
(74, 75).

Libraries and Tools
Machine learning analyses involve choosing both the algorithm
and its parameters. The research on machine learning applied to
neuroimaging wills to boost the algorithm’s performance. Still,
some research groups decided to make their models available to
the broad research community as open-source tools to let others
use these improvements. This also enables researchers without
coding backgrounds to perform machine learning analyses and
expand the applicability and the validation of these tools. Some
of these open-source tools focused on MRI machine learning are
listed here:

NeuroMiner1: It is a free Matlab toolbox developed by
Nikolaos Koutsoleris with support from the PRONIA project that
provides machine learning methods for analyzing heterogeneous
data, such as clinical, structural, genetic, and functional
neuroimaging data. It is designed to be easy to use, and no
coding skills are required. Different MRI preprocessing steps are
integrated into the software pipeline. It can create models to be
applied to new data. It is designed to be flexible across different
machine learning methods and data types, and it lets model
sharing through a collaborative model library.

MRIPredict2: It is a free GUI-based tool and also an R library
maintained by the IMARD Group at IDIBAPS, Hospital Clínic
de Barcelona. Like NeuroMiner, it provides machine learning
methods to predict diagnosis from structural MRI data and
clinical information. It can create models to be applied to new
data and makes it easy to analyze which variables are useful
for prediction or classification. It can handle multisite data by
ComBat harmonization (76), perform techniques like ensemble
learning to improve the robustness of the results, or multiple
imputations to handle missing fields data. In addition, it can also
conduct other types of predictions and estimations, such as the
risk of developing a specific outcome based on the time to the
event (survival analyses). It also can be used as an R library.

Pronto3: It is also a free GUI-based Matlab developed
by a team of researchers led by Prof. Janaina Mourao-
Miranda. It provides various tools and algorithms for easily
conducting machine learning analysis on neuroimaging data.
The software lets the user specify the steps of the analysis as
a batch job, choosing among the different functions of the
software per each step.

Despite all the different algorithms, systematic comparisons
between standard algorithms in neuroimaging pointed out that
the differences in predictive performance are more attributable
to differences in feature vectors than to the algorithm by itself
(47, 77).

COMMON PITFALLS AND ERRORS

Reproducibility and Replicability
While the following definitions are not universal, reproducibility
commonly refers to obtaining (approximately) the same results of
an article using the same data and experimental procedures used
in that investigation. In contrast, replicability commonly refers to
obtaining consistent results using new data.

Neuroimaging studies typically involve many possible choices
during imaging quality control, preprocessing, or statistical
analyses. In addition, in machine learning techniques, each
algorithm may have several parameters that authors can set, e.g.,
to find the best method for their analyses.

To achieve reproducibility, all brain imaging and machine
learning choices should be detailed and shared by the authors.
Ideally, papers should report all details and choices made during
the study. In addition, making the models, code, and data

1http://proniapredictors.eu/neurominer/
2https://mripredict.com
3http://www.mlnl.cs.ucl.ac.uk/pronto/
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publicly available should be standard practice to let third parties
examine the analysis in-depth and let others reproduce the whole
process applied. That said, data may often be not sharable for
privacy reasons.

In contrast, to achieve replicability, independent replication
studies should be encouraged. Unfortunately, one common
pitfall that prevents the applicability of many of these complex
algorithms is their low replicability, their lack of generalizability.
Many are developed on small sample sizes or single-site datasets
because acquiring neuroimaging data is time-consuming and
costly. However, while models made with small datasets or single-
site data may seem to perform well, this performance is based on
overfitting and, thus, the models fail when applied to new data.
Like in human learning, the more examples an algorithm sees, the
more it will learn to extrapolate those results to new samples (78).
For example, recently, some authors evaluated some published
models using clinical and neuropsychological data to predict
the transition to psychosis in subjects at clinical high-risk for
psychosis. When applying those published methods to a new
sample, previously published models failed to predict or showed
a poor accuracy (79, 80).

It is not uncommon in machine learning to test a battery of
classifiers and report the one with the best accuracy. However,
science should avoid studies based on cherry-picking, meaning
taking only results advantageous for our research question.
In some cases, this can be helpful, but this may easily lead
to data torturing.

Bias
Creating and validating machine learning models involves
several steps that, if not performed carefully, may introduce
sources of biases.

For example, many papers use a two-part study. The first part
refers to creating the model (e.g., selecting which features best
predict the outcome). The second part refers to its validation
(e.g., applying it to estimate how well the model works). However,
if researchers use the same dataset to create the model and
validate it, the estimated accuracy will be inflated (81). Therefore,
using a different dataset on model creation (including any feature
selection) and validation is mandatory to avoid this bias.

Another example. Due to the difficulty of obtaining large
datasets, collaborations between different sites are common.
However, machine learnings may “fraudulently” use the
differences between sites to predict the outcome. Therefore, these
potential effects of the site must be very carefully controlled.
Ignoring them may yield an inflated accuracy, even when the
models do not really predict (76, 82).

Clinical Utility
A common concern of clinical practitioners is the dubious clinical
utility of some machine learning studies (83, 84). On the one
hand, machine learning in medical data has proven to be an
impressive tool in replicating and automating human processes,
such as computer-automated detection (CAD) of lesions on brain
scans, body scans, or mammograms (85). However, on the other
hand, studies such as detecting whether an MR image belongs to a
patient or a healthy control may seem clinically useless (68). We

knowledge that these studies are indeed valuable as a proof-of-
concept. However, we should progressively ensure that clinicians
find them helpful, i.e., that the question answered by the model
aligns well with clinical needs.

In this regard, it is essential to keep a distinction between what
is a “model” and what is a “tool.” A model may be necessary
for further investigation or methodological purposes. Conversely,
a tool should be helpful, feasible, and safe for clinical decision-
making in real-world settings (84).

CHALLENGES AND LATEST
ADVANCEMENTS

Longitudinal Studies
Methods based on single time-point data can be helpful. Still,
changes over time may provide relevant information to create
models of what may happen (e.g., if the patient will respond
to treatment or have a complication). For example, it is known
that patients with a first episode of psychoses show a decrease
over time in cortical gray matter when compared with healthy
controls (86), or that progressive gray matter volume reduction
in the superior temporal gyrus is associated to low improvement
in positive psychosis symptoms (87). Having a dataset collected
from hundreds or thousands of people with similar conditions
over an extended period will enable more complex patterns to
be found. These patterns will allow a better future outcome
prediction. Therefore, longitudinal studies will be crucial in
improving the reliability and performance of mental health
decision-helper tools.

Larger Datasets
One of the common first steps when preprocessing neuroimaging
data is reducing dimensionality, using expert-designed
feature selection or feature extraction. This process boosts
the performance of algorithms, but it removes information from
the input data. Conversely, modern algorithms like deep learning
can use minimally preprocessed input data and take advantage
of the subtle patterns usually withdrawn during preprocessing
(88). However, although already used in some brain abnormality
detection tasks, deep learning has not yet been extensively
applied to detect early subjects at risk of developing a disorder or
a relevant outcome. A critical reason for not using deep learning
algorithms is that they require, in general, substantially larger
datasets than other machine learning approaches.

Neuroimaging datasets tend to be hard to acquire. Still,
emerging consortia, like the ENIGMA consortium,4 are already
making it possible to conduct analyses on large datasets otherwise
impossible to recruit (76). Indeed, a larger multisite sample not
only improves the statistical power of the studies and allows the
use of deep learning but also enhances the generalizability of the
models to new data.

New Algorithms
Algorithms and methods evolve every day, so maybe the best tool
to detect subjects at risk is still testing. In this section, we will

4http://enigma.ini.usc.edu/
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only scratch the surface and review some of the most promising
methods in machine learning.

Self-Defining Algorithms
There are many possible machine learning algorithms to apply
to a concrete question. The problem is which algorithm
or hyperparameters are the best for each outcome. A new
methodology called AutoML consists of techniques that can
automatically select the appropriate model and its associated
hyperparameters to optimize the performance and reliability of
the resulting predictions (89). Having the algorithm self-define
its characteristics can provide a human-agnostic model definition
that is not prone to the biases and assumptions tied to each
decision the expert makes when defining a model. It has already
been tested in identifying digital phenotyping measures that
are more relevant for negative symptoms in psychotic disorders
successfully (90).

Combining Knowledge From Other Sources
In other domains, like in computer vision, large datasets exist for
general purposes, such as ImageNet (91). But in neuroimaging
is not so easy to achieve such a giant dataset. Here is where
a technique called Transfer Learning appears. This approach
can extract insights obtained in large general-purpose datasets
and use that information to improve small dataset model
creation (82). This technique has already been tested to improve
Alzheimer’s disease classification (92). Still, to our knowledge, it
has not been used in many other domains like risk estimation.

Explainable Artificial Intelligence
Novel algorithms like Deep Learning are usually considered
"black boxes" because networks’ decisions are not easily
interpretable by humans. Explainable Artificial Intelligence
(XAI) seeks to provide an easily understandable solution. For
example, in highly complex neural networks used for MRI-
based classification, it is not easy to know which voxels have
been used to classify between groups; XAI would provide a
heat map indicating which were the more relevant zones or
voxels used in classification, providing insights into how the
network works (93). One approach is the layer-wise relevance
propagation (LRP), which produces heatmaps of the contribution
of each voxel to the final classification outcome at a single-subject
level. When tested in Alzheimer’s disease, the voxels reported
in the heatmap were concordant with zones associated with
AD abnormalities in previous literature (74). It has also been
applied to multiple sclerosis, where the lesions are distributed
across the brain. The individual heatmaps corresponded to the
lesions themselves and non-lesion gray and white matter areas
such as the thalamus, which are conventional MRI markers
(75). In a study where authors used texture feature maps for
classifying participants with SZ, MD patients, and HC, LRP
showed which zones contributed to the classification of the
deep learning algorithm (94). Another interesting approach to
determine which regions contribute the most to classification
consists of substitute brain regions by healthy ones generated
using variational autoencoders and then see how performance
changes (95).

Having tools understandable for humans would make it
easier for the researchers, clinicians, and general population to
believe in them.

Federated Learning
One obstacle in data sharing for creating larger datasets in MRI
is the concern about privacy and confidentiality. And another
limitation is that despite having large imaging databases, many
images have few labels and therefore do not allow the model
to learn much. A trained radiologist must inspect the images
to annotate the labels, which can be time-consuming. Both
problems can be solved using federated learning since it trains
algorithms across multiple health care sites. An algorithm is
provided to all the centers and is applied locally at each site.
Once the algorithm extracts the information, this knowledge is
put together. Using this approach, no private data is shared, and
centers can help in the process even if their labeled database is
small. Federated learning is a promising technique that upholds
patients’ privacy and eases the cooperation between health care
centers (96).

A Multimodal Approach
Schizophrenia and other mental disorders are known to
be caused by a combination of genetic, anatomical, and
environmental factors. Therefore, predictions of future
outcomes or the early detection of subjects at risk can profit
from multimodal approaches, e.g., combining genetic and
neuroanatomical factors. Many studies are indeed already using
a multimodal approach (97). However, the main problem is that
it is still unclear which combination of factors best predict the
outcome and how to combine them.

DISCUSSION

This article describes some common techniques and algorithms
used in neuroimaging machine learning research. It also reviews
some errors and pitfalls that may affect their models’ replicability
and clinical utility. Finally, it scratches on the surface of some
of the topics that can be relevant shortly. One of them may
be focusing on acquiring longitudinal data, which may address
clinically relevant questions (e.g., whether a patient will respond
to one or other treatment). Another topic may be related to
emerging promising techniques. For instance, human-agnostic
model definition algorithms could provide new assumption-free
methods not relying on human choices on algorithm definition.
Transfer Learning algorithms could allow using algorithms that
have been intensively trained in other fields. Other algorithms
may overcome the “black box” machine learning problem. Or,
on another note, Federated Learning may ease collaboration
between centers, achieving the larger sample sizes required for
machine learning.
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