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Clinical Electrophysiology and Ablation

Late gadolinium enhancement (LGE) cardiac MRI is increasingly used to 
detect cardiac fibrosis in the context of arrhythmias.1–4 Fibrosis is a 
hallmark of arrhythmogenic cardiac remodelling and constitutes an 
important substrate in both atrial and ventricular arrhythmias.2,3

Of note, by exploiting the slow washout kinetics of gadolinium in 
extracellular space, LGE-MRI is not only capable of determining native 
fibrotic tissue, but also of detecting ablation-induced scarring.5–13 Several 
groups have reported LGE-MRI-based localisation of functional gaps in 
atrial ablation lesions with high accuracy, and even LGE-MRI-guided 
repeat pulmonary vein isolation (PV) has been demonstrated to be 
efficient and effective as a standalone approach.5,7,14 Although the use of 
LGE-MRI for ventricular ablation lesion assessment is lagging behind 
compared to the atrium, feasibility has been demonstrated in preclinical 
and early clinical studies.10,15,16 However, initial data on the accuracy of 
LGE-MRI-based lesion assessment were somewhat conflicting.5,6,17,18 This 
limited reproducibility of promising results across centres may have been 
because of differences in the methods of image acquisition, post-
processing and analysis.19 In addition, we have generated evidence that 
the timing of image acquisition with respect to different stages of lesion 
formation and scar remodelling also has to be considered.20

This review focuses on the assessment of chronic ablation lesions using 
LGE-MRI and its utility in clinical practice. The scope of this article does not 
include real-time monitoring of lesion formation through intraprocedural 
MRI, which – despite holding great promise – is still of limited clinical 
relevance because of current structural and technical limitations related 
to electromagnetic interference, as well as the relative absence of acute 
parameters that accurately predict definite lesion formation.21

Pathology of Lesion Formation
The pathology of radiofrequency (RF) ablation injury is well established in 
animal models and patients and is characterised by coagulation necrosis, 
haemorrhage and complete loss of cellular and vascular architecture, 
apart from a narrow peripheral transition zone.9,22–25 The response to 
ablation injury implies infiltration of immune cells and neovascularisation, 
with local inflammation and interstitial oedema being observed up to 
8  weeks post-ablation.11,23,25 In parallel, activated fibroblasts proliferate 
and differentiate into myofibroblasts that generate fibrogenic signals, 
which perpetuate tissue repair and promote collagen deposition resulting 
in replacement of myocardium with fibrous scar tissue.22,24–26 While RF 
ablation and cryoablation fundamentally differ in the acute effect on the 
tissue and the mechanism of cell death, most of these basic principles of 
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RF-ablation-induced scar formation appear to apply similarly to 
cryoablation, albeit less well established and with an arguably more 
preserved ultrastructural tissue integrity.27,28

It has been shown that scar formation and remodelling in response to MI 
is a dynamic and chronically sustained process that continues over years 
after the initial injury.29,30 Once recruited to injured myocardium, fibroblasts 
persist in the infarct scar for years where they continue to generate 
fibrogenic signals that perpetuate tissue repair and promote fibrosis.29,30 
While data from long-term longitudinal studies on ablation-induced 
scarring are lacking, a recent analysis of post-mortem cardiac samples 
from patients with previous ventricular tachycardia (VT) ablation, indicates 
that we have to consider such long-term remodelling processes also in 
response to catheter ablation.25

LGE-MRI for the Detection of 
Ablation-induced Fibrosis
Basic Principles
LGE-MRI for the detection of myocardial fibrosis was first used and 
histologically validated in a canine model of MI.31 Despite 
pathophysiological differences, both cardiac ablation and MI result in 
coagulation necrosis, loss of syncytial membrane integrity and eventually 
replacement fibrosis. LGE-MRI makes use of the expansion of extracellular 
space and thus increased volume of distribution for the contrast agent 
that is associated with replacement fibrosis, as well as the prolonged 
washout owing to decreased capillary density within the myocardial 
fibrotic tissue.32,33 Gadolinium-based contrast agents diffuse freely into 
the interstitium, but they cannot cross intact cell membranes and thus 
accumulate in the extracellular space. As gadolinium contrast agents 

reduce the T1 relaxation time of adjacent tissue, LGE enhancement results 
in an increased signal intensity in T1-weighted MRI sequences. It is 
noteworthy though that LGE is not specific for fibrotic tissue, but can 
reflect other pathological processes associated with an expansion of the 
extracellular space such as inflammation and oedema formation, which 
impedes definite lesion assessment, particularly in the acute setting.34

Timing of Gadolinium Application
As indicated above, besides interstitial volume of distribution, LGE is 
determined by wash-in and washout kinetics of the contrast agent. Thus, 
the exact time delay between contrast administration and image 
acquisition is critical. While image acquisition is typically performed 
7–15  minutes (ventricle) or 15–25 minutes (atrium) post contrast agent 
injection for differential spatial contrast between scar and normal tissue, 
there is no consensus among different centres. Moreover, in some cases 
the time delay may even be adapted, based on individual perfusion 
(cardiovascular function) and washout kinetics (renal function). At our 
centre, we acquire atrial images 20 minutes after an intravenous bolus of 
0.2 mmol/kg of gadobutrol, whereas in the ventricle we acquire images 
7–10 minutes after gadolinium injection.

Of note, the time to allow for gadolinium to enter lesions appears to be of 
particular relevance regarding the so-called dark core phenomenon. This 
phenomenon is characterised by a hypoenhanced region (dark core) 
within ablation lesions surrounded by a peripheral rim of LGE.11,15,16,35 The 
exact pathological correlate underlying this phenomenon remains 
unknown, but microvascular obstruction impeding gadolinium wash-in is 
likely to play a role (no reflow). Possibly owing to a lack of functional 
capillaries, gadolinium appears to enter ablation lesions via diffusion from 

Table 1: Image Post-processing (Normalisation and Thresholds to Define Lesions)

Internal Reference for Normalisation Thresholds Defining Atrial Lesions Image Acquisition

Atrial Lesion Assessment

Oakes et al. 200939 Normal tissue (“lower region of the pixel intensity 
histogram between 2% and 40% of the maximum 
intensity within the region of interest [e.g. the left 
atrial wall]”)

User-selected individual threshold (2–4 SD 
above the mean of ‘normal’†, based on the 
investigators’ discretion)

1.5 T, 15 min post gadolinium  
(0.1 mmol/kg Multihance [Braco Diagnostic],* 
0.5 M)

Khurram et al. 201450 Mean LA blood pool signal intensity Universal threshold 
(upper limit of normal: IIR 0.97; dense scar: >1.6)

1.5 T, 15–25 min post gadolinium 
(0.2 mmol/kg Magnevist [Bayer],* 0.5 M)

Benito et al. 201738 Mean LA blood pool signal intensity Universal threshold 
(upper limit of normal: IIR 1.2; dense scar: >1.32)

3 T, 20 min post gadolinium 
(0.2 mmol/kg Gadovist [Bayer], 1.0 M)

Harrison et al. 201517 Mean LA blood pool signal intensity No fixed threshold, but visualisation of signal 
intensities in SD from reference

1.5 T, 20 min post gadolinium 
(0.2 mmol/kg Gadovist, 1.0 M)

Jefairi et al. 201951 Maximum signal intensity Universal threshold with possible individual 
adaptation 
(>50% maximum signal intensity)

1.5 T, 17 min post gadolinium 
(0.2 mmol/kg Dotarem [Guerbet], 0.5 M)

Peters et al. 200740 LA blood pool signal intensity “Minimum threshold which eliminates most left 
atrial blood pool pixels”

1.5 T, 20–25 min post gadolinium 
(0.2 mmol/kg Magnevist,* 0.5 M)

Kurose et al. 202069 ‘Healthy’ LA wall >2 SDs above the mean of “healthy” LA wall 1.5 T, 15 min post gadolinium 
(0.1 mmol/kg Gadovist, 1.0 M)

Ventricular Lesion Assessment

Cochet et al. 201358 Maximal myocardial signal 35–50% (BZ) or >50% (scar) of maximal signal 
intensity

1.5 T, 15 min post gadolinium 
(0.2 mmol/kg Dotarem, 0.5 M)

Fernandez-Armenta  
et al. 201357

Maximal myocardial signal 40–60% (BZ) or >60% (scar) of maximal signal 
intensity

1.5 and 3 T, 7–10 min post gadolinium 
(0.2 mmol/kg Omniscan [GE Healthcare],* 0.5 M)

Yan et al. 200653 Remote (healthy) myocardial segment 2–3 SDs (BZ) or >3 SDs (scar) above remote 
myocardium

1.5 T, 10–15 min post gadolinium 
(0.15–0.2 mmol/kg Magnevist,* 0.5 M)

*Authorisation of these linear gadolinium-based contrast agents for cardiac MRI has been suspended in the EU. †Mean of ‘normal’ indicates the average signal intensity of this area. BZ = border zone; 
IIR = image intensity ratio (the ratio between the signal intensity of each single pixel and the mean LA blood pool intensity for each patient); LA = left atrium.
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the lesion periphery.9,11 This hypothesis is based on the centripetal 
expansion of LGE towards the lesion centre resulting in a diminishment of 
the hypoenhanced dark core, which is observed with increasing time 
delays between gadolinium administration and image acquisition allowing 
for longer diffusion times.9,11

Contrast Agent and Dosage
The impact of different gadolinium-based contrast agents and doses on 
image quality are of particular interest in light of the recent safety 
concerns, not only regarding the induction of nephrogenic systemic 
fibrosis but also with respect to cerebral gadolinium deposits, the long-
term clinical relevance of which is still unknown. Against this background, 
there may be a rationale to reduce doses of gadolinium-based contrast 
agents. While there has been no head-to-head-comparison of the 
different agents in the context of cardiac LGE imaging, recent data 
showed that Gadovist (Bayer) at 0.10 mmol/kg provides inferior LGE image 
quality than 0.15 and 0.20 mmol/kg with respect to ventricular scar 
assessment (image acquisition at a median of 9 minutes post gadolinium 
injection).36 Interestingly, there is evidence suggesting that scans with 3T 
provide a signal-to-noise ratio that allows for better delineation of scarred 
myocardium than 1.5 T scans, even with lower contrast concentration (0.10 
versus 0.20 mmol/kg Dotarem [Guerbet]), but again, systematic 
comparative data are lacking.37

While the above-mentioned results obtained for Gadovist and Dotarem, 
respectively, may not be generalisable to other gadolinium-based contrast 
agents, it has to be noted that, of the contrast agents presented in this 
review, only Gadovist and Dotarem are authorised for cardiac MRI in the 
EU (Table 1).

Image Acquisition
While several protocols have been detailed and validated previously, to 
date no consensus has been reached regarding standardised image 
acquisition and magnetic resonance (MR) sequence.9,38–40 Typically 1.5 or 3 T 
scanners are used for post-contrast image acquisition employing fast 3D 
gradient echo sequences with ECG-gating and fat suppression. Low flip 
angles are applied to reduce saturation effects with short repetition times. 
To further optimise T1 contrast and signal intensities, inversion recovery 
sequences nullifying the signal of healthy ventricular myocardium are 
employed. Here, the optimum inversion time (TI) suppressing healthy 
myocardium (typically 250–300 ms) is determined empirically using a TI 
scout module prior to the acquisition of definite images. Healthy myocardium 
will thus appear hypoenhanced relative to scar tissue. TI values may have to 
be adapted during the scan to accommodate incremental T1 values of the 
normal myocardium owed to gadolinium washout.

To minimise cardiac motion artefacts, ECG gating is usually performed 
with the image acquisition window limited to <20% of the RR interval 
(typically 150–200 ms) and a trigger delay corresponding to atrial or 
ventricular mid-diastole, sparing atrial and ventricular contraction, 
respectively. In tachyarrhythmic patients, the trigger delay can be adapted 
according to the mean RR interval. However, we and others found signal-
to-noise ratios substantially reduced in patients with AF.39,41 Therefore, we 
strongly recommend cardioverting patients prior to the LGE-MRI study to 
avoid insufficient image quality. Long breath-holds required for image 
acquisition may be a limiting factor in some patients, a problem that is 
addressed by free-breathing 3D navigators that suppress respiratory 
motion artefacts through respiratory gating. Typical LGE-MRI sequences 
result in a voxel size of 1.25 x 1.25 x 2.5 mm with scan times of 10–
15 minutes, depending on heart rate and breathing patterns.

The use of cardiac MRI in patients with implanted cardiac devices has 
been limited not only because of safety concerns, but also due to 
hyperintense image artefacts. While numerous studies and the advent of 
MR conditional cardiac pacemakers and ICDs have largely dispelled the 
safety concerns, image artefacts have remained a major limitation.42–44 
The artefacts are the result of significant distortion of the MRI magnetic 
field induced by the metallic pacemaker or ICD components.45,46 They are 
typically located in the proximity (5–10 cm) of the device, with the distance 
being inversely associated with artefact size.45,46 Of note, the artefacts are 
particularly pronounced in LGE-MRI sequences as applied for ablation 
lesion assessment. The use of lower magnetic field strength and shorter 
echo times has been shown to reduce artefacts, but this may be at the 
cost of image signal intensity and contrast.46 Recently, based on the 
hypothesis that the device-related artefacts are caused by the limited 
spectral bandwidth of the inversion pulse that is typically applied in LGE-
MRI, specific wideband MR sequences have been established.47,48 We and 
other centres are now successfully employing these sequences, enabling 
high image quality without hyperintensity artefacts, even in the proximity 
of implanted devices.49

Image Post-processing
Several established open-source and commercial platforms for image 
post-processing are available. Most of these enable semiautomatic 
segmentation where manual tracings of the endocardial and/or epicardial 
borders are automatically adjusted to build a 3D anatomical shell. Relative 
signal intensities are then colour-coded and projected onto the 3D 
anatomical shell to create a relative LGE map discriminating healthy 
myocardium from scar tissue based on predefined thresholds. Some post-
processing software even allows for integration of LGE maps into common 
electroanatomical mapping (EAM) systems.

As mentioned above, to date there is no standardised method for LGE 
image acquisition, and the same applies to image post-processing and 
analysis, which may explain the limited reproducibility across different 
centres. Most importantly, as T1-weighted imaging is based on signal 
intensity contrast rather than directly measured absolute values, LGE 
quantification requires a consistent internal reference for normalisation as 
well as validated signal intensity thresholds discriminating healthy and 
scar tissue.

While methods using normalisation based on the somewhat arbitrary 
definition of healthy atrial myocardium have been described for atrial 
lesion assessment, we and others use the mean signal intensity of the 
blood pool as an internal reference. Our group has recently established a 
method quantifying signal intensity ratios using the mean signal intensity 
of the left atrial (LA) blood pool as a reference (signal intensity of each 
given voxel/mean signal intensity of the blood).38 Thresholds to define 
healthy myocardium (signal intensity ratio ≤1.2) and ablation-induced 
scarring (signal intensity ratio >1.32) in the atrium were derived from 
distinct cohorts of young healthy individuals as well as post-AF ablation 
patients, respectively, and subsequently validated in numerous clinical 
studies with respect to electroanatomical voltage mapping as well as 
clinical endpoints.5–7 However, it should be emphasised that various other 
methods using distinct internal references and thresholds have been 
validated (Table 1).17,39,50,51

For ventricular lesion assessment the ‘full width half maximum’ method is 
the most commonly used approach, although other methods defining 
remote ‘healthy’ myocardial segments as an internal reference for 
normalisation have been described.52–55 We found that the best agreement 
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with electroanatomical voltage mapping was achieved when applying 
thresholds of >60% (dense scar) and <40% (healthy tissue) of the maximum 
signal intensity, but again, other thresholds have been proposed too 
(Table 1).56–59

Timing of Lesion Assessment
As outlined above, we have to assume that ablation lesion formation is a 
dynamic process of sustained remodelling, which implies constant 
changes affecting cellular composition, extracellular space, water content 
and vascularisation, as well as small-vessel permeability and patency and 
intravascular pressure. These changes in turn, inevitably alter tissue-
inherent magnetic properties and wash-in/washout kinetics of 
gadolium.60,61 In fact, we found determination of definite atrial ablation 
lesions by LGE-MRI to be more accurate at 3 months post ablation than at 
later time points >12 months after ablation.20 Thus, it is evident that lesion 
assessment by LGE-MRI is dependent on the exact time point. Moreover, 
LGE is not specific for fibrosis and does not necessarily indicate formation 
of durable ablation lesions. In fact, particularly in the acute setting, LGE 
may represent oedema reflecting a transient inflammatory response, 
which usually resolves within the first month following ablation.11,62 In 
addition, the sensitivity of LGE to detect acute ablation lesions may be 
locally reduced by the above-mentioned dark core or no reflow 
phenomena, where limited diffusion times result in central hypoenhanced 
regions within ablation lesions. As diffusion distances are minimal in the 
thin-walled atrium, this phenomenon seems to be less relevant in the 
context of atrial ablation, where central hypoenhanced regions have only 
been observed in acute lesions.35 Even in the ventricle, these 
hypoenhanced regions are less frequently encountered in chronic lesions 
>1 month post-ablation, possibly because of on-going remodelling of scar 
tissue including neovascularisation, although data are somewhat 
conflicting in this regard (see the section Ventricular Ablation Lesions, 
below).11,15,16,63

Taken together, these time-dependent limitations may argue for a late 
timing of LGE-MRI-based lesion assessment. However, we have recently 
found a decreased detectability of atrial ablation lesions at very late time-
points, >12 months post-ablation, compared with an assessment at 
3 months post ablation.20 The long-term decrease in LGE of pulmonary 
vein (PV)-encircling ablation lesions observed in this study could in theory 
also reflect true regression of ablation-induced fibrosis; in fact, such a 
phenomenon has been proposed previously as a possible explanation for 
non-durable ablation lesions and late AF recurrences. However, using 
invasive high-density mapping as a reference, we found the decrease in 
LGE over time to be because of reduced detectability of ablation-induced 
fibrosis by LGE-MRI at time-points >12 months post ablation. Again, the 
pathological correlate underlying this observation is unclear, but likely to 
involve on-going remodelling altering tissue-inherent magnetic properties 
and wash-in/washout kinetics of the gadolinium contrast agent.

Against this background, the time-point of 3 months post ablation that has 
become an established standard for lesion assessment with LGE-MRI in 
many labs, appears reasonable. This time-point has been shown to 
reliably indicate chronic lesion formation in the atrium and in the ventricle 
and has been rigorously validated with respect to functional gaps 
detected by EAM as well as clinical endpoints like AF recurrence.6,62,64,65

Atrial Ablation Lesions
LGE-MRI of the Atrium
While LGE-MRI is a well-established tool to aid or guide VT ablation, its 
usage for the assessment of fibrosis in the atrium is somewhat lagging 
behind. This is because of – in part – two reasons. Firstly, unlike the well-
demarcated extensive post-MI scar, atrial fibrosis is typically less extensive 
and more diffuse. This renders detection difficult, as conventional T1-
weighted MRI relies on differential spatial contrast between normal tissue 
on one side and abnormal tissue on the other side. Secondly, differentiation 

Figure 1: Ablation-induced Late Gadolinium Enhancement After Pulmonary Vein Isolation 

Preprocedural
LGE-MRI

(1 day before PVI)

Post-ablation
LGE-MRI

(3 months after PVI)
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Postero-anterior view

Postero-anterior view

Left: 3D reconstruction of the LA with colour-coding based on image intensity ratios with thresholds for dense scar (red >1.32) and border zone (yellow 1.2–1.32), using ADAS 3D software (Adas3D 
Medical). Blue lines indicate the plane of the LA slices on the right. Middle: Overlay of the T1-weighted images with the LGE colour-coding described above. White arrows point to local ablation-induced 
LGE lesions. Right: T1-weighted LGE-MRI slice depicting the LA with evident LGE of PV ostial walls. LA = left atrium; LAA = left atrial appendage; LGE = late gadolinium enhancement; LIPV = left inferior 
pulmonary vein; LSPV = left superior pulmonary vein; PV = pulmonary vein; PVI = pulmonary vein isolation; RIPV = right inferior pulmonary vein; RSPV = right superior pulmonary vein.
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of spatial contrast is particularly difficult in the thin-walled atrium with wall 
thicknesses down to 1 mm, which approximates the limit of spatial 
resolution of MRI. However, recent advances in MR imaging techniques, 
such as 3D navigated inversion recovery sequences, have yielded 
improved resolution and signal-to-noise ratios enabling valid tissue 
characterisation also in the atrium.39,66 With respect to atrial ablation 
lesions it has to be considered that these constitute dense scar, which 

facilitates discrimination from healthy tissue by LGE-MRI. Thus, even 
before validation of LGE-MRI for the detection of native atrial fibrosis, it 
was successfully employed for the assessment of atrial ablation-induced 
scarring (Figure 1).40,64,67

While initial studies evaluating the capability of LGE-MRI to accurately 
localise functional gaps within ablation lesions yielded conflicting results,  

Figure 2: Gaps in Ablation Lesions After Pulmonary Vein Isolation
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Examples of discontinuations of ablation-induced LGE lesions encircling the right (A) and left pulmonary veins (B), respectively, in a patient with AF recurrence after PVI. Left: 3D reconstruction of the LA 
with colour-coding based on image intensity ratios with thresholds for dense scar (red >1.32) and border zone (yellow 1.2–1.32), using ADAS 3D software). White arrows indicate local gaps. Pink lines 
indicate the plane of the left atrial LGE-MRI slices on the right; Middle: Overlay of the T1-weighted left atrial slices with the LGE colour-coding described above. White arrows indicate local gaps 
corresponding to the ones indicated in the 3D reconstructions on the left; Right: T1-weighted LGE-MRI slices without colour-coding. LA = left atrium; LAA = left atrial appendage; LGE = late gadolinium 
enhancement; LIPV = left inferior pulmonary vein; LSPV = left superior pulmonary vein; PV = pulmonary vein; PVI = pulmonary vein isolation; RPV = right pulmonary vein; RIPV = right inferior pulmonary 
vein; RSPV = right superior pulmonary vein.
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depending on the performing centre, it has to be taken into account that 
time-points and protocols for image acquisition as well as post-processing 
methods varied substantially in these studies.5,6,17,18 As outlined above, this 
may account for the lack of reproducibility. Promoted by further 
technological and methodological advances in the last decade, LGE-MRI 
is now being established as a useful standard for risk stratification, patient 
selection and lesion assessment in the context of AF ablation in a growing 
number of specialised centres.2

Of note, the feasibility of lesion assessment with LGE-MRI has been 
demonstrated, both in the context of RF ablation and cryoablation. 
Interestingly, apart from wider lesions observed after ablation with the 
cryoballoon compared with point-by-point RF ablation, both techniques 
result in quite similar LGE lesion characteristics.68,69

Non-invasive Confirmation of Durable PVI
Most importantly, LGE-MRI can non-invasively evaluate and confirm 
durable PVI and may thus replace invasive repeat procedures confirming 
PVI. Today, it is a common practice that symptomatic recurrences beyond 
the 3 months post-ablation blanking period almost automatically trigger a 
repeat procedure. However, to an increasing degree, all four PVs are 
found isolated in those repeat procedures. As ablation of extra-PV targets 
has failed to show benefit in large randomised trials, more and more often 
we may end up performing these highly invasive procedures only to 
confirm durable PVI; or even worse, investigators might feel obliged to 
ablate extra-PV targets to justify the invasive procedure. Against this 
background it is noteworthy that LGE-MRI has been shown to be capable 
of reliably confirming durable PVI with positive predictive values 
approaching 100%.64 This is consistent with our experience where a 
complete circumferential LGE lesion set practically rules out PV 
reconnection. Thus, in patients with circumferential LGE lesions indicating 
durable PVI, there is no rationale for a repeat procedure, unless one is 
determined to target extra-PV structures (Figure 1).

However, it should be noted that in earlier studies, complete LGE lesions 
encircling all four PV were encountered only in around 7–28% of the 
repeat procedures.64,70 Although we have to assume that these numbers 
have increased with recent advances in ablation techniques, in our 
experience the majority of patients still display discontinuities in the LGE 
lesions (Figure 2).

LGE-MRI-guided Repeat Ablation
Accumulating evidence indicates that LGE-MRI can detect and localise the 
gaps in ablation lesions with high accuracy (Figure 3).5–7,14 Overall, the 
accuracy and in particular the high sensitivity in the detection of gaps 
appears to be sufficient for LGE-MRI-guided repeat ablation – not only in 
the context of AF (Figure 4), but also with respect to post-ablation 
reentrant atrial arrhythmias (Figure 5).5,7,14

Bisbal et al. were the first to demonstrate the feasibility of a merely LGE-
MRI-guided approach in repeat PVI procedures.5 They performed re-
ablation based on a 3D reconstruction of the atrial LGE-MRI, which was 
integrated and merged into the EAM system, with the investigator blinded 
to any electrical information. A total of 15 patients underwent this LGE-
MRI-guided approach, with re-isolation being accomplished in 95.6% of 
the reconnected PVs. In a subsequent study, the same approach even 
proved superior to segmental PV re-isolation based on electrical signals.7 
However, it has to be taken into account that this was not a randomised 
trial, but a case–control study with all its potential bias and limitations. 

One possible explanation of the putative superiority of the LGE-MRI-
guided approach could be the higher sensitivity of LGE-MRI regarding the 
detection of gaps. As outlined above, the negative predictive value of 
LGE-MRI to rule out gaps is very high.20 However, gaps detected by LGE-
MRI do not always correspond to a functional gap based on electrical 
signals. While this may reflect a limited specificity of LGE-MRI and failure 
to detect local ablation-induced scarring, it may in part be explained by a 
limited sensitivity of catheter-based gap detection, particularly when 
conventional catheters are used instead of microelectrode catheters. 
Moreover, LGE-MRI-determined anatomical gaps might colocalise with 
non-conductive tissue or a site of dormant conduction, rendering catheter-
based gap detection impossible.

Taken together, the higher sensitivity of the LGE-MRI regarding the 
detection of gaps may be at the cost of specificity, but it is less likely that 
gaps are omitted. Thus, while segmental electrogram-guided repeat PVI 
might occasionally result in undertreatment, LGE-MRI potentially leads to 
a more complete re-ablation.

Incomplete lesion sets can also constitute an arrhythmogenic substrate 
for reentrant atrial tachycardias, which is more likely in the case of 
extensive ablation strategies. Fochler et al. recently showed that 
incomplete lesions and resulting isthmi can be detected by LGE-MRI. They 
found that a dechannelling approach targeting LGE-MRI-detected isthmi, 
analogously to VT substrate ablation strategies, may be feasible and 
appropriate as a standalone approach in patients with recurrent atrial 
tachycardias after initial AF ablation.14

Lesion Assessment to Predict Ablation Outcome
Besides being a valuable tool for patient selection and guidance of repeat 
ablation procedures, LGE-MRI-based lesion assessment has yielded 
several predictors of AF recurrence, with the most obvious one being 
related to PV reconnection. Interestingly, Linhart et al. found LGE-MRI-
detected gaps to predict AF recurrences, but it was not the presence of 
gaps per se or the number of gaps that predicted recurrences, but the 
cumulative length of all gaps added together relative to the circumference 
of ipsilateral PVs. In the 94 patients included in their study, the risk of 
recurrence increased by 16% with every 10% gap length relative to the 
PV-encircling ablation line. So, while a single small gap detected by LGE-
MRI may not be critical with respect to outcome, extensive or multiple 
gaps are critical.6

Figure 3: Agreement Between Electroanatomical 
Mapping and 3 Months Late Gadolinium 
Enhancement-MRI Regarding Gap Localisation 

LPV entry RPV entry

Activation maps of the LPVs and RPVs with conduction vectors (CARTO 3, coherent mapping with 
Pentaray catheter, Biosense Webster) indicating the entry site of the activation wave front 
(functional gaps) as detected during a repeat ablation procedure. Corresponding gaps detected 
by prior late gadolinium enhancement (LGE)-MRI (3 months post index ablation) are displayed in 
the small boxes. Colour-coding of the LGE maps (ADAS 3D software) is based on image intensity 
ratios with thresholds for dense scar (>1.32 red) and border zone (1.2–1.32 yellow), respectively. 
White arrows indicate localised functional gaps and LGE discontinuities, respectively. LPV = left 
pulmonary vein; RPV = right pulmonary vein.
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These data are in line with a study by Akoum et al. using LGE-MRI before 
and 3 months after AF ablation to evaluate ablation lesions and 
modification of potentially arrhythmogenic substrate.71 They also found 
the presence of LGE-MRI-detected gaps in PV encircling ablation lines 
per se not to be predictive of recurrences. However, besides LGE-MRI-
detected baseline atrial fibrosis, they identified residual fibrosis, i.e. 

fibrotic area not homogenised by ablation, as a predictor of AF 
recurrence. 

Recent work by Kamali et al. assessed ablation lesions and their potential 
barrier function for electrical propagation in persistent AF.72 They identified 
the atrial area available for AF to propagate, as determined by LGE-MRI, 

Figure 4: Single-touch Late Gadolinium Enhancement-MRI-guided Repeat Pulmonary Vein Isolation

Late gadolinium enhancement (LGE) map (ADAS 3D software) integrated into the 3D mapping system (CARTO 3) for targeted ablation of a single LGE-discontinuity at the right superior pulmonary vein 
(PV) (right panel) resulting in immediate PV isolation upon radiofrequency application as reflected by the disappearance of the PV electrograms detected by the multipolar mapping catheter (Pentaray, 
Biosense Webster). Colour-coding of LGE map: Image intensity ratio thresholds for dense scar >1.32 (red) and border zone 1.2–1.32 (yellow). 

Figure 5: Recurrent Perimitral Flutter After Two Mitral Isthmus Ablations

200 ms

130 ms

0 ms

-135 ms

-200 ms

-400 ms

-500 ms

Left: Late gadolinium enhancement map of the left atrium (LA) 3 months post mitral isthmus re-ablation (ADAS 3D software). The impulse propagation as determined by electroanatomical mapping 
(activation mapping with HD grid and EnSite Precision [Abbott Medical]) during the repeat procedure is indicated by yellow arrows. These illustrate how lesions from previous ablations force the wave 
front to go around the LA roof before meandering back to the mitral isthmus through gaps in the ablation line. Dechannelling by ablating the critical isthmus of slow conduction terminated the 
tachycardia and rendered it non-inducible. Colour-coding of late gadolinium enhancement map: image intensity ratio thresholds for dense scar >1.32 (red) and border zone 1.2–1.32 (yellow).  
Right: LA activation during flutter (mapping with HD grid and EnSite Precision). Yellow arrows indicate impulse propagation. Line of conduction block illustrated by red line. 
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as a predictor of recurrence after catheter ablation. Interestingly, this 
variable predicted recurrences better than did established predictors 
such as LA volume or total atrial fibrosis.

Ventricular Ablation Lesions
Objective of Lesion Assessment in the Ventricle
Even though LGE-MRI was first established for ventricular tissue 
characterisation and is by now widely used as a clinical tool to guide VT 
ablation through detection of arrhythmogenic substrate, there has been 
less interest in ablation lesion assessment in the ventricle than the atrium. 
This may be because of the fact that ablation strategies, and thus 
requirements for non-invasive ablation lesion assessment, are 
fundamentally different in the ventricle compared to the atrium. While in 
the atrium continuity and transmurality of predefined lesion sets are 
assessed, in the ventricle the endpoint is rather elimination or modification 
of arrhythmogenic substrate. The capability of LGE-MRI to accurately 
localise arrhythmogenic substrate in terms of scar border zone and slow 
conduction channels in a 3D fashion is meanwhile well-established; this is 
also true for patients with implanted cardiac devices when employing 
specific wideband MRI sequences.4,49,56,57,73–75 However, the elimination of 
LGE-MRI-detected arrhythmogenic substrate as a potential endpoint of VT 
ablation has not been studied.

Feasibility of Ventricular Lesion Assessment
Several preclinical and few early observational clinical studies evaluated 
the feasibility of LGE-MRI for ventricular ablation lesion assessment. Most 
of these studies investigated lesion formation in the acute setting, at time 
points when reliable discrimination of irreversible lesions from transient 
oedema based on LGE is highly challenging, if not impossible.9,12,76–78 
While oedema has been demonstrated to resolve within 1–2 weeks from 
ablation, formation of definite lesions appears to take up to 8 weeks.10,11,25 
Of note, Yamashita et al. demonstrated strong correlation of depth and 
volume of LGE lesions with definite lesions as determined by gross 
pathology in a canine model 8 weeks after ablation.10

Studies in patients with idiopathic and ischaemic VT have demonstrated 
that these definite ablation lesions can be visualised by LGE-MRI even 
many months after the ablation.15,16

The Dark Core Phenomenon
For image post-processing and analyses it has to be taken into account 
that, in contrast to atrial ablation lesions, the above-mentioned dark core 
phenomenon, characterised by centrally hypoenhanced lesions, has 
been observed even in these chronic stages of ventricular lesion 
formation, thus complicating the assessment of ablation-induced scarring 

Figure 6: Ventricular Ablation Lesion Assessment

Ablation points

Preprocedural
LGE-MRI

(1 day before VT ablation)

Post-ablation
LGE-MRI

(3 months after VT ablation)

Left: 3D reconstruction of the left ventricle with LGE-based colour-coding based on thresholds for dense scar (red, >60% maximum of signal intensity) and border zone (yellow, 40–60% of maximum 
signal intensity), mapped using ADAS 3D. Shown are the layers at 30% of the transmurality (from endocardial to epicardial). For the post-ablation LGE-MRI (lower panel), an additional 3D reconstruction 
of the manually defined dark core in red (black arrow) is depicted. Blue lines indicate the plane of the short-axis slices on the right. The ablation points (TactiCath, Abbott Medical) are visualised using a 
3D mapping system (EnSite Precision, Abbott Medical). Middle: Overlay of the T1-weighted short-axis slices with the colour-coding described above. The central hypoenhancement dark core of the 
ablation lesion is manually delineated (red border) to avoid misinterpretation as healthy tissue. Right: T1-weighted short-axis LGE-MRI slices without colour-coding. LGE = late gadolinium enhancement; 
VT = ventricular tachycardia.
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in the ventricle.15 As current post-processing software algorithms are 
solely based on hyperenhancement, hypoenhanced lesion cores are not 
automatically identified and thus have to be delineated manually to avoid 
misinterpretation (Figure 6).

While Vunnam et al. have recently reported to have found ‘dark core’ 
lesions only up to 1 month after RF ablation but not at later stages, which 
is in line with previous preclinical and clinical data, Dabbagh et al. 
consistently observed lesions with hypoenhanced cores as late as 
30 months post-ablation in all patients after repeat ablation of post-MI 
substrates.11,15,16,63 Of note, at our centre, we encounter centrally 
hypoenhanced lesions in around 60% of the patients at the systematic 
follow-up LGE-MRI 3–6 months post-VT ablation. Interestingly, in the study 
of Vunnam et al., comparison with pre-procedural LGE-MRI scans revealed 
that dark core lesions could only be observed in previously non-fibrotic 
myocardium without preexisting scar, suggesting that different wash-in/
washout kinetics in scarred versus non-scarred myocardium play a role in 
this context. This is in line with a study in patients devoid of structural 
heart disease in whom LGE-MRI was performed at a mean of 22 months 
after ablation of idiopathic VT, where no central hypoenhancement of 
lesions was encountered.16

Potential Clinical Value of Ventricular 
Lesion Assessment
While cumulative evidence is suggesting feasibility of LGE-MRI-based 
ventricular ablation lesion assessment, clinical validation is absent. 

Against this background, we have recently analysed the potential role of 
LGE-MRI to assess the long-term effect of VT ablation in terms of 
arrhythmogenic substrate elimination (unpublished data). Three to 
6  months following the procedure, effective ablation was reflected by 
pronounced reduction of LGE-MRI-detected border zone scar volume and 
extent of slow conduction channels compared to the preprocedural LGE-
MRI (Figure 7). In patients undergoing repeat ablation procedures, this 
arrhythmogenic substrate elimination as determined by LGE-MRI 
correlated well with EAM. Thus, LGE-MRI-based lesion assessment may 
be of potential value to evaluate the efficacy of ventricular substrate 
ablation and to predict VT recurrences and clinical outcome. However, as 
mentioned above, clinical validation is warranted.

Conclusion
LGE-MRI constitutes the gold standard for non-invasive ablation lesion 
assessment. In the context of atrial ablation, LGE-MRI-based lesion 
assessment is already employed in routine clinical settings for non-
invasive confirmation of durable PVI and to guide repeat ablation 
procedures in selected centres. In contrast, ventricular lesion assessment 
by LGE-MRI is less well established. However, despite the lack of clinical 
validation, LGE-MRI-based evaluation of arrhythmogenic substrate 
elimination holds great promise as an efficacy endpoint for VT ablation 
and a potential predictor of recurrences and clinical outcome.

In light of the current limitations, there is clearly some work ahead of us. 
Most importantly, uniform methodological and analytical standards are 
warranted to increase reproducibility of results across centres. This in 
turn, will foster the acceptance of the method and a broader 
implementation into clinical practice. 

Figure 7: Assessing Elimination of 
Arrhythmogenic Fibrotic Substrate by 
Late Gadolinium Enhancement-MRI

LGE-MRI pre-ablation

60% 70% 80% 60% 70% 80%

LGE-MRI 3 months post ablation

Left panel: LGE map of the left ventricle prior to substrate-based ventricular tachycardia ablation. 
LGE depicts an antero-apical scar. A 3D-analysis using the ADAS 3D software predicts a 
slow-conduction channel (black line) extending over 30 % of the transmurality that was confirmed 
by invasive electroanatomical mapping. Right panel: LGE map of the left ventricle 3 months 
post-ventricular tachycardia ablation. LGE indicates complete scar homogenisation and 
‘dechannelling’ with ablation lesions covering the full substrate. Percentages indicate distinct 
layers of the transmurality from endocardial (0%) to epicardial (100%). LGE = late gadolinium 
enhancement.
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