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Network models serve as an approach to explain the properties of real networks. The geometric soft
configuration model, also known as the S1/H2 model, can be used to generate synthetic networks that
replicate many features of real complex networks —sparsity, a heterogeneous degree distribution,
the small world property, a high level of clustering, and more— while randomizing others. In this
work, a range of parameters of the S1/H2 model has been explored, satisfactorily manipulating the
level of heterogeneity of the degree distribution with the parameter γ and the level of clustering with
the parameter β, in order to probe the level of control that is possible to attain in the generation
of random networks. Recent theoretical evidence supports that hyperbolic networks like this one
possess topological community structure, up to being maximally modular in the thermodynamic
limit, even if the model is not purposefully equipped with geometric communities. The community
structure of the S1/H2 model was put under scrutiny using computational simulations, revealing
that synthetic networks generated according to it could be consistently partitioned with a high
modularity. The modularity of equally sized angular partitions of the generated random networks
was evaluated, confirming that this model tends to maximal modularity in the limit of large network
size and in a regime of high clustering. The Louvain method for community detection in the
topology of complex networks using modularity maximization was employed as well, giving rise to
no significantly better results in comparison with the initial approach. With the S1/H2 model, it
was also explored how much of the community structure of real networks can be attributed to the
effect of clustering in combination with their heterogeneous degree distribution —networks with
these two features are called hierarchical—. The results suggest that the communities detected in
some real networks are, in part or totally, a byproduct of their hierarchicity.

I. INTRODUCTION

Complex systems are constituted by a large number of
interacting entities. There is no agreement on a precise
definition for them, however they may share several fea-
tures, among which is the numerosity of their components
and interactions, the fact that they can be heterogeneous,
the presence of long range interactions or feedback, the
system being open and out of equilibrium, and the emer-
gence of more properties like nestedness, non-linearity,
self-organization or robustness.

This kind of systems is present in nature under many
guises, such as in human societies, computer networks,
climate systems, neuronal systems, metabolic pathways,
transportation networks, etc., and those of them that are
constituted by discrete units can be represented in the
form of networks where nodes represent the elements and
links the interactions between them. Some relevant ubiq-
uitous features of real complex networks are their spar-
sity, their heterogeneous degree distribution, the small-
world property and an elevated level of clustering. More-
over, they are often found to be naturally divisible into
densely connected groups.
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Back in the 1990s, the search for community structure
drew the attention of researchers in the context of so-
cial networks. The topic soon gained importance since
communities oftentimes have been found to correspond
to functional units in real networks. During the past
twenty years, following the work of Girvan and Newman
[1], there has been an increase in the research for com-
munity detection. It has been tackled most commonly as
an optimization problem, consisting on choosing parti-
tions of the network and devising a quantity to evaluate
the quality of such partition: the modularity, Q, which
measures the strength of a partition of a network and is
computed as a subtraction of the fraction of connections
that fall within communities minus the expected value of
that same fraction in the case of a randomized version of
the network. This quantity lies in the interval between
−1 and 1, and it has been historically accepted that a
modularity score above Q = 0.3 is a sign of community
structure in a network [2].

In order to explain the aforementioned network prop-
erties, a selection of synthetic models has sprung up over
the years. Hyperbolic models have been successful in
reproducing many of their features, for instance spar-
sity, the scale-free property of the degree distribution,
the small-world property, or a high level of clustering.
Turning to the aspect of their community structure,

it is a notable thing when partitions with high values of
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modularity are reported in random networks with no ex-
plicit affinity between nodes. The modularity of random
graph models has not yet been studied theoretically save
for a limited selection of examples.

On the one hand, it must be noted that a high mod-
ularity alone does not imply the presence of community
structure; this has been shown for networks in the Erdös–
Rényi (ER) model, where high modularity has been de-
tected while lacking meaningful community structure but
as a consequence of finite size effects and fluctuations in
the establishment of links [3], and for constant average
degree d connected graphs, that exhibit an asymptotic
modularity with a low bound of 2

d [4].

On the other hand, high values of the modularity func-
tion have been reported for hyperbolic network models in
the thermodynamic limit, in this case, linked to the pres-
ence of communities that may be a residue of their hier-
archicity. In fact, the Popularity-Similarity Optimization
(PSO) model, which is a growing hyperbolic model, has
been shown to be maximally modular in the thermody-
namic limit [5].

In general, a high value of the modularity of a network
must be supported with further evidence to declare the
presence of meaningful community structure, since other
sources may be the reason for the community structure
being detected. Them being modular was not the initial
intention when hyperbolic models where designed, how-
ever the finding of topological community structure in
them meant that, if it were possible to understand and
control it, some of the mechanisms for the emergence of
community structure in real networks would be closer to
be understood.

This work constitutes a study of the community struc-
ture of the geometric soft configuration model, also called
the S1/H2 model, from which the PSO model is a grow-
ing variant. First will be laid the theoretical foundation
around complex networks and the basic features that
they ubiquitously exhibit in nature; community struc-
ture will be covered in more depth, as it is the central
subject of this study. Then geometry will be introduced
to present the S1 model and afterwards its isomorphic
H2 model. The previous results about the modularity
of hyperbolic models will then be reviewed. The prac-
tical work of this study will consist of generating syn-
thetic networks by the S1/H2 model with control over
their characteristics so that they can replicate the fea-
tures of real networks. The modularity —along with the
community structure— of random networks generated by
this model will be evaluated as a function of the features
that can be controlled: their degree distribution, their
level of clustering and their size.

II. THEORETICAL FRAMEWORK

A. Basic topological features of real complex
networks

Complex systems composed of discrete units are mod-
eled as topological objects using graph representations
where their elements are portrayed as nodes and the
interactions between them as links connecting pairs of
nodes. In graph theory, nodes are called vertices and
links are called edges.
A set of useful global and local attributes will be pre-

sented hereunder to facilitate a quantitative study of
complex networks.
The degree, ki, of a node i is the number of interactions

that it establishes with other nodes of the network.
The adjacency matrix of a network, A, is composed of:

aij =

{
1 i & j connected

0 otherwise
(1)

In general, these interactions may have different inten-
sities or weights, and there may be nodes with self-
interactions, but in the scope of this work merely sim-
ple networks will be taken into consideration. Links are
therefore unweighted and undirected, that is, all links
have the same intensity and are bidirectional, and there
are no self-interactions or self-loops.
A global quantity of networks that can be rapidly eval-

uated is the average degree, which is a ratio between the
number of links, E, and the number of nodes, N :

⟨k⟩ = 2E

N
(2)

It gives an idea of the level of connectivity of a network
in a first global approximation.

1. Sparsity

Networks found in nature are typically sparse. This
property refers to the density of links within a network,
a network is said to be sparse when it has “much fewer”
links than the maximum number of possible links in it,
thus its average degree is “low”.
The definition is formalized by establishing that a net-

work is sparse if its average degree does not scale with
its size, N .

2. A scale-free degree distribution

The degree distribution of many real networks follows
a power law:

P (k) ∼ k−γ (3)
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Networks are said to be scale-free when the exponent of
such power law lies in the interval 2 < γ < 3. They are
more heterogeneous the smaller the value of γ and more
homogeneous when γ > 3.
In a broader sense, the actual ubiquitous feature in real

networks is that they possess a fat-tailed distribution of
degrees, being not as important whether the distribution
is rigorously a power law or merely asymptotically.

3. The small-world property

As topological objects, distances are measured by the
minimum number of edges that constitute the shortest
path between two nodes, which is the smallest number of
links that connects two nodes in the network.

Nodes may be connected in many ways, but a common
property of real networks is that they are small-world,
that is, that the distribution of shortest paths between all
pairs of nodes is a homogeneous distribution with a well
defined average value that is typically low. This property
inherits its name from the context of social networks,
where it manifests itself in strangers being linked by a
short chain of acquaintances.

For network models, the definition is formalised by es-
tablishing that the number of nodes should grow expo-
nentially with the network diameter, which is the longest
of all the calculated shortest paths in the network.

4. A high level of clustering

Clustering or network transitivity is the property that
states that two nodes that are connected to a third node
have increased probability of being connected to one an-
other, therefore forming a triangle. Thus, nodes in the
same triangle are more similar, where similarity measures
the affinity to form connections.

The clustering coefficient is a local measure of the num-
ber of triangles in a network. It quantifies the tendency
of nodes to form transitive relations. For each node, it
is defined as the number of triangles such node is part of
normalized by the maximum number of triangles it could
form:

ci =
Ti

ki(ki−1)
2

=
2Ti

ki(ki − 1)
(4)

where Ti is the number of triangles through node i. Note
that Equation 4 is not defined for nodes with ki ≤ 1 since
no triangles can be formed in such a case and therefore
their clustering coefficient is trivially 0.

From the clustering coefficient of the nodes in a net-
work, a degree dependent clustering spectrum can be
computed by averaging the local clustering over each de-
gree class, G(k), which is the set of all the nodes with

degree k, whose count for each k will be referred to as
Nk.

ck =
1

Nk

∑
i∈G(k)

ci (5)

In many real networks this clustering spectrum shows
a power-law behaviour, showing the hierarchical nature
of these networks, in which higher degree nodes are ex-
pected to have a lower clustering coefficient. In general,
a network is called hierarchical if its degree distribution
is heterogeneous and it possesses a high clustering.
In order to have a global quantity to evaluate the level

of clustering, it is common to measure the average level
of clustering. For a network of size N :

c̄ =
1

N

N∑
i=1

ci (6)

The inmediate way to do it is to take into account all
the nodes of the network in this average, but there are
variations that exclude nodes of degree 0 or even nodes of
degree 1, the reasoning behind these choices being that
these nodes possess a trivial clustering coefficient any-
ways. In this work, the average level of clustering has
been computed excluding nodes of degree 0, nodes that
are disconnected from the rest.
A high average level of clustering is essentially the fruit

of local features that add up in a global scope as a large
fraction of triangles.

It has been found that the level of clustering of real
networks tends to be greater than the expected for the
same networks if they were randomly linked. This is best
exemplified in social networks, where it is common to
observe that the relationships between people are usually
clustered in families and friend groups.

B. Community structure

In a closely related matter, a complex network has
community structure if its nodes can be grouped into
sets so that two nodes are more likely to be connected
if they belong to the same set or community and less
likely if they belong to different communities. Thus,
communities of nodes are more densely connected in-
ternally than between them. They declare groups of
nodes that are strongly connected or that are similar.
In general, communitites can be overlapping or non-
overlapping. In the simple networks under consideration,
only non-overlapping ones will be considered.
Real networks commonly exhibit compartmentaliza-

tion. Communities in social networks may be groups of
interest, shared place of origin, location or occupation; in
citation networks, they may represent fields of research;
in metabolic networks, communities may correspond to
metabolic paths or cycles; in neural networks, they may
be functional or structural units.
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The community structure of complex networks pro-
vides information relating network function and topology.
These two concepts are entangled with one another since
the topology of a network plays a very important role in
the transference of information through it. The ability
to detect communities may shed light on the underlying
relation between them.

With the goal of detecting meaningful communities in
mind, a series of algorithms have been designed in the
last twenty years to overcome the computational problem
it presents. They share that they consist of optimizing
some quality function, the evaluation of which method
obtains the best results is still an open question. The
most common approaches are based on the optimization
of the modularity, others make use of statistical inference
to maximize a likelihood function and a third class uses
dynamical processes, particularly, they maximize the en-
tropy of random walks, based on the idea that a random
walk would spend more time lingering inside communi-
ties than jumping from one community to another.

This work is mainly focused on the first class, the
modularity-based methods.

Given a network and a partition of said network, the
modularity is defined to quantify how well this partition
adjusts to a community structure of the network, if any.
In other words, it evaluates the strength of a division of
a network into communities, giving a measure of whether
there are more links within the communities declared by
the partition while fewer links remain between them.

Let a partition of a network into communities such
that a node i belongs to the community Ci. In order
to approach the measurement of the “goodness” of such
a partition, it is a good place to start to look at the

FIG. 1: A small network with community structure.
Three communities are represented with dashed lines,
with the intracommunity links in solid black and the

intercommunity links represented in grey.

fraction of edges that fall within communities compared
to the total number of edges:∑

ij aijδ(Ci, Cj)∑
ij aij

=
1

2E

∑
ij

aijδ(Ci, Cj) (7)

This quantity is a scalar between 0 and 1 and it is larger
when there are many intracommunity edges. However,
the trivial scenario when there is only one community
gives rise to the maximum value. To avoid choosing this
partition always as the best one, the current definition of
modularity has been devised with the subtraction of the
expected value of the fraction from Equation 7 in the case
of a randomized version of the network. It is common to
choose for the construction of the randomized version the
configuration model.
Given a network, the configuration model [6] main-

tains the degrees of the nodes. Each node is assigned a
number of edge stubs equal to its degree and the random
network is built by choosing edge stubs uniformly at ran-
dom and linking them together until there are no more
left. Under this construction, the probability that a node
i is connected to j is proportional to the product of their
degrees:

pij =
kikj
2E

(8)

The resulting expression for the modularity is the fol-
lowing:

Q =
1

2E

∑
ij

(aij −
kikj
2E

)δ(Ci, Cj) (9)

The range of the modularity is then [−1, 1], it is larger
the more intracommunity links there are for the partition
that it is evaluating. Being defined as such, the trivial
partition now leads to a value of 0. The modularity of a
partition is positive if there are more links between nodes
in the same set than expected at random, and it is nega-
tive if there are more links between sets. An example of
positive modularity in social networks arises when look-
ing at the social relationships between individuals parti-
tioned by ethnic class, while the modularity is negative
for partnership relations partitioned by gender identity.
The maximum value that the modularity can reach

signals the “best” partition of a network and it’s called
its modularity score. Therefore, the modularity score of
a network —usually referred to as just the modularity of
the network— lies in the range [0, 1], being close to 0 for
random networks.

The partitioning of a network into communities grew
into an optimization problem, the main obstacle being
the computational challenge this kind of problems pose
as the size of the network increases. This is why a heuris-
tic approach was adopted, giving rise to a selection of
methods to tackle it. The modularity was devised as a
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way to measure the community structure of a network,
it is used as a quality function to be maximized by the
algorithms that aim to detect community structure.

Some of the most famous classes of algorithms that
have been proposed for this task are the following.

1. The Girvan-Newman method

One of the first methods to obtain a great success in
community detection was devised by Girvan and New-
man [1]. It is based on the betweenness of a node, which
is the fraction of all the shortests paths between every
pair of nodes in the network that pass through the node
in question; it gives a sense of its centrality in the net-
work. The method consists of two steps: first, iteratively
removing the links with the highest betweenness, and
second, a step for recalculation of the betweenness of all
nodes affected by the removal of those links. These steps
are repeated until no links remain. A dendrogram is ex-
tracted from this process and the step with the maximum
value of the modularity is declared the best partition.

2. The greedy modularity maximization method

Differently from the previous approach, this is a local
detection method, which makes it less computationally
costly. The starting point is with each node in its own
community. It then consists of joining the pair of com-
munities that would lead to the maximum modularity
until no possible increase is found, thus reaching a local
optimum value.

3. The Louvain method

By Bondel et al. [7], this method starts similarly to
the previous one with a community for each node, but in
this case for each node it evaluates the change of modu-
larity of removing it from its community and placing it
on the neighbouring ones, and doing so when the value is
maximum and positive. After iterating for the whole net-
work, a local maximum is achieved, where no individual
move can improve the modularity. Then, a new network
is created rescaling the communities into new nodes and
the process is repeated until the modularity increases no
more. With this improvement, this method was shown
to outperform its predecessors in terms of computation
time and quality of partitions.

C. Geometric models

Synthetic models constitute reference models from an
statistical point of view, for features of interest in these
networks can be selectively preserved while randomizing
others. The most commonly used for this purpose due

to its simplicity is the already described configuration
model, which maintains the degree sequence of the orig-
inal network while randomizing the connections. These
objects are useful for comparison with their real counter-
parts and they may be enlightening on whether certain
properties of reality are fruit of structural constraints,
randomness, or something else entirely.

So far networks have been considered as purely topo-
logical objects where distances were measured as the
shortest paths between nodes. However, many real net-
works are implicitly embedded in metric spaces. This
way nodes may be equipped with coordinates on which
the connections are dependent. There are networks for
which the geometry is explicit, like a railway network,
but even when this is not the case many networks can
be equipped with latent spaces that induce an effective
geometry.
The current state of the art follows the idea of equip-

ping networks with underlying or hidden metric spaces,
where distances are measured following the geodesic lines
between two points. In this manner, geometric models
are meant to aid in explaining some of the features of real
networks. For example, in social networks, age stratifi-
cation can be explained by a hidden coordinate marking
the similarity between nodes, since people tend to make
friends with people of similar age.
Apart from equipping real networks with an underlying

geometry, models of geometric graphs on the hyperbolic
plane can be designed to obtain random networks where
the coordinates and connections between nodes are sam-
pled at random but can replicate the global features of
real networks through the laws imposed on their distri-
bution. The geometric soft configuration model S1 for
simple —undirected and unweighted— networks was in-
troduced by Serrano et al. [8] and a purely geometric
formulation of it, the H2 model, was subsequently for-
mulated by Krioukov et al. [9].

1. The S1 model

A node i in a similarity space that takes the form of
a one-dimensional sphere is determined by two variables:
the hidden degree, κi, that quantifies its popularity, and
the angular position where it is placed on the circle, θi.
The distance between two nodes i and j in a circle of

radius RS1 is:

dij = RS1∆θij (10)

where ∆θij = π − |π − |θi − θj ||. It is thus a measure of
their similarity. For N nodes, the radius of the circle is
adjusted to RS1 = N

2π so that the density of nodes in the
circle is 1.

It has been chosen a parametrization such that the an-
gular positions and the hidden degrees of the nodes are
uncorrelated. The nodes are sampled with angular posi-
tions so that they are distributed uniformly at random
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along the circle. The distribution of hidden degrees of
the nodes is defined so that it can display the emergence
of patterns or features typical of real networks, with the
following power law probability distribution:

ρ(κ) = (γ − 1)κγ−1
0 κ−γ (11)

with a lower bound for the hidden degree, κ0 = γ−2
γ−1 ⟨k⟩,

where ⟨k⟩ is the target average degree and γ a parameter
that controls the steepness of the distribution function.
The target average degree is usually small with respect
to the size of the network, N , in this work it has been
chosen that ⟨k⟩ = 10.

This choice of distribution grants control over the ex-
pected degree of the nodes by the variation of the pa-
rameter γ. When γ is very close to 2, strong fluctuations
occur in the model. For low values of γ in the region close
to 2, the degree distribution of the network is heteroge-
neous, with most of the nodes with a lower degree and
only a small fraction of them being highly connected.
When γ reaches higher values, the homogeneity of the
network generated increases. The range to be explored
in this work is that of γ ∈ [2.5, 3.5].

The connections between nodes depend on both how
likely the nodes are to establish a connection, their pop-
ularities, and the distance between them in the similarity
space, their similarities. To reproduce the properties of
real networks in a simple manner, it has been chosen that
two nodes, i and j, are connected with probability:

pij =
1

1 + (
dij

µκiκj
)β

(12)

where the parameter β controls the level of clustering and
µ = β

2π<k> sin(πβ ) controls the average degree.

The synthetic networks in this model can reproduce
the degree distribution of real networks via the manip-
ulation of the parameter γ and their level of clustering
with β. These networks can be considered as random-
ized versions of their real counterparts in the sense that
they preserve the degree distribution and the level of clus-
tering while the rest of features are maximally random.
Thus, they can be used as synthetic models for the anal-
ysis of certain characteristics.

2. The H2 model

The H2 model is isomorphic to the S1 model. The
angular coordinates remain the same and the hidden de-
grees are transformed into radial coordinates in the fol-
lowing manner:

ri = RH2 − 2 log
κi

κ0
(13)

where the radius of the two-dimensional hyperbolic disc
is fixed to RH2 = 2 log N

πµκ2
0
so that ri = 2 log N

πµκ0κi
. The

number of nodes grows exponentially with the radius.

The choice of representation in the hyperbolic space is
free, being the most common the Poincaré representation
portrayed in Figure 2. In this work the representation
used is the native representation, in which all distances
have their true hyperbolic values.

FIG. 2: M. C. Escher’s “Circle Limit IV”, (c) 1997.
Cordon Art, Baarn, Holland. All rights reserved. The

hyperbolic plane is usually represented with the
Poincaré unit disc, {(u, v) ∈ R2 : u2 + v2 < 1}, equipped

with the hyperbolic metric, ds2 = du2+dv2

(1−u2−v2)2 . This

artistic representation shows how distances behave in
the Poincaré disc and how objects are deformed in it.

After the transformation given by Equation 13, higher
degree nodes are placed closer to the centre of the disc,
while most of the nodes with lower degree lay on the
boundary. This permits an improved visualization of the
previously hidden degrees of nodes and it is the reason
this transformation has been performed.
The probability of connection is transformed into a

purely geometric function that now depends on the dis-
tances between nodes in the hyperbolic plane. This gives
evidence of the fact that the effective geometry of the
S1/H2 model is indeed hyperbolic. Equation 12 trans-
forms into:

pij =
1

1 + e
β
2 (xij−RH2 )

(14)

with xij = ri + rj + 2 log
∆θij
2 the hyperbolic distance

between two nodes i and j.

In order to obtain the desired synthetic networks, ran-
dom networks were generated using the S1 model. To
perform the transformation to the isomorphic H2 model
it is only necessary the computation of the radial coordi-
nate of each node.
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3. The Geometric Critical Gap Method (G-CGM) for
community detection

Apart from modularity-based methods, once networks
are equipped with their latent geometry, other ap-
proaches to the detection of geometrical communities
may arise making use of their coordinates. Based on
the idea that angular communities are essentially sets of
nodes that are similar, other criteria can be established
to define partitions of the networks.

The G-CGM method is inspired by the inhomo-
geneities in the angular distributions observed in real
networks.

All angular gaps, ∆θ, between consecutive nodes are
measured and those that exceed a critical value, ∆θc, sep-
arate adjacent angular communities. This critical gap
is calculated assuming a Poisson point process on the
S1 along which the angular gaps are exponentially dis-
tributed with rate δ = N

2π .

∆θc = 2π
logN + γE

N
(15)

where the Euler-Mascheroni constant has an approximate
value of γE ≃ 0.5772.

4. Equally sized angular partitions

Following this idea of partitioning a geometric net-
work by splitting the circle into a number of segments,
q, where 2 ≤ q ≪ N , when dealing with random net-
works where the nodes are uniformly distributed at ran-
dom along their similarity space —such as the networks
generated by the S1/H2 model—, the division can be
made with no preference into equally sized segments of
angular width 2π

q .

These geometrical methods only take into considera-
tion the angular position of the nodes and ignore their
hyperbolic radial position when stablishing their parti-
tions. Whilst the G-CGM aims to detect angular com-
munities, the equally sized angular partitions will be used
to find out if there is community structure independently
of the angular coordinate.

5. Embeddings of real networks: Mercator

Regarding the fact that real networks have a hid-
den hyperbolic geometry, ways have been found to map
them to these geometric models using statistical infer-
ence. This particular method consists on finding a hid-
den degree and an angular position for each node that
maximize a likelihood function of the form:

L =
∏
i<j

(pij)
aij (1− pij)

1−aij (16)

where pij in this case is Equation 12.

This is computationally expensive, but there have been
devised methods that aim to guide the optimization, such
as the tool Mercator [14], that combines this maximum
likelihood approach with machine learning algorithms.
Mercator embeds networks in the S1/H2 hyperbolic ge-
ometry, inferring the relevant coordinates as well as the
global parameters.

Back to the example of age stratification, with an em-
bedding like this one the ages of the individuals in a
social network can be inferred based on the relationships
between them.

D. Modularity in hyperbolic models

Hyperbolic models were not in principle designed with
community structure in mind, it came as a byproduct of
their hierarchicity —their heterogeneous degree distribu-
tion in combination with their high level of clustering—.
Precise knowledge of the behaviour of the modularity in
these models is key to understand the emergence of topo-
logical community structure and may shed light on the
sources of community structure in real networks.

Chellig and Fountoulakis [11] proved theoretically that
the modularity of the H2 model converges to one in prob-
ability for the limit of N → ∞ and T → 0 (β → ∞).
They attribute it to its hierarchical structure, which is a
fruit of high clustering. They performed a partition of the
Poincaré disc into a number of equal sectors and argue
that since each sector tends to capture a large proportion
of a clustered sub-set, this will make the modularity tend
to one in probability.

Balogh et al. [5] studied both theoretically and experi-
mentally the modularity of the Popularity-Similarity Op-
timization (PSO) model, which is a growing variant of the
S1 model. They proved that the PSO model is maximally
modular in the thermodynamic limit, when N → ∞, and
observed such behaviour performing equally sized angu-
lar partitions of networks by this model for an optimal
number of communities that was a function of the size of
the system.

The reason behind this is that a characteristic distance
can be defined at which the connection probability be-
tween two nodes at such distance is close to zero, and
thus, in the N → ∞ limit, most links connect nodes that
are close to each other in comparison with other parts of
the hyperbolic disc, therefore the network becomes seg-
mented with a maximal modularity. The angular width
of the optimal partition is thus comparable to such char-
acteristic distance.

They also suggest that being maximally modular in
the thermodynamic limit is a universal feature of hyper-
bolic models, since the basis of the previous explanation
applies for all without much tuning.
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(a) Representation in the S1 geometry, where nodes are placed
along the circle and their hidden degrees are represented by

their size; the bigger the nodes the more connections they tend
to make with the rest.

(b) Representation in the H2 geometry, where the hidden
coordinate has been transformed into the hyperbolic radial

position of the nodes; the bigger the nodes the closer they are to
the centre and the more connections they tend to make with the

rest.

FIG. 3: Example of a random network generated by the S1/H2 model with parameters N = 1000, γ = 2.5 and
β = 4. Both representations are of the same network, and give weight to the decision of introducing the H2 for

improved visualization.
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III. RESULTS & DISCUSSION

The purpose of this work is to generate synthetic net-
works by the S1/H2 model, being able to control their
degree distribution and their level of clustering, so that
they can reproduce the heterogeneous degree distribution
and the elevated level of clustering of real networks so
that they are hierarchical. Then, the community struc-
ture of these synthetic networks will be evaluated with
the quality function known as the modularity. In order
to do so, the random networks generated will be parti-
tioned into equally sized angular sectors, since there is
no a priori preference for the angular coordinate as the
nodes are distributed uniformly at random along the cir-
cle. This method of partitioning will be compared with
the results obtained by modularity optimization meth-
ods, in particular the Louvain method.

The generation and the analysis of networks given their
edgelists were performed with programs that were de-
veloped specially for this purpose in C++, the built-in
functions of the python package NetworkX [12] and the
tool Mercator.

A. Synthetic networks by the S1/H2 model

Following the depiction of the model, a program was
designed to generate random networks by the S1/H2

model. From the way this model was defined it made
possible to control the characteristics of the networks
generated.

Figure 3a shows a graphical representation of an exam-
ple of a random network in the S1 geometry, where nodes
are placed on the circle uniformly at random equipped
with hidden degrees that are distributed according to
Equation 11, that influences the probability with which
they are linked, specified by Equation 12. Figure 3b is a
representation of the same network in the H2 disc, where
nodes with higher hidden degree are displaced towards
the centre of the disc via the transformation given by
Equation 13. The latter is essentially the same network
represented in a more visual manner, since it permits to
see directly that nodes closer to the centre tend to estab-
lish more connections with the rest.

This example is constituted by N = 1000 nodes and
E = 4606 edges. As expected by design, there is a no-
table heterogeneity in the node distribution, but still the
density of nodes decreases rapidly towards the centre of
the disc. Nodes closer to the centre possess a higher de-
gree. The network is sparse, with a target average degree
fixed to ⟨k⟩ = 10, while the measured average degree was
9.2120, slightly below the target due to the random na-
ture of the establishment of connections. Sometimes the
average degree was observed to be below and sometimes
above, oscillating around the target value. With an ele-
vated value for the parameter β, the network also exhibits
a relatively high level of clustering, with a total average
of c̄ = 0.7096.

FIG. 4: CCDF of degrees of random synthetic networks
of size N = 1000 and β = 4 for a few values of γ in the

range for which the degree distribution is
heterogeneous. The inset is the CCDF of real networks,
they display a similar behaviour as that achieved by

synthetic networks.

The degree distribution of the network can be con-
trolled by the manipulation of the parameter γ.
Theoretically, it has been established that the distri-

bution of hidden degrees becomes more homogeneous as
γ increases. The distribution of hidden degrees is di-
rectly reflected in the degree distribution of the network,
a similar behaviour is observed in the Complementary
Cumulative Degree Distribution (CCDF) in Figure 4, re-
inforcing the idea that the network is heterogeneous when
2 < γ < 3 and it becomes slightly more homogeneous as
γ increases. Furthermore, in the range 101 − 102 the
plot shows a linear behaviour in the log-log scale, which
corresponds to a power law behaviour, as expected for
scale-free networks.
This model can display different degree distributions

depending on the range of γ explored. The one chosen
replicates the behaviour of real networks, for many of
them are scale-free.

Turning to the aspect of clustering in these random
networks, representing the clustering coefficient over de-
gree classes with an exponential binning, as was done in
Figure 5, it can be seen that its behaviour in all cases is
that of a power law. The fact that the clustering coef-
ficient decreases as the degree of the node grows shows
that the networks generated by the S1/H2 model are hi-
erarchical.
The level of clustering of the networks can be con-

trolled by the variation of β.
Right from the definition of the connection probability

in the S1 model (Equation 12), β established itself as an
important parameter, it is now verified that the level of
clustering grows with β. Each point in Figure 6 is an
average of five simulations in a system of size N = 2000.

9
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It gives an idea of the nature of this dependence, with
a more pronounced growth at the beginning that slows
down in the high regime near β <∼ 5.

However, the size of the networks generated fixing the
β parameter does not influence their level of clustering.
For α = 2.5 and β = 4, the level of clustering of networks
ranging from five hundred to five thousand nodes lingered
around the value c ≃ 0.68.

These results were computed without taking into ac-
count nodes of degree 0, however it was confirmed that
they were consistent with the quantity computed by the
library NetworkX, which does account for all the nodes
in the networks.

B. Community detection in the S1/H2 model

Independently of the characteristics specified for the
synthetic networks, the angular coordinates of the nodes
were always sampled uniformly at random along the cir-
cle. Trivially, no angular communities will be found un-
der this construction.

However, partitions can be found for these synthetic
networks that score an elevated value of the modularity.
In this work, two methods of partitioning will be enter-
tained: a method that divides the network into q equally
sized angular sectors, where an optimal number of sec-
tors can be found with maximum modularity for each
network; and the Louvain method, an algorithm based
on the optimization of the modularity to find the best
partition of a given network. Both methods will be com-
pared and the behaviour of the modularity with respect
to the size of the network, the degree distribution and
the level of clustering will be studied.

.

FIG. 5: Average of the local clustering coefficient over
degree classes of random networks of size N = 1000 and

β = 4 for several values of γ.

1. The absence of angular communities

A program that implemented the G-CGM was devel-
oped so that given the nodelist of a network —a list con-
taining the coordinates of the embedding of all its nodes
in its latent geometric space— it computed the number
of angular communities that constitute it. These angular
communities are therefore based merely on the similarity
coordinate of the nodes and not on the connections be-
tween them. As expected for finite random networks in
the S1/H2 ensemble, which are generated with angular
positions distributed uniformly at random, the G-CGM
does not find angular communities consistently, since the
critical difference between angular positions is surpassed
on very rare occasions and due to spurious fluctuations.
For the case of the random network that was repre-

sented in Figure 3 as an example, this method found
merely two communities whose separation is a fruit of
randomness and therefore not meaningful.

2. The modularity of equally-sized angular partitions

Being the networks generated angularly uniform, there
is no a priori preference for choosing a partition based on
the similarity between nodes. The choice of equally sized
angular partitions is a simple approach that will prove
more powerful than it seems.
The quantity that measures the quality of a partition,

its modularity, defined by Equation 9, condensates into a
subtraction of the fraction that evaluates the “goodness”
of a partition minus that same fraction in the configu-
ration model of the network. It will depend on q, the
number of segments the network is partitioned into. The
first thing to remark is that in general the values of the
modularity score measured for random networks in the
S1/H2 model were higher than expected, high enough
to be considered as evidence for community structure in

FIG. 6: Dependence of the average clustering on the
parameter β in random networks of size N = 2000 for
several values of γ. Each point is an average of five

simulations.

10



The community structure of the geometric soft configuration model

these networks.
These values of modularity would mean in practice

a good confidence in the partition associated, but it is
known that a high modularity score alone is not enough
to indicate the presence of community structure in a net-
work. Whether this elevated modularity score is a man-
ifestation of the presence of actual community structure
cannot be readily answered without more analytical sus-
tenance.

In order to go deeper and quantify the tendencies of
the modularity, random networks generated by the S1/H2

model were analyzed exploring a wide range system size,
and how the modularity changed depending on the num-
ber of segments they were partitioned into, the hetero-
geneity of their degree distribution and their level of clus-
tering.

In Figure 7a, for networks of smaller sizes, the error
bars are bigger due to the effect of randomness in the
generation of the networks. As the size of the synthetic
networks generated was increased, the modularity of each
partition grew towards a maximum in the limit of large
network size for all the values of the parameters studied.
This maximum of the modularity depends highly on the
number of segments chosen. Depending on the size of the
system, there is a value of q that is associated with the
maximum modularity attainable, being between 9 and 15
parts for networks of sizes between 1000 and 5000. This
showcases that there is an optimal q for which the mod-
ularity will be maximal in the limit of large network size.
This result is supported by the theoretical and compu-
tational analysis by Balogh et al. [5] of the PSO model,
proven to be maximally modular in the thermodynamic
limit.

The method of partitioning of the network, even
though regarded as simple in the beginning, permitted
to reach a partition with maximal modularity, proving
thus that there is no need for a more sophisticated parti-
tion, although this will be confirmed when applying the
Louvain method hereinafter.

To study the effect of the degree distribution and the
level of clustering on the modularity, the number of seg-
ments of the partition was fixed to q = 5.
Figure 7b shows the previously seen increment of the

modularity with respect to the size of the system, now
adding information about its behaviour depending on the
shape of the degree distribution of the networks being
generated. Still in the range in which networks are con-
sidered scale-free, the modularity is lower and more fluc-
tuating for smaller values of γ, while around γ ≈ 3 it is
already close to its maximum for such partition.

Figure 7c shows the influence of the level of cluster-
ing on the growth of the modularity with the size of the
system. The higher the level of clustering, the higher is
the modularity. Although this increment is not very sig-
nificant for values of β bigger than 3, as it can be seen
that the curves for β = 3 and β = 5 are close to being
overlapped.

It is thus concluded that the modularity of networks
generated by the S1/H2 model with an heterogeneous
degree distribution is maximal for an optimal number of
communities in the limit of large network size and in the
limit of high clustering.
This is supported by the work of Chellig et al. [11]

proving that the modularity converges to one in proba-
bility as N → ∞ in the limit of T → 0 (β → ∞) for the
H2 model due to its hierarchical structure.
Putting together the consistently high modularity

measured in this work and the previous theoretical re-
sults for hyperbolic models, it can be concluded that the
S1/H2 model possesses topological community structure.

3. Modularity optimization methods

On a different note, methods that rely on modularity
to determine the best partition of a network were also
studied to see if there was an improvement in terms of
the value of the modularity.

For the case of the random network used as an exam-
ple, the greedy modularity maximization method found
an optimal partition into 18 sets and it returned a value
of the modularity of Q = 0.641741 associated with it.
The Louvain method is however more computationally
efficient and gives better results. It was implemented via
the algorithm based on the article by Bondel et al. [7]
in which the method was proposed. It was developed
by two of its authors, Lefebvre and Guillaume, and it
consistently found partitions of synthetic networks gen-
erated according to the S1/H2 model. Its “best” par-
tition for the network used as an example with a value
Q = 0.676772 of the modularity associated, a better re-
sult than the obtained by the greedy modularity maxi-
mization method for the same network.

Then, the behaviour of the modularity of synthetic net-
works as a function of their size was studied, this time
finding the “best” partition with a modularity maximiza-
tion method, choosing the Louvain method as the more
effective.
Figure 8a shows a slight growth of the modularity as

the size of the systems increases. However, in compari-
son with Figure 7a, higher values of the modularity have
been generally reached with the method of equally sized
angular partitions. For the case of the Louvain method,
the growth seemed to be less pronounced and the av-
erage values were usually below the average modularity
for the best number of equally sized partitions. The fact
that the results for the Louvain method fluctuate more
can be attributed to the method itself because of the di-
versity of the paths it may choose to group the nodes
into communities, rather than always choosing the same
angular sectors. The number of communities given by
the Louvain method naturally grows with the size of the
system, and so it becomes more variable, this is an in-
dicator that the community structure being detected in
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(a) Modularity of several equally sized angular partitions with respect to the size of the networks with fixed γ = 2.5
and β = 4.

(b) Modularity of equally sized angular partitions into q = 5 sets
with respect to the size of the networks for several values of the

parameter γ and with fixed β = 4.

(c) Modularity of equally sized angular partitions into q = 5 sets
with respect to the size of the networks with fixed γ = 2.5 and for

several levels of clustering.

FIG. 7: Variation of the modularity of equally sized angular partitions of synthetic networks generated by the S1/H2

model with respect to size, number of communities, degree distribution and level of clustering. Each point
corresponds to an average of ten simulations.
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the S1/H2 model is indeed residual.
Having found no improvement over the equally sized

angular partitions, it is to be concluded that the S1/H2

model has topological community structure despite its
angular distribution.

C. Geometrical communities in real networks

Lastly, and in order to corroborate how the features
discussed appear frequently in diverse real networks, a
selection of examples was analysed.

The edgelists —lists containing the pairs of nodes that
are connected, defining thus a network— of real complex
networks were extracted from several sources: the genetic
interactions in organisms [13], Mus and Drosophila; the
protein-protein interactions in the Homo sapiens by the
Reactome project [14]; a series of sociograms developed
by J. L. Moreno [15]; the network of 500 busiest US com-
mercial airports [16]; the passenger flights between US
airports in december of 2010 [17]; and the flights between
airports of the world extracted from Openflights.org [18].

Real networks are commonly sparse and their degree
distribution is heterogeneous. The inset in Figure 4
represents the Complementary Cumulative Distribution
Function (CCDF) of degrees of some of these networks.
There is a similar tendency on the decreasing behaviour
of the degree distribution, it is close to that of a power
law. As stated in the pertinent section, it is not necessary
to observe a strict power law to infer the heterogeneity
of the network, an asymptotic behaviour such as the one
observed suffices because the sufficient factor is that the
distribution is heavy tailed.

Applying the tool Mercator to these real neworks, they
were embedded in the hyperbolic geometry of the S1/H2

model. The coordinates of the nodes were inferred in the
latent geometry along with a set of global parameters
that are displayed for each case in Table I.

Networks with different levels of clustering were anal-
ysed. The tool Mercator excludes also nodes of degree 1
in the calculation, therefore these values for the average
clustering are slightly higher than the measured exclud-
ing only disconnected nodes. Mercator infers the hidden
coordinates and in particular the value of β by adjust-
ing the average clustering to the one observed in the real
network up to the desired precision. This is congruent
with what was observed in the results in Table I, where
these two quantities vary in conjunction.

It is also expected for real networks that they may pos-
sess some community structure based on the connectiv-
ity and similarity of the nodes and, as such, the Louvain
method found partitions of them with sufficiently high
values of the modularity associated to be accepted as
communities at first glance. Some partitions inspire con-
fidence, like the partition with Q = 0.82 for the Moreno
propro network, while others, like the two networks from
US airports, have a value of the modularity too low to
promptly accept the partition as “good”.

To better understand the sources of community struc-
ture in real networks, with the S1/H2 model there have
been generated synthetic networks that replicate some
global features of the real networks studied previously
while randomizing the rest. They all had a heterogeneous
degree distribution with fixed γ = 2.5 and they could re-
produce the desired average degree. With the parameter
β inferred by Mercator, it was possible to replicate the
level of clustering of those real networks as well. The
case of the 500 busiest US airports was represented as
an example in Figure 9 since being the smallest network
makes it good for visualization.
With knowledge about the topological community

structure of synthetic networks by this model due to
their hyperbolic geometry and hierarchical structure, it
is time to raise the question of how much of the com-
munity structure of real networks can be explained by
this source. Table I also shows the average values of the
modularity for equally sized angular partitions into 15
communities of synthetic networks that emulate the real
networks previously analysed as examples.
For the Drosophila and Mus networks, as well as for

the Reactome and Moreno propro networks, the topo-
logical modularity of the synthetic networks was below
the modularity measured by the Louvain method in their
respective real networks. For the cases of the Moreno
names and health networks, the topological community
structure of the synthetic networks was tied to values
of the modularity that already surpased the modularity
measured by the Louvain method in the real networks. A
similar tendency in a smaller measure was found for the
US airport networks, while for the Openflights network
the modularity of the synthetic version almost did not
differ from the modularity of the real network.
It was not expected to find an exact match, since the

topological community structure of the model may play
a part, but there are more sources of community struc-
ture in real networks. In Figure 9, it can be seen the
comparison between the real network embedded in the
latent metric space by Mercator and a synthetic network
generated by the S1/H2 model that replicates its global
features. The differences are visible to the naked eye, but
in terms of community structure, one aspect to remark
is that since this model generates the nodes with angular
distribution uniformly at random it does not have angu-
lar communities, which appear frequently in nature. To
take them into account the model can be improved so
it introduces a dependence between the two coordinates,
and the impact of the possible upgrades on the topolog-
ical community structure would need to be documented
to get closer to reality.

IV. CONCLUSIONS

Real networks were embedded in hyperbolic geometry,
which granted knowledge about their hidden coordinates
and their global parameters so that synthetic hyperbolic
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(a) The modularity shows a slight growth as the size of the
random networks increases.

(b) The best partition is generally constituted by more
communities as the size of the random networks is increased.
However this number also varies a lot as the size increases.

FIG. 8: Modularity and number of communities by the Louvain algorithm of synthetic networks generated by the
S1/H2 model as a function of the size of the networks with fixed γ = 2.5 and β = 4. Each point is an average of ten

simulations.

Network N E Esynth < k > < k >synth c β µ
Number of

Q Qsynth ∆Q
communities

Mus 7402 16858 12200 ± 400 4.56 3.30 ± 0.11 0.13 1.03 0.0031 378 0.68 0.26 ± 0.02 −0.42 ± 0.02
Drosophila 8114 38909 39900 ± 1100 9.59 9.8 ± 0.3 0.12 1.05 0.0026 128 0.52 0.272 ± 0.017 −0.248 ± 0.017
Reactome 5973 145778 148000 ± 7000 48.81 50 ± 2 0.65 2.09 0.0068 376 0.78 0.60 ± 0.03 −0.18 ± 0.03
Moreno propro 1458 1948 1600 ± 100 2.67 2.15 ± 0.14 0.14 1.29 0.0501 432 0.82 0.61 ± 0.02 −0.21 ± 0.02
Moreno names 1707 9059 9200 ± 800 10.61 10.8 ± 0.9 0.71 3.12 0.0396 85 0.51 0.64 ± 0.08 +0.13 ± 0.08
Moreno health 2539 10455 9600 ± 1200 8.24 7.6 ± 0.9 0.15 1.30 0.0165 15 0.29 0.55 ± 0.03 +0.26 ± 0.03
US airport 2010 1858 17214 18900 ± 1100 18.53 20.4 ± 1.2 0.63 1.36 0.0073 297 0.35 0.44 ± 0.03 +0.09 ± 0.03
US airport 500 500 2980 2900 ± 200 11.92 11.6 ± 0.9 0.73 1.73 0.0225 13 0.35 0.44 ± 0.04 +0.09 ± 0.04
Openflights 2905 15645 15200 ± 800 10.77 10.5 ± 0.6 0.59 1.85 0.0271 58 0.64 0.69 ± 0.03 +0.05 ± 0.03

TABLE I: Parameters of real networks inferred by Mercator and their number of optimal partitions and modularity
by the Louvain method. Synthetic networks were generated by the S1/H2 model based on the real networks, the

modularity is the one associated to equally sized angular partitions into 15 communities. The values are an average
of five simulations.
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networks could be widely designed in imitation of them.
Synthetic networks in the S1/H2 model were successfully
generated with a heterogeneous degree distribution that
was tuned by the parameter γ in the range between 2.5
and 3.5 and with a high level of clustering that was con-
trolled by the parameter β over 1.

The community structure of the S1/H2 model was put
under scrutiny, while expounding the literature about hy-
perbolic models.

Angular community structure is rooted in the simi-
larity between nodes, not their importance in the net-
work; this is why a method like the G-CGM that merely
takes into account the angular positions of the nodes
did not find angular communities in these random net-
works. However, equally sized angular partitions have
been found to be associated with a high modularity in
this model, indicating the presence of topological com-
munity structure despite the distribution uniformly at
random of the similarity coordinate.

In general, a high modularity alone does not suf-
ficiently declare that a network possesses community
structure. An example of this are networks in the ER
model, which are proven to have no community struc-
ture but still can be found partitions of them with a high
modularity associated. However, for hyperbolic models
there has been found evidence that supports their topo-
logical community structure. The PSO model is known
to be maximally modular in the thermodynamic limit
with equally sized angular partitions and the H2 model
has been theoretically proven to converge to one in prob-
ability in the thermodynamic limit and high clustering
regime.

This work is focused on the study of the S1/H2 model.
In agreement with previous results, there are equally
sized angular communities in these networks associated
with high values of the modularity. The dependecies of
the modularity were investigated and, as the level of clus-
tering and the size of the networks were increased, the
modularity of each partition converged to its maximum
value. There is an optimal number of communities de-
pending on the system size for which the modularity is
maximal. To guarantee that these values of the modu-
larity were indeed the maximum attainable for each case,
the performance of the latter method was compared with
modularity optimization methods, more concretely with
the Louvain method, finding no improvement over the
previous results. This further supports the fact that the
S1/H2 model possesses topological community structure
that is fruit of its hierarchical hyperbolic nature.

Comparing synthetic networks by this model with their
real counterparts, it was corroborated that, even if this
topological community structure is not always enough to
replicate the observations in real networks, it constitutes
is a starting point to understand the emergence of com-
munity structure in nature.

APPENDIX

A. Mathematical developments

1. Sampling the hidden degrees of the S1 model

Given by Equation 11 the desired distribution for the
hidden degrees of the nodes in this model, any set of
numbers distributed uniformly at random can be trans-
formed into a set that obeys the desired distribution if
the following process can be resolved.

First, from a normalized probability distribution func-
tion, it can be obtained the cumulative distribution func-
tion, which is the probability of a node having at most
hidden degree κ:

F (κ) = 1− (
κ0

κ
)γ−1 (17)

Then the complementary cumulative degree distribution
corresponds to the probability of a node having a hidden
degree larger than κ.

1− F (κ) = (
κ0

κ
)γ−1 (18)

From the cumulative distribution function, it is to be
obtained, if possible, its inverse. In this case:

F−1(y) = κ0(1− y)
−1
γ−1

which is well defined for 0 < y < 1.

Applying this function to numbers distributed uni-
formly at random between 0 and 1 serves as a trans-
formation of their distribution to the one desired.

B. Code availability

The programs developed for the generation and anal-
ysis of networks for this work are available on request to
the author.

ACKNOWLEDGMENTS
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(a) Real network embedded in the geometric space by Mercator. (b) Synthetic network generated by the S1/H2 model with
E = 2596 and ⟨k⟩ = 10.38.

FIG. 9: Network of the 500 busiest airports in the US in the H2 geometry. Comparison between the real network
and the synthetic network that replicates its global features.
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