
Non-reciprocal interactions in the XY Model

Author: David Mazzanti Tarancón
Master en F́ısica dels Sistemes Complexos i Biof́ısica.

Facultat de F́ısica, Universitat de Barcelona, Mart́ı i Franquès 1, 08028 Barcelona, Spain

Advisor: Demian Levis Sotomayor

Abstract: This work focuses on the investigation of non-reciprocal interactions in the XY Model
using the Kuramoto model of synchronization in the overdamped limit. Initially, we provide partial
results of the reciprocal XY Model by examining the spatial correlation function and the transition
temperature. Through a comparison of simulation and theoretical results, we gain insights into
the critical behavior of the model. To extend the analysis, we introduce non-reciprocal interactions
using the Kuramoto model in the overdamped regime, which offers a nonlinear mathematical frame-
work for understanding the dynamics of the system. This is particularly relevant as the reciprocal
XY Model lacks a Hamiltonian description. By incorporating non-reciprocal interactions, we ob-
serve that the system does not undergo a topological phase transition. Instead, a dynamic analysis
reveals, under certain initial distribution and conditions, the emergence of waves and their char-
acteristic propagation. We explore these phenomena in both one-dimensional and two-dimensional
scenarios, demonstrating that the waves propagate with a linear velocity and exhibit a linear dis-
persion relation.

I. INTRODUCTION

In the realm of statistical mechanics, the 2D XY
Model has captivated researchers as a fundamental
model for studying critical phenomena, ranging from
phase transitions to magnetism [1]. This model was
studied by J.M. Kosterlitz and D.J. Thouless in the early
1970s and describes the behavior of a two-dimensional
array of spins that interact with each other through a
nearest-neighbor coupling [2].

This model has proven to be an important tool in
order to understand the collective behaviour of systems
that exhibit a continuous symmetry. Its simplicity and
tractability have made it an ideal platform to investigate
different phenomena, including topological defects and
the Berezinskii–Kosterlitz–Thouless (BKT) transition.
These phenomena are distinct from the conventional
symmetry-breaking phase transition observed in other
interaction models such as the Ising model. This type
of phase transition drives the system from a quasi-long-
range order (QLRO) phase to a disordered phase. BKT
transitions have been found in different contexts like
boson gases [3], liquid crystals [4] and superconductors
[5].

Most of the investigations related to the XY Model
have been focused on reciprocal interactions, where
the coupling between neighbour spins is symmetric
and bidirectional. However, in recent years, a grow-
ing interest has emerged in exploring systems with
non-reciprocal interactions where the coupling term
is no longer symmetric. Non-reciprocity induces new
features in the system’s dynamics that are absent in the
conventional XY Model.

Non-reciprocal interactions break the action-reaction

principle. This is a direct consequence of the absence
of a straightforward Hamiltonian formulation and the
inability to define an energy for the system. In reciprocal
systems, the Hamiltonian governs the dynamics of the
model and allows the understanding of the system’s
behaviour. However, non-reciprocal interactions typi-
cally require a different description that goes beyond the
conventional Hamiltonian framework [6] [7].

One prominent model that can be employed to
study the dynamics of non-reciprocal interactions is the
Kuramoto model [8]. Originally introduced to describe
the synchronization of coupled oscillators, this model
has a wide range of applications in different fields,
including physics, biology and social dynamics. In the
context of the XY Model, the Kuramoto model provides
a new framework to model the interactions between
spins considering both their inherent dynamics and the
influence of non-reciprocal couplings. Furthermore, by
considering the spins as oscillators and incorporating the
non-reciprocal nature of the interactions into the Ku-
ramoto model, we can effectively capture the emergence
of collective behavior and synchronization transitions.

Non-reciprocal interactions have already been studied
in the XY Model. For instance, the introduction of
vision cone interactions has lead to the apparition of new
phenomena such as the emergence of long-range order
and the propagation of large domains within the system
[6]. In this scenario, spins exclusively interact with
particles confined within a specific vision angle, resulting
in unique dynamical and collective behaviors. Addi-
tionally, the Kuramoto model of synchronization has
been successfully employed to incorporate non-reciprocal
interactions. For instance, this model has been used to
explore the nature of non-reciprocal interactions among
particles that can freely rotate and move throughout
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the system. This has revealed distinct phase transitions
and properties not observed in the reciprocal case [7].
These findings shows the impact of non-reciprocity on
the dynamics and collective behavior of the XY Model,
offering new ways for understanding complex systems
and critical phenomena.

In this work, we will study how non-reciprocal in-
teractions are induced in the XY Model by means of
the Kuramoto model in the overdamped regime. The
first section provides a description of the XY Model,
highlighting its fundamental properties and phenomena.
We provide a mathematical formulation of the model and
the emergence of topological defects within the system,
inducing a BKT transition. Simulation results are pre-
sented, showing the emergence of vortex-antivortex pairs
and the transition from QLRO phase to a disordered
phase as temperature increases.

In section III, we give a description of the Kuramoto
model and its relation with the XY Model. The section
highlights its relevance in capturing the dynamics of
the model. In section IV, we introduce non-reciprocal
interactions in the XY Model, defining the dynamics
with the Kuramoto model. We provide an initial insight
of how non-reciprocity affects the system under specific
initial conditions.

In section V, we emphasize the limitations of study-
ing static variables when capturing the complexity of
non-reciprocal systems, demonstrating the necessity of
exploring dynamical variables, which are introduced in
section VI. In this section, the exploration of dynami-
cal properties reveals the emergence of new patterns and
behaviors never reported before in the context we are an-
alyzing, unveiling new wave propagation properties char-
acteristic of the system.

II. XY MODEL

The XY Model is a 2D interacting lattice model where
the spins are represented as a unit vector pointing in a
plane. Each spin has only two components and it can be
parameterized as

Si =

(
cos(θi)
sin(θi)

)
, (1)

where θi is the angle with respect to an arbitrary axis of
the plane. The Hamiltonian of the system, in absence of
an external magnetic field, is given by

H = −J
∑
⟨i,j⟩

Si · Sj = −J
∑
⟨i,j⟩

cos(θi − θj) , (2)

where J is the coupling constant that determines the
strength of the interaction between spins. Here ⟨i, j⟩
denotes summation over all nearest neighbour sites in

the lattice.

The XY Model has a O(2) continuous symmetry. The
Hamiltonian defined in Eq. 2 is invariant under global
rotations, θi → θi + θ0. The ground state at zero tem-
perature corresponds to fully aligned states, where all the
spins in the plane point towards the same direction with
θi = θ for all i. Since all the directions are equivalent,
the system exhibits an infinite degeneracy in its ground
states. This allows for a global rotation without any en-
ergy cost. As a consequence, the free energy of the system
has an infinite number of minima and any excitation of
the ground state leading to a global rotation leaves the
free energy invariant. These excitations, known as Gold-
stone or soft modes, are characteristic of systems with
continuous symmetry. The presence of these modes sup-
press the possibility of having long-range order at any
finite temperature. A visual representation of the poten-
tial is shown in Fig. 1.

sin(θ)

cos(θ)

F (θ, T )

Figure 1: Free energy’s potential shape associated to the
XY Model. The red line represents an equipotential contour
where a particle (red dot) can move freely without any energy
cost. The system exhibits an infinite degeneracy at each po-
tential value, allowing all the spins to orient in any direction
within the plane.

A. Spin-wave approximation

The XY Model, initially formulated in two dimensions,
can be extended to any higher dimension D. For in-
stance, consider a D-dimensional lattice governed by the
Hamiltonian defined in Eq. 2, where the summation term
still accounts for nearest neighbors. As we increase the
dimension of the system, the number of neighbors in-
creases accordingly. At low temperatures, we can assume
that the angles between adjacent spins are small enough,
|θi − θj | << 1. Therefore, the cosine term in the Hamil-
tonian can be approximated by expanding it to second

Master’s Thesis 2 Barcelona, June 2023



Non-reciprocal interactions in the XY Model David Mazzanti Tarancón

order, leading to

H ≈ −J
∑
⟨i,j⟩

[
1− 1

2
(θi − θj)

2

]
. (3)

Eq. 3 can be conveniently expressed in terms of a vector
r, representing the positions of the spins on the lattice
with respect to an arbitrary origin in the coordinate sys-
tem. Additionally, we can also introduce another vector
a, which points to any direction within the plane with
magnitude a, representing the lattice spacing. With these
definitions, the Hamiltonian can be written as

H ≈ E0 +
J

2

∑
i,a

(θ(ri)− θ(ri − a))2 . (4)

This formulation allows us to describe the system in
terms of the angle’s difference between neighbor spins,
considering their positions and the lattice spacing. Here
E0 denotes the energy of the completely aligned ground
state of N spins, E0 = −JNz

2 , with z the coordination
number of the lattice. If θ(r) is a slowly varying func-
tion of r, we can approximate the finite difference by a
derivative θ(r−a)−θ(r) ≈ a∂xθ(r) since a << |r|. Thus,
if the system is large enough, the sum over lattice sites
can be approximated to an integral (

∑
⟨r⟩ → zd

ad

´
ddr).

Therefore, the Hamiltonian can be written as

H ≈ E0 +
Jzd

2ad−2

ˆ
ddr [∇θ(r)]

2
, (5)

where we can define ρs =
Ja2−Dz

2D as the generalized stiff-
ness. From the expression given by Eq. 5, we can study
the order parameter, or magnetization, of the system in
the low-temperature phase for any dimension. In the
continuous limit, we can define this magnitude as follows

⟨Sx⟩ = ⟨cos(θ(r)⟩ = 1

Z

ˆ
D[θ] e−βH ·Re

(
eiθ(r)

)
(6)

where D[θ] represents the integration measure over all
possible configurations of the field θ(r). This equation
can be expressed in the Fourier space as

⟨Sx⟩ =
1

Z

ˆ ∞

−∞

∏
|q|<λ

dθq exp

−
β

2
ρs

∑
q

q
2 |θq|2 − i

∑
q

θq

 . (7)

Since Eq. 7 is a gaussian type integral, its result is

⟨Sx⟩ = e−W ; W =
kBTλ

D−2

2ρs(D − 2)
. (8)

For more calculus details, see, for instance, [9]. The W
factor is known as the Debye-Waller factor and diverges
for D = 2 (XY Model). This leads to a magnetisation
value of ⟨Sx⟩ = 0 for all temperatures except T = 0.
This implies that, for any non-zero temperature, the sys-
tem cannot establish long-range order. Consequently, the
system lacks a low-temperature ordered phase and can-
not undergo a symmetry-breaking phase transition in two

dimensions. This result is a consequence of the Mermin-
Wagner theorem, which states that systems with short-
range interactions in dimensions below a critical value
cannot exhibit spontaneous broken symmetry at a finite
temperature [10]. It is important to note, however, that
this result is specific to the particular order parameter
considered. This does not exclude that other order pa-
rameters can take non-zero value at any non-vanishing
temperatures.

B. Topological defects

From Eq. 5, we can derive the field configurations that
correspond to local minima of the energy H by solving
the extremal condition:

δH

δθ(r)
= 0 ⇒ ∇2θ(r) = 0 . (9)

This result corresponds to the Laplace equation, and one
of the solutions is the ground state where θ(r) is constant
and all spins point in the same direction. However, a sec-
ond type of solutions are also allowed, known as vortices
in the plane. These vortices can be obtained by imposing
a set of boundary conditions on the circulation integral
of θ(r):

• For all closed curves that enclose the center position
of a vortex ˛

∇θ(r) · dl = 2πq , (10)

where q is the charge of the vortex. This condition
imposes a singularity on the plane.

• For all paths that does not enclose the vortex˛
∇θ(r) · dl = 0 . (11)

The vortices in the plane represent topological defects,
which are localized regions of the system where the spins
deviate from the ground state configuration. These de-
fects corresponds to local minima of the potential energy
and the system cannot be smoothly transformed into a
fully aligned ground state. In other words, there is no
spatial transformation such as

s(r) → R(r)s(r) , (12)

with a continuous rotation matrix R(r) that can deform
a configuration with a topological defect into a fully
aligned ground state configuration.

In the 2D XY Model, these topological defects mani-
fest as vortices. Vortices can have attractive or repulsive
behavior depending on their charge value, denoted as
q. The presence of vortices breaks the uniform order
of the system. The inability to remove vortices with-
out the creation of additional vortices is a consequence
of the topological nature of the defects within the system.
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C. Topological phase transition

The creation of a single vortex has associated an energy
cost. This can can be computed from Eq. 5, depending
on the value of ∇θ. By imposing the boundary condition
defined in Eq. 10 and considering the spherical symme-
try of the system, we can derive this relationship. The
circulation integral around the vortex can be expressed
as

2πq =

˛
∇θ(r) · dl = 2πr |∇θ| ⇒ |∇θ| = q

r
, (13)

where r is the radial distance from the vortex center.
This equation shows that the magnitude of the gradient
of θ is inversely proportional to the radial distance and
directly proportional to the charge of the vortex.

Substituting the expression for |∇θ| into the Hamilto-
nian given by Eq. 5, we can determine the energy asso-
ciated with a single vortex creations, which can be ex-
pressed as

E ≡ Evortex − E0 = πq2J ln

(
L

a

)
, (14)

where L is the linear size of the system and a the distance
between spins. From this equation, we observe that the
energy cost of a single vortex diverges logarithmically
in the infinite size limit. As the linear size L of the
system increases, the energy required to create a vortex
also increases. This logarithmic divergence indicates
that it becomes increasingly energetically unfavorable to
introduce vortices in larger systems.

The presence of topological defects can induce a phase
transition. To verify this, we can analyze the free energy
difference between configurations with and without vor-
tices. The configurational entropy, which represents the
number of different lattices sites where the vortex can be
located at, is given by

S = kB ln

(
L2

a2

)
= 2kB ln

(
L

a

)
. (15)

Here, kB is the Boltzmann constant, L is the linear size
of the system, and a is the distance between neighboring
spins. Considering the temperature T , the free energy
associated with the creation of a vortex can be expressed
as

F = E − TS = (πJ − 2kBT ) ln

(
L

a

)
. (16)

From Eq. 16, we can infer that if kBT > πJ
2 , the system

can lower its free energy by creating vortices. Below the
critical temperature, isolated vortices cannot exist, but
above this temperature, they can be present in the sys-
tem. At the critical temperature, the system undergoes
a phase transition characterized by the spontaneous

creation of single vortices. This transition is known as
Berezinskii–Kosterlitz–Thouless (BKT) phase transition.

Although the energy associated to a vortex diverges as
ln(L), the energy of a bound pair of vortex-antivortex
does not diverge because the total vorticity of the pair
cancels out at a distances larger than the distance be-
tween the vortices. Consequently, below the BKT tran-
sition temperature TBKT , vortices can exist in the system
but only in the form of bound pairs. This behavior can
be observed in Fig. 2, which shows the final configuration
of a simulation of the XY Model with a system size of
L = 100. As we increase the system size of the lattice, we
expect to find more pairs of vortices around the system.

Figure 2: Final configuration of a simulation of the XY Model
with periodic boundary vortices at a temperature T = 0. Par-
ticles were initially pointing to different random directions.
Vortices are denoted by red circles.

Furthermore, the BKT transition is characterized by
the unbinding of these vortex-antivortex pairs. Above
the critical temperature TBKT , the vortices pairs disso-
ciate, leading to the spontaneous creation of individual
vortices. This behavior can be observed by comparing
the system snapshots at two different temperatures, as
shown in Fig. 3.

In the XY Model, the transition temperature is esti-
mated to be at

TC ≡ TBKT ∼ 0.893 , (17)

in units of J/kB (from now on, all temperature values
will be given in these units). This result is different from
the approximation TBKT = π

2 as computed numerically
[11]. It is worth noting that below the critical temper-
ature, thermal fluctuations can lead to the creation and
annihilation of vortex-antivortex pairs before the system
reaches equilibrium.
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Figure 3: Final configurations of the XY Model simulations
with PBC and a system size of L = 250. (a) Temperature
below the critical temperature (TBKT = 0.2) exhibiting quasi-
long-range order (QLRO). (b) Temperature above the critical
temperature (TBKT = 1.0) displaying a disordered phase.

D. Correlation function

The BKT transition in the XY Model differs from the
typical symmetry-breaking phase transitions observed in
models like the 2D Ising Model. In the BKT transition,
the order parameter of the system does not change
significantly above and below the critical temperature.
Instead, the transition is characterized by a change
from a state of quasi long-range order (QLRO) to
a disordered phase. In a QLRO state, the relevant
correlation function exhibits an algebraic decay. This is
in contrast to the exponential decay observed in systems
with short-range or long-range order.

This difference in the correlation function behavior
is a key distinction between topological phase transi-
tions (TPT) and symmetry-breaking phase transitions
(SBPT). In SBPT, the power-law decay is observed
only at the critical temperature, while above and
below this temperature, the correlation function decays
exponentially with a characteristic correlation length
ξ. In contrast, for TPT, the algebraic behavior of the
correlation function persists at all temperatures below
the critical point. As the temperature exceeds the
critical point, thermal fluctuations become dominant,
causing the correlation function to decay exponentially
with an associated correlation length.

To analyze the correlation function, we will consider
a two dimensional lattice neglecting any vortex fluctu-
ation in the system. The correlation funciont G(r) ≡
⟨S(r)S(0)⟩ can be computed as

⟨S(r)S(0)⟩ = ⟨cos(θ(r)θ(0)⟩ ≡ Re
〈
ei(θ(r)−θ(0))

〉
. (18)

This can be further expressed as an integral over all pos-
sible field configurations in the canonical ensemble,

⟨S(r)S(0)⟩ = 1

Z

ˆ
D[θ] e−βH ·Re

(
ei(θ(r)−θ(0))

)
, (19)

where Z denotes the partition function of the system.
Using the Hamiltonian defined in the spin-wave approx-
imation, Eq. 19 can be expressed in the Fourier space
as

G(r) =
1

Z

ˆ ∞

−∞

∏
|q|<λ

dθq

exp

(
−β

2
ρs
∑
q

q2|θq|2 − i
∑
q

θq + i
∑
q

θqe
iqr

)
.

(20)

To analyze the decay of correlations, we define a function
g(r) such that G(r) = e−g(r). This function g(r) can be
expressed as:

g(r) =
kBT

ρs

ˆ
dDq

(2π)D
1− e−iq·r

q2
. (21)

Here, dDq = qD−1dqdΩ accounts for the integration mea-
sure in D dimensions, and dΩ represents the solid angle
element. By performing the integration, we can approx-
imate the integral as:

g(r) ∼
ˆ π/a

π/L

dq
qD−1

q2
∼
ˆ π/a

π/L

dq

q3−D
(22)

For calculus details, see, for example, appendix C of
[12]. In the case of the XY Model in two dimensions
(D = 2), the function g(r) exhibits a logarithmic diver-
gence, specifically as g(r) ∼ ln

(
r
L

)
. For T < TBKT , the

correlation function follows a power-law decay,

G(r) ∼
( r
L

)−η(T )

; η(T ) =
kBT

2πρs
. (23)

As mentioned earlier in this subsection, above the
critical temperature the correlation function decays as
an exponential. Simulations results are shown in Fig. 4.

From this plot, we can see that the behavior of G(r)
changes qualitatively as the system crosses the critical
temperature .This transition in the correlation function
can be attributed to the presence of vortices in the
system. Below the critical temperature Tc, the system
forms bound pairs of vortices, which locally breaks the
ordering. Beyond a certain distance from the paired
vortices, the spins align in the same direction. This
establishment of quasi-long-range order reflects in the
correlation function.

Above Tc, the system becomes completely disor-
dered, and thermal fluctuations lead to the creation
and annihilation of vortices. The unbinding of vortex
pairs generates short-range correlations, resulting in an
exponential decay of G(r). This behavior is indicative
of the absence of long-range order and the prevalence of
thermal fluctuations.
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Figure 4: Spatial correlation function evolution for different
temperatures in log-log scale for a system size L = 100x100.
Below the critical temperature, the correlations decay as a
power-law defined by Eq. 23 that changes with temperature.
Above the critical temperature, the correlations decay expo-
nentially due to the disordered phase of the system.

It is important to note that the power-law and expo-
nential behaviors of the correlation function described
previously apply only at the stationary state of the sys-
tem. To verify that the system has equilibrated, we can
measure the space-time correlation function at different
times, defined as

G(r, t) = ⟨S(r, t)S(0, t)⟩ . (24)

The space-time correlation function provides information
into the evolution of correlations over time and helps us
to understand how the system reaches its equilibrium
state. Fig. 5 illustrates the temporal correlation function
and its behavior as the system evolves.

From Fig. 5, we can see that as the system evolves,
the correlation function reaches an asymptotic behavior
where the correlation functions overlap with each other.
This indicates that the system has reached equilibrium.
However, it is important to note that the simulated value
ηsim(T ) obtained from the fitting procedure deviates from
the analytical value η(T ). the discrepancy between both
values is attributed to finite-size effects in the simula-
tion. While the analytical results are derived under the
assumption of an infinitely large system in the thermo-
dynamic limit (N → ∞), simulations are typically per-
formed on systems of finite size.

III. KURAMOTO MODEL

The dynamics of the XYModel can be described by the
Kuramoto model, a nonlinear mathematical model used
to study synchronization phenomena. The Kuramoto
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Figure 5: Simulation results for a system size of L = 100 at
T = 0.1 with J = 1.0. (a) Temporal correlation function for
different times of the simulation. (b) Temporal correlation
function for times near the equilibrium state. (c) Evolution
of the exponent η(T ) for each time fitting all the points data

to a power law r−η(T ). Dashed line represents the exact value
in units of J/kB . Inset plot are the values associated to plot
(b).

model provides a framework for understanding the be-
havior of a large ensemble of coupled oscillators, where
each oscillator is characterized by its natural frequency
ωi. The dynamics of the model are governed by the fol-
lowing equation for each oscillator,

θ̇i = ωi +

K∑
j=1

Jijsin(θi − θj), i = 1, ..., N , (25)

where each one tends to run independently at its own fre-

quency ωi, while the coupling term
∑K

j=1 Jij sin(θi − θj)
tends to synchronize it with the other oscillators in the
system. This model has been successfully applied in
a wide range of applications, from neural networks to
oscillations of chemical reactions [13].

The Kuramoto model is closely linked to the dynamics
of the XY Model, as both involve spins that can freely
rotate and interact with their neighbors to achieve syn-
chronization. The equations of motion for the Kuramoto
model in the overdamped regime are given by a set of
coupled Langevin equations [14]:

dθi
dt

= ωi + J
∑
⟨i,j⟩

sin(θi − θj) +
√
Γηi(t) (26)

where ηi(t) is a Gaussian white noise representing ther-
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mal fluctuations. The thermal noise is characterized by
the following properties

⟨ηi(t)⟩ = 0 ; ⟨ηi(t)ηj(t′)⟩ = Γδi,jδ(t− t′) , (27)

Here, ⟨.⟩ denotes averaging over noise realizations and Γ
represents the strength of the Gaussian noise. According
to the Fluctuation-Dissipation Theorem, Γ is related to
the temperature as Γ = 2kBT . In reduced units, the
overdamped dynamics of the model can be written as

dθi

dt̃
= ω̃i +

∑
⟨i,j⟩

sin(θi − θj) + g̃η̃i(t̃) (28)

where

t̃ ≡ Jt ; ω̃i ≡
ωi

J
; η̃i ≡

ηi(t)

J
; g̃ ≡

√
Γ

J
.

where t̃ ≡ Jt, ω̃i ≡ ωi

J , η̃i ≡ ηi(t)
J , and g̃ ≡

√
Γ
J .

Therefore, the Kuramoto dynamics can be understood
as the overdamped dynamics of an XY Model with
nearest neighbor coupling, influenced by a heat reservoir
that introduces thermal fluctuations. The parameter ω̃i

represents an external driving amplitude present in the
system. When ω̃i = 0, the model corresponds to the XY
Model in the presence of thermal fluctuations.

In our simulations, we focus on the overdamped dy-
namics equation defined in Eq. 28 with ω̃i = 0. This
corresponds to the overdamped limit of the Kuramoto
model with identical oscillators under the influence of
Gaussian white noise. By neglecting the external driv-
ing force ω̃i, we will only investigate the non-reciprocity
introduced by the interaction between different species.
This limit corresponds to Kuramoto model with identi-
cal oscillators in presence of a gaussian white noise. The
dynamics of the system are reduced to a classical sta-
tistical system in contact with a heat bath, governed by
equilibrium statistical mechanics.

IV. NON-RECIPROCAL XY MODEL

Non-reciprocal interactions are of great interest as
they often arise in natural systems, particularly when
the system is in a non-equilibrium medium. However,
these interactions are challenging to modelize because
they lack a Hamiltonian description that can fully
capture the system’s properties. Unlike systems gov-
erned by reciprocal interactions, non-reciprocity breaks
Newton’s third law, and the establishment of an energy
scale becomes problematic, even in the ground state.
Furthermore, the absence of reciprocal interactions has
significant implications for the long-term behavior of the
system, since it lacks of a well-defined equilibrium state
to which it can converge.

To introduce non-reciprocal interactions in the XY
Model, we modify the spin interactions in the system. In

this case, we consider a square lattice of size L×L com-
posed of spins belonging to two different species, labeled
as A and B. These spins can rotate in the plane. In the
general scenario, the system will include interaction be-
tween different species and between the same species, as
well as thermal fluctuations. As a result, the dynamical
equations for each spin can be written as follows:

θ̇i =
∑

k,k̃∈{A,B}

∑
⟨i,j⟩

Jk,k̃ sin(θi − θj) +
√
Γηi(t) , (29)

where Jk,k̃ represents the interaction strength between

spins of species k and k̃ (the only possible combinations
are JAA, JAB , JBA, JBB). Notice that intraspecies
interactions are always reciprocal while interspecies
interactions are not.

The study of non-reciprocal interactions will be under
the an specific initial configuration. To ensure that all
interactions within the system are non-reciprocal, we
arrange the spins of different species alternately on the
lattice assuming a temperature of T = 0 to eliminate
any thermal fluctuations. Specifically, we assign a
positive value to the interaction between species A and
B, denoted as JAB > 0, and a negative value between
species B and A, denoted as JBA < 0. An illustration of
this configuration is provided in Fig. 6.

JAB > 0

JBA < 0

Figure 6: Representation of a LxL square lattice composed
by two species, A (red) and B (blue), that interact with their
nearest neighbours. A species interact ferromagnetically with
B (denoted with red arrows) and B species interact antiferro-
magnetically with A (denoted with blue arrows).

The dynamical equations for each spin reduces as fol-
lows:

θ̇i = JAB

∑
∑

j∈ni

sin(θi − θj) + JBA

∑
∑

j∈ni

sin(θi − θj) . (30)
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Figure 7: Time evolution of a 1D chain system consisting of N = 10000 spins (snapshots only taken for the central spins),
divided into two species, A (red) and B (blue). The initial state of the system is set to all spins with an angle of θi = 0, except
for the central spin which has θ = π/2. This setup allows to observe the propagation of interactions throughout the chain, as
spins actively compete to establish an order. Over time, local groups of spins align or antialign with each other. However, this
local ordering gradually breaks down as interactions continue to influence the system.

In this context, the system is expected to undergo
an active competition between the two species in order
to establish an order throughout the lattice. The A
particles will attempt to align with the B particles
due to their ferromagnetic interaction. Conversely,
the B particles will want to be antialigned with the
A particles due to their antiferromagnetic interaction.
This competition will disrupt the QLRO behavior that
we observed below the critical temperature of the XY
Model. While nearby spins of the same species may
align in the same direction due to their shared neighbors
and similar interactions, the system’s ordering will break
as soon as there is no connection between these spins.

In order to understand the effect of non-reciprocal
interactions on the system, consider a one-dimensional
chain consisting of two different species, A and B,
which are arranged alternately along the entire chain.
Initially, all spins point in the same direction, except
for the central spin of the system, which is displaced by
an angle of π/2 with respect to the overall direction.
This angular displacement ensures that the interaction
between neighboring spins is maximized right from the
start. A time evolution of the system can be observed in
Fig. 7.

As time progresses, the system undergoes a dynamic
where the red spins attempt to align with the blue spins
if the angle difference between them is non-zero. Since
the system is maintained at a temperature of T = 0, no
spin fluctuations are expected, and the time evolution
is governed by the Kuramoto equations. As we can see
at t = 0.4 in Fig. 7, we observe that the central blue
spin tries to align with its neighboring red spins, while
red ones actively avoid this alignment. Consequently,
their neighboring particles prevent this alignment. This
initiates a chain reaction that propagates throughout
the system, triggered by the relaxation of the angle
constraint.

It is important to note that the propagation is
symmetric with respect the central blue spin due to

the dynamics of the Kuramoto model. The model
does not consider the specific location of the angular
displacement but focuses on the difference in angles
between the interacting spins. Furthermore, if we
observe the figure at t = 3.6, red particles point to the
same direction, indicating local ordering. This occurs
due to the disordering exhibited by the blue spins. In the
subsequent time step, red particles maintain their align-
ment while blue ones begin to align with their respective
neighbors. Consequently, this disrupts the local order-
ing of the red spin, causing each spin to assume a new
direction based on the angle difference with its neighbors.

Eventually, at t = 4.4, the blue particles locally
align, while the red ones enter in a disordered phase.
This behavior persists as the interaction propagates
throughout the system. Localized spins of one species
align in a period of time, while the particles of the
other species maintain a relatively disordered phase.
After that period, the local ordering between species is
exchanged.

Introducing temperature to the system will disrupt its
deterministic behavior. The propagation of the initial
perturbation will gradually decrease as it propagates
along the chain. The particles will interact with neigh-
bors whose angles have been influenced by thermal
fluctuations. The speed at which the propagation
disappears depends on the temperature of the system.
Higher temperatures will lead to a faster disappearance
of the propagation.

V. STATIC ANALYSIS OF THE
NON-RECIPROCAL XY MODEL

Just like in the XY Model, the presence of a topolog-
ical phase transition in the system can be determined
by examining the behavior of the spatial correlation
function with increasing temperature. Similarly, we
can extend our investigation to understand how the
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ordering of the lattice evolves in the equilibrium state
when non-reciprocal interactions are present throughout
the system. To explore this, we consider a 2D square
lattice model as depicted in Fig. 6. By studying the cor-
relations between spins of the same kind and averaging
over multiple realizations, we can obtain insights into
the behavior of the system. The resulting correlation
function is depicted in Fig. 8.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
r
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100

C(
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T = 0.1
T = 0.5
T = 0.9

e r

Figure 8: Spatial correlation function evolution for different
temperatures in log-log scale for a system size L = 100x100
with non-reciprocal interactions over the system, set at JAB =
1.0 and JBA = −1.0. Results are averaged over different
realizations with different initial configuration. Correlation
values are only computed with species of the same kind.

In contrast to the reciprocal case, the correlation
function in the presence of non-reciprocal interactions
displays an exponential decay for all temperature values,
unlike the power-law behavior observed below the
critical temperature of approximately T ∼ 0.9 found
in the reciprocal case. Consequently, the system does
not undergo a BKT transition when non-reciprocal
interactions are introduced. As the correlation function
decays exponentially faster at any temperature, the
system remains in a disordered phase indefinitely. This
behavior holds true not only for a completely antiferro-
magnetic interaction, but for any interaction satisfying
0 ≤ JBA < −1.0 when a fixed value of JAB = 1 is
maintained.

The correlation length, represented by ξ, increases as
JAB approaches to −1.0, indicating that correlations
become unbound at shorter distances. For interaction
values within the range 1.0 > JBA > 0.0, correlations
between spins of the same kind are still present, but the
correlation function decays exponentially. Consequently,
no BKT transition occurs in the system. This absence
of bound vortices can be attributed to the active
competition between the species, causing the system

to continually change the direction of the spins locally.
The instability experienced by the system prevents the
formation of vortex pairs, as observed in the 1D chain
model.

From these results we can see that, in the non-
reciprocal XY Model, static measures are proven to be
inadequate in capturing the essential characteristics of
the system. Unlike in the reciprocal case, where static
measures such as the spatial correlation function and the
order parameter are important indicators of the system’s
behavior, their application in the non-reciprocal setting
does not yield to meaningful results. As we have seen,
this limitation arises due to the dynamic and competing
nature of the non-reciprocal interactions. The active
competition between species disrupts the establishment
of long-range order at any temperature and introduces
significant fluctuations in the system. As a result,
static measures fail to capture the collective behavior
that arises from the interplay between non-reciprocal
interactions and thermal fluctuations.

VI. DYNAMIC ANALYSIS OF THE
NON-RECIPROCAL XY MODEL

The system’s behavior of the non-reciprocal XY Model
can be studied by looking at the dynamical properties.
Unlike the reciprocal case, non-reciprocal interactions
introduce a dynamic and competitive nature that needs
a shift towards a dynamical analysis. By investigating
the temporal evolution of the system under specific
conditions using the Kuramoto model, we can capture
the intricate dynamics that arise from the competition
between species and the impact of thermal fluctuations.
These dynamical measurements can provide an under-
standing of the emergent phenomena governed by the
system dynamics behavior. This is in contrast with
the reciprocal XY Model, where dynamical properties
have limited relevance since the system’s behavior can
be captured by static measures. Thus, the exploration
of dynamical properties using the Kuramoto model
presents an opportunity to study the complex dynamics
of the system.

As discussed in the previous sections, the Kuramoto
model of synchronization is a valuable tool for under-
standing the dynamics of couples oscillators, assuming
that the presence of only a minimal amount of noise does
not disrupt the overall behavior. Applying this concept
to the XY Model, we can understand the spins within the
system as oscillators that continuously transits between
different directions. This analogy allows us to explore the
dynamic nature of the XY Model, particularly at zero
temperature, where the absence of thermal fluctuations
enables us to see the spins as deterministic oscillators
rather than random variables.
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A. 1D analysis

The dynamical properties of the model can be studied
under certain conditions. For instance, we can consider
the 1D configuration illustrated in Fig. 7 where, initially,
all spins are aligned in a particular direction except for
the central spin, which is flipped by an angle θi = π/2.
Temperature is set to T = 0 in order to avoid any thermal
fluctuation. This specific configurations leads to a propa-
gation of the initial perturbation within the chain, prop-
agating in both the right and left directions. This inter-
action propagates analogously as a wave across the chain.
This wave-like propagation can be observed by comput-
ing the dot product between neighboring spins, quanti-
fying the directionality between adjacent spins. This dot
product is defined as

Si · Si+1 = cos(θi − θi+1) . (31)

where Si and Si+1 is denotes the spin direction located
at positions i and i + 1 of the chain, respectively. By
examining the numerical results depicted in Fig. 9, we
can clearly observe the propagation of the initial pertur-
bation in the form of distinct wave-like structures. In
fact, these are travelling waves and are characteristic of
nonlinear systems. They arise due to the non-reciprocity
of the interactions and the Kuramoto dynamics. The
travelling shape of these waves remains consistent
over time and they travel at a constant velocity. It is
important to highlight that the waves are generated by
the initial configuration of the system, but the periodic
waves they produce eventually dissipate. Furthermore,
when these waves reach the boundaries of the system,
they collide with other traveling waves resulting from
the PBC of the simulation. These collisions leads to the
dissipation of the wave propagation and the dynamics
inherent to the model.

To determine the velocity of the periodic waves
produced by the system, we can track their positions
at different time intervals. By monitoring the position
of the initially generated node as it propagates through
the chain (both at right and left from the flipped spin
located at the center of the chain), we can extract the
wave’s velocity. Since all waves in the system travel
at the same constant velocity, the speed of the first
node is equivalent to the subsequent waves formed.
Furthermore, these waves are non-dissipative as their
shape remains unchanged over time, exhibiting stability
and consistency in structure. This property can already
be seen in Fig. 9. In this figure, we illustrate the dot
product defined by Eq. 31 for a sequence of spins in the
1D chain. The dot product is computed for each spin
with its immediate right neighbor, indicating whether
the particles are aligned (Si ·Si+ 1 > 0.5) or antialigned
(Si · Si+ 1 < −0.5). Intermediate values indicate that
the spins are close to a perpendicular position.
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Figure 9: The top panel illustrates a region of the configura-
tion of a 1D chain consisting of N = 10000 particles. Inter-
action strengths are set to JAB = 1.0 and JBA = −1.0 with a
system’s temperature of T = 0. The snapshot was taken after
t = 2000 time steps. The dot product values with neighbor-
ing particles are plotted as a function of the spin position Xi.
The oscillatory shape is not preserved throughout the entire
chain due to the non-equilibrium nature of the interactions,
eventually leading to a transition into a disordered phase.

The position of a node at different times is depicted
in Fig. 10. As can be seen from this figure, the wave
position shows a clearly linear relationship with time,
indicating a constant velocity of wave propagation.
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Figure 10: Positions of travelling waves Xi at different time
t values are shown in the figure. The relationship between
position and time is analyzed linearly, determining the ve-
locity of the wave as the slope of the linear fitting, with
Vprop. = −0.2525. The simulations were performed on a
1D chain comprising 10, 000 particles, with the interaction
strengths set to JAB = 1.0 and JBA = −1.0.

The propagation velocity of the wave depends on the
intensity of the interaction. By fixing JAB = 1.0, we
can observe distinct behaviors based on the choice of
JBA. When JBA = −1.0, representing a fully antiferro-
magnetic interaction, the travelling wave achieves the
maximum velocity. Conversely, with JBA = 0.0, where
there is no interaction between the central spin and its
neighbors, there is no wave propagation. These varia-
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tions in the interaction strength reveal the sensitivity
of the wave motion to the underlying non-reciprocal
interactions in the system.

We can further investigate the wave propagation in
the system by examining its dispersion relation, which
characterizes the relationship between the wavelength
and temporal frequency of the waves. To determine the
wavelength, we analyze the distances between peaks in
Fig. 9, representing the periodic production of waves
before they become disordered. By averaging these
distances, we can calculate the corresponding wave
number. Additionally, we study the temporal evolution
of a wave by observing how the dot product of its
position changes over time. The periodic behavior of the
waves allows us to identify the period by measuring the
distances between successive peak waves. From this, we
can calculate the frequency. By computing the quotient
ω
k , we can examine whether the relationship between k
and ω follows a linear pattern. The dispersion relation
behavior is shown in Fig. 12. The obtained results for
the wavenumber and the period are presented in Fig. 11.

The velocities are in good agreement for both analysis.
These results are important because they prove that the
dispersion relation is linear, indicating that both the
phase velocity and the group velocity are the same.

This study can also be extended for positive values
of JBA when fixing JAB = 1.0. However, the results
obtained in this case are not particularly significant.
When both interactions are ferromagnetic, the system
quickly reaches an equilibrium configuration where all
the spins align in the same direction. Consequently,
there is no wave propagation along the chain, and the
system maintains its uniform structure through all the
chain. As we increase the value of JBA, the speed at
which the system reaches this configuration becomes
faster, causing all the spins to align in a shorter period
of time. As a result, waves are not produced within the
system.

A similar phenomenon occurs when temperature is in-
troduced. The presence of thermal fluctuations disrupts
the consistent shape of any wave that arises, prevent-
ing the propagation of coherent waves along the chain.
With the introduction of fluctuations, each spin in the
system undergoes continuous changes at each time step.
This can be visualized as the generation of individual
wave propagation by each spin, which subsequently col-
lide with waves generated by neighboring spins. As a
result, the system becomes fully disordered for any no-
ticeable temperature, where the effects of thermal fluc-
tuations become increasingly significant over time. For
extremely low temperature values with T → 0, the sys-
tem behaves as if it were unaffected by those fluctuations.

The wave propagation interaction extend beyond only
one spin that is initially flipped by an angle of θi = π/2.
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Figure 11: Wavelength (left) and period (right) results for
different values of the interaction term JBA (with fixed JAB =
1.0) at T = 0.0. As the interaction term JBA is reduced, the
wavelength of the propagating waves decreases, while the time
period between consecutive peaks for a fixed spin increases.
This phenomenon results in a decrease in the propagation
velocity, as depicted in Fig. 12. Notice that for JBA = 0.0
results are not plotted since there is no wave propagation.
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Figure 12: The figure depicts the propagation velocities of
travelling waves generated by the initial configuration of the
system. The blue curve represents the velocities obtained
through linear fitting of positions at different times, as illus-
trated in Fig. 10, for different JBA interaction terms while
keeping JAB = 1.0 fixed. The red curve represents the quo-
tient of the wavenumber k and the angular frequency ω. Both
measurements exhibit a good fit, the last one indicating that
the system follows a linear dispersion relation.

Any region within the system where the boundaries ex-
hibit an angle difference compared to their neighboring
spins will exhibit the same properties. When considering
a region where spins have an angle difference ∆θi = π/2
with spins outside this region, waves are produced at
the boundaries and travel along the chain in both direc-
tions. The propagation is not limited to the direction
where spins initially point in a different direction; it also
extends in the opposite direction where the spins are ini-
tially aligned. This behavior arises from the inherent dy-
namic properties of spins that present an angle difference
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with some of their neighbors, as they induce a movement
in the next time step that alters their orientations and
interacts with the initially aligned spin.

B. 2D analysis

The analysis done in the previous subsection can
be extended to two dimensions. Wave properties of
the system can be studied by considering different
boundaries and initial configurations at zero tempera-
ture. However, compared to the 1D case, the increased
number of interactions in 2D systems leads to distinc
propagation characteristics. Simply examining the dot
product between neighboring spins becomes challenging
for computing wave propagation, as each spin interacts
with four nearest neighbors. Consequently, the effect of
interactions between two specific spins is significantly
reduced due to the presence of other neighboring spins.
Nevertheless, wave propagation phenomena still manifest
in the system.

A different approach for analyzing wave propagation
interactions in the system involves examining the chi-
rality between plaquettes in the square lattice. In this
context, a plaquette can be defined as a square-shaped
arrangement of four spins, with one spin located a each
corner of the square. The total chirality of the plaquette
(C) can be determined computing the cross product be-
tween neighboring spins. A visual representation of this
concept is depicted in Fig. 13.
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Figure 13: Plaque composed by 4 spins in a square lattice.
The central value of the circulation is computed from Eq. 32.

The chirality of the lattice is defined as the sum of the
all the cross product between neighbour spins,

C =

3∑
i=1

Si ∧ Si+1 + S4 ∧ S1 . (32)

By examining the chirality within plaquettes, we can
infer the propagation of the nodes through the system.

In contrast to the 1D case, particle interactions in the
2D lattice will be transmitted through four neighboring
spins instead of two. By looking at the cross product
between adjacent spins, we can determine their relative
orientations. Analyzing all the interactions within a
plaquette of spins provides information their rotation in
the plane and, consequently, their alignment within the
system.

We can study wave propagation in a similar manner
to the 1D case. Initially, we arrange the spins of different
species alternately on the lattice with a temperature of
T = 0, as shown in Fig. 6. All spins, except for the
central one, are initially aligned in the same direction.
The central spin is flipped by an angle of π/2 with
respect to the other spins, inducing a propagation of
the initial perturbation throughout the system. To
visualize this propagation, we compute the chirality of
each plaquette in the system, each one formed by four
adjacent spins. Spins that have not been affected by
the initial perturbation will remain aligned, with no net
chirality value. For spins that have been influenced by
the perturbation, a net chirality value will be observed.

A snapshot of the system can be visualized at Fig. 14.
As we can see from the figure, waves are produced again
(in space and time) by the initial situation of the system.
However, in this case, the wave propagation does not
occur throughout the entire lattice but rather along
specific contours, denoted in a red ellipse in the figure.
This behavior is a consequence of the system’s geometry
and the initial configuration.

Figure 14: Normalized chirality values for each plaquette in
the lattice are presented in this figure. The sign of the com-
puted values is shown, with black nodes indicating a clockwise
chirality (= 1.00), white nodes denoting counterclockwise chi-
rality (= −1.00), and grey nodes representing no net chirality.
Red ellipse denotes a region where regular waves are propa-
gating.
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Performing a similar analysis as in the 1D chain, we
can determine the velocity of the wave propagation. In
this case, we measure the distance between the center of
the circle and a traveling wave located at the contour of
the circle. For instance, we consider a wave positioned
within the red ellipse shown in Fig. 14, measuring the
distance at different time points. Since waves propagate
in various directions, we average the distances over
different directions at each time point, obtaining a more
accurate estimation of the position of the traveling wave
relative to the center of the circle. Using the averaged
results, we perform a linear fitting of the wave’s positions
at different times, similar to the analysis seen in Fig. 10.
This allows to determine the velocity of the traveling
wave in the 2D lattice.

Furthermore, we can investigate whether the dis-
persion relation remains linear in this case. Similar
to the 1D chain, we compute the wavelength for dif-
ferent negative values of the JBA interaction, keeping
JAB = 1.0 fixed. The wavelength is determined by
measuring the distance between consecutive peaks for
the chirality values of each plaquette, averaging the
results over different directions to obtain an accurate
value. To determine the frequency, we measure the
distance between peaks for the chirality values of a fixed
spin of the lattice over consecutive times. All the results
are presented in Fig. 15.
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Figure 15: Propagation velocities of travelling waves gener-
ated by the initial configuration are depicted in the figure.
The blue curve represents the velocities obtained through lin-
ear fitting of positions of the wave at different times for differ-
ent JBA interactions. The red curve represents the quotient
of the wavenumber k and the frequency ω. The shape of the
curve are similar to the 1D chain observed in Fig. 12, but the
velocities are smaller.

From these results, we observe that the linear dis-
persion relation remains valid even in the 2D case, as
evidenced by the agreement between the quotient value
and the computed wave propagation velocity. This
suggests that the addition of an extra dimension does
not alter the fundamental nature of wave propagation
in the system, but rather affects its velocity. Comparing
the fitting results for both the 1D and 2D cases, we

find that waves propagate at a slower rate in the 2D
system. This can be attributed to the increased number
of interactions in the 2D system, since it doubles the
number of interactions for each spin compared to the 1D
case. Consequently, it becomes more challenging for the
system to propagate these interactions efficiently.

In contrast, when considering positive values of JBA

while fixing JAB = 1.0, the interactions between differ-
ent species become ferromagnetic, resulting in the ab-
sence of wave propagation in the system. Instead, the
system will reach an equilibrium state where all particles
are aligned in the same direction. Furthermore, the in-
troduction of thermal fluctuations in the system disrupts
the wave propagation of interactions, as spins begin to
point in random directions due to thermal disorder.

VII. CONCLUSIONS

Non-reciprocal interactions in the XY Model introduce
dynamical features that are absent in the reciprocal case.
The action-reaction principle breaks when different inter-
acting species are introduced, challenging the traditional
Hamiltonian formalism. As a consequence, alternative
dynamical models need to be employed to capture the
system’s dynamics accurately. The Kuramoto model of
synchronization offers a viable solution by modelling
each spin as an oscillator, describing the dynamics using
the Langevin overdamped dynamics framework. This
approach enables a comprehensive understanding of the
system’s behavior under non-reciprocal interactions.
The introduction of this model in the context of our
research leads to novel findings in wave propagation that
have not been reported before, indicating unique founds
into the dynamics of the system.

The introduction of non-reciprocal interactions dis-
rupts the apparition of the phase transition typically
observed in the XY Model. In the reciprocal case, the
XY Model undergoes a topological phase transition
associated to the unbinding of topological defects, such
as vortices. However, in the non-reciprocal framework,
the system does not longer preserve this transition.
Consequently, the correlation function maintains the
exponential behavior seen in the disordered phase. This
makes the system hard to be analyzed by looking only
at static variables.

By examining the dynamic properties of the system,
new phenomena never reported before is unveiled.
Specifically, under certain initial conditions, the system
exhibits the propagation of interactions in the form
of waves that propagates through the system keeping
its shape. These wave-like structures can be studied
by analyzing the dot product between adjacent spins
in a 1D chain or by considering the chirality between
plaquettes in the 2D case. However, the apparition of
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waves only happens when particles interact distinctly
between species. For instance, when species A interacts
ferromagnetically with B spins, and B particles interact
antiferromagnetically with A, the conditions for wave
propagation are met. The introduction of thermal fluc-
tuations, disrupts the wave propagation phenomenon,
preventing the formation of coherent waves in the system.

When introducing two distinct species, namely A and
B, into the system with ferromagnetic and antiferromag-
netic interspecies interactions, respectively, the resulting
interaction waves exhibit a linear dispersion relation in
both 1D and 2D configurations. This indicates that
the phase and group velocities of the waves are equal.
However, it is important to note that the velocities
differ when comparing the same interaction conditions
in different dimensions. Specifically, in a 1D chain,
the wave propagation velocity is faster compared to
a 2D system. In a 1D chain, each spin only needs to
consider its alignment with adjacent spins, simplifying
the competition between neighboring particles. In the
2D scenario, the interactions between spins is extended
to 4 neighboring spins. This makes it more challenging
for the initial perturbation of the system to propagate
through the lattice, resulting in a lower wave propagation
velocity compared to the 1D case. This indicates that

the presence of additional neighboring spins to interact
with introduces more complex dynamics and constraints
on the alignment of spins.

Wave propagation in the non-reciprocal XY Model oc-
curs under specific conditions. The occurrence of wave-
like propagations is maximized when spins of different
species are arranged alternately in the lattice. This con-
figuration ensures that all particles only interact with
spins of a different kind. In contrast, in a random ini-
tial configuration, the study of wave-like propagations
becomes more challenging due to the possibility of in-
traspecies interactions occurring in the system. Ad-
ditionally, the lattice arrangement plays an important
role in the wave propagation characteristics of the sys-
tem. Further investigations are needed to analyze wave-
propagation type interactions in different lattice struc-
tures, such as the triangular lattice one, to determine if
similar phenomena are observed in those systems.

VIII. ACKNOWLEDGMENTS

I would like to thank my advisor Demian Levis for his
help through all this work.

[1] N. Goldenfeld, “Lectures on phase transitions and the
renormalization group”, Addison-Wesley, 1992.

[2] J. M. Kosterlitz and D. J. Thouless, “Ordering, metasta-
bility and phase transitions in two-dimensional systems”,
J. Phys. C, vol. 6, pp. 1181-1203, 1973.
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