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Abstract: Gamma oscillations (30-80 Hz) play a crucial role in cognitive functions and are
associated with neurological disorders, including Alzheimer’s disease. Non-invasive brain stimulation
techniques, such as 40 Hz transcranial alternating current stimulation (tACS), offer potential in
modulating these oscillations and impact cognitive functions. The complexity of the brain, however,
necessitates the use of advanced models for effective understanding and the development of therapies.
This study aims to validate a framework combining Neural Mass Models (NMMs) with volume
conduction physics that takes into account the brain’s physical properties and the distribution of
synapses across cortical layers. The validation involves predicting a synaptic distribution across
various neuronal groups and employing a Genetic Algorithm (GA) to iteratively refine the model to
match experimental data.

Key findings include the ability of the NMM to achieve greater similarity with experimental
results by varying stochastic noise and the dominance of gamma and alpha oscillations in exper-
imental data aligning well with model predictions. The GA also shows robustness in fitting the
model to experimental data, and the predicted synaptic distribution is evaluated against existing
literature for physiological accuracy. Despite limitations, our enhanced NMM provides valuable
insights into cortical layer interactions, contributing to the understanding of human brain function
and the development of treatments for neurological disorders.

Keywords: Brain Stimulation, Neural Mass Model, Synaptic Distribution, Genetic Algorithm,
Neural Oscillations.

I. INTRODUCTION

Gamma oscillations, within the frequency range of ap-
proximately 30-80 Hz, have emerged as a pivotal area of
study in neuroscience, given their integral role in vari-
ous cognitive functions, notably memory. These oscilla-
tions are associated with several neurological and psy-
chiatric disorders, including Alzheimer’s disease [1]. The
detection of altered gamma activity in both Alzheimer’s
patients and animal models highlights the potential for
targeted therapeutic interventions [2]. Recently, non-
invasive brain stimulation techniques, such as 40 Hz
transcranial alternating current stimulation (tACS), have
been heralded for their prospective capability to mod-
ulate these pivotal gamma oscillations, potentially af-
fecting cognitive functions [3, 4]. tACS administers
low-intensity alternating electrical currents to the scalp,
with the intent of modulating cortical oscillations [5].
This nascent research domain presents promising op-
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portunities for innovative insights into the treatment of
Alzheimer’s disease and other related conditions. Despite
significant progress in comprehending the neurobiologi-
cal mechanisms driving these effects, the human brain’s
inherent complexity underscores the need for continued
research utilizing sophisticated and physiologically accu-
rate models to deepen our understanding and facilitate
the development of efficient therapies.
Numerous mathematical and computational models

have been conceived to explore these intricate brain dy-
namics more profoundly. The advent of semi-empirical
‘lumped’ Neural Mass Models (NMMs) in the early
1970s represented a notable leap in this pursuit. Pio-
neers such as Wilson and Cowan, Freeman, and Lopes
da Silva played key roles in constructing this modeling
paradigm [6–9]. These models operate based on a sys-
tematic process that transforms input neuron firing rates
into output firing rates. This is facilitated by synap-
tic interactions and transfer functions. For instance, the
Jansen model, which effectively incorporates these ele-
ments and has been widely used, offers a representation
of the emergence of alpha brain rhythm [10]. The ad-
vancements achieved with these early models have played
a pivotal role in paving the way for more sophisticated
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models that more accurately reflect the brain’s complex-
ity. One notable development in this field is the lami-
nar model by Neuroelectrics [11], which demonstrates a
dominance of gamma and alpha frequencies. However,
these models have still limitations and require validation
with in vivo data. This validation process fine-tunes the
model by adjusting parameters, enhancing its accuracy
and applicability [11, 12].

While Neural Mass Models (NMMs) do an effective
job at encapsulating neural processes within a single-
compartment model, they do not completely capture the
physical properties observed in experimental data due to
the necessity for physical embedding. Sánchez-Todo et
al., [11], tackled this issue in the context of the laminar
model. Going beyond this, Mercadal et al., [13], made
further enhancements by establishing a framework that
connects Neural Mass Models with volume conduction
physics. This includes the integration of a realistic Fi-
nite Element Method (FEM) model, which considers the
variation in electrical conductivities of different brain tis-
sues.

In response to current needs in the field, the primary
objective of this project is to validate the combination
of the NMM presented by Sánchez-Todo et al., [11], to-
gether with the enhanced physical framework of Mer-
cadal et al., [13], using in vivo mice data.

Our goal is to predict the synaptic distribution among
various neuronal groups across cortical layers. In par-
ticular, we develop a Genetic Algorithm that itera-
tively refines the synaptic distribution in the multi-
compartmental model in order to maximize the likeli-
hood between the experimental and modeled data sets.
In other words, we tune the synaptic distribution until
the model’s predictions closely match the experimental
observations.

In order to validate the results, these predictions
are compared with findings that we gathered from an
extensive literature review. This step further ensures
that the model’s output is consistent with established
scientific knowledge on synaptic distribution across
cortical layers.

This Thesis presents significant advancements in four
areas of laminar model validation. First, the adjust-
ment of the model’s external input noise critically aligned
the model with experimental data. Second, the unmis-
takable dominance of gamma and alpha oscillations in
comparison with other frequencies in the experimental
data strengthens the laminar model’s predictions, rein-
forcing its accuracy in mirroring real-world brain dynam-
ics. Third, the success of the Genetic Algorithm in fitting
the model to experimental in vivo mice data underlines
its robustness and adaptability, underscoring the utility
of algorithmic approaches in refining and validating com-
plex neuroscientific models. Finally, we compared the fit-
ted model’s synaptic distribution with distributions re-
ported in the literature, which promise to improve our
understanding of cortical layer interactions.

This Master’s Thesis is a part of the Neurotwin
project, an innovative initiative funded by the European
Union’s Horizon 2020 FET Proactive (Grant Agreement
101017716). The objective of Neurotwin is to develop
advanced ’Neurotwins,’ brain models that can character-
ize individual pathologies and predict the physiological
effects of transcranial electric stimulation. These models
are then used to design optimal brain stimulation pro-
tocols specifically for Alzheimer’s disease. The project
involves the deployment of a software platform that in-
tegrates mesoscale models to create and personalize the
Neurotwins. Once personalized, these models are used to
optimize the delivery of electric fields [14, 15].

II. METHODS

A. Data Collection

In this study, we use a Neuropixel probe for data col-
lection. This high-density, multichannel electrode array
enables simultaneous recordings of local field potentials
(LFP) produced by the collective activity of hundreds to
thousands of individual neurons [16] together with the
firing rate of individual cells across different depths [17].
For this thesis research, we only worked with LFP data
collected. Fig. 1A provides an illustration of the probe,
including its dimensions and the number of channels.
The experiment begins with a one-hour recording of

spontaneous neural activity to establish baseline data
on neuronal firing rates and oscillations along the entire
tract where the Neuropixel probe is located. After col-
lecting this baseline data, we apply tACS for 30 minutes
at a frequency of 40 Hz and an amplitude of ± 200 µA.
Following the stimulation, another hour of spontaneous
neural activity recording takes place to analyze potential
changes in neuronal firing rates and oscillations. Fig. 1B
outlines the entire protocol. In this study, we center our
attention on the pre-stimulation phase, which is essential
for understanding the normal functioning of neurons and
serves as a reference point to assess the effects of tACS
on neural activity.
Brain Stimulation Translational Lab at the University

Pablo de Olavide (Seville, Spain) carried out all animal
experiments on twelve adult (3− 6 months old) male C-
57J mice (Mus musculus). Before and after surgery, the
animals were kept in one room but placed in independent
cages. The animals were maintained on a 12-h light/12-
h dark cycle with continuously controlled humidity (55
± 5 %) and temperature (21 ± 1 ◦C). All experimen-
tal procedures were carried out in accordance with Euro-
pean Union guidelines (2010/63/EU) and following Span-
ish regulations (BOE 34/11370-421, 2013) for the use of
laboratory animals in chronic experiments. The experi-
ments were also approved by the Ethics Committees of
the University Pablo de Olavide and the Neurotwin Con-
sortium. Fig. 1C shows a schematic experimental setup
to collect experimental in vivo mice data.
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FIG. 1. A: Illustration of the Neuropixel probe tip, showing
the checkerboard site layout [17]. B: Schematic illustration of
the protocol used for the data collection [18]. C: Schematic
illustration of the experimental setup [18].

B. Data Analysis

The local field potential captures the sum of the ex-
tracellular electrical potentials generated by the activity
of multiple neurons in close proximity to the recording
electrode sites on the probe [16]. In the pre-stimulation
phase of the experiments, we recorded this spontaneous
neural activity using the high-resolution Neuropixel
probe [17]. In this project, we focus on the data from a
single subject, which had the cleanest recordings. The
Dynamical Systems Biology lab at Universitat Pompeu
Fabra carried out the data analysis.

The LFP measured by the Neuropixel probe is refer-
enced to a common electrode at the tip of the probe. The
first step of data post-processing consists of computing
the bipolar LFP (bLFP) by calculating the difference in
electrical potentials recorded by two closely spaced elec-
trodes on a single shank of the probe, i.e.:

bLPF =
Vn − Vn−1

h
, (1)

where Vn represents the voltage recorded at site n and
Vn−1 denotes the voltage recorded at the previous site,
n − 1. The term h = 20 µm is the distance between the
two adjacent recording sites.

This technique effectively cancels out common-mode
noise and provides better spatial localization, reducing
volume conduction effects compared to monopolar LFP
recordings [11, 19].

From the 384 recording electrodes of the probe, we only
kept those that lay within the mice cortex, as identified
by the UPO team, resulting in 136 channel data. From
those, we only analyzed the channels of the odd columns
of the Neuropixel, as we are interested in the distribution
of power across depth. This lead to a total of 64 recording
sites.

Then, we divided the time series corresponding to each
channel in segments of 10 s. Since the animals could move
during the recordings, all the segments containing move-
ment (data provided by the UPO team) were discarded
to avoid artifacts, leading to n = 339 segments.
For each segment we computed a multitaper power

spectra [20], which we denoted as Sj(ω) with j =
1, . . . , n. The frequency profile above Ω = 152 Hz was
discarded since it had little contribution to the total
power, and we were interested in frequency ranges be-
low this threshold. The final power profile S(ω) across
depths for each subject was given by the average of the
n multitaper power spectra:

S(ω) =
1

n

n∑
j=1

Sj(ω).

In order to derive the relative power between the alpha,
Sα and gamma bands, Sγ , we normalized the areas under
the curve between the frequency ranges of 4-22 Hz (alpha
band) and 32-48 Hz (gamma band) with respect to the
total power of the recording. It is worth noting that
the 4 − 22 Hz frequency range captures more than just
the alpha band, yet we labeled it as such due to the
peak of the power spectral density appearing at 10 Hz, a
frequency characteristic of the alpha rhythm. Likewise,
while the gamma band usually extends beyond the 32-48
Hz range, we still referred to this range as the gamma
band for simplicity. Thus, we had:

Sα =
1

T

∫ 22

4

S(ω)dω, and Sγ =
1

T

∫ 48

32

S(ω)dω,

where

T =

∫ Ω

0

S(ω)dω

is the estimated total power spectra.

C. Dual-frequency Neural Mass Modeling
Framework

Neural Mass Models (NMMs) are mathematical mod-
els used to illustrate the collective behavior of neuron
populations in specific parts of the brain [21]. A typical
modeling approach for NMMs uses second-order differ-
ential equations that describe the average post-synaptic
potential changes sm that a neural population m causes
to any receiving population.

In order to replicate the dynamics identified in previ-
ous experimental research [22], where the amplitude and
phase of slow oscillations is observed to modulate fast ac-
tivity, the team at Neuroelectrics incorporated two well-
known Neural Mass Models (NMMs) into the laminar
Neural Mass Model (LaNMM), [11]. The first model is
the Jansen model [10], which generates slow oscillations
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within the alpha frequency range. The second model is a
variant of the PING model [23, 24], which produces fast
oscillations in the gamma frequency range. It is crucial
to note that the laminar model described in Ref. [11] in-
cludes not only the Neural Mass Model but also a simple
physical embedding. In our study, however, we solely uti-
lized the component of the model that encompasses the
NMM.

The Jansen model includes three populations: pyra-
midal neurons (P1), excitatory cells (SS), and slow in-
hibitory interneurons (SST). The PING model consists
of a pyramidal population (P2) and a fast interneuron
population (PV). The diagram in Fig. 2A shows the dif-
ferent neuron groups and their connections. The con-
nections between the models are set up to match experi-
mental findings that show a specific modulation between
fast and slow frequencies [11, 22]. This phenomenon is
reflected in the model, and illustrated in Fig. 2B and
Fig. 2C, respectively.

A simplified formulation of the model from Ref. [11]
reads:

s̈p1 =aAΦ[c1sss + c2ssst + c9sp2 + sext1]− 2aṡp1 − a2sp1

s̈ss =aAΦ[c3sp1]− 2aṡss − a2sss

s̈sst =bBΦ[c4sp1]− 2bṡsst − b2ssst

s̈p2 =aAΦ̃[c5sp2 + c6spv + c10sp1 + sext2]− 2aṡp2 − a2sp2

s̈pv =dDΦ[c7sp2 + c8spv + c11sp1]− 2dṡpv − d2spv,

s̈ext1 =aA(p1 + ξ1(t))− 2aṡext1 − a2sext1

s̈ext2 =aA(p2 + ξ2(t))− 2aṡext2 − a2sext2
(2)

In this model, we established synaptic connections among
populations by three types of synaptic connections:

• Excitatory (AMPA) with PSP amplitude A = 3.25
mV and decay rate a = 100 s−1.

• Slow inhibitiory (GABAB) with PSP amplitude
B = −22 mV and decay rate b = 50 s−1.

• Fast inhibitiory (GABAA) with PSP amplitude
D = −30 mV and decay rate d = 220 s−1.

Here, PSP accounts for post-synaptic potential and refers
to the change in membrane potential that occurs after a
neuron has received a signal from another neuron across
a synapse.

The transfer functions Φ and Φ̃ transduce the pre-
synaptic population average PSP to the population firing
rate. They are taken to be sigmoids, of the form

Φ[s] =
2e0

1 + er(v0−v)
, and Φ̃[s] =

2e0
1 + er(ṽ0−v)

, (3)

where e0 = 2.5 Hz, v0 = 6 mV, ṽ0 = 1 mV, and
r = 0.56 mV−1. The synaptic couplings among
populations are given by the vector c = (ci) =
(108, 33.75, 135, 33.75, 70, 550, 200, 100, 80, 200, 30).

Finally, the pyramidal populations P1 and P2 receive
an external source of excitatory inputs (ext). These in-
puts, characterized by noisy PSPs, are driven by an ex-
ternal firing rate centered at each of the pyramidal cells
and are subject to pink noise fluctuations, ξ1 and ξ2.
These pink noise processes are derived by filtering Gaus-
sian noise with a standard deviation of σ.

A B

C

ext

ext

FIG. 2. A: Illustration of the neuronal populations and the
connectivity between them to match the macaque data in
Bastos et al., [22]. Rounded shapes indicate inhibitory pop-
ulations, while the rest are excitatory. B: Membrane poten-
tial of the pyramidal populations along time. C: Logarithm
of the power spectral density of the two pyramidal popula-
tions along frequency. Figure adapted with permission from
Sánchez-Todo et al. from Ref. [11].

D. Physical Model

Our study adopts a physical model approach largely
influenced by the work of Mercadal et al., [13]. In their
work, they developed an innovative framework for effec-
tively simulating transmembrane currents in pyramidal
cells across various cortical layers. This framework ul-
timately integrates a comprehensive geometrical model
with a multi-compartmental neuron model. The primary
objective of their work was to create a connection be-
tween NMMs and the physical principles responsible for
recordings of the brain’s electrical activity. As a result of
this integration, they were able to simulate SEEG record-
ings, a technique for invasive brain recordings. These
geometrical and multi-compartmental neuron models are
outlined below.
Geometrical Model– The physical model consid-

ers the morphology of two single-neuron compartmental
models, as depicted in Fig. 3A. Each of these models
describes a representative pyramidal neuron from popu-
lations P1 and P2 of the NMM presented in [11], which
we explained in previous sections. In our study, we as-
sumed that the first pyramidal population extends from
layer 1 to layer 5, while the second extends from layer 1
to layer 3.
This Neural Mass Model is incorporated within a

layered structure consisting of two isotropic media: gray
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matter (GM) and cerebrospinal fluid (CSF). The model
estimates synaptic currents, denoted as Is, by assuming
that synapses to pyramidal cells are the primary sources
of these currents, as suggested by earlier research [19, 25].

Multi-compartmental neuron model– Then, we
use the geometrical model to build a larger model of a
cortical region [13]. This model comprises a group of neu-
rons arranged to simulate cortical layers within a geomet-
rically defined volume, as illustrated in Fig. 3B, offering
a realistic depiction of cortical activity.

A central aspect of the analysis involves the calcula-
tion of the Current Source Density (CSD), denoted as
CSD(z, t). The CSD provides a measure of the net vol-
ume density of current sources within a small volume of
neural tissue at a particular depth z and time t. It is
computed as follows:

CSD(z, t) =
∑
s

∑
i

νs,iIs(z, t)CSDi(z). (4)

In this equation, νs,i signifies the probability of a synap-
tic contact from population s located in layer i. The
term Is(z, t) stands for the synaptic current, which is as-
sumed to be proportional to the post-synaptic potential
generated by a synapse in the context of NMM, specifi-
cally the laminar model in our study. CSDi(z) denotes
the current source density produced when a unit synaptic
current is injected into compartments in layer i of a neu-
ronal population within a cortical patch. Note that the
CSDi(z) values are pre-computed, derived from multi-
compartmental, highly detailed geometric models of neu-
rons, as explained in Ref. [13].

Lastly, we used a pre-computed Finite Element
Method (FEM) model. This sophisticated technique ac-
counts for the unique electrical conductive properties of
different brain tissues and the specific spatial configura-
tion of the Neuropixel probe. By combining the FEM
model with the CSD(z, t), it was possible to simulate
time-dependent voltages across multiple cortical depths.

The FEM model consists of three layers, representing
the white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF). Given the symmetry of the prob-
lem, these layers were modeled using an axisymmetric
approach. Fig. 3C depicts the geometry of the model and
the thicknesses of the layers as well as their conductivity
values. We solved for every depth, z, in the CSD distri-
bution, a model with an array of discrete point sources
(i.e., line current sources given the model’s axisymmet-
ric nature) evenly distributed every 10 µm in the radial
direction. A distance of 100 µm was left between the
symmetry axis and the nearest source to account for the
thickness of the probe and possible infiltration of CSF
due to the insertion.

The electric potential distribution was calculated by
solving the Laplace equation:

∇⃗ · (β∇⃗λ) = 0, (5)

with additional boundary conditions of the current
sources described above and a ground (zero potential)
defined along the bounding box. In Eq. (5), β is conduc-
tivity and λ is a potential
We extracted the voltage at different depths inside

the GM at the symmetric axis and referenced it to a
point 10 µm deep in the WM to represent the tip of the
probe. Finally, the voltage generated by any distribution
CSD(z, t) was calculated by linearly combining it with
the solutions of the FEM model.

FIG. 3. A: Architecture of the laminar model used in our
study, consisting of two types of pyramidal cells as described
in [11]. In our case, we suppose that the first model spans
from layer 1 to layer 5, while the second model spans from
layer 1 to layer 3. They are shown with realistic morphol-
ogy. B: The creation process of a multi-compartmental neu-
ron model for the LaNMM. Neurons are spatially distributed
within columns in GM, with their somas located inside their
corresponding layers. C: Schematic representation of the ax-
isymmetric geometry used to simulate a pair of SEEG con-
tacts using the Finite Element Method (FEM).

Clearly, a crucial aspect of the simulation described
in Eq. (4) is the synaptic distribution among neuron
groups. By altering this synaptic distribution, repre-
sented by different νs,i values, we could influence the
resulting current-source density (CSD) and subsequent
voltage. To validate our laminar model, we conducted
an extensive analysis of two synaptic distribution tables,
one sourced from the literature and another generated by
a Genetic Algorithm to best align the model’s simulated
data with the experimental one.

E. Synaptic Distribution from Literature Review

We created a synaptic probability table, Table I,
based on existing literature describing the distribution
of synapses between different cells. This table accounts
for the spatial distribution of synapses received by the
pyramidal cells represented in the P1 and P2 popula-
tions of the LaNMM. We have to take into account our
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assumption when considering that neurons from the first
population span from layer 1 to layer 5, whereas neurons
in P2 span from layer 1 to layer 3.

The summary provided in Table I gave insight into the
balance between excitation and inhibition in the mam-
malian cortex and served as a grounded template to gen-
erate realistic CSD using the physical model.

To understand the table, it must be noted that pyra-
midal cells are excitatory neurons found primarily in
the cerebral cortex and hippocampus of the mammalian
brain. They play a crucial role in cortical connectivity,
receiving inputs from various sources, including local in-
hibitory interneurons, long-range inputs from the thala-
mus or other cortical areas, as well as other pyramidal
cells [26]. In the review that shapes Table I, we consid-
ered all the synaptic connections present in the LaNMM.
These include glutamatergic coupling from other pyra-
midal neurons (P1, P2) and excitatory cells (SS).

In the next lines we describe the spatial properties of
these different synaptic influences based on existing lit-
erature on the distribution of synapses across cortical
layers. We also consider the role of GABAergic neurons,
which provide inhibitory control and are composed of
different subtypes, including parvalbumin (PV) and so-
matostatin (SST) [27]. Next, we describe the spatial dis-
tribution of these synapses based on existing literature.

In layer 1, direct connections between pyramidal cells
are rare [28], but we allocate a small proportion of
synapses to this layer due to potential connections involv-
ing distal tufts of apical dendrites. On the other hand,
layers 2 and 3 have strong intralaminar connectivity [29].
However, pyramidal cells in layer 3 have more extensive
lateral axonal projections than layer 2 pyramidal cells,
which increases the likelihood of synaptic connections in
layer 3 compared to layer 2. Finally, we do not allocate
any synapse to layers 4, 5, and 6, as we assume that P2
does not extend into these layers.

Almasi et al., [30], discussed the localization of PV+
cells, noting that they are present in all cortical layers ex-
cept layer 1, with a preference for layers 4 and 5. Their
presence in layers 2 and 3 enables them to form synapses
with pyramidal cells spanning these layers. The 3/10 pro-
portion in layer 2 and the 7/10 proportion in layer 3 are
approximations based on PV+ cells’ overall distribution
in these layers. Since the pyramidal cell that belongs to
the circuit where we model the PV+ population does not
extend into layers 4, 5, and 6, it cannot receive synapses
from PV+ cells in these layers. Our analysis reflects this
by allocating zero proportions to layers 4, 5, and 6.

We simplified SST+ inhibitory neurons to Martinotti
cells for our study. These cells contact apical dendrites
about half of the time, with the remaining contacts oc-
curring with nearly equal probability at basal dendrites
and the tuft, [31]. Mercadal et al., [13], stated that
Martinotti cells primarily interact with apical dendrites,
which make up roughly half of their connections. Api-
cal dendrites extend across layers 3 and 4, leading to an
equal distribution of synapses between these two layers,

with 1/4 of the connections in layer 3 and another 1/4 in
layer 4. The remaining half of the connections are split
almost evenly between basal dendrites and the tuft, re-
sulting in 1/4 of the connections occurring at the tuft and
another 1/4 involving basal dendrites. Since tuft inputs
are equally distributed between layer 1 and layer [32], the
synapses directed to layer 1 result in 1/8 and 1/8 to layer
2. Similarly, basal inputs are distributed, allocating 1/8
of synapses to layer 5 and 1/8 to layer 6. In our case,
however, the pyramidal cell considered does not extend
to layer 6. Hence, the basal inputs are solely directed
to layer 5. This adjustment increases the percentage of
synapses in layer 5 to 1/4, while layer 6 does not receive
any connections.

External inputs, primarily associated to signals from
the thalamus and other cortical regions, also play an im-
portant role in neuronal communication. Most notably,
these thalamic and higher-order cortical inputs target the
upper layers and, to a lesser degree, layer 5 [13, 31]. To
reflect this pattern, we distributed the synapses of the
first pyramidal cell, which extends from layer 1 to layer
5, as follows: 2/5 of the synapses are allocated to each of
layers 1 and 2, with the remaining 1/5 directed to layer 5.
For the second pyramidal cell, which is limited to layers
1 through 3, the synaptic distribution is different. We
assigned half of the synapses to each of layers 1 and 2.
This distribution acknowledges the cell’s extension lim-
itations and reflects the concentrated external inputs in
the upper layers.

Lastly, the excitatory input labeled ‘SS’ primarily orig-
inates from other pyramidal cells [13]. These connections
predominantly take place at the basal dendrites in layer
5 (2/3 of the time), while less frequently, they occur at
the apical dendrites (1/3 of the time) [32]. In accordance
with these findings, our table shows no connections in
layers 1 and 2, a 1/6 connection probability in layer 3
and layer 4, and a peak of 2/3 in layer 5.

TABLE I. Heatmap table representation of the synaptic dis-
tribution in the cortex of the populations considered in the
laminar model based on the literature review. Each row
corresponds to a particular synaptic connection, denoted as
’source−→target’. The columns L1 to L6 represent the six dif-
ferent layers of the cortex. Each cell indicates the probability
of the respective connection in the respective cortical layer.
The color intensity in each cell represents the magnitude of
the probability, with darker blue indicating a higher proba-
bility.

6



Validation and Refinement of a Laminar Neural Mass Model Martina Moreno Fina

F. Genetic Algorithm

A Genetic Algorithm (GA) is a heuristic search that
simulates the process of natural evolution, employing
mechanisms inspired by biological genetics such as se-
lection, crossover (recombination), and mutation. These
evolutionary strategies guide a population of potential so-
lutions towards an optimal one, with the quality of each
solution evaluated by a defined fitness function. Over
successive generations, the population converges toward
the best solution for a given problem [33].

In our work, every stage of the Genetic Algorithm,
from the initial design to final execution and performance
evaluation, was developed and handled solely by the au-
thor. Additionally, a simplified pseudocode of the Ge-
netic Algorithm is available in the appendix under Pseu-
docode of Genetic Algorithm.
Our task is to find a synaptic distribution table,

which in this case is represented as a matrix, that
makes the model best fit the experimental data obtained
from a Neuropixel probe. A population, P , of candidate
matrices, which detail connections among various neuron
groups across different layers, serves as the chromosomes
in our Genetic Algorithm (GA). These matrices evolve
towards an optimal solution.Below we outline the most
important processes of the algorithm.

Initialization– The Genetic Algorithm starts with
the creation of an initial population of chromosomes
c ∈ P , where each chromosome c = (cij) is a potential
solution represented as a 8 × 6 matrix. Each row of the
matrix represents the different cortex layers, from 1 to 6,
while the columns signify synapses between two different
groups of neurons.

We generate the initial P randomly. Elements in the
synaptic distribution matrix are initialized with random
values between 0 and 1, while considering the physical
structure of the model. Certain elements are set to zero
due to physiological constraints. Specifically, connections
to layers 4− 6 from the second pyramidal cell, which are
not physically possible as this cell spans layers 1 to 3 and,
similarly, connections to layer 6 in the first pyramidal cell.

In addition, each row of the matrix must sum up to 1
as it represents 100% of the synapses across a specific
layer (

∑6
j=1 cij = 1, i = 1, . . . , 8). Hence, after filling

all elements, each row is normalized to preserve the
interpretation of these values as probabilities.

Fitness function– The algorithm’s goal is to max-
imize the similarity in the relative powers of the alpha
(4−22 Hz) and low gamma (32−48 Hz) frequency bands
across depths between the model output and the exper-
imental data. Relative power is computed as the ratio
of power within a specified frequency band to the total
power across all frequencies at each depth, providing an
index of the dominance of these rhythms in the signal
generated by the model.

In order to calculate these relative powers, we use a

laminar Neural Mass Model embedded within a multi-
compartmental neural model. This model takes the
synaptic distribution (c in the Genetic Algorithm) as in-
put and produces a simulated Neuropixel-like voltage sig-
nal, which reflects the electrical activity within the brain.
From this voltage signal, we compute the bipolar lo-

cal field potential (bLFP) by taking the difference be-
tween consecutive voltage values. Using Welch’s method,
we then quantify the power spectral density (S) of this
bLFP. This method divides the data into overlapping
segments, computes a periodogram for each segment by
applying a window function, and averages these peri-
odograms to obtain S, which details the power of the
signal across different frequencies.
Finally, we derive the relative power for each depth

within the alpha and gamma frequency bands from the S.
For each depth and specified frequency band, we sum the
power within the band and divide it by the total power
across all frequencies at that depth. This is done for both
the 4−22 Hz (alpha band) and 32−48 Hz (gamma band),
providing an indication of the dominance of each rhythm
(alpha and gamma) in the signal generated by the model
at each depth.
Before evaluating fitness, we ensure that the model-

generated and experimental data are comparable. To
accomplish this, we interpolate the experimental data
to match the model’s higher spatial resolution, aligning
the structure of the experimental data with that of the
model.
We do the evaluation of the similarity between the two

data sets by computing the Pearson correlation coeffi-
cients separately for alpha and gamma bands, ρα and
ργ , as:

ρα(c) =
cov(S

exp

α , Sα(c))

σ(S
exp

α ) σ(Sα(c))
, (6)

ργ(c) =
cov(S

(exp)

γ , Sγ(c))

σ(S
exp

γ ) σ(Sγ(c))
, (7)

where S
exp

α is the relative power within the alpha fre-

quency given the experimental data and similarly S
exp

γ

for the gamma band. On the other hand, Sα(c) and
Sγ(c) are the simulated relative powers data for a chro-
mosome, c, in the alpha and gamma frequency bands,
respectively.
The coefficients ρα and ργ measure the correlation

between the model-generated and experiment-derived
relative powers across depths. Subsequently, we take
the average of these two Pearson correlation coefficients,
ρ(c) = (1/2)(ρα(c) + ργ(c)). A high average correlation
coefficient suggests that the relative powers produced by
the model closely align with those from the interpolated
experimental data.

Selection– The selection process in the Genetic
Algorithm aims to identify the fittest chromosomes in
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P to produce new offspring. This process relies on
evaluating the performance of each individual, with
those demonstrating better performance, as indicated by
a higher Pearson correlation coefficient, being assigned
a greater probability of being chosen as parents for
producing new offspring. Consequently, this selection
process promotes the propagation of favorable traits and
enhances the overall quality of P by favoring individuals
with superior performance.

Crossover– After the selection process, pairs of
parents undergo the crossover operation to produce
offspring, constituting the new P . The occurrence of
this operation is determined by the crossover rate, rc,
which controls the extent of genetic recombination.
In our approach, we utilize an interpolation-based
recombination process applied independently to each
row. Rather than directly mixing the parents, we assign
random weights, W , to each parent during offspring
creation, allowing for a more intricate exploration of
the solution space and promoting genetic diversity.
Subsequently, to maintain the coherence and validity of
the synaptic matrix, we normalize each row to ensure
that the probabilities sum up to 1.

Mutation– The subsequent step involves applying a
mutation operation to the offspring. Mutation is a vital
mechanism for maintaining genetic diversity within the
P and avoiding premature convergence to suboptimal
solutions. During mutation, a random element in the
c matrix, except for those previously restricted to 0, is
selected and altered by assigning it a new value between
0 and 1. The probability of this process occurring is
determined by the predefined mutation rate, rm, that
governs the extent of genetic mutation. To ensure
the integrity of the synaptic matrix and preserve its
meaningful interpretation, a normalization is performed
on the modified row, ensuring that the probabilities
continue to sum up to one.

Solution Evolution– The Genetic Algorithm pro-
gresses through multiple generations, evolving its P with
each iteration. In each generation, c undergoes selection,
crossover, and mutation operations, collaborating to pro-
duce increasingly superior solutions.

After completing the specified number of generations,
Ngen, the GA determines the best solution obtained dur-
ing the evolutionary process. This solution represents
the synaptic distribution matrix that maximizes the sim-
ilarity between the relative powers across depth for the
alpha and gamma frequency bands computed from mod-
eled and experimental data. The determination of the
best solution is based on the highest fitness value.

Through this iterative process, the genetic algorithm
explores a diverse range of potential solutions, gradually
refining the synaptic distribution matrix to closely match
the output of the model with the experimental data.

1. Genetic Algorithm Parameters

The Genetic Algorithm adopted in our research op-
erates based on four crucial parameters, as outlined in
Table II. These parameters are fine-tuned through man-
ual adjustment following careful observation of the algo-
rithm’s behavior under varying parameter values.

• Population size, Psize: Total number of chromo-
somes present in each generation.

• Number of generations, Ngen: Count of iterative
cycles the algorithm goes through.

• Mutation rate, rm: Likelihood of chromosomes un-
dergoing spontaneous alterations or ‘mutations’.

• Crossover rate, rc: Probability of chromosomes to
intermix in order to create offspring.

TABLE II. Values of the parameters used in the Genetic Al-
gorithm

Parameter Value

Population Size, Psize 10

Number of generations, Ngen 105

Mutation Rate, rm 0.40

Crossover Rate, rc 0.75

In our research, we employed a Genetic Algorithm to
tackle a complex problem while managing computational
resources effectively. Due to the high computational cost
per individual evaluation in our problem, we opted for a
smaller population size of 10. This choice ensured man-
ageable computation at each generation.
However, to ensure a broad exploration of the solution

space over time, we offset the smaller P with a large
Ngen = 105 in this case. This high number of generations
allowed for extensive search space exploration, providing
more opportunities for genetic operations like crossover
and mutation.
In essence, our strategy navigates the trade-off between

computational feasibility and solution quality by adjust-
ing Psize and Ngen. This approach maintains reasonable
computational costs while effectively exploring diverse
solutions, a critical aspect in the application of Genetic
Algorithms to complex problems.
Regarding the rm, we inform our selection by pre-

liminary simulations spanning 5000 generations. During
these simulations, we vary the mutation rates within the
range of 0.1 to 0.4, while keeping the crossover rate con-
stant at 0.9. We decided to maintain this particular rc
during our exploratory study because of its typical effec-
tiveness in Genetic Algorithms [34]. However, any value
can be selected as our key interest is observe the interplay
between the mutation rate and fitness.
We strategically selected the range for rm. The lower

limit of 0.1, which is conventionally considered high for
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many problems, was established to promote genetic di-
versity and mitigate the risk of converging prematurely to
local minima, a common challenge in our problem given
the presence of excitatory, inhibitory, and noise contri-
butions. We chose an upper limit of 0.4 to ensure that
less than 50% of an offspring’s genes are likely to mutate.
This limit is important to prevent the Genetic Algorithm
from acting as a purely random search, thus maintain-
ing the significance of offspring generated through the
crossover. With an excessively high rm, beneficial com-
binations of genes that could lead to improved solutions
might be altered too frequently, thereby diminishing the
effectiveness of the crossover operation.

As shown in Fig 4 (top), a mutation rate of 0.4 op-
timally enhances the performance of our Genetic Algo-
rithm. Although this rate might be considered high com-
pared to traditional standards [34], it favorably promotes
population diversity and guards against premature con-
vergence to sub-optimal solutions.

In regards to the crossover rate, we decided to set it to
0.75 based on the evidence presented in Fig 4 (bottom).
This chart shows that a rc of 0.75 results in the highest
fitness during relatively short simulations of 5000 gen-
erations, with rm held constant at 0.4, a value selected
based on its superior performance in Fig 4 (top).

FIG. 4. Evolution of optimal fitness given varying parameters.
Top: Comparison among different mutation rates, rm, with a
constant crossover rate of 0.90. Bottom: Comparison among
different crossover rates, rc, with a constant mutation rate of
0.40.

In our exploration, we considered three different

crossover rates, spanning a range from 0.6 to 0.9. The
decision to restrict our scope within this range is twofold.
Firstly, we aim to ensure that, with a probability greater
than half, a new offspring would be created by merg-
ing the solutions of two parents, thereby fostering solu-
tion diversity and effective exploration of the problem
space. This idea informs our decision for a lower limit
of 0.6. On the other hand, we set the upper limit to
0.9 to avoid an excessively high rate of crossover that
might lead to new offspring being almost always gener-
ated through crossover. Such a scenario could potentially
limit the variability within the population and hinder the
exploration of new solution spaces [34].
Our findings show that a balance between these two

extremes, represented by a rc of 0.75, provides the most
effective approach in our case, enabling the Genetic Al-
gorithm to robustly search the problem space while si-
multaneously refining promising solutions.
The simulation time for our study, employing the pa-

rameters shown in Table II, is approximately 57 hours.
This computation was conducted on a high-performance
computer at Neuroelectrics enterprise equipped with 120
cores. To leverage this computational power and expe-
dite the simulation process for each individual, we im-
plemented a multi-threading approach. This strategy al-
lowed us to concurrently generate data for each chromo-
some across all generations, substantially reducing the
overall computation time. Consequently, we managed to
perform a detailed exploration of the solution space with
a large Ngen within a practical time frame.

III. RESULTS

A. Fitting the Model’s Stochastic Noise to
Experimental Data

The primary goal of the initial phase of our research
is to tailor the stochastic external input to more closely
resemble experimental data. This noise is represented as
pink noise, denoted as ext in Fig. 2A, with each pyrami-
dal cell being assigned its unique noise value.
Pink noise, also known as 1/f noise, is a signal or pro-

cess characterized by a frequency spectrum wherein the
power spectral density inversely correlates with the fre-
quency. Within our model’s framework, pink noise sym-
bolizes external inputs primarily arising from the thala-
mus and other cortical regions.
We preserve the mean value of this pink noise at the

levels set in the foundational laminar model study, which
is 200 Hz for P1 and 90 Hz for P2 [11]. By doing so,
we safeguard the integrity of the external input’s power
and frequency domain characteristics since any alteration
to these mean values can potentially distort the natural
population dynamics.
On the other hand, to achieve better alignment with

the experimental data, we adjust the standard deviation
(σ). The laminar model initially set σ at a constant 5 Hz.
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FIG. 5. Comparative Power Spectral Density Analysis
for Experimental and Model-Simulated Data under
Different Noise Conditions: This panel illustrates four
color-coded logarithmic scale plots of power spectral density,
S, measured in mV2/Hz. The range extends from frequen-
cies of 0 Hz to 100 Hz and depths from -200 µm to -1600
µm, with warmer colors signifying higher S values. The top
plot showcases the S derived from experimental data while
the others represent the S of model-simulated data using a
random synaptic distribution with different selected standard
deviations (σ = 200 Hz, 50 Hz, 500 Hz).

However, our research finds that an increase in this value
leads to a more accurate replication of the experimental
data by visual inspection. As evident in Fig. 5, a σ of
200 Hz yields a heat map most resembling that of the
experimental data, whereas 50 Hz was deficient, and 500
Hz was excessively high.

This qualitative strategic adjustment of the standard
deviation for our external input noise allowed us to en-
hance the model’s precision, thereby achieving a more
accurate depiction of the neuronal behavior observed in
our experimental data.

B. Dominance of Gamma and Alpha Oscillations

One of the central aspects of this study relates to
the dominance of gamma and alpha oscillations in com-
parison with other frequencies predicted by the laminar
model [11]. This dominance emerges from our dual-
frequency approach of the laminar model [11]. This char-
acteristic has been previously demonstrated in Fig. 2,
which represents the logarithm of the power spectral den-
sity across frequencies for the two pyramidal populations.
In Fig. 6A, we see the congruity between the exper-

imental and model-simulated data, represented by the
mean power spectral density across depth. The shaded
areas, corresponding to the alpha (4 − 22 Hz) and low
gamma (32 − 48 Hz) frequency bands, align with the
peaks of the mean S. This agreement underscores the
dominant oscillatory activities within these frequency
bands in the experimental data, thereby affirming the
validity of our combined model. Notably, this correspon-
dence holds even when the simulated data is obtained
using a random distribution of synapses, reflecting the
inherent nature of the dual-frequency approach within
the model.
However, a discrepancy arises when examining the rel-

ative power distribution across cortical depth, as shown
in Fig. 6B. Despite adhering to the dual-frequency ap-
proach, the model-simulated data, under the assumption
of a random synaptic distribution, diverges noticeably
from the experimental data, especially within the gamma
frequency band. This deviation emphasizes the pivotal
role that the realistic physical layer [13] plays in shap-
ing the relative power across different cortical layers. It
points to the need for refining our model with a more
informed synaptic distribution to accurately emulate the
experimental observations.

C. Model Fitting with Genetic Algorithm

The third part of our study focuses on refining our
model for a more accurate alignment with experimen-
tal observations in the relative power profiles. To this
end, we employ a Genetic Algorithm (GA) to identify
the synaptic distribution that most accurately matches
the experimental data.
Fig. 7 A illustrates the effectiveness of the GA, chart-

ing the progression of the best fitness scores over gener-
ations, computed separately for both alpha and gamma,
as well as the total best fitness. We calculate the total
best fitness as the average of Pearson’s correlation values
for the alpha and gamma of each chromosome. Thus, the
depicted best fitness in the plot is not a straightforward
mean of the individual best fitness scores shown since
the best fitness for alpha may be achieved by a differ-
ent chromosome than the one achieving the best gamma
fitness.
The best fitness values shown represent the highest

Pearson coefficients identified across all prior generations,
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FIG. 6. A: Mean Power Spectral Density Comparison: The top graph here represents the mean S for experimental
data, and the bottom graph illustrates the mean S for model-simulated data with a random synaptic distribution. The mean
S (green line) is calculated across all depth points for each frequency in the 0-75 Hz range. The alpha (4-22 Hz, shaded in
blue) and gamma (32-48 Hz, shaded in red) frequency bands are highlighted. S values are presented on a logarithmic scale
for improved visualization. B: Relative Power of Cortical Activity Across Cortical Depth Comparison: This panel
compares the relative power of cortical activity across cortical depth between experimental data (continuous, lighter lines) and
model-simulated data with a random synaptic distribution (marked by dashed, darker lines). The relative power is plotted
against cortical depth, represented in µm. The plot on the left shows the relative power of the alpha frequency band (blue),
and the plot on the right illustrates the relative power of the gamma band (red).

updated only when a superior value is discovered. This
progression indicates that, as the generations evolve, the
model-simulated data increasingly aligns with the exper-
imental data, resulting in progressively higher Pearson
coefficients.

This trend clearly illustrates the evolutionary nature
of synaptic distribution, exploring a broad array of po-
tential solutions and selecting the most suitable ones for
further evolution. This evolution occasionally stalls due
to numerous local minima introduced by the interplay
of excitatory, inhibitory processes and noise. However,
these stalls are counteracted by a high rm, set as a model
parameter. The process culminates in achieving a Pear-
son coefficient of 0.67, marking it as the best total fitness.

Fig. 7B visually depicts the synaptic distribution pre-
dicted by the Genetic Algorithm (GA). A more intense
blue color represents a higher connection probability,
providing an in-depth view of the synaptic distribution
across the various cortical layers. It is important to note
that the zeros appearing in layer 6, and in layers 4 and
5 for the second pyramidal cell, are predetermined. This
consideration aligns with our initial supposition that the
first pyramidal cell extends from layer 1 to layer 5, while
the second one extends from layer 1 to layer 3.

Finally, Fig. 7C illustrates the relative powers of the

alpha and gamma frequency bands across depth. When
comparing these plots to those depicted in Fig. 6B, we
notice a closer resemblance between the model’s data and
experimental data when using the synaptic distribution
optimized by the GA. This observation confirms the ef-
fective role of the GA in refining the model to more ac-
curately emulate the experimental data, further empha-
sizing the vital role of synaptic distribution within our
model.

D. Comparison between the Distribution of
Synapses Predicted with GA and Literature

In Fig. 8A, we can observe the quadratic interpolation
of synaptic distribution across six cortical layers (L1-L6)
for eight distinct synaptic connections, categorized based
on the two types of pyramidal cells. The synapses’ ori-
gins are color-coded as per the legend on the left, which
corresponds to the color scheme presented in Fig. 2A.

We show the synaptic distribution for three scenar-
ios: one based on literature data, another predicted by
the Genetic Algorithm (GA), and a third one following
a random distribution. Each of them presents distinct
patterns and characteristics that are worth noting.
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FIG. 7. A: Evolution of Fitness Scores in Genetic Algorithm: Illustration of the evolution of the best fitness scores
over successive generations of the Genetic Algorithm. The total fitness score (green) represents the average of the Pearson
correlation coefficients for the alpha and gamma frequency bands, thus demonstrating the convergence of the model over time.
The individual evolutions of the best fitness scores for the alpha (blue) and gamma (red) frequency bands are also displayed.
B: Heatmap Table of Synaptic Distribution Predicted by Genetic Algorithm: A heatmap table representation of
the synaptic connection probabilities in the cortex of the populations considered in the laminar model, as predicted by the
Genetic Algorithm. Each row corresponds to a specific synaptic connection, denoted as ’source−→target’. The columns L1
to L6 represent the six different layers of the cortex. Each cell illustrates the probability of the respective connection in the
corresponding cortical layer. The color intensity in each cell symbolizes the magnitude of the probability, with a darker shade
of blue signifying a higher probability. C: Comparison of Relative Power of Cortical Activity across Cortical Depth:
This section compares the relative power of cortical activity across cortical depth between experimental data (continuous,
lighter lines) and model-simulated data using the synaptic distribution predicted by the Genetic Algorithm (dashed, darker
lines). The relative power is plotted against cortical depth in µm. The plots display the relative powers for the alpha (blue,
on the left) and gamma (red, on the right) frequency bands, thus providing insights into the model’s performance at different
frequency ranges.

Upon a preliminary inspection, The plot reveals clear
differences in the synaptic distribution profiles across
different layers of the cortex. The random distribution
exhibits sharp fluctuations between layers, suggesting
a lack of smooth transitions that might not reflect
biological reality. In comparison, the GA-predicted
distribution portrays a smoother transition, suggesting
a more consistent representation of synaptic connec-
tions within the cortex. Lastly, the literature-based
distribution seems to be intermediate, presenting some
variability across layers while retaining an element of
smoothness present in the GA-predicted distribution.

Fig. 8B presents two tables that outline the discrepan-
cies between the synaptic distribution derived from liter-
ature and two distinct methodologies: a random distri-
bution and a GA prediction incorporated within a physi-
cally embedded laminar model in a multi-compartmental
neural model. These tables utilize higher and lower val-

ues to indicate larger and smaller deviations from the
literature data, respectively.

An initial observation when scrutinizing these tables is
the notable discrepancy in the ‘ext−→P2’ connection un-
der the random distribution, where the differences reach
a value of 0.90. In contrast, the GA prediction consider-
ably mitigates this discrepancy for the ‘ext−→P2’ connec-
tion, resulting in values from 0.18 to 0.32.

The highest discrepancy observed for the GA-predicted
synapses is markedly lower than the one seen in the ran-
dom predictions (0.57 vs. 0.90), thereby reinforcing the
relative superiority of the GA predictions.

However, it is crucial to note that the GA predictions
do not exhibit uniform superiority across all connections.
For instance, the ‘PV−→P2’ connection illuminates a po-
tential shortfall of this distribution. Particularly in layer
1, the predictions for this connection demonstrate a more
significant deviation from the literature data compared
to the random distribution.
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FIG. 8. A: Quadratic Interpolation of Synaptic Distributions: This figure shows the quadratic interpolation of synaptic
distributions based on literature (left), predicted by the GA (middle), and of a random distribution (right). The interpolated
probability distributions are plotted across six layers (L1-L6) of the cortex for eight distinct synaptic connections, as described
in the laminar model. The interpolation was performed using a quadratic function to ensure a smoother representation of the
distribution. The connections are divided into two groups, each representing a different type of pyramidal cell. The color legend
on the left indicates the source of the synapses and corresponds to the color code that appears in Fig 2 A. B: Heatmap Tables
of Absolute Differences in Synaptic Distribution: Illustration of heatmap tables of the absolute differences in synaptic
distributions. On the left, the difference is between a synaptic distribution based on literature review and one predicted by the
Genetic Algorithm. On the right, the difference is between a synaptic distribution based on literature review and a completely
random distribution. Each row corresponds to a particular pair of connections. Columns L1 to L6 represent the six different
layers of the cortex. The intensity of the color in each cell represents the magnitude of the difference, with a darker shade of
red indicating a larger difference.

An additional observation arising from the experimen-
tal conditions relates to cortical layers 2 and 3. Typ-
ically, experimental procedures do not differentiate be-
tween these two layers, treating them as a single layer
(2/3). Adopting this approach in our synaptic distribu-
tion table could potentially enhance the alignment be-
tween the data from literature (Table I) and the distri-
bution predicted by the Genetic Algorithm (Fig. 7B),
especially in the case of the second pyramidal cell. This
hypothesis stems from the consistent pattern observed in
both tables: when the probabilities for layers 2 and 3 are
summed, the resulting value is always equal to or greater
than that for layer 1. Thus, considering layers 2 and 3 as
a unified entity could potentially refine our understand-
ing and modeling of the synaptic distribution.

Further comparison of these two different synaptic dis-

tributions can be found in Table III, which calculates
the cross-correlation between the one predicted by the
GA and the literature-derived distribution, as well as be-
tween the random distribution and the literature data.
In this analysis, higher cross-correlation values nearing 1
indicate a higher degree of similarity between datasets,
while values approaching -1 suggest greater divergence.

The ‘Literature vs. Random’ column reveals that the
cross-correlation values for most synaptic connections
predominantly fall within a range of 0.22 to 0.37, ex-
cept for ‘ext−→P2’, which registers a considerably lower
value of 0.05. This suggests that, aside from ‘ext−→P2’,
the random distribution generally exhibits some level of
correlation with the literature-based dataset.

Moving on to the ‘Literature vs. Predicted’ column,
most synaptic connections’ values are comparable to or
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TABLE III. Cross-correlation between the distribution of the
synapses computed from literature and a random distribution
(Lit. vs. Random), and between the one from literature and
the predicted by the genetic algorithm (Lit. vs. Predicted).

Synapses Lit. vs. Random Lit. vs. Predicted

ext−→P1 0.23 0.21

SS−→P1 0.22 0.20

SST−→P1 0.24 0.20

P2−→P1 0.28 0.29

P2−→P2 0.37 0.33

PV−→P2 0.35 0.20

ext−→P2 0.05 0.34

P1−→P2 0.31 0.32

slightly lower than those in the random distribution. In-
terestingly, the ‘ext−→P2’ correlation shows a marked im-
provement to 0.34, in contrast to its random counterpart
at 0.05, indicating a stronger alignment with the litera-
ture data in the GA prediction.

To summarize, these findings imply that, while the
GA-predicted distribution exhibits a degree of alignment
with the literature data, in most cases, the random dis-
tribution shows a slightly higher correlation. This ob-
servation warrants further investigation and refinement
of the predictive model to enhance its ability to emulate
experimental data and maintain physiological relevance.

IV. DISCUSSION

This study aimed to enhance the precision of the lam-
inar Neural Mass Model (LaNMM) to better simulate
the observed neuronal behavior in experimental data.
Our work is motivated by the increasing recognition of
gamma oscillations’ pivotal role in various cognitive func-
tions and their association with several neurological and
psychiatric disorders, particularly Alzheimer’s disease [1].
The ongoing advances in non-invasive brain stimulation
techniques, like 40 Hz transcranial alternating current
stimulation (tACS), underscore the need for more ac-
curate and physiologically relevant models [3, 4]. In
this context, the LaNMM integrates two well-established
models—Jansen and PING—to induce slow and fast os-
cillations within the alpha and gamma frequency bands,
respectively [11]. In order to refine this model, we physi-
cally embedded it within a multi-compartmental neuron
model, which allows us to compare the model’s predic-
tions directly against experimental data [13].

Our first significant modification involved adjusting
the external input noise in the model, representing
largely inputs originating from the thalamus and other
cortical regions. We found that altering the standard de-
viation of this noise is crucial for aligning the model with
experimental data. After conducting a thorough study
on various values, we set it at 200 Hz.

With respect to the dual-frequency approach, it is evi-
dent that the LaNMM’s predictions match well with the
experimental data. Moreover, the model’s intrinsic ca-
pacity to produce dominant alpha and gamma frequen-
cies was robustly observed, even when we used a random
synaptic distribution. However, the results obtained as-
suming a random synaptic distribution significantly de-
viated from the experimental data when evaluating the
relative power distribution across cortical depth, espe-
cially within the gamma frequency band. This discrep-
ancy highlights the need for refining our model with a
more informed synaptic distribution.
In response to these findings, we employed a Genetic

Algorithm (GA) to optimize our model. Our aim was
to align the distribution of the model-simulated relative
power more closely with the experimental data. De-
spite occasional stagnation due to local minima, the GA
proved to be an efficient tool in refining the synaptic dis-
tribution. We achieved a Pearson coefficient of 0.67—an
impressively high value considering the context of exper-
imental data. The results clearly show that the relative
powers with the predicted synaptic distribution closely
resemble the experimental data compared to simulations
using a random distribution of synapses.
In our final analysis, we compared both the GA-

based predictions and a random distribution with the
literature-based distribution, in order to assess bio-
logical validity. While the random distribution often
aligns slightly better with the literature data, the GA-
predicted distribution demonstrates smoother transitions
and superior alignment for specific connections, such as
’ext−→P2’. Nevertheless, certain discrepancies, notably
in the PV−→P2 connection, indicate areas for further re-
finement.
Overall, our comparisons of synaptic distributions have

shed light on the complexity of cortical layer interactions.
Although the random distribution generally exhibits a
higher correlation with the literature, the GA-predicted
distribution’s smooth transitions and alignment in spe-
cific connections revealed its potential for greater accu-
racy. These findings underscore the need for continuous
model refinement to better replicate experimental data
and maintain physiological relevance.

V. LIMITATIONS OF THE STUDY AND
CONCLUSIONS

Our study makes significant contributions to under-
standing the potential of Neural Mass Models for simu-
lating physiological data, but it is also subject to certain
limitations.
Firstly, our research is constrained by assumptions

about the architecture of the two pyramidal cells involved
in the laminar model. We hypothesize that the first cell
spans from layer 1 to layer 5, while the second extends
from layer 1 to layer 3. Future research should aim to
explore different configurations of these pyramidal cells
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and examine how changes in their architecture influence
the model’s predictions.

Secondly, we derived the synapse distribution utilized
in our study for validation from existing literature. How-
ever, the current understanding of synapse distribution
is still evolving, and the complexity of the required ex-
periments means that data is limited. Most notably, the
distinction between layers 2 and 3 is often omitted in
the existing literature; we chose to include this separa-
tion to better compare our predicted synapse distribu-
tion. A more refined understanding of synapse distribu-
tion across different layers, provided by future research,
would significantly enhance our ability to validate our
model’s predictions.

Thirdly, the application of our model was limited to
experimental data from a single subject. To strengthen
the robustness and applicability of our findings, it would
be beneficial for future studies to incorporate data from
multiple subjects. This would not only ensure the valid-
ity of the model’s predictions across different individuals
but could also highlight potential variations in synaptic
distribution.

Lastly, given our use of a genetic algorithm in this
study, there is an opportunity for future research to
explore larger simulations. This could lead to an in-
creased correlation between simulated and experimental
data, potentially improving the predictive precision of
the model.

Despite certain limitations, our study highlights the
utility of Neural Mass Models as powerful tools for un-
raveling the complexities of the brain. Our research paves
the way for a deeper understanding of neurological dis-
orders and establishes a strong foundation for develop-
ing a model that accurately predicts the effects of tran-
scranial Alternating Current Stimulation (tACS). Future
work will build upon these findings, utilizing this refined
model to analyze the remaining data and investigate the
neural responses before and after tACS, bringing us one
step closer to devising more effective treatments and in-
terventions for a range of neurological conditions.

APPENDIX

Pseudocode of the Genetic Algorithm

In this section, we present a simplified pseudocode of
the Genetic Algorithm that we created for this study.
The algorithm aims to optimize a synaptic distribution
used in the physically embedded laminar Neural Mass
Model to achieve a more accurate replication of experi-
mental data.

The variables used in the pseudocode are as follows:

• P : Population

• ρalpha: Pearson coefficient for the alpha band

• ρgamma: Pearson coefficient for the gamma band

• ρ: Total Pearson coefficient

• Psize: Population size

• Ngen: Number of generations

• rm: Mutation rate

• rc: Crossover rate

• S
NIexp

: Non-interpolated relative powers obtained
by experimental data

• S
exp

: Interpolated relative powers obtained by ex-
perimental data

• Sα: Simulated relative powers for the alpha band

• Sγ : Simulated relative powers for the gamma band

• Par: Parent

• Off : Offspring

• c: Chromosome

• ν: Distribution of synapses matrix

• T : Total power spectra

• ω: Frequency

Algorithm 1 Genetic Algorithm for Optimizing a
Synaptic Distribution

P ← InitializePopulation
ρα, ργ , ρ← 0
ρα list, ργ list, ρ list← [ ]

procedure GA(S
NIexp

, P size,N gen, rm, rc)

S
exp ← Interpolate(S

NIexp
)

for i ∈ range(N gen) do
for c ∈ P do

ρα, ργ , ρ← Fitness(c, S
exp

)
ρα list← Add(ρα list, ρα)
ργ list← Add(ργ list, ργ)
ρ list← Add(ρ list, ρ)

end for
if max(ρ list) > BestF it then

BestF it← max(ρ list)
BestSol← P [argmax(ρ list)]

end if
if max(ρα list) > BestF it α then

BestF it α← max(ρα list)
end if
if max(ργ list) > BestF it γ then

BestF it γ ← max(ρα list)
end if
for j ∈ range(P//2) do

Par1, Par2← Selection(P, ρ list)
Off1, Off2← InterCros(Par1, Par2, rc)
Off1, Off2←Mutation(Off1, Off2, rm)
NewP ← Add(NewP,Off1, Off2)

end for
P ← NewP

end for
return BestSol, BestF it, BestF it α,BestF it γ

end procedure
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procedure Fitness(c, S
exp

)
Sα, Sγ ← CompRelP(cortex, node id, ν, fs, nsec)

ρα ← pearsonr(S
exp

, Sα)
ργ ← pearsonr(S

exp
, Sγ)

ρ← (ρα + ργ)/2
return ρα, ργ , ρ

end procedure

procedure Selection(P , ρ list)
for c ∈ P do

SelProb list← Prob. based on ρ list[c]
end for
Parent1, Parent2← Based on SelProb list
return Parent1, Parent2

end procedure

procedure InterCros(Par1, Par2, rc)
if rand num < rc then

W ← random matrix
for i ∈ range(Par1 size[0]) do

Off1[i, :]←W [i] · Par1[i, :] + (1−W [i]) · Par2[i, :]
Off2[i, :]←W [i] · Par2[i, :] + (1−W [i]) · Par1[i, :]
Off1 norm[i, :]← normalize(Off1[i, :])
Off2 norm[i, :]← normalize(Off2[i, :])

end for
return Off1 norm,Off2 norm

else
return Par1, Par2

end if
end procedure

procedure Mutation(c, rm)
if rand num < rm then

i, j ← Select index randomly
c new ← Mutate(ci,j)
c norm← Normalize(c[i, :])

end if
return c norm

end procedure

procedure CompRelP(cortex, node id, ν, fs, nsec)
NMM ← CorticalPatch(cortex, node id, ν)
CSD ← Translate NMM to CSD
V oltage← Calculate Voltage from CSD
bLFP ← np.diff(V oltage)
S ← welch(bLFP, fs, nsec)
T ← np.sum(S)
ωα, ωγ ← α : [4, 22], γ : [32, 48]
Sα ← np.sum(S(ω)/T ), ω ∈ ωα

Sγ ← np.sum(S(ω)/T ), ω ∈ ωγ

return Sα, Sγ

end procedure
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