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Abstract: Understanding and characterising pedestrian mobility is crucial to develop sustain-
able cities. While classical statistical analysis and diffusion models are commonly used to analyze
human trajectories either at the microscopic (e.g. sidewalk flows) or macroscopic scale (e.g. origin-
destination matrices), they may not be suitable for capturing the nuances and intricacies of mobility
patterns at the mesoscale. To overcome these limitations, the problem is approached by leveraging
on vector field theory with the aim to describe how the urban geometry and structure of sidewalk net-
works affect pedestrian mobility flows. Considering the particularities of pedestrian movement (e.g.
limited travel range) the discrete- (DTRW) and continuous-time (CTRW) random walk dynamics
have been implemented to retrieve a baseline agent-based net flow along the edges of pedestrian
networks with a temporal budget of mobility. These flows are subsequently interpreted as discrete
vector fields. The Helmholtz-Hodge decomposition (HHD) allows the partition of vector fields into
three well-defined patterns: cyclic (solenoidal and harmonic) and divergent/convergent (gradient)
components. Results show that when mobility is agnostic to edge lengths (DTRW), that is, when
the time budget is spent equivalently along the edges (steps), high-density regions with larger degree
nodes show attractiveness, as existing literature already describes. However, when the time budget
is spent proportionally to the edge lengths (CTRWs), the same regions show a repulsive effect.
Intermediate regimes arise as well in the continuum between these two processes. An analytical
description of both DTRWs and CTRWs has been developed to accurately estimate the gradient
components of the vector fields. However, the presented deterministic developments do not predict
the presence of the cyclic components as they seem to emerge from the stochasticity of the process.
To validate this idea, the variance of the cyclic component, or its mean squared flow (MSF), has
been analysed. Results show that the MSF grows linearly with the temporal budget of the walk-
ers. This behaviour is similar to the characteristic linear temporal evolution of the Mean-Squared
Displacement (MSD) in random walks and Brownian motion. Ultimately, this work contributes to
the existing description and understanding of the behaviour of different random walk dynamics on
spatially embedded graphs, providing a baseline to understand and analyse pedestrian mobility on
sidewalk networks in future works.

I. INTRODUCTION

Cities evolved, and continue evolving, into different or-
ganizational patterns due to historical, political or finan-
cial circumstances and continuous optimization [1, 2]. As
a paradigmatic example of complex systems, they exhibit
many of their key properties, as they can be fundamen-
tally characterized by a large number of interacting com-
ponents or agents (citizens, cars, power networks, etc)
that give rise to emergent properties (social interaction,
congestion, robustness) that cannot be easily understood
by studying their constituents at the individual level.

Many of the numerous elements that compose cities,
such as buildings, infrastructure, people, and social in-
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stitutions, rely on a physical o virtual substrate for their
interaction. Usually, this substrate takes the mathemat-
ical form of a graph and the system ensembles a complex
system. Among these many intertwined layouts, trans-
portation networks stand out. They become fundamental
for the movement of people, goods, and services within
and between different parts of a city [3].

From the origin of cities and civilization there has al-
ways been a very tight binding between urban structure
and their land use [4]. The location and capacity of roads,
highways, and public transit systems can mold the dis-
tribution of residential, commercial, and industrial areas
and vice-versa.

Understanding the binding between the underlying
structure and the emerging dynamics of transport is cru-
cial. In either data- or simulation-driven analyses, it is
hard to disentangle whether the observed patterns are
a consequence of pedestrian/driver behaviour, or they
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can be explained solely by the structure on which these
pedestrians/drivers move.

In response to the growing threat of climate change
and its impact on urban areas, cities across the globe
have increasingly recognized the need to incorporate cli-
mate considerations into their policy and planning de-
cisions. On the mobility front, increasing active travel,
and walking in particular, is widely accepted as critical
to achieving sustainable cities.

In order to reach this goal, pedestrian networks need
to live up to the needs of the citizens, both in the qual-
ity of the sidewalks themselves and the structure of the
pedestrian network. In this last regard, the analysis of
this work is framed on how the urban infrastructure and
sidewalk network topology and geometry affect pedes-
trian mobility and its dynamics.

Usually, mobility simulations in urban transport net-
works are often intricate and time-consuming due to the
complexity of the network’s rules and the diverse be-
haviour and destinations of the passengers. Many models
have been presented over the years, from fluid dynamics
[5], gravity [6] and radiation models [7] to agent-based
models such as many variations of random walks [8–10].

In this work, the aim is to isolate the structural and ge-
ometrical effects of the network on pedestrian dynamics.
For this reason, the chosen approach is to use an unbiased
agent-based model for the walking agents, at the expense
of realism, such that there are no intrinsical preferences
and artefacts coming from the implemented dynamics.
Consequently, Markovian discrete- and continuous-time
random walk (DTRW and CTRW) models [11, 12] have
been used to simulate pedestrian behaviour.

From the mobility data front, many works use vector
field representations to study mobility patterns [13–15].
This analysis can be carried out using continuous, de-
fined at each point in space, or discrete, restricted to an
underlying structure such as a network, vector fields.

In this regard, the Helmholtz-Hodge Decomposition
(HHD) has proven to be a useful approach to analyse
these vector fields. This technique is able to decompose
any flow, both in continuous or discrete spaces (for in-
stance urban networks), into three orthogonal compo-
nents that are informative of cyclic (solenoidal and har-
monic components) and convergent/divergent (gradient
component) potential flows. In mobility networks, the
HHD may provide information about which regions of
a city promote (and to which extent) either cyclical or
convergent/divergent pedestrian behaviour.

This description of continuous and discrete vector
fields is useful to simplify their analysis by directly work-
ing on the components that intrinsically describe proper-
ties such as incompressibility or vorticity. This technique
has been traditionally applied to computational fluid dy-
namics and computational physics to visualize and anal-
yse vector fields [16].

Other branches of science also use the HHD to de-
termine the nature of different types of flows. For in-
stance, [17] applied the decomposition to brain networks

while [18] used the HHD to describe information flow on
small-world networks. Both works characterize the im-
portance of each component through the conservation of
the l2 − norm of the total edge flow due to the orthogo-
nality of the decomposition.

The HHD has already been applied in mobility net-
works via Origin-Destination (OD) matrices, which rep-
resent the flow of people, goods, or vehicles between dif-
ferent origins and destinations within a geographic area.
In literature, [14] converted the OD matrix into a 2D
vector field by averaging all trips starting from each lo-
cation, getting an averaged field at each starting point.
The resulting flow was found to be almost irrotational,
and a scalar potential was introduced to generate hu-
man flows and reproduce the empirical data. However,
this approach deletes the origin-destination information
inherent in OD matrices due to the averaging of the
trips at each point. A posterior article, [15], applied the
Hodge decomposition to synthetic data to prove that, us-
ing the mentioned continuous average vector field from
OD matrices, it was difficult to identify the number of
city centres and their area. On the other hand, this arti-
cle showed that by applying directly the discrete HHD to
the OD matrix represented as a graph, a more detailed
view of the city centre and its area could be obtained.
Applying this framework to many US metropolitan areas
it was seen that different regions showed gradient or curl
dominances, but the driving mechanism of these changes
of dominance is still an open question.

Despite their popularity, OD matrices only provide in-
formation on the mesoscale of the city, disregarding the
complex connective structure of its streets and intersec-
tions. Consequently, they cannot provide a detailed de-
scription of the agent flows nor contain precise structural
and geometrical correlations. The Hodge decomposition
has barely been applied to urban networks that are not
represented by ODmatrices. This leads to the question of
whether the results in [14] and [15] are particular to OD
matrix flows or are indeed also applicable to a detailed
urban network. Kan and López [19] applied an adapted
version of the decomposition to the London Underground
(LU) network to infer link flows using OD matrices. This
is one of the few works applied to a physically existing
network, although, this study still relied on OD matrices.

In this work, a discrete vector field has been obtained
from simulating discrete- and continuous-time random
walks. Under this framework, the net edge flow has been
obtained by assigning a directionality to the links of the
pedestrian network and making the difference between
forward and backward traversals during the simulation
time. This approach yields a vector field on a discrete
domain representing the random walk flow across the net-
work. Applying the HHD to the resulting flows, the aim
is to observe if any of the components stand out due to
the network’s geometry and structure, revealing its core
properties.
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II. A BRIEF OVERVIEW ON GRAPH THEORY

A graph, G(E, V ), is a mathematical structure that
consists of a set of vertices, V , (also known as nodes)
and a set of edges, E, (also known links) that connect
pairs of vertices [20]. Graphs are used to represent re-
lationships or connections between objects or entities.
Usually, graphs are described by the adjacency matrix
A, which captures the connections between vertices and
is aij = 1 if nodes i and j are connected or aij = 0
otherwise. The number of links per node is quantified
by the degree, denoted by ki = 0, 1, 2, ... . Graphs can
be weighted or unweighted. In weighted graphs, links
can carry values representing given characteristics such
as the width of a road or the importance of a link. In
this work, the weight on the edges will represent the flow
along that given link. The edges of a graph can be di-
rected (one-way relationships) or undirected (symmetric
relationships). In the case studied, dynamic processes
will be running on undirected graphs. These concepts
provide a foundation for analyzing complex systems in
various domains, from computer science to social net-
works and beyond.

A. Synthetic Graphs and Toy Models

For validation purposes, the Random Geometric (RG)
and the Erdös-Rényi (ER) models (Figure 1), [21], have
been utilized, which are both random graphs. In the
ER model, each node has a probability p to be con-
nected to any other node on the graph. As the ER
case does not have a spatial embedding, the spring-layout
method [22, 23] has been used. This spatial embedding
(Fruchterman-Reingold force-directed algorithm) simu-
lates a force-directed representation of the network treat-
ing edges as springs holding nodes together. Conversely,
nodes are treated as repelling objects. The simulation
continues until the positions are close to equilibrium. In
the case of the RG model, n nodes are placed uniformly
at random in a unit square. Then, two nodes are joined
by an edge if the distance between the nodes is at most
r, a given radius.

In order to observe clear effects of the node degree and
edge distances, a periodic boundary conditions (PBC)
lattice has been modified such that one of the squares
in the lattice contains a larger number of nodes with a
higher degree. This model is useful because it contains
a densely connected cluster of nodes, which can be seen
as a simplified version of a dense city centre. The outer
region is regular and every node has the same degree and
average neighbouring link distances. The inner modified
part contains nodes of different and higher degrees than
the ones in the outer region, and the nodes are closer to
each other.

(a) Erdös-Rényi graph with 50
nodes and p = 0.1.

(b) Random geometric graph
with 50 nodes and r = 0.2.

FIG. 1: Examples of the two random graph models
considered.

FIG. 2: Modified lattice with periodic boundary conditions
(PBC). Edges are transitable in both directions, the arrows

only set the positive orientation of the edge flow.

III. DECOMPOSING DISCRETE AND
CONTINUOUS VECTOR FIELDS: THE
HELMOLTZ-HODGE DECOMPOSITION

Typically, vector fields represent a magnitude that has
a given direction at each point in space (fluid flows, elec-
tric and magnetic fields, etc.). This definition corre-
sponds to continuous vector fields, which are the most
common in nature because space is inherently continu-
ous. Despite this, in some cases, vector fields can be
defined in a discrete domain, where positions and direc-
tions are limited by an underlying structure, usually a
network. In discrete vector fields, every link of a net-
work is considered to be an element of the field and it is
represented by an arrow. This arrow has a fixed direc-
tion, determined by the graph, and a magnitude which
represents the value of the field.

Under the Helmholtz-Hodge decomposition (HHD),
both continuous (Helmholtz decomposition) and discrete
(Hodge decomposition) vector fields can be partitioned
into two or three orthogonal components that represent
their divergent (presence of sources or sinks) and rota-
tional behaviour.
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A. Decomposition of Continuous Vector Fields:
The Helmholtz Decomposition

The Helmholtz decomposition, also known as the fun-
damental theorem of vector calculus [24], was the origi-
nal decomposition for continuous vector fields, which was
later generalized under the Hodge theory and the Hodge
decomposition. This well-understood theorem of vector
calculus states that any well-behaved fast-decaying three-
dimensional vector field can be decomposed into a curl-
free and a divergence-free component. This decomposi-
tion is illustrated in Figure 3.

= +

ORIGINAL VECTOR FIELD GRADIENT COMPONENT SOLENOIDAL COMPONENT

FIG. 3: Helmholtz decomposition of a vector field

To compute the Helmholtz decomposition, the essen-
tial vector operators are needed: divergence, gradient
and curl. The divergence represents the volume density
of the outward flux of a vector field calculated at an in-
finitesimal point. On the other hand, the gradient of a
scalar field represents the direction in which it increases
most quickly, central panel in Figure 3. Finally, the curl
describes the infinitesimal circulation of a vector field.
It is calculated with the circulation of the vector field
along a closed loop divided by the area bounded inside
it. Then, the limit to an infinitesimal loop is taken yield-
ing the curl at a given point. It is important to mention
that the divergence of a field is a scalar quantity while the
curl and the gradient retrieve vector quantities. Mathe-
matically, the curl-free component, ∇Φ in equation (1),
(irrotational or gradient component) is, by definition, a
potential field, which can be calculated by the gradient
of a scalar field (scalar potential) Φ. The divergence-
free (solenoidal) component is obtained from the curl of
a given vector field (vector potential) A. Consequently,
equation (1) performs the Helmholtz decomposition of a
vector field F.

F = −∇Φ+∇×A (1)

Additionally, the harmonic component can be in-
troduced to the Helmholtz decomposition. Necessar-
ily, this new component must be both irrotational and
divergence-free. In other words, if the harmonic field is
irrotational, it must come from the gradient of a poten-
tial. At the same time, if it is divergence-free, the di-
vergence of the gradient of the scalar field, which is the
definition of its Laplacian, must be 0.

∇(̇∇λ) = ∇2λ = 0 (2)

Consequently, the resulting harmonic field cannot ro-
tate nor converge or diverge, therefore it is constant in
one direction.
Generalizing this vector calculus theorem, the Hodge

decomposition aims to apply these concepts to the dis-
crete domain, namely, on graphs.

B. Decomposition of discrete vector fields: The
Hodge Decomposition

Mathematically, the weights of a graph can be embed-
ded in many dimensional structures (nodes, edges, tri-
angles and etc.) called k-dimensional simplices. Each
of these collections forms a subspace of the graph, the
dimension of which is N − 1 where N is the number of
nodes of each structure (for more detail on this descrip-
tion see the Appendix and [25]). In this work, the con-
sidered weights (mobility flows) will be defined on the
edge-subspace ⟨Σ1⟩ ≡ E. In other words, each edge of
the network will have its corresponding weight, and the
Hodge decomposition will be presented under this de-
scription. As mentioned, these weights will represent the
net flow ω of individuals through the sidewalks of a pedes-
trian network. The Hodge decomposition partitions the
edge subspace ⟨Σ1⟩ into three orthogonal subspaces:

⟨Σ1⟩ = G1 ⊕H1 ⊕ S1 (3)

where G1, S1 and H1 are the gradient, solenoidal and
harmonic subspaces and ⊕ represents their direct sum.
Consequently, the net pedestrian flow on each link of the
network, ω, can be expressed as the sum of the gradient
component ωg ∈ G1, the harmonic component ωh ∈ H1

and the solenoidal component ωs ∈ S1.

ω = ωg + ωh + ωs (4)

Since the Hodge decomposition is the discrete version
of the Helmholtz decomposition, the discrete analogues
of the continuum vector operators (divergence, gradient
and curl) need to be defined. To achieve this, as the
underlying graphs are undirected, links need to have a
preset arbitrary directionality to determine whether the
flow along a link is positive or negative depending on
its sense. In other words, the undirected links need to
be replaced by directed edges. Additionally, this proce-
dure will avoid double counting, as edge (i, j) is the same
as (j, i) in an undirected graph. As the associated edge
sense is arbitrary (sidewalks are bidirectional), edges and
triangles will be labelled in the ascending order as a refer-
ence, (i1, i2) for edges and (i1, i2, i3) for triangles, where
the overline implies that i1 < i2 < i3.

4
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Any odd permutation of the indices will be considered
a negative orientation of the reference labelling, while the
even permutations will be positive. Consequently, in the
simplest case of an edge, if ω21 is the flow along the edge
(2, 1), in the reference labelling it will be expressed as
ω21 (2, 1) = −ω21 (1, 2). More generally:

ai1...ik(i1...ik) ≡ ϵi1...ikai1...ik(j1...jk) (5)

Where, in this work, k ≤ 3.
With this notation, the discrete vector operators to

perform the decomposition can be defined. In the con-
tinuum, the divergence measures the net outgoing flux of
the vector field at any given point. Since, in the contin-
uum, this operator maps a vector field to a scalar field, in
the discrete space the divergence will map edge weights
to node weights, and it will be a node property. Conse-
quently, the divergence of a node is defined as the out-
going minus the incoming edge flow. When a node has
positive divergence it is considered a source of flow and,
when the divergence is negative, that node is a sink. If
ωi1i2

is the flow associated to the edge (i1i2), then, the
divergence of a node (i1) is:

div(i1) =
∑

j>i1:(i1j)∈⟨Σ1⟩

ωi1j
−

∑
j<i1:(ji1)∈⟨Σ1⟩

ωji1
(6)

To define the gradient operator, the analogue of a
continuous scalar field is needed. In scalar fields, ev-
ery point in space has its field value associated. In the
discrete framework, the points in “space” are the nodes
and, in consequence, the discrete analogue of a scalar
field is a set of node values, which can represent, for in-
stance, the population density at several areas of a city.
Ultimately, the gradient operator applied on a graph
performs the difference in node weights between every
pair of adjacent nodes. Considering the set of nodes,
(j1, j2, ..., jn) ∈ ⟨Σ0⟩ ≡ V where ⟨Σ0⟩ is the subspace of
nodes, with their corresponding weights (aj1 , aj2 , ..., ajn)
expressed as a discrete scalar field η:

η =
∑

j∈⟨Σ0⟩

aj (j)

the gradient of η is given by the gradient operator δ0:

δ0(η) =
∑

(ij)∈⟨Σ1⟩

[
aj − ai

]
(ij) (7)

which yields a set of edges {(i, j)} and the gradient be-
tween the nodes of each link as their weights

[
aj − ai

]
(a

vector field in the continuum).
Now that the divergence and gradient operators have

been defined in the discrete domain, the gradient com-
ponent, ωg, of the total edge flow, ω, can be obtained

following the steps of the continuous Helmholtz decom-
position.
In the Helmholtz decomposition, the gradient compo-

nent (−∇Φ in equation (1)) is computed by applying
the gradient to an unknown scalar field called the scalar
potential, Φ. Consequently, the discrete version of −Φ
is a set of node weights (potentials) η which is a priori
unknown. Ultimately, performing the gradient on η, the
gradient component of the graph is obtained.

ωg = δ0(η) (8)

Note here that the gradient operator δ0 maps the sub-

space of nodes to the subspace of edges (η ∈ ⟨Σ0⟩
δ0−→

ωg ∈ ⟨Σ1⟩). Conversely, the divergence operator per-
forms the inverse mapping, relating edges to nodes. Con-
sequently, the divergence operator is usually expressed as
−δ∗0 in the literature (a more general description of these
operators can be found in the Appendix and [25]) and
this nomenclature will be adopted from now on.
It is important to highlight that, unlike in the contin-

uum case, in this formalism, gradient flows start from
nodes with low potentials and point towards nodes with
higher potentials.
To compute the gradient component, the node poten-

tials that generate it need to be obtained. For that mat-
ter, a system of equations can be derived by recalling that
the divergence of the original field ω must be equal to
the divergence of the gradient component alone ωg, since
the solenoidal and harmonic components are defined as
divergence-free. Consequently, according to (6) and (8),
a system of equations for the set of node potentials η can
be obtained:

δ∗0(ω) = δ∗0(ωg)+
hhhhhhδ∗0(ωs + ωh) = δ∗0(ωg) = δ∗0(δ0(η)) (9)

Which is a system of equations where δ∗0δ0 is called the
graph’s Laplacian because it is the discrete version of the
Laplacian in the continuum (∇2). Once the node poten-
tials η are found solving (9), computing their gradient
yields the gradient component, ωg = δ0(η). In practice,
the gradient operator is given by an m × n matrix (B)
where m is the number of edges and n is the number of
nodes in the graph:

δ0 ≡ B(i0i1),j0
=


1 if i1 = j0
−1 if i0 = j0
0 otherwise

(10)

where (i0i1) is a given edge of the graph and j0 is an
arbitrary node. Applying this matrix to a column of node
weights, one retrieves its gradient given by equation (7).
To compute the solenoidal component, ωs, the curl op-

erator must be defined in the discrete framework. The
circulation over a cycle in a graph can be computed with

5



Mesoscale building blocks of pedestrian mobility Robert Benassai Dalmau1,2

the weighted sum of the edges that belong to that cy-
cle. Considering an oriented edge, if the flow follows
the arrow’s direction, its contribution will be positive,
while, if it flows against it, it will contribute negatively.
For example, in Figure 4, the value of the circulation
around the triangle (012) is 3 + 2− 3 = 2. Recalling the
definition of curl in the continuum (the circulation of a
vector field around an infinitesimal loop) one can extend
this concept to the discrete domain by considering the
smallest cycle possible in a graph, the triangle. Conse-
quently, the solenoidal component will account for the
circulations around the triangles in the graph. This is
the canonical way of defining the solenoidal component
of the Hodge decomposition [19] [25], which corresponds
to the one used in this work. Other approaches consider
higher dimensional loops in the solenoidal component,
which can be divided into cycles of different sizes [26].
In the canonical description, the curl is given by the δ1
operator, which maps ⟨Σ1⟩ → ⟨Σ2⟩, that is edges to trian-
gles. When applied to the whole graph, the curl operator
computes the circulation of the flow around each triangle
of the network and outputs a set of weights (the circu-
lations) associated with each triangle. Ultimately, given
a weighted edge ωi1i2

(i1i2) that belongs to one or more
triangles, the contribution to the curl of the triangle by
the considered edge is computed following (11).

δ1
[
ωi1i2

(i1i2)
]
=

∑
(i1ji2)∈Σ2

ωi1i2
ϵji1i2 (i1ji2) (11)

In practice, the curl operator in (11) can be rewritten
with an f × m matrix (C), where f is the number of
triangles in the graph and m is the number of edges.

δ1 ≡ C(i0i1i2),(j0j1)
=


1 if i1 = j0, i2 = j1or

i0 = j0, i1 = j1
−1 if i0 = j0, i2 = j1
0 otherwise

(12)

Which corresponds to the transpose of the oriented
edge-face incidence matrix or the boundary-2 matrix.

Now that the curl operator is defined, the solenoidal
component, ωs can be obtained by recalling that the curl
of the original flow, ω, is strictly the curl of the solenoidal
component, as the gradient and harmonic components
are curl-free by definition.

δ1(ω) = ������:0
δ1(ωg + ωh) + δ1(ωs) = δ1(ωs) (13)

Proceeding as for the gradient component, an a priori
unknown set of triangle weights is considered, which can
be understood as a set of triangle potentials.

γ =
∑

(i1i2i3)∈⟨Σ2⟩

ci1i2i3(i1i2i3) (14)

In equation (14) ci1i2i3 is the weight associated with

the triangle (i1i2i3). The operator δ∗1 performs the in-
verse mapping than δ1, that is, triangles to edges. As
explained in the appendix, S1 (the solenoidal subspace)
is the image of ⟨Σ2⟩ (a subspace of weighted triangles) un-
der δ∗1 . Consequently, if γ contains all the triangles in the
graph with their respective potentials, ωs = δ∗1(γ) ∈ S1

will be the solenoidal component of the Hodge decompo-
sition. Using this definition and equation (13), a system
of linear equations is found for the solenoidal component:

curl(ω) ≡ δ1(ω) = δ1(ωs) = δ1(δ
∗
1(γ)) (15)

where the coefficients of each triangle, ci1i2i3 , in γ are
unknown and the curl of the graph can be easily com-
puted with (12). When the unknown triangle potentials
are found solving (15), the solenoidal component can be

computed by δ∗1(γ), where δ∗1 is just CT . To simplify
and summarize the process, the gradient and solenoidal
potentials can be obtained by:

η = (BTB)−1BT ω (16)

γ =
(
CCT

)−1

C ω (17)

where ω is the column vector of edge weights of the orig-
inal graph.
Lastly, the harmonic component, ωh will contain all the

larger circulations that cannot be accounted by the curl,
that is all loops larger than triangles (squares, pentagons
and so forth and bigger simplices). The harmonic com-
ponent can be obtained by simply subtracting the two
previously calculated components from the given graph
edge weights. Additionally, since the harmonic compo-
nent is both curl and divergence-free, it must satisfy (18).

(δ0δ
∗
0 + δ∗1δ1) ωh = (BBT +CTC)ωh = 0 (18)

Solving for ωh is the alternative way to find the har-
monic component.

C. A worked example

To illustrate this process, consider the example in Fig-
ure 4.
The gradient operator in this case is:

B =



−1 1 0 0 0
−1 0 1 0 0
−1 0 0 0 1
0 −1 1 0 0
0 −1 0 1 0
0 0 −1 1 0
0 0 0 −1 1


(19)
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FIG. 4: Hodge decomposition of the original graph.

Using the expression in (9), the system of equations for
the potentials of the gradient component with the lapla-
cian matrix reads:


3 −1 −1 0 −1
−1 3 −1 −1 0
−1 0 3 0 1
0 −1 −1 3 −1
−1 0 0 −1 2



a0
a1
a2
a2
a4

 =


7
0
−4
−4
1

 (20)

The curl operator in this case is:

C =

[
1 −1 0 1 0 0 0
0 0 0 1 −1 1 0

]
(21)

Next, using expression (15), the system of equations
for the potentials of the triangles {(012), (123)} for the
solenoidal component reads:

[
3 1
1 3

] [
c0
c1

]
=

[
2
2

]
(22)

Note that both (20) and (22) are overdetermined systems
of equations, which implies that infinite different sets of
potentials give rise to the same gradient and solenoidal
components of a given graph.

IV. RANDOM WALKS ON SPATIALLY
EMBEDDED NETWORKS

To simulate pedestrian mobility on a sidewalk network
and analyse the resulting edge flows through the HHD,
the agents walking through the graph are chosen to
be random walkers. The reason for this choice, as
mentioned previously, is that, to explore the structural
effects of the network on the agent flow, it is convenient
to use an unbiased dynamical model such that there are
no preferred destinations. The use of biased mobility
models such as gravity models would produce trivial

gradient flows, as the field would be fully described
by a set of potentials as seen in the related literature
[14]. Additionally, real pedestrian mobility is usually
bounded by distance or time, making the duration
and length of trips an important feature which only
agent-based models can capture. Moreover, to achieve
sustainable mobility, cities are actively trying to adhere
to the 15-minute city format, [27, 28], where most
daily necessities and services, such as work, shopping,
education, healthcare, and leisure can be easily reached
by a 15-minute walk from any point in the city. Con-
sequently, stationary behaviours may not be the most
important since distance and time travelled are relevant
in human mobility. Using agent-based models such as
random walks, the duration of the simulations can be
restricted to account for these characteristics.

When modelling pedestrian behaviour, the simplest
and less realistic approach is the one of a Markovian
discrete-time random walk (DTRW). In this framework,
the agents randomly choose a neighbouring edge at every
intersection, jumping from node to node until a maxi-
mum amount of transitions is reached. This cutoff may
be interpreted as the commuting time of each individual.
The main issue with this model is that the geometrical
contributions (i.e. edge lengths) to the dynamics are lost,
and only the topological effects are captured. To intro-
duce the metric distances of each edge and the geometric
structure of the city, the discrete model can be upgraded
such that the agents are able to move during a time inter-
val ∆t at the typical walking velocity v = 1.42m/s (con-
stant velocity random walk). This walking time may be
interpreted as a budget which is spent according to the
chosen link’s length.

Consequently, the time spent to cross a given edge in
the DTRW model will be always one iteration while, in
the constant velocity model, it will depend on the length
of the edge. In order to test the validity of the simu-
lations, a deterministic description of each dynamics is
needed. Despite this, the constant speed random walk
cannot be modelled analytically (as will be explained
later on), which motivates the use of other continuous-
time random walk (CTRW) dynamics to get an approx-
imate deterministic result.

In practice, n random walkers have been initialized
at each node of a sidewalk network and are able to walk
during a given number of steps (in case of discrete jumps)
or a finite time ∆t. Four different walker dynamics have
been used:

1. A discrete-time random walk (DTRW) or Markov
Chain.

2. A node-centric continuous-time random walk
(CTRW) (model 1 of [11]).

3. A node-centric CTRW on the adjoint network
(edge-centric CTRW).

4. A random walk at constant velocity.

7
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The first three dynamics have been simulated and
modelled deterministically, while the fourth one has been
simulated and used as a benchmark for the two CTRW
models presented. The three analytically describable
models will be disclosed in depth in the following sections.
In order to have an expectation of the net random walk
flow along the graph’s edges, a method built on [29, 30]
has been developed in order to find the edge flows both
in discrete and continuous-time Markov chains. Finally,
to analyse the validity of the aforementioned dynamical
models, the simulation results of each case have been
compared to their corresponding deterministic descrip-
tions. Namely, the evolution of the occupation proba-
bilities pi(t) and the correlation between analytical and
simulated node potentials and gradient components has
been studied using an RG graph with r = 0.2.

A. Deterministic Description of the DTRW Flow

Typically, the transition probabilities of going from

node i to node j, Wij =
Aij

ki
, with ki being the degree of

node i and Aij the adjacency matrix, form the transition
matrix W. Unlike other works [29], the random walkers
considered have no predefined destination. This condi-
tion implies that there are no absorbing nodes, thus, the
rows of the transition probability matrix sum up to one.
Using this matrix one can easily find the probabilities of
being at a given node n at step t:

p(t) = p(0)W t (23)

where p(t) is a vector of probabilities containing the
probability of being at each node at step t.

Once the occupation probabilities are obtained in (23),
a novel approach is presented where one can compute
the expected net flow through edge (i, j) at step t. The
expected forward flow from node i to j between step t
and step t+ 1 can be computed using the probability of
arriving from any initial node, s, at t = 0 to vertex i at
step t and then moving to j in the following step. The
expected backward flow can be calculated in the same
manner but from j to i. Then, the net flow is obtained
by the difference between these two expected flows. In
mathematical terms:

ω′
ij(t) = pi(t)Wij − pj(t)Wji

= pi(0)
∑
s

[Wsi]
t
Wij − pj(0)

∑
s

[Wsj ]
t
Wji (24)

Now, to find the accumulated edge flow from t0 = 0
to t1 (total number of forward crossings minus backward
crossings from t0 to t1), equation (24) must be summed
over all time steps:

ωij(t) =

t1∑
t=0

ω′
ij(t) (25)

It is important to note that, since the analytical edge
flows are the result of a simple difference between the
probability of crossing the edge forwards and backwards,
they will only be capable to reproduce the gradient com-
ponents of the simulated flows, as it is an effective dif-
ference between potentials. Consequently, the expected
deterministic flows have been compared to the gradient
component of the simulations (Figure 5).
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FIG. 5: Simulated and predicted potentials and gradient
component for an RG graph of 50 nodes and r = 0.2

according to the DTRW model. A linear regression is shown
in black while the expected correlation is depicted in red.

As observed in Figure 5 the obtained potentials and
gradient components agree with the simulations. Ad-
ditionally, Figure 9 (a) shows that the discrete random
walk model follows the expected node-probability curves.
Building on the presented description, a novel analyti-

cal formulation for the CTRWmodels has been developed
in order to account for the geometrical properties of the
network.

B. Analytical description for CTRW

With the aim to model walking agents on a pedes-
trian network while still considering the length of the
streets, a continuous-time Markov chain with exponen-
tially distributed waiting times may be the preferred op-
tion. These waiting times can be interpreted as the time
a walker spends crossing a given link (street). In a CTRW
with discrete space states, the probability of being at a
certain node i at time t (pi(t)) is given by the continuous-
time master equation:

dpi(t)

dt
=
∑
k ̸=i

Rkipk −Rikpi (26)

where Rik is the probability rate at which a random
walker leaves node i and transitions to node k, which is
formally known as the transition rate from i to j. These
rates can be organized in a transition rate matrix, R,
which satisfies the following conditions:

1. Rij ≥ 0 : with i ̸= j

2.
∑

j Rij = 0 : ∀ i

8
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3. Rii = −
∑

i ̸=j Rij

which imply that 0 ≤ −Rii < ∞. This description is only
valid if the waiting times of the CTRW are exponentially
distributed at each node with a rate λi, according to the
memoryless property of continuous-time Markov chains.
These waiting times will be interpreted in the following
sections as the average time it takes to traverse the neigh-
bouring links of node i. The transition rates adopt the
following form:

Rij =

{
λipij if i ̸= j

− λi if i = j
(27)

where pij =
Aij

ki
is the transition probability from i to j,

which only depends on the degree of node i in the case
of unweighted random walks, and Aij is the adjacency
matrix of the considered graph.

Solving numerically the system of N coupled differen-
tial equations (26), with N being the number of nodes,
p(t), the vector of node-probabilities, is obtained. From
this result, the edge flow can be similarly obtained as
in DTRW through the probability that a walker reaches
node i at time t and then jumps to j in a time dt, which
is given by pi(t)Rijdt. Consequently, the net flow of the
edge (i, j) between t and t+ dt is given by:

dωij =
[
pi(t)Rij − pj(t)Rji

]
dt. (28)

Finally, integrating from t0 = 0 to t = t1, the expected
CTRW edge flow over a given time interval for the edge
(i, j) is obtained:

ωij =

∫ t1

0

[pi(t)Rij − pj(t)Rji] dt (29)

In this work, this formalism has been used to retrieve
the discrete vector fields from the node-centric and edge-
centric CTRW models which will be described in the fol-
lowing section.

C. CTRW models

In this section, the two CTRW models will be briefly
analysed and validated.

1. Active Node-centric Random Walks

The active node-centric random walk, [11], is the sim-
pler approach, in which the walker jumps from each node
to the next one with a rate λi which depends on the orig-
inal node. With the aim of taking this model closer to
a pedestrian walking at constant speed v, the average
waiting time, 1/λi, at each node is reinterpreted as the

walking time between the original node and the following
one. Consequently, this walking time is chosen to be the
mean of the walking times of the adjacent edges of node
i if the pedestrian moved at v:

λi =
∑
j

Aij
vki
dij

(30)

where dij is the distance of the link (i, j). Following the
developed description to compute the expected edge flows
(29), Figure 6 shows a perfect correlation between the
simulated and analytical potentials and gradient compo-
nents. Additionally, Figure 9 shows that the evolution
of the node probabilities in the simulation follows the
expectation values predicted analytically with different
stationary values than in the DTRW. These results vali-
date the formulation developed in the previous section.
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FIG. 6: Simulated and predicted potentials and gradient
components for an RG graph of 50 nodes and r = 0.2
according to the active node-centric model. A linear

regression is shown in black while the expected correlation is
depicted in red.

The node-centric dynamical model is simple and widely
used in CTRW literature [11]. Despite this, the reinter-
pretation of the average waiting time at a node as the
walking times of its adjacent edges may be inaccurate if
these have heterogeneous lengths. In this case, the mean
would not be representative of the actual link distances.
To bypass this issue while using a similar formulation, a
new approach has been studied, where the random walk
is performed directly on the edges.

2. Edge-centric Continuous-Time Random Walks

To determine the waiting times for each edge using a
similar framework as in the usual node-centric case, the
CTRW can be performed on the edges such that the wait-
ing times are specific to each link depending on its length.
Consequently, the transition rates are edge dependent
and become λij . This description reduces to a node-
centric random walk on the adjoint graph of the original
one (an edge-centric CTRW), where the edges become
nodes and links are placed between adjacent edges.
Using the framework provided by equation (26) the

continuous time master equation for a random walk on
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FIG. 7: Example of an adjoint graph.

FIG. 8: Possible incoming and outgoing fluxes in the adjoint
graph. The dotted and encircled arrow is an edge of the
original graph that is represented as a node of the adjoint
graph. The black arrows at each side represent the sum of

the left and right fluxes respectively.

the edges gives the probabilities of being at edge (i, j) at
time t:

dpij(t)

dt
=
∑
k

[
pjk

λjk

kjk
+ pki

λki

kki

]
− λijpij (31)

where kki = kk + ki − 2 is number of adjacent links of
edge (k, i) which corresponds to its degree in the adjoint
graph.

Equivalently, equations (28) and (29) can be used to
obtain the edge flow in the adjoint graph. Despite this,
the edge flows on the original links are needed. Conse-
quently, the vector field in the adjoint graph’s edges needs
to be converted to flows on the original graph’s edges.
Unfortunately, this procedure can be ambiguous in some
cases. From the flow at the adjoint edges, one can derive
the net flow through the adjoint nodes (original edges) by
considering the incoming and outgoing flows. Generally,
if an original edge is considered, the incoming flow that
enters through the base of the arrow is positive, while if
it enters from the head (in the opposite sense of the edge)
it is considered negative. For the outgoing flow, if it exits
the edge through the arrow’s head the flow is considered
positive while if it exits through the base of the arrow it
means that the edge has been traversed in the opposite
direction, thus the contribution to the flow is negative.
There are four possible combinations of incoming and
outgoing flows represented in Figure 8.

As walkers in the edge-centric CTRW start and end at
the edges, divergence becomes a problem when counting
the flow through them. In a divergence-free case, the
incoming,

∑
k eki→ij , and outgoing,

∑
l eij→jl, flows are

equal, and the net flow through a given edge (i, j) is just
(32) as all the incoming flow passes through the edge:

ωij =
1

2

(∑
k

eki→ij +
∑
l

eij→jl

)
(32)

where eki→ij is the flow through the adjoint edge that
connects the real edges (k, i) and (i, j). When divergence
is not null, some walkers may start or end at each edge.
This is problematic because in usual random walks, the
edge simply links two nodes and it is not a state where
walkers can be born or die. Consequently, when a walker
performs its last jump to edge (i, j) and dies there, a
decision needs to be made on whether it ends on node j,
crossing (i, j) and contributing to its flow, or on i without
crossing the last link. The same problem is faced with
the first jump, as the starting node in the initial edge
needs to be decided.
In the simulation, this problem is approached by

adding a certain crossing probability for the walkers that
start or finish at a given edge. When a walker performs
the initial jump, it crosses the starting edge with a prob-
ability of 0.5. On the other hand, when a walker per-
forms the final jump, one can rudimentarily assume that
walkers will cross the final edge half the times they end
there, thus with a probability of 0.5. Despite that, a
more refined approach is to consider that the crossing
probability in the final step is given by the cumulative
exponential distribution with λij depending on the ar-
rival edge, P (τ ≤ t1 − t). This probability depends on
the remaining time-budget of that walker (t1−t), and it is
the probability that a further jump takes place before the
remaining time has passed. Consequently, these undeter-
mined countings are flattened and distributed among the
two nodes of the considered edge.
While in the simulations both methods can be used, in

the analytical description, only the first procedure can be
computed, as there is no notion of the individual walkers
and their remaining time. This ultimately implies that
the net analytical edge flow is the mean between the in-
coming and outgoing flow, which is conveniently given by
equation (32).
In the simulation, the forwards and backward crossings

of edge (i, j) are computed considering the nth jump of
the random walk from the edge (i, j) and the previous
jump n − 1. Essentially, if the walker enters the edge
through the base of the arrow in the step n − 1 and
leaves at step n through its head, a positive counting
will be added. If the edge is traversed in the opposite
direction the contribution to the flow will be negative.
If a walker comes and leaves through the same extreme
(base or head) of the arrow it will not contribute to its
flow (see Table I).
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(b) Node centric CTRW.
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(c) Edge-centric CTRW

FIG. 9: Simulated and predicted node ((a) and (b)) and edge (c) occupation probabilities for an RG graph of 10 nodes and
r = 0.47 with 20 walkers starting at each node. The nodes of the graph exhibit 7 different degrees (ki = 2, 3, 4, 5, 6, 7, 8).

For the edge-centric random walk, the simulated oc-
cupation probabilities at the edges fluctuate around the
analytical evolution (Figure 9, (c)).

∆ωij
Jump

n-1 n
1 ki(ik) → ij ij → jl (lj)
-1 kj(jk) → ij ij → il (li)
0 ki(ik) → ij ij → ki (ik)
0 kj(jk) → ij ij → kj (jk)

TABLE I: Flow contributions to edge (i, j) according to the
previous jump. The arrows represent transitions between

adjacent edges and edge (i, j).

Considering the two presented approaches to account
for the final jumps in the simulation, the correlation
of the obtained potentials and gradient components is
shown in figures 10 and 11 respectively.
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FIG. 10: Analytical vs. simulated potentials in the
edge-centric random walk model using the two different

crossing probabilities in the simulation. A linear regression
is shown, as well as the expected correction curve in red.
The analysis has been performed on the RG graph with 50

nodes and r = 0.2.

Although both descriptions show similar results, ap-
plying an exponentially distributed probability yields
slightly better results with different RG graphs.
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FIG. 11: Analytical vs. Simulated gradient components in
the edge-centric random walk model using the two different
crossing probabilities in the simulation. A linear regression
is shown, as well as the expected correction curve in red.
The analysis has been performed on the RG graph with 50

nodes and r = 0.2.

V. RESULTS

The previous random walk dynamics have been applied
to the toy graph models mentioned above, which have
clear structural differences in order to obtain a flavour of
the impact of the geometry on the obtained flow decom-
position.

A. Validity of the Deterministic Models Against a
Constant Velocity Random Walk

Ultimately, the goal of the aforementioned random
walk models is to approximate, both deterministically
and in the simulations, pedestrians randomly moving
through the sidewalks of a city at a constant speed, v,
from t0 = 0 to t = t1. These dynamics cannot be de-
terministically modelled directly because the jump inter-
vals do not follow any probability distribution. The time

spent crossing a link (i, j) is always τij =
∆xij

v , and the
total elapsed time depends on the path taken by the ran-
dom walker. Overall, this type of dynamics can only be
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simulated, and the previously discussed models, which
do have an analytical characterization, attempt to be an
approximation to the desired pedestrian dynamics. In or-
der to measure their validity against the constant speed
random walk, the potentials and gradient components
obtained with the deterministic approach have been com-
pared to the simulation of the constant speed pedestrian
model.
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(a) Node-centric vs. constant
speed random walk.
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FIG. 12: Comparison of the potentials of the node-centric
and edge-centric random walks (exponential acceptance
probability) using their analytical description against the
constant velocity model. The graph considered is an RG of
50 nodes and r = 0.2. A linear regression is shown as well as

the expected correlation in red.
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FIG. 13: Comparison of the gradient components of the
node-centric and edge-centric random walks (exponential

acceptance probability) using the analytical models against
the constant velocity model. The graph considered is an RG
of 50 nodes and r = 0.2. A linear regression is shown as well

as the expected correlation in red.

As observed both in Figures 12 and 13, the node-
centric model with averaged transition rates shows cor-
relations with the constant speed pedestrian model, with
r2 = 0.99, and is a good approximation when the average
edge length is close to the real lengths of the edges inci-
dent to the node. The Edge-centric random walk shows
a good correlation with r2 = 0.96, but the fitted slope
is not 1. The reason for these results could reside in
the way the edge crossings are counted. Ultimately, this
model needs a transformation from a random walk on
the edges to a random walk on the nodes to retrieve an
edge flow. This process is not unique and some assump-
tions are needed to treat cases such as if the last or the

first jumps are considered to cross the first and last edges
respectively, leaving room for uncertainty and error.

B. Geometrical Role of the Hodge Potential in the
Discrete- and Continuous-Time Random Walks

To understand how the given graph geometry affects
the flows and potentials retrieved from the Hodge de-
composition, the vector field components induced by the
different random walks on the PBC-modified lattice have
been obtained (Figure 2). This graph presents two clearly
distinguishable regions with different node densities and
degrees. By analysing the node potentials, the aim is to
observe how the differences in node densities influence
the random walk behaviour.
It is well known that a discrete random walk has a

stationary occupation probability which is proportional
to the degree.

psti =
ki∑N
j=1 kj

=
ki
2E

(33)

being E the number of edges. This property implies
that the nodes with a higher degree, the dense region
of the modified PBC lattice, will have larger occupation
probabilities, and, thus, behave like attractors. Conse-
quently, their potentials will be larger (more positive)
than the nodes with lower degrees, and gradient flows
will point towards regions with larger edge density as
seen in Figure 14. In this setup, the results obtained
are a direct consequence of the degree of a node in the
discrete random walk dynamics.
Accordingly, in CTRWs intuition may lead to expect

that communities of close and interconnected nodes will
also behave like attractors (thus, again, larger poten-
tials), as walkers that enter these regions would strug-
gle to escape from them as if they were in a labyrinth.
Despite this, the potentials of the dense region of the
lattice retrieved from all the CTRW models show to be
smaller than the potentials of the outer (and less con-
nected) nodes (Figure 14 (b), (c) and (d)). This im-
plies that in general denser regions will usually show a
repulsive character, contrary to the results obtained with
DTRWs. To understand these counter-intuitive results
one has to consider that the computation of the “attrac-
tiveness” or potential of a node involves its divergence.
Generally, nodes with negative divergence (sinks) will ex-
hibit high potentials and vice-versa. While it is true that
both types of walkers, DTRW or CTRW, will perform
more jumps in the denser region of the lattice, only the
initial and last steps contribute to the divergence since
the vector field is constructed upon net flow. Conse-
quently, if a walker performs many jumps in the denser
region but ends outside of it, this region of the graph will
not be considered attractive in terms of potential but
neutral.
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The cause of the attractiveness/repulsiveness of high-
density areas can be understood by interpreting the avail-
able walking time, t1, as a budget. In DTRWs, all edges
have the same cost regardless of their length, while, in
CTRWs, shorter edges will have a lower traversing cost.
This ultimately implies that, with the same available
budget, CTRWs will be able to perform more jumps in-
side the dense region in the lattice. Consequently, the
probability of escaping from that region will be higher in
CTRWs, as the walker will have more chances to leave the
cluster. When this happens, the “budget” left is quickly
spent on the longer outer edges and the walker has a
lower chance to reach back in the denser region.
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(b) Node-centric CTRW.
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(c) Constant v CTRW.
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(d) Edge-centric CTRW.

FIG. 14: Gradient components (ωg) and node potentials
obtained through all the studied dynamics on the modified
lattice with PBC. Edges have been reoriented to follow the

direction of the flow.

Ultimately, Figure 14 seems to indicate that the node’s
potential, hence the attractiveness of a node, will be a
result of two competing network properties, the node’s
degree, which generates high potentials when it is large,
and the lengths of its neighbouring edges, which, in turn,
define its transition rate which determine how much of
its budget is spent in the jumps to the adjacent nodes.
It is seen that short average neighbouring link distances
tend to decrease the node’s potential, which is the case
in dense and connected regions.

While the two outcomes of the competition between
node degree and edge length are evident in Figure 14,
to further analyze the effect of incorporating link dis-
tances into the random walk dynamics, the evolution of
the gradient component and its potentials has been stud-
ied while transitioning from the DTRW to CTRW model.
This has been done by continuously varying the length of
the edges, since, when all the edge lengths of the network
are equal, the DTRW and CTRW models are equivalent.

Specifically, the edges in the denser region are enlarged
from their original length to the distance between nodes

in the regular lattice. To see if the denser region is re-
pulsive or attractive, the difference between the average
of the potentials of the inner nodes and the average of
the potentials of the outer nodes (∆Vio) is shown against

θ = dmod−dreal

dlattice−dreal
, where dlattice = 1 is the length of the

regular lattice spacings, dreal is the original length of each
inner edge and dmod is the modified length of the inner
edges which ranges from dlattice to dreal.

FIG. 15: Difference of average potential between the inner
and outer nodes of the cluster. The analytical node-centric

CTRW model has been computed for different link
distances. On top, the node potentials and gradient

components are shown for different values of θ, which is 0
for the real distances and 1 when the lengths of the inner

edges are equal to the regular lattice link length.

Results in Figure 15 show the dominance shift between
the node degree and the edge lengths in the average po-
tential difference between the inner and outer regions of
the cluster. Initially, for lengths close to the real ones,
the inner region is repulsive as seen for CTRWs. In this
situation, the edge lengths are crucial in how the random
walk budget is spent, and their effect outweighs the one
of the degrees. As inner link distances grow towards the
lattice ones, a transition is observed, where the effects
of the degree and edge distances are compensated and
the potential difference between the two regions is zero,
producing no net flow. Finally, for larger inner-link dis-
tances, where all the edges of the graph have a similar
length, the potentials resemble the ones of DTRWs and
the inner region is attractive.

C. Origin of the Cyclic Components

So far, the emphasis of the study has been put on the
gradient component of the decomposition and its origi-
nating potentials. The reason for this is that the deter-
ministic description and computation of the discrete and
continuous random walk flows, Eqs. 24-25 and 28-29, for
each edge flow are obtained as the difference between two
node-dependent values that can be directly reinterpreted
as node potentials. Despite the transition probabilities

13
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(Wij) and rates (Rij) being defined for each edge, both
only depend on the starting node i, as Wij = 1/ki and
Rij = λi/ki. Consequently, the deterministic approach
cannot generate cyclic (solenoidal and harmonic) flows,
and the resulting field can be fully described by the gra-
dient component, as the results in Figure 6 showed.

Conversely, in the simulations of all the random walk
models (DTRW, both CTRWs and the constant-velocity
case) the cyclic components are never zero if any loops are
present in the graph. Two hypotheses are presented to
understand why the developed framework does not pre-
dict cyclic flows. The first option is that the harmonic
and solenoidal components simply cannot be computed
with this approach and another formalism needs to be
used. The second explanation is that, if the determin-
istic description does not predict the cyclic components,
then they are a result of stochasticity and their expected
values are really 0 as obtained in the deterministic frame-
work. This last interpretation would be compelling be-
cause it would allow the isolation of the noise contribu-
tions of the random walk flow into separate components.

Starting from the first hypothesis, another approach
to computing the solenoidal component is first to calcu-
late the expected circulations around each triangle of the
graph and then, from those values apply the δ∗1 operator
to retrieve the solenoidal component. To calculate the

expected circulation of flow around a triangle
〈
ϕijk

〉
in

the DTRW during a total amount of steps ∆t, equation
(34) can be implemented.

〈
ϕijk

〉
=

Dt∑
t=0

{
pi(t)pj(t)pk(t)

[
3TijTjkTki−

3TikTkjTji + TijTji(Tki − Tkj)+

TjkTkj(Tij − Tik) + TikTki(Tjk − Tji)
]}

(34)

Equation (34) computes the expected value of the cir-
culation around a triangle (ijk) when having one walker
at each of its nodes. Essentially it is the probability of
simultaneously having a walker on each of the nodes of
the triangle a time t and each making a forward or back-
ward step accounting for all the possible contributions
to the circulation. The expected value is calculated for
all the simultaneous combinations of forwards/backward
steps. Ultimately, as the transition probabilities only de-
pend on the departure node at each step, all the elements
(Tij−Tik) will be zero as Tij = Tik ∀j, k. Consequently,
in general, the predicted circulations will also be 0 if the
same development is performed considering one, two, or
any number of simultaneous walkers in the triangle.

If a similar framework is applied to the continuous
case, the expected circulation around any triangle
will also be zero because the transition rates are also
node-dependent Rij = Rik ∀ j, k ̸= i. The only model
which might not have this issue is the edge-centric

CTRW, as the edge walking time is edge dependent.

Since the deterministic approach is not able to repro-
duce the observed curl and harmonic components in the
simulations, the stochastic cyclic components have been
analysed in order to find properties that may reveal their
origin.
To see if there are any stationary values of the cyclic

component, the mean squared flows (MSFs) of the cyclic,
gradient and total components have been computed for
different values of the simulation times t1.

〈
ω2
g

〉
=

1

E

∑
i,j

(ωg
ij)

2 ;
〈
ω2
cycl

〉
=

1

E

∑
i,j

(ωcycl
ij )2 (35)

where, in the last expression E is the number of edges
of the network and ωij is the edge flow of (i, j) of each
component.
Results in Figure 16 show the MSFs of each compo-

nent. Firstly, the gradient MSF reaches a stationary
value in all the graphs. This behaviour is expected by the
deterministic prediction, where the evolution of the node
probabilities in Figure 9 reaches a steady state. Looking
at the cyclic component, the cyclic MSF seems to grow
linearly with the duration of the simulation, with expo-
nents 1.03 ± 0.03 for the ER, 0.98 ± 0.02 for the PBC
modified lattice and 0.96 ± 0.03 for the RG cases. This
behaviour shows that the components that generate cir-
culatory flows do not reach a stationary value. Addition-
ally, the amplitudes of the fluctuations along the fitted
curves grow in time.
This linear behaviour of the MSF is reminiscing of

the typical linear dependence of the Mean-Squared
Displacement (MSD) in geometric random walks where〈
(x− x0)

2
〉
= 2Dt with D being the diffusion coefficient.

The effect of this behaviour can also be seen in the evo-
lution of the importance or strength ratio of each com-
ponent. As the HHD divides the edge domain into three
orthogonal subspaces, the l2 − norm is conserved. This
property allows to quantify the importance or weight of
each component [17, 18]. Namely, the norm of the origi-
nal graph is the sum of the norm of each component.

1 =
∥ωg∥2

∥ω∥2
+

∥ωs∥2

∥ω∥2
+

∥ωh∥2

∥ω∥2
= ηg + ηs + ηh (36)

where ηg, ηs and ηh are the relative strengths of the gra-
dient, solenoidal and harmonic components respectively.

The strength ratios in Figure 17 reveal a power law
behaviour with a negative exponent very close to -1
in the presented cases. Additionally, an initial tran-
sient behaviour is observed. Understandably, as the
MSF of the cyclic component increases and the gradient
MSF remains constant, the gradient strength ratio de-
creases while the cyclical components become more dom-
inant. Lastly, the initial values of the gradient and cyclic
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(a) Erdös-Rényi with 50 nodes and
p = 0.1.
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(b) PBC modified lattice.
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(c) Random Geometric with 50 nodes
and r = 0.2.

FIG. 16: Gradient, cyclic and total MSFs for different total simulation times. A power-law is fitted to the cyclic and total
components, and the stationary value of the gradient MSF is also shown. Simulations use 20 walkers starting at each node.
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FIG. 17: Gradient, cyclic strength ratios for different total simulation times using the three model graphs mentioned above. A
power law is fitted to the gradient ratio. The axes ar in log-log scale.

strength ratios are very different for the ER and the lat-
tice cases. In the modified lattice, the cyclic strength
ratio is initially very high (larger than the gradient ra-
tio), while in the ER case, the gradient strength ratio is
initially higher. Interestingly, since the modified lattice
is completely regular except for the modified cluster, the
degree and link distance distributions are very narrow.
This leads to a more uniform distribution of the node
probabilities which, in turn, generates a weaker gradi-
ent component. Additionally, there is a large number of
loops, the circulation of which is captured by the cyclic
component. Hence, due to the regularity of the graph
and the larger presence of loops, the cyclic ratio is ex-
pected to be more important than in the ER case, where
the edge length distribution is broader.

Finally, by focusing only on one of the edges of the
graph and performing the node-centric CTRW simulation
200 times, the distribution of the flow and its components
on that edge can be obtained.

In Figure 18, the histograms for the components of two
different edges of the PBC-modified lattice are shown.
Subfigure (a) corresponds to an edge of the regular, grid-
structured region of the lattice. As expected, the cyclical
component is fully captured in the harmonic component

as the edge does not belong to any triangle. Subfigure
(b) is representative of an edge in the dense region. As
the considered edge is part of a triangle, the solenoidal
component is present and contains the majority of the
cyclic flow. On another note, the mean of the gradient
component distribution on both subfigures (a) and (b)
is close to the expected analytical value calculated using
the formalism in section IV. Conversely, the dominant
cyclic components have a standard deviation one order
of magnitude higher than the one of the gradient com-
ponent, and the mean of the distribution is close to zero.
Again, the cyclic flows do not seem to point towards any
expected value different than zero, and, instead, their
fluctuations are much larger than the ones of the gradi-
ent component.

These results point towards the conclusion that the
cyclic components are a consequence of the own stochas-
ticity of the process, but a deeper and more complete
analysis is needed to back this hypothesis and see if there
are any structural correlations embedded in the cyclic
flow.
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FIG. 18: Histograms of each component of the flow along
two edges in the PBC modified lattice. A Gaussian

distribution has been fitted, and the values of the mean and
the variance are shown in each subplot. For the gradient

component, the deterministic flow is also shown.

VI. DISCUSSION AND CONCLUSIONS

This work has been focused on the impact of the topol-
ogy and geometry of urban infrastructure and sidewalk
networks on pedestrian mobility and its dynamics. Con-
sequently, the Hodge decomposition has been used to
partition random walk edge flows on spatially embed-
ded graphs, described as discrete vector fields, into com-
ponents that give information about divergent (gradient
component) and cyclical (solenoidal and harmonic com-
ponents) contributions. This description may be useful
to visualize inherent structural city centres through the
potentials and gradient flows, while the cyclic compo-
nents may contain information about how more complex
or more regular urban configurations affect the pedes-
trian flow. To isolate structural effects and remove arte-
facts or biases induced by the underlying dynamics, four
different random walk models have been used and three
of them have been modelled deterministically. To accom-
modate for the limited travel range of pedestrian mobil-
ity, the random walkers have been attributed a temporal
budget interpreted as the maximum walking time. A new
methodology inspired in [29] has been developed to ob-
tain the deterministic time evolution of the expected net
edge flow in both continuous-time (CTRW) and discrete-
time (DTRW) random walks. This description has been
validated through the correlation between the expected
value of the edge flows and the simulated gradient com-
ponents as well as with the expected and simulated node
potentials.

After the used dynamics and deterministic approach
were validated, the analysis of the resulting potentials
for the DTRW and CTRW revealed the competing ef-
fect between the node degree and edge length in the at-
tractiveness of densely connected regions of the graph.
Ultimately, for CTRWs the clustered regions seem to
exhibit a repelling behaviour while, for DTRWs, these
regions appear to be attractive. These diametrically op-
posed outcomes have been explained through the differ-
ences in how the temporal budget is spent in DTRWs
and CTRWs. This transition in the node potentials and
the attractive nature of close and connected regions has
been captured as a function of the edge length. This
effect has been reinterpreted as a continuous transition
between CTRWs and DTRWs.

Finally, since cyclical components (harmonic and
solenoidal) are not captured in the deterministic frame-
work developed in this work, their origin has been dis-
cussed. The analysis of the mean-squared flow (MSF) for
gradient and cyclic flows reveals that the former tends to
a stationary value as expected deterministically, while
the cyclic MSF grows linearly with the simulation time
t1. Additionally, the fluctuations of the cyclic MSF also
grow for increasing values of the time budget. These re-
sults are also confirmed in the analysis of the gradient
and cyclic strength ratios, which reveal a transient phase
followed by a power-law behaviour.

Lastly, the histograms for each component of the flow
of two distinct edges for a fixed simulation time show that
the mean of the distribution of gradient components coin-
cides with the deterministic expected flow. Additionally,
the cyclic components exhibit large standard deviations
and are centred around the zero value.

All the results obtained from the cyclical components
point towards the idea that the stochastic nature of the
random process can be captured in the cyclic components
of the simulated random walk flow. Despite this, a more
in-depth analysis is needed to back this idea and see if
the cyclic components present any correlations with the
graph’s structure and geometry.

This work has provided an understanding of the ran-
dom walk dynamics on simple graphs through the Hodge
decomposition, which will serve as the foundation for fu-
ture works where this approach will be applied to anal-
yse the effect of the geometry of real urban networks and
other transport layers on the human flow.

Finally, other factors should be studied as diverse ran-
dom walk initial distributions or dynamical behaviours.
This would help to simulate pedestrian behaviour more
accurately, as regions with more nodes (intersections) do
not usually imply more density of population and real
pedestrian dynamics are not random.
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APPENDIX

Graphs as simplicial complexes

Formally, an undirected graph is a pair G = (V,E)
where V and E represent a vertex (also referred to as a
node) and an edge set respectively. Usually, vertices are
denoted as v1, v2, ..., vn and an edge between vi and vj as
eij .
A graph can also be described by higher dimensional

structures, needing a more general notation. A k-
dimesional simplex is a fully connected (every vertex is
connected to all the others) subgraph containing k + 1
vertices. Following this definition, a 0-simplex is a ver-
tex, a 1-simplex is an edge, a 2-simplex is a triangle and
so forth.

In the previous definition of graph, only the lowest
dimensional simplices were used. Alternatively, one can
define a graph as a collection of simplices of different
dimensions G = (Σ0,Σ1, ...,Σk), where Σi contains fully
connected vertex subsets of size i+ 1.
Applying this formalism, one can also define a set of

weights for each simplex. Take as an example a neigh-
bourhood where the nodes are intersections and the edges
are a given set of bidirectional streets. One could assign
the net flow of cars through a street as a weight in a given
edge. Similarly, one can assign weights to any simplicial
structure, from a vertex to large simplices.

In undirected graphs, one can define an orientation for
the edges and bigger structures such that they are not
considered more than once. Looking at the example in
figure 19, the triangle (123) is the same as (231) or other
index permutations. Taking the ascending order of its
indices as a reference, a given simplex could be labelled
with any odd or even permutation of the indices. The
notation v0v1...vm describes 0 ≤ v1 < v2 < ... < vm ≤
m the ascending order of any given simplex. To avoid
the labelling confusion, a k-simplex can be oriented such
that the positive orientation is associated with v0v1...vm
and any even permutation, while the negative orientation
is associated with the odd permutations. This can be
described by the Levi-Civita tensor acting on a form. In
this case, the form is a given simplex with its weight
associated. Note that, formally, a form maps a vector
to a real number, in this case, the form maps a simplex
(v0v1..vk) to its associated weight (w01...k). Ultimately,
any permutation of a simplex can be written as:

ai1...ik(i1...ik) ≡ ϵi1...ikai1...ik(j1...jk) (37)

where ai1...ik is a real number associated to the sim-
plex, j1...jk is the ascending permutation of i1...ik and
the Levi-Civita tensor is either 1 if the number of per-
mutations with respect to the ascending ordering is even
or -1 if it is odd.

Each set of simplices defines a vector space. In Figure
19 the vector space < Σ2 > has 2 dimensions (contains 2
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1

1
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3

FIG. 19: Simple graph with four nodes and four edges.

triangles). Mappings can be defined from ⟨Σk⟩ to ⟨Σk+1⟩
and vice versa. Given a simplicial complex (a graph)
G = (Σ0,Σ1, ...,ΣK), for 0 ≤ k < K the operator δk :
⟨Σk⟩ → ⟨Σk+1⟩ can be defined:

δk(i1...ik+1) =
∑

(i1...j...ik+1)∈Σk+1

ϵji1...ik+1
(i1...j...ik+1)

(38)
Where an extra vertex j, fully connected to the pre-

vious k − simplex, has been added to the correct place
(according to the ascending ordering) in the k− simplex
(i1...ik+1). To give an example, considering the edge (12),
ω = 2(12), in Figure 19, the δ1 operator maps this edge
to the triangles in which it is contained.

δ1(ω) = 2 [(312) + (012)] = 2 [(123) + (012)]

This operator maps ⟨Σk⟩ and ⟨Σk+1⟩. Using the in-
ner product (see [25] for the proof), one can define the
mapping in the other direction δ∗k : ⟨Σk+1⟩ → ⟨Σk⟩ as:

δ∗k(i1...ik+2) =

k+2∑
q=1

(−1)q−1(i1...îq...ik+2) (39)

where (i1...îq...ik+2) is (i1...ik+2) with the index iq re-

moved if (i1...îq...ik+2) exists in ⟨Σk⟩. Taking as an ex-
ample triangle (123) in Figure 19:

δ∗k(123) = −(23) + (13)− (12)

A. Hodge Decomposition Under the Simplicial
Complex Framework

Considering, as previously, G = (Σ0, ...,ΣK), the
Hodge decomposition partitions a subspace ⟨Σk⟩, with
0 ≤ k < K, into a direct sum of three orthogonal sub-
spaces:

⟨Σk⟩ = Gk ⊕Hk ⊕ Sk (40)
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where Gk is the image of ⟨Σk−1⟩ under δk−1, Sk is the
image of ⟨Σk+1⟩ under δ∗k and Hk contains elements of
⟨Σk⟩ orthogonal both to Gk and Sk. The Hodge decom-
position in the simplicial formalism allows the decompo-
sition of any field embedded in any dimension k < K.
In this work, the subspace considered has been the edge
subspace, of dimension 1.

B. Code Availability

All the code and data used to reproduce the plots and
results of this work are available at GitHub https://
github.com/COSIN3-UOC/Hodge_decomposition.git.
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ability and for serving as a crucial link between the two
parties involved in this collaboration.

[1] L. Bettencourt and G. West, “A unified theory of urban
living,” Nature, vol. 467, pp. 912–3, 10 2010. [Online].
Available: https://doi.org/10.1038/467912a

[2] M. Batty, K. Axhausen, F. Giannotti, A. Pozd-
noukhov, A. Bazzani, M. Wachowicz, G. Ouzounis,
and Y. Portugali, “Smart cities of the future,”
The European Physical Journal Special Topics, vol.
214, pp. 481–518, 11 2012. [Online]. Available:
https://doi.org/10.1140/epjst/e2012-01703-3
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[19] U. Kan and E. López, “Layered hodge decomposition
for urban transit networks,” in Complex Networks &
Their Applications X, R. M. Benito, C. Cherifi, H. Cher-
ifi, E. Moro, L. M. Rocha, and M. Sales-Pardo, Eds.
Cham: Springer International Publishing, 2022, pp. 804–
815.

[20] J. A. Bondy and U. S. R. Murty, Graph Theory with
Applications. New York: Elsevier, 1976.
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