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Abstract: Persistent global synchronization of a neuronal network is considered a pathological,
undesired state. Such as synchronization is often caused by the loss of neurons that regulate network
dynamics, or cells that assist these neurons such as glial cells. Here we propose a self-regulation
model in the framework of complex networks in which we assume that, for sake of simplicity, glial
cells prevent the over synchronization of the neuronal network. We have considered a brain-like
network characterized by a modular organization combined with a dynamic description of the nodes
as Kuramoto oscillators. We have applied a self-regulation mechanism to keep local synchronization
while avoiding global synchronization at the same time. To do so, we have added self-regulation to
the system by switching off for a certain period of time a selection of edges that link nodes showing a
synchronization above a certain threshold. Despite the simplicity of the approximation, our results
show that it is possible to maintain a high local synchronization (module level) while keeping low
the global one. In addition, characteristic dynamic patterns have been observed when analysing
synchronization between modules in large modular networks. Our work could help to understand
the effects of localized regulatory actions on modular systems with synchronous phenomena, such
as neuroscience and other fields.

I. INTRODUCTION

Synchronization can be found in multiple phenomena
in nature. The synchronous flashing of fireflies, the car-
diac pacemaker cells or the synchronized clapping of a
crowd are just some examples. [1, 2] One of the fields
where synchronization plays a crucial role is neuroscience.
There is a broad experimental evidence of neuronal os-
cillatory activity, which has been related to cognitive ac-
tivities such as memory, learning, and perception [3].

Neuronal synchronization phenomena are taken into
account in general for a deeper understanding about in-
formation processing, as well as in determining normal
and abnormal brain function. Indeed, neurological dis-
eases as epilepsy, Parkinson’s, Alzheimer’s, autism or
schizophrenia, have been often related to alterations in
neuronal synchrony [2–4]. Concretely, many of these
pathologies are related to an excessive level of global
synchronization and there is experimental evidence that
global synchronization is not present in well-functioning
brains [2, 5], which actually switch between global and
local states. In this direction, many studies have high-
lighted the role of local synchronization in a wide variety
of processes, specially in memory processes [6], percep-
tion, or visual recognition system [7]. Due to the impor-
tant implications of synchronization, the understanding
of this phenomena is relevant to the field of neuroscience.
It is well accepted that there are desirable levels of syn-
chronization, but the way a healthy brain switches be-
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tween them is not fully understood.
The nervous system is formed by two main cell types,

neurons and glial cells, which are divided in turn into sev-
eral subgroups with different functions, from excitatory
and inhibitory neurons to, for the case of glia, oligoden-
droglia, microglia, ependimoglia and astroglia [8]. While
neurons are considered as the main computational units
involved in the transfer and processing of information,
glial cells play a crucial role in maintaining neurons,
and the connections they form, in perfect condition.
Particularly astrocytes, the most abundant glia type in
the nervous system, are known for their involvement in
metabolic support, neuronal survival and differentiation,
synapse formation, regulation of the local concentrations
of ions and neurotransmitters, as well as the control of
local cerebral blood flow [8, 9].
As a consequence, it is logical to think that brain func-

tions result from the collective activity of neurons and
glial cells and that both must be taken into account to un-
derstand it. In reference to synchronization, it is known
that glial cells, mainly astrocytes and oligodendrocytes,
influence processes underlying local neuronal oscillations,
like neuronal membrane potential and synaptic transmis-
sion [8]. There are studies that suggest that a reduction
in astrocytic coupling may cause hyperexcitability and,
consequently, lead to synchronization of neuronal activ-
ity [10]. Thus, glial cells contribute to the regulation of
network activity and, hence, help tuning the synchrony
state of the system. Sometimes this contribution is indi-
rect, which illustrates the complexity of biological neu-
ronal networks. For instance, in some genetic variants of
Parkinson’s disease, the degradation and loss of glia cells
cause the death of dopaminergic neurons, fundamental
in regulating network activity, leading to a persistent,
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uncontrollable global synchronization [11].

All the above considerations shape the biological inspi-
ration and starting point of this project, namely that glial
cells are —directly or indirectly— the regulatory agents
of their surrounding neurons that keep synchronization
in a desired level.

We tackled the problem using numerical simulations.
Indeed, in silico modelling is a powerful tool and has
become an active research area in neuroscience. It com-
bines physical and mathematical tools to simulate and
analyse certain situations, as well as to study the effects
of different parameters in a completely controlled envi-
ronment. Synchronization in networks of oscillators have
been widely studied [1], but the development of methods
in order to control the behavior of the emerging dynam-
ical system has only recently awakened interest [12–15].
Some of these studies focus on the structure a network
should have in order to reach a certain synchronization
behaviour [13], while others focus on adjusting oscillator
coupling strengths [12] or the interconnection weights [14]
to promote the stability of certain functional patterns.
However, in this project we propose another approach
based on the control of differentiated global and local
synchronization.

Thus, in this work, we consider an interwoven net-
work of glial cells and neurons, and assume that the glia
cells regulate the synchronization of the neuronal net-
work they nurse. For that, we consider a network of Ku-
ramoto oscillators and propose a simple self-regulation
model to control the level of global and local synchro-
nization. Conceptually, we model a ‘toy brain’ in which
each oscillator represents a large population of neurons.
The oscillators, for sufficiently strong coupling, will tend
to spontaneously synchronize in a global manner. To pre-
vent that, we act locally (through the presence of glia)
by switching on or off a set of edges.

To define our problem, we firstly set up the assemble of
oscillators as a modular network, where each module is
constructed as a random geometric graph. There are sev-
eral studies that consider small-world networks or other
network structures without metrics [3], meaning that the
distance between nodes (i.e., the Kuramoto oscillators)
is completely irrelevant. Nevertheless, real neuronal net-
works are embedded in a bi-dimensional space and it is
well known that near neurons or brain areas are more
likely to be connected than remote ones [16, 17]. There-
fore, taking into consideration the importance of spatial
constraints, here we generate each module of the network
as a random geometric graph, which considers that con-
nectivity is more favorable at short Euclidean distances.
At the end of the construction, all modules are connected
to the neighbouring ones to form the modular network.
It must be noted that modular is an ubiquitous trait
of neuronal networks, and it has been seen at different
scales in the brain, from neuronal communities to brain
regions [18]. It is remarkable to say that we compare the
response to the proposed model of two different network
structures defining the system. Both of them modular,

but with a different size though having similar network
properties.
Secondly, we make the network of oscillators tend to-

wards synchronization. There are several models that
lead to that behaviour and here we opt for the Kuramoto
model, which is one of the simple models for describing
phase dynamics in multiple fields, including neuroscience.
Then, we apply a simple self-regulation process in order
to keep local synchronization while avoiding a globally
synchronous state. The self-regulation process consists
in the control and deletion of edges connecting too much
synchronized nodes and this control is performed exclu-
sively over edges within certain regions representing the
domain of the regulatory agents, i.e. our idealized glial
cells. Once an edge is being deleted we add the possibil-
ity of recovering it after a certain period of time, making
the system more interesting, for instance to capture the
concept of healing after damage.
We must note that our system is a highly simpli-

fied model of a biological neuronal network. However,
the obtained results are certainly interesting. The re-
sults show that global synchronization can be remark-
ably reduced while keeping local synchronization stable
and high. Moreover, we have seen that the network has
to be non-random for interesting phenomena to emerge.
In addition, we have analysed the effects of modularity
and the interaction among modules during the dynamic
evolution of the network, observing that interesting pat-
terns of interaction among modules emerge and are main-
tained.
The present work is organized as follows. We first in-

troduce the network generation method that will be used
henceforward. Next, we present the model by introduc-
ing the Kuramoto model and the proposed self-regulation
process. All results are shown in the next section and
the discussion and conclusions are provided together with
some perspectives at the final part.

II. NETWORK GENERATION

To study the proposed self-regulatory dynamics, we
start with a simple representation of a neuronal network
as a set of nodes with dependencies characterized by
undirected and unweighted edges between them. In this
scenario, the system is defined by an in silico neuronal
network formed by nodes representing groups of neurons
idealized as oscillators, and edges that may be thought
as the synaptic connections among them. The networks
generated are formed by M interconnected modules cre-
ated as random geometric graphs of equal number of neu-
rons, N . The followed steps are the next ones:

1. Creation of M random geometric graphs. To do so,
N nodes are randomly set on a two-dimensional
squared surface, L × L, and each one of them is
connected to any other one located in a distance
smaller than a neighbourhood radius ρ with prob-
ability γ. The latter process is repeated M times.
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a) b)

FIG. 1. Graphs of the two types of simulated networks. a)
Network of 4 random geometric modules of N = 60 nodes
each, generated defining (L, ρ, γ, nc)=(25, 6, 0.8, 24). It is
worth mentioning that as each module is connected to only
two of the others, the 24 inter-modular edges are equally dis-
tributed between them. b) Network of 12 random geometric
modules generated with the same parameters as the previous
case. However, each module is connected to its neighbouring
ones by a total number of 24 edges not equally distributed
among the neighbours so as to keep nc= 24 to all modules.

2. Connection of the M random geometric graphs.
The M graphs of the previous step are connected
in order to obtain the final modular network. For
this purpose, the M graphs are distributed as de-
sired in the plane keeping the relative positions of
all nodes of every single graph. Then, nc connec-
tions are established between modules just by link-
ing randomly selected nodes from the modules we
are interested in. For example, if modules 1 and 2
are wanted to be connected by i edges, i links con-
necting randomly selected nodes are added from
module 1 to module 2. Since real neuronal cultures
are spatial networks, each module is connected only
to the neighbouring ones and nc is considered to be
the sum of all the inter-modular edges of each mod-
ule.

In this work we have analysed two different network
structures: one with 4 modules, forming what is known
as ring modular network, a quite common structure in in
vitro experiments [19]; and another one with 12 modules
so as to analyse the effect of network’s topology on the
dynamics proposed. Both types share the same parame-
ters when creating the random geometric graphs forming
the modules, but differ in the number of modules and
their spatial distribution. Representative graphs of the
mentioned network types can be found in Fig. 1 and the
average structural properties over 100 realizations of both
types are presented in Table I.

TABLE I. Averaged structural properties of the two network
types analysed taking 100 networks of each.

n = 4 n = 12

Nodes 240 720
Edges 1040.90 3108.16

Average degree 8.67 8.63
Diameter 8.80 12.58
Clustering 0.58 0.57
Modularity 0.73 0.78

III. THE MODEL

The dynamics of a network of synaptically interacting
neurons can be approximated by a network of phase os-
cillators. We can model each neuron as a phase oscillator
producing an action potential when its phase equals 0 or
2π, as suggested in [12, 20, 21].
There are many oscillators models and one of them is

the Kuramoto model, which makes possible the analysis
of periodic dynamics of elements interacting continuously
in time. The strong points motivating the choice of the
Kuramoto model have been its widespread use, derived
from its simple and intuitive construction, together with
its rich dynamical repertoire. In the next sections we
discuss the Kuramoto dynamics and the purposed dy-
namics, which consists in the addition of self-regulation.

A. Kuramoto dynamics

The Kuramoto model was proposed by Y. Kuramoto
in 1975 [22] and describes the dynamics of a system of
oscillators where each oscillator continuously redefines its
effective frequency to minimize the difference between its
own phase and the phase of its neighbours. Although ev-
ery oscillator has an intrinsic frequency, they influence
one another pulling on their frequencies. As a conse-
quence, the instantaneous frequency of each oscillator is
defined by its intrinsic frequency and by the influence of
its neighbours.
Considering a group of N coupled oscillators (i.e. neu-

rons) with phase θi(t) and with natural frequencies ωi

(i.e. spiking rates) distributed with a given probability
density g(ω), the Kuramoto model reads:

θ̇i = ωi +K

N∑
j=1

Aij sin (θj − θi), (1)

where K is the coupling interaction strength (i.e. repre-
senting our synaptic weight) and Aij corresponds to the
adjacency matrix defining the interactions (connectivity)
of the system.
On the one hand, the natural frequency term makes

each oscillator run independently of the others. On the
other hand, the coupling term that depends on the sine
of the phase difference makes each oscillator readjust its
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FIG. 2. Phases of a system of Kuramoto oscillators for two
different time steps of the same realization. Left: very poor
correlation between phases. Right: strong correlation; after
some time steps, the system ends up showing a very similar
phases.

phase to synchronize it to the others. Therefore we have
two different trends and synchronization can be reached
depending on the strength of the coupling.

If the coupling K is weak with respect to the variance
of the frequency distribution, oscillators do not reach syn-
chronization (relationship showed in the following para-
graphs). However, if the coupling is strong enough, the
system ends up reaching a synchronous state in which
effective frequencies and phases tend to be similar de-
spite having started with a random distribution of initial
phases (Fig. 2). Hence, the values of K and g(ω) turn
out to be crucial for the evolution of the system.

As we are interested in the collective behaviour, we
define the order parameter r(t) capturing the similarity
between phases as:

r(t)eiΨ(t) =
1

N

N∑
j=1

eiθj(t), (2)

where Ψ(t) corresponds to the mean phase of the system
and 0 ≤ r(t) ≤ 1 can be understood as a measure of the
degree of synchronicity, being r(t) = 0 for the case of a
completely incoherent state and r(t) = 1 the case for an
absolutely coherent one.

As shown in Fig. 3, if we let a system with an ini-
tial state formed by randomly distributed phases evolve
following the Kuramoto dynamics, an increase of r(t) is
expected with an steepness that will depend on the value
of K. For large values of K, synchronization is easier to
reach and that can be appreciated with a faster approach
of r(t) to 1.

Regarding the evolution ofK, two different phase tran-
sitions can be appreciated. On the one hand, we can see
a transition in time from disorder to order that gets much
steeper at large values of K (see Fig. 3a). On the other
hand, if we keep the stationary value of the order param-
eter for different values of K, we can appreciate a kind of
second-order transition from states that do not reach syn-
chronization to states that end up reaching it when the
coupling strength, K, is increased (see Fig. 3b). Up un-
til about K = 0.005 the system remains unsynchronized,

a)

b)

FIG. 3. a) Time evolution of the order parameter r(t) for
different coupling strength, K, values. These results com from
a system of Kuramoto oscillators with a network of interaction
formed by a random geometric graph with parameters (N ,
L, ρ)=(200, 50,10). b) Plot of the mean value of the time-
averaged order parameter in the saturation region for different
values of the coupling strength K. The mean values has been
computed taking 100 realizations for each case, the error bars
correspond to the variance and the plot includes the analytical
prediction of the critical value of the coupling strength, Kc =
0.00619.

but for higher values ofK the final order parameter starts
rising from zero up towards one. It is worth mentioning
that the final degree of synchronization reached by the
system does not depend on the initial state.
This behaviour leads to the existence of a critical cou-

pling strength, Kc, and it can be analytically predicted
through the mean field result

Kc =
2⟨k⟩

πg(Ω)⟨k2⟩
, (3)

where Ω is the center of symmetry of the distribution of
natural frequencies, g(ω); ⟨k⟩ the average degree and ⟨k2⟩
the average squared degree of the network representing
the system [23, 24].
If we consider g(ω) to be a Gaussian distribution with

standard deviation σ and mean µ = Ω, Eq. (3) can be
rewritten as

Kc =
2⟨k⟩

π 1√
2πσ

⟨k2⟩
=

√
8

π
σ
⟨k⟩
⟨k2⟩

. (4)

The possibility of getting the critical prediction of the
coupling strength, Kc, is really useful, as it allows us to
predict beforehand if the system will end up in synchrony
or not by knowing the values of σ, ⟨k⟩ and ⟨k2⟩.
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FIG. 4. Mean time evolution of both global and local order
parameters over 10 simulated realizations taking the 4 mod-
ules network, the initial phases uniformly distributed between
−π and π, g(ω) as N (1, 1) and defining K = 2.

At this point it is interesting to consider the dynamic
behavior of the modular networks presented in the pre-
vious section.

1. Effect of modularity

Modularity provides richer results when applying the
Kuramoto dynamics. Modular networks firstly exhibit
collective synchronized patterns within each module, and
later on, all modules get synchronized, leading to a local
synchronization of the system followed by a global one.
In other words, two different time scales can be appreci-
ated, one for each module and another one for the whole
network.

In order to quantify the level of global synchroniza-
tion, we have used the aforementioned order parameter,
Eq. (2). However, for quantifying the level of local sync
we have to define another order parameter, which is com-
puted as the mean value of the order parameter resulting
from each module, I, over the total number of modules
of the network, M :

rI(t)e
iΨI(t) =

∑
j∈I

eiθj(t), (5)

rlocal(t) =
1

M

M∑
I=1

rI(t). (6)

If we let the ring modular network to follow the Ku-
ramoto dynamics and we compute the local and global
order parameters as mentioned, we can see that the lo-
cal order parameter grows faster than the global one,
although both reach r = 1, meaning that global and lo-
cal synchronization are reached but at a different pace,
as already expected (see Fig. 4).

In the next sections we refer to the global order param-
eter r(t) as rglobal(t), and we take rlocal(t) as the local
order parameter as already mentioned.

B. Application of self-regulation

To provide a simplified model of the regulatory prop-
erties of glial cells, we assume that they have an influ-
ence on their neighbourhood. For this reason, bearing
in mind this localized behaviour, self-regulation has been
proposed as the definition of regions —that we will refer
to as switchers—, where all edges intersecting them are
regulated. These switchers can be interpreted as the ac-
tion domain of the regulatory agents of the system, i.e.
the glial cells.
The proposed regulation consists in the possible dele-

tion of the edges connecting nodes with phases θi and
θj , giving a value of cos(θi− θj) above a certain synchro-
nization threshold, σth. By doing so, only edges connect-
ing highly synchronized nodes can be deleted in order
to avoid global synchronization. At the same time, we
have also considered the option of recovering previously
deleted edges with a probability, pr.

a) b)

FIG. 5. Representation of the same network of 12 modules
including the switchers representing the domain controlled
by glial cells in pale red. a) Switchers defined by 8 circles of
radius R = 15. b) Switchers defined by 72 circles of radius
R = 5. It is important to mention that both cases have
exactly the same surface covered by the switchers.

To explore the emerging dynamics, we first need to
define the location and area of action of the mentioned
switchers. Thus, the switchers are defined as circular
regions of radius R randomly distributed on the plane
containing the network (see Fig. 5). However, it must be
noted that not only the number of switchers matters, but
also the area covered by each one, since it will ultimately
set its regulation role. Indeed, a larger number of small
switchers intersect with a greater number of edges than
a smaller number of larger switchers despite keeping the
surface coverage constant, as can be seen in Fig. 6.
This result evinces that small sized switchers are much

more efficient than fewer but larger ones, a trait that is
merely due to geometry. Interestingly, from a biological
point of view, one could say that it is worth spending
more energy in order to have more but smaller-sized reg-
ulatory agents.

5



Self-regulation of a network of Kuramoto oscillators Paula Pirker Dı́az

1 2 3 4 5 6 7 8 9 10
Large sized switchers (R = 15)

0

500

1000

1500

2000

2500

Co
nt

ro
lle

d 
ed

ge
s

R = 5
R = 15

9 18 27 36 45 54 63 72 81 90
Small sized switchers (R = 5)

FIG. 6. Average number of controlled edges in terms of the
number of switchers represented by circles of radius R = 5
(upper axis) or R = 15 (lower axis) randomly distributed
as shown in Fig. 5. The average has been done over 10
realizations, each one consisting in the generation of a network
of n = 12 modules with the same parameters as the one shown
in Fig. 1b and a random distribution of the switchers for
each case. It is noteworthy that vertically aligned data points
correspond to the same surface covered by the corresponding
switchers.

Once the network and the switchers are defined, the
presented dynamics consists in the next steps:

1. Definition of the dynamic parameters: coupling
strength, K; synchronization threshold, σth; and
recover probability, pr.

2. Definition of the initial conditions of the system:
natural frequencies, ωi, distributed with a given
probability density g(ω); initial phases, θi, uni-
formly distributed between −π and π.

3. Application of the Kuramoto model and implemen-
tation of self-regulation after 500 time steps:

(a) Recovery of previously deleted edges (if there
are) with probability pr.

(b) Identification of edges connecting synchro-
nized nodes within the switchers defined at
the beginning of the simulation. These are
the ones satisfying cos(θi−θj) > σth, being θi
and θj the phases of the connected nodes.

(c) Deletion of the previously identified edges
with a probability proportional to the Eu-
clidean distance of the connected nodes.

4. Repetition of step 3 until the desired final time step
is reached.

It is worth noting that the proportionality to the Eu-
clidean distance mentioned at step 3.c has been consid-
ered since neuronal circuits tend to minimize wiring cost

due to its important metabolic cost. Indeed, although
long-distant connections exist, most links are short. [5]
This model offers a great number of possible study

cases, as it has many parameters both in the system’s
definition (network and switchers) and in the dynamics,
from the Kuramoto model parameters to the ones added
in the self-regulation process, σth and pr.
With the aim to identify the general traits of the be-

haviour of the system under that dynamics, we have anal-
ysed the response of the two network structures already
presented (Fig. 1) setting two different synchronization
thresholds, σth = 0.7 and 0.9. By analysing different
values of σth we would be able to see the effects of con-
sidering damage on a more restricted selection of edges
or on a wider assortment. In addition, we have also con-
sidered two options for the recovery of previously deleted
edges, pr = 0.2 and 0, to analyse the response of the
system with and without the presence of recovery of the
network structure. Therefore, the results presented in
the next section show for, each network, the considered
synchronization threshold and recovery probability.

It is worth noting that g(ω) has been defined as a Gaus-
sian distribution with mean and variance equal to one,
N (1, 1), in all the results presented in this work. In ad-
dition, the coupling strength has been set as K = 2,
after verifying that this value is above the critical Kc

in all cases, thus ensuring the spontaneous tendency to
synchronization of the system when no self-regulation is
applied.

IV. RESULTS

A. Local synchrony vs global synchrony

Bearing in mind the stochasticity of the process, all re-
sults presented in this section correspond to the average
over 10 realizations to better notice the tendency of each
case. It is important to mention that each realization
starts with the definition of the network. Although each
realization results from the same parameter configura-
tion, the created networks have a different configuration.
In other words, each realization shapes its unique net-
work, switchers’ location and initial conditions; but all
of them are equivalent since they are defined with the
same parameters.

1. 4 modules network

We have analysed the 4 modules network structure
with the parameters specified in Fig. 1, (N , L, ρ, γ,
nc)=(60, 25, 6, 0.8, 24). In that case we have consid-
ered a total of 24 switchers of radius R = 5, which set an
approximately 48% of the surface of the network covered
by the switchers.

Firstly, let us take a look at the results with no recovery
considered, pr = 0 (Fig. 7, σth = 0.7; Fig. 8, σth = 0.9).

6
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For both synchronization thresholds taken into account,
we can see how both local and global order parameters
split and decay separately.
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FIG. 7. Average evolution of the local and the global order
parameters over 10 different realizations taking the 4 modules
network structure and setting a low synchronization thresh-
old, σth = 0.7, without considering the recovery of previously
deleted edges, pr = 0.
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FIG. 8. Same case as figure 7, but setting a high synchroniza-
tion threshold, σth = 0.9.

For all cases, the local order parameter is higher than
the global one, which is completely expected since the
connectivity within modules is stronger and more robust
than when considering the network as a whole. Further-
more, intermodular edges are more vulnerable to dam-
age due to the fact that they physically connect distant
nodes. These two aspects are in accordance with the re-
sults, as they show how global synchronization is much
more sensitive to damage.

Regarding the decay, we can appreciate it after each
damage episode and we can see that it is slower and with
smaller fluctuations for the more restrictive synchroniza-
tion threshold, σth = 0.9, as expected. For a low value
of σth, a more general damage is done to the system as
highly synchronized nodes and not so synchronized ones
are disconnected, which has an effect on the overall syn-
chronization state of the system, here quantified with the

global and local order parameters. However, for a highly
restrictive threshold, all candidate edges to be deleted are
highly synchronized, hence highly localized in the range
of cos(θi − θj). This leads to a more controlled and less
harmful damage to the system.

In addition, we can see how, at time step t ∼ 4000,
both order parameters fluctuate around a given station-
ary value. That is because there is no chance of recov-
ery for the deleted nodes and all edges regulated by the
switchers have already been deleted, meaning that there
are no edges left to be removed. At this point, no struc-
tural damage is inflicted to the system and that is why
the synchronization of the system does not change signif-
icantly. Nevertheless, even though no alteration on the
network structure is taking place, there are tiny but still
present fluctuations. It is because at this point the net-
work is completely destroyed; it is not robust any more
and the Kuramoto dynamics is remarkably sensitive to
that aspect, overall resulting in an unstable evolution of
the system.
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FIG. 9. Average evolution of the local and the global order
parameters over 10 different realizations taking the 4 modules
network structure and setting a low synchronization thresh-
old, σth = 0.7, considering the recovery of previously deleted
edges with a probability of pr = 0.2.
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FIG. 10. Same case as figure 9, but setting a high synchro-
nization threshold, σth = 0.9.
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However, this dynamics is not realistic as it considers
only damage and we are just destroying the system. In
the next cases we have added the possibility of recovering
prior deleted edges with probability pr = 0.2, as shown
in Fig. 9 for σth = 0.7, and in Fig. 10 for σth = 0.9.
Here we can also see how the local and the global order

parameters split, but in contrast to the previous cases,
the decay of both is much more slower due to the abil-
ity of deleted edges to recover. For σth = 0.7, we can
see how the difference between both order parameters
is higher than for σth = 0.9. That is because damage
is done to highly and not so highly synchronized edges,
making the system more vulnerable to each attack. That
vulnerability can be seen in the decay of both parameters,
which is faster than for σth = 0.9, where both keep quite
more stable in time. It is also remarkable to say that for
a more restrictive synchronization threshold, σth = 0.9,
both the local and the global order parameters stay with
high values in time, as expected.

2. 12 modules network

Let us introduce the results of the 12 modules net-
work structure built as explained in the previous sections,
defining (N , L, ρ, γ, nc)=(60, 25, 6, 0.8, 24). Here we
have considered 72 switchers of radius R = 5, just to keep
the same percentage of surface of the network covered by
the switchers as in the last case, approximately 48%.

For this bigger and more complex structure than the
last one, the obtained results turn out to be quite inter-
esting. Following the same structure than the previous
case, Fig. 11 and 12 correspond to the cases without edge
recovery, pr = 0, while Figs. 13 and 14 to the ones with
recovery with probability pr = 0.2, being the synchro-
nization threshold σth = 0.7 and 0.9, respectively, for
these cases.

0 500 1000 1500 2000 2500 3000 3500 4000
t

0.0

0.2

0.4

0.6

0.8

1.0

r

Local Global Edge damage

FIG. 11. Average evolution of the local and the global or-
der parameters over 10 different realizations taking the 12
modules network structure and setting a low synchronization
threshold, σth = 0.7, without considering the recovery of pre-
viously deleted edges, pr = 0.
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r

Local Global Edge damage

FIG. 12. Same case as figure 11, but setting a high synchro-
nization threshold, σth = 0.9.

We observe that, on the one hand, in the case of pr = 0
we can see how for both synchronization thresholds, the
local order parameter stays high and outstandingly quite
stable through time in spite of the lack of edge recovery,
while the global one decays after each damage process
(see Figs. 11 and 12). It is worth mentioning that the
decay of the global order parameter is much more gradual
for the σth = 0.9 case.
On the other hand, for the pr = 0.2 case study we can

appreciate that the local order parameter also stays high
and stable through time, while the global one smoothly
decays for σth = 0.7 and 0.9 (see Figs. 13 and 14).

0 500 1000 1500 2000 2500 3000 3500 4000
t

0.0

0.2
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1.0

r

Local Global Edge recovery and damage

FIG. 13. Average evolution of the local and the global or-
der parameters over 10 different realizations taking the 12
modules network structure and setting a low synchronization
threshold, σth = 0.7, considering the recovery of previously
deleted edges with a probability of pr = 0.2.

If we compare the results of the 12 modules network
with the ones of the 4 modules one, we can observe sev-
eral differences. Firstly, in all cases for the 12 modules
network, we obtain rather constant and high values for
the local order parameter, even when pr = 0 and dam-
age recovery is not possible. This is probably due to the
the much higher structural richness of the 12 modules
network, enabling the system to be locally synchronized

8



Self-regulation of a network of Kuramoto oscillators Paula Pirker Dı́az

0 500 1000 1500 2000 2500 3000 3500 4000
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Local Global Edge recovery and damage

FIG. 14. Same case as figure 13, but setting a high synchro-
nization threshold, σth = 0.9.

despite the presence of damage. Secondly, we can see in
the 12 modules network how the difference between local
and global order parameters ends up being larger in all
cases, in spite of splitting at a slower pace in comparison
to the 4 modules network. Thirdly, and lastly, it is worth
saying that in the 12 modules, and in contrast to the
smaller network, not so many fluctuations are observed
(see Fig. 14 as a remarkable example). As a consequence,
we believe that, in general, the structure of the network
defining the system indubitably affects the response, and
that the richness of the network eases the control of both
local and global synchronization in a more robust way.

3. Effect of modularity

Another aspect we were interested in is the effect of
modularity in network dynamics. Modularity is the re-
sponsible of local synchronization and, after the qual-
itative analysis performed in the previous sections, we
wanted to analyse its effects in a quantitative manner.

To do it, we have studied the 4 modules network struc-
ture with the same parameters as before with the excep-
tion of the number of inter-modular connections, nc. By
doing so, the interaction between the modules becomes
stronger, or not, depending on the value of nc, which
obviously has an strong effect on modularity.

According to [25], modularity is defined as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj), (7)

where m is the number of edges of the network, A is its
adjacency matrix, ki is the degree of node i and δ(ci, cj)
is 1 if i and j belong to the same community and 0 if
they do not.

The studied cases can be found in Table II, that per-
fectly shows how modularity is inversely proportional to
the number of inter-modular connections.

For each network structure, we have quantified the ef-
fect of modularity by computing the relative difference

between the integrals of the curves describing the tempo-
ral evolution of the local and the global order parameter.
In other words, for each value of nc we have computed
the value of ∆A/A0 for several realizations, being ∆A
and A0 defined as

∆A =

∫
rlocaldt−

∫
rglobaldt, (8)

A0 =

∫
rlocaldt. (9)

The value of ∆A/A0 can be interpreted as the differ-
ence between both curves, as large values correspond to
strong differences between local and global order param-
eters, meaning that the system is locally but not globally
synchronized.

TABLE II. Number of inter-modular connections, nc, and av-
erage modularity, Q, over 100 networks of 4 modules created
by setting (N , L, ρ, γ)=(60, 25, 6, 0.8) and the respective
value of nc.

nc Q

6 0.745
12 0.725
24 0.685
36 0.652
48 0.616
60 0.583

It is worth noting that the dynamical model has been
applied considering the case of having a recovery prob-
ability pr = 0.2 and a synchronization threshold of
σth = 0.7. In this context, our results show that ∆A/A0

grows exponentially with the modularity of the network
defining the system, meaning that the switchers regulat-
ing the system are much more effective in highly modular
systems (see Fig. 15). That is completely in agreement
with the expected result, as highly modular systems have
less inter-modular edges which, in turn, make the system
more vulnerable to damage. With a lower number of
inter-modular edges, the modules are less interconnected
and it is easier to reach a greater local synchronization
while having the whole system poorly synchronized.

B. Dynamic pattern formation

As modules interact with each other, it results appro-
priate to analyse the synchronization between them. To
this end, we have identified each module with a label, as
shown in Fig. 16, and we have computed the mean phase,
θ, of each module at a certain time step. Then, we have
computed cos(θi−θj) for all pairs of modules, what leads
to an easy identification of which modules are synchro-
nized, cos(θi − θj) ≃ 1, and which do not and evolve

independently, cos(θi − θj) ≃ 0.

9
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FIG. 15. Average value of the relative difference between the
integrals of the temporal evolution of the local and the global
order parameters, ∆A/A0, as a function of the modularity of
the network analysed, Q. The averaging has been performed
over 10 different realizations of each case and the dynamical
model has been applied considering pr = 0.2 and σth = 0.7.

The values of cos(θi − θj) can be plotted as a matrix,
where i corresponds to the row and j to the column.
In order to detect patterns within the system, one can
rearrange rows and columns accordingly to group the el-
ements showing a greater correlation. An example illus-
trating an already rearranged cos(θi − θj) matrix can be
found in Fig. 17, which perfectly shows three well-defined
communities of highly synchronized modules at a partic-
ular instant of the simulation.

0 1 2

3 4

5 6

7 8

9 10 11

FIG. 16. Diagram showing the labels that identify the mod-
ules forming the 12 modules network.

If we keep the state of the system at different time
steps, we can compute cos(θi − θj) for each kept instant
and analyse if there is a recurrent structure in synchro-
nization patterns through time.

With the purpose of detecting some kind of pattern
in the correlation between modules, we have plotted the
cos(θi−θj) matrices of the different selected instants with
two different arrangement of rows and columns. Firstly,
we have plotted each matrix according to its particular
arrangement, leading to the best possible representation

10 7 11 5 8 3 6 9 1 4 2 0

10
7

11
5
8
3
6
9
1
4
2
0 0.9

0.6
0.3

0.0
0.3
0.6
0.9

co
s(

i
j)

FIG. 17. Rearranged cos(θi − θj) matrix resulting from a
simulation considering a 12 modules network, 72 switchers of
R = 5, K = 2, σth = 0.7 and pr=0.2, taking the state of the
system at time step t = 500.

of the communities formed by highly synchronized mod-
ules. Secondly, we have plotted the matrices not with its
particular best arrangement but with the one for the first
instant, i.e. at the state of higher global synchronization.
By comparing both plots, it is easy to see whether the in-
teraction between modules follows a constant pattern or
a time evolving one. Indeed, we can appreciate whether
the pattern is the same or not. If that is the case, we
can inspect whether the relationship between interacting
modules remains constant or evolves through time.

The results are provided in Fig. 18, where the results
from a single realization of the model are shown. The
figure corresponds to a case taking the 12 modules net-
work structure, 72 switchers of R = 5 and the dynamic
parameters set as (K,σth, pr) = (2, 0.7, 0.2). As it can be
seen, both local and global order parameters fluctuate
substantially, which is due to the fact that only one re-
alization is considered (in contrast to the previous cases,
where the mean values over several realizations were rep-
resented). However, we can see the kind of behaviour
seen in the previous case: the global order parameter
substantially decays while the local one keeps high and
stable over time. Edge recovery and damage has been
performed as in all cases, every 500 time steps, and we
have analysed the synchronization between modules at
time steps t = 500, 2000 and 3500.

The cos(θi − θj) matrices of Fig. 18 show how there is
an underlying structure in the synchronization between
modules at different time steps. We can see how the first
arrangement is completely lost as time goes by, but cer-
tain interactions are robust and persevere (see panels a.1,
b.2 and c.2). However, new correlations emerge, evolv-
ing from a well-defined three communities setting (a.1)
to a more diverse configuration (c.1). To sum up, there is
a kind of dynamic pattern formation where correlations
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a.1

b.1

b.2

c.1

c.2

FIG. 18. Time evolution of the global and the local order parameters of a single realization of the model taking the 12 modules
network, 72 switchers of R = 5 and setting K = 2, σth = 0.7 and pr=0.2. The plot includes cos(θi − θj) matrices at t = 500
(case a), t = 2000 (case b) and t = 3500 (case c). For case a, only the plot with the best arrangement for detecting the present
communities is shown (a.1). For cases b and c we also show the plots of the matrices conveniently rearranged for each case (b.1
and c.1), but we also include the same matrices rearranged following the same rows and columns order than a.1 (figs. b.2 and
c.2).

between modules change in time but some interactions
persist, which gives rise to the presence of an underlying
structure.

V. DISCUSSION AND CONCLUSIONS

In silico modelling allows us to test whether a simpli-
fication of the currently known behaviour is sufficient to
reproduce what we see in real neuronal cultures. Tak-
ing as inspiration the regulatory behaviour of glial cells
in neuronal networks, we have modelled a self-regulation
dynamics on a network of Kuramoto oscillators. The ba-
sis of our model consists in damaging edges connecting
highly synchronized nodes with the possibility of recov-
ering them after a certain period of time. Several con-
clusions can be drawn from our study.

Firstly, we have seen how localized self-regulation
makes possible to attain high local synchronization and
low global one, despite acting on a system that sponta-
neously tends towards synchronization. In real neuronal
networks, glial cells act within their domain. Favoring
local synchronization while keeping low global synchro-
nization is a kind of state that is considered to correspond

to a well-functioning neuronal system. In conclusion, the
results obtained are absolutely satisfactory as it means
that, despite the simplicity of our model, it is sufficient
to control synchronization at different scales and conse-
quently to reproduce traits observed in nature.

Secondly, we have analysed the effects of the multi-
ple parameters of the model. Regarding the size of the
switchers’ domain, we have seen how smaller switchers
but greater in number are much more efficient that less
but large ones, in spite of covering the same surface. The
nature of that feature is completely geometrical, but it is
important to bear it in mind when defining the switch-
ers regulating the system. In reference to the synchro-
nization threshold, σth, it has been noticed that the de-
cay of both global and local order parameters is slower
and that the difference between both order parameters is
smaller when it is more restrictive, as expected. Concern-
ing the recovery probability for previously deleted edges,
we spotted that it enables the reach of a quite station-
ary behaviour of both order parameters when it is not
zero, as it prevents the system from getting completely
damaged.

Thirdly, we have analysed the effects of modularity.
Neuronal cultures and the brain itself are characterized

11



Self-regulation of a network of Kuramoto oscillators Paula Pirker Dı́az

by their modularity and, as a consequence, the consid-
eration of modular networks in that project turns out
to be appropriate. However, it has been interesting to
see how, indeed, modularity promotes the reach of local
synchronization with global disorder.

Last but not least, it is proven that a larger and there-
fore more complex network leads to richer results. Our
results show how complex networks give rise to high and
stable local synchronization and simultaneous global dis-
order in the presence of self-regulation in all studied
cases. This result is highly relevant as this behaviour
is the one seen in nature and here we see how complexity
eases it. In addition, the richness of this kind of dynamics
on complex networks goes further. We have discovered a
dynamic pattern formation when analysing the synchro-
nization between pairs of modules and their evolution.
There is a pattern formed by groups of modules highly
synchronized that evolves in time. Each instant has a dif-
ferent one, but there is an underlying structure as some
interactions remain robust.

This work started with a very simple proposal. The
model is a simplification of the highly complex and still
not fully known dynamical problem such as the brain
self-regulation. Nevertheless, our results show that it is
enough to obtain the overall behaviour we were inter-
ested in: local synchronization without global one only
throughout localized actions over the system. That is
what makes the model useful and powerful, as it is simple
but sufficient. Through the realization of the project we
have found answers, but we have also come up with new
questions. Does the dynamic pattern formation detected
follow any kind of periodic behaviour? And if it does, is

it robust to perturbations? How would the robustness of
this dynamics be with respect to the addition of noise? In
neuroscience it is really common to work with weighted
networks and inhibitory as well as excitatory interactions.
Here we opted for a simple and general representation of
the system, but the consideration of those aspects would
be interesting to see the degree of affectation of them to
the resulting behaviour of the system.
These open questions mentioned above give rise to new

directions and it is relevant to keep in mind that self-
regulation in networks showing synchrony at any level
can be seen in other systems beyond neuroscience. For
this reason, we believe that our model can be gener-
ally applied to investigate the effects of self-regulation
in other kind of temporally correlated systems, such as
social or transportation networks.
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