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Neuronal cultures are an excellent experimental tool to study the collective behaviour of neuronal
ensembles, providing information on the principles of synaptic functioning and propagation. How-
ever, neurons cultured on flat surfaces present limitations in terms of their functionality, as they
exhibit a synchronous dynamic behaviour that differs from the much richer repertoire of activity of
the brain. In order to address this limitation and help developing better in vitro tools to model the
brain, here we studied the capacity to break off synchrony by modulating the spatial arrangement
of neurons in the substrate they grow. For that, we designed polydimethylsiloxane (PDMS) topo-
graphical patterns with fractal geometry and used them as the substrate to grow neurons, with the
goal to break the isotropy in connectivity and enrich dynamics. Neuronal activity was recorded with
calcium fluorescence imaging and data analysed in the context of criticality, which was inspired by
recent findings suggesting that a rich structural connectivity in the brain is behind its functioning at
the edge of criticality. We observed that, first, neurons cultured on fractal patterns exhibited richer
and more complex dynamics as compared to standard cultures; and, second, that an analysis of the
data using the renormalisation group approach, revealed the presence of scale invariance and typical
features of systems poised at criticality. Our study is a multidisciplinary endeavour that combined
experimental, theoretical and data analysis aspects to validate the hypothesis of the existence of a
self-organised criticality in living neuronal networks, from cultures up to the brain.

I. INTRODUCTION

Neuroscience is a constantly evolving scientific disci-
pline whose main objective is to help understanding how
the brain works. Modern neuroscience has become so
multidisciplinary that it feeds from engineering, physics,
mathematics, computer science, and many fields, giv-
ing in return new ideas and challenges. Given the sheer
size of the brain, neuroscience uses reduced experimental
model systems to tackle fundamental questions. One of
this models are neuronal cultures, which allow to study
the behaviour of nerve cells in a controlled in vitro envi-
ronment [1, 2]. Indeed, neuronal cultures have become a
valuable tool for understanding the principles of neuronal
functioning and the mechanisms governing the propaga-
tion and synaptic transmission of electrical pulses. How-
ever, neuronal cultures are still highly limited, and there
are still challenges in shaping them as a realistic experi-
mental models that captures the organisational, dynamic
and functional aspects of the brain [2].

The present study is an attempt to engineer better
neuronal cultures able to display rich, brain-like dynam-
ics. For that, our study aims to modify the substrate
in which neurons grow, changing it from Euclidean-like
geometry to a fractal one. The idea is to achieve a more
intricate connectivity and richer dynamics. Moreover, in
this context, experimental, theoretical and data analysis
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aspects will be combined to validate the hypothesis of
self-organised criticality of neuronal dynamics [3]. This
hypothesis suggests that the brain exhibits a dynamics
in which it approaches a critical state, characterised by a
second-order phase transition. In this state, neural activ-
ity exhibits critical fluctuations and spatial correlations
are established at various scales. This dynamic organi-
sation in the critical state is believed to be optimal for
efficient information processing and facilitates adaptation
and neural plasticity [4]. In this approach, scale invari-
ance and complex network theory will be fundamental,
as they allow the system to be characterised as critical
through scaling laws with specific critical exponents.
The present Thesis is organised as follows. In the rest

of the section we will introduce fundamental concepts
related to neuronal networks and criticality. Then, in the
methods sections, we will describe specific experimental
and analytical concepts related to our work. We will next
describe and discuss the results, analyse the difficulties
encountered, and finish with the conclusions.

A. The Brain: Richness, Activity and Connectivity

The brain is a highly complex organ that exhibits a
remarkable richness in terms of neuronal activity and
connectivity. Within its intricate structure, neurons in-
teract with each other to carry out essential cognitive
and behavioural functions, most notably the processing
of external information across different brain circuits to
understand the environment and take decisions. These
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functions are based on the electrical activity of neurons
and synaptic communication between them.

Under normal conditions, neurons have a negative rest-
ing electrical potential, due to the unequal distribution
of ions across their membranes. Specifically, the inte-
rior of the neuronal cell contains a higher concentration
of potassium ions, while the exterior is dominated by
sodium and calcium ions. When a neuron receives suffi-
cient stimulation to exceed a certain threshold, a change
in membrane permeability to ions occurs. This change
leads to the generation of an action potential, also known
as spike, an electrical signal that travels to other neurons
and that represents the basic unit for the transmission
and coding of information in neuronal circuits [5–7].

It is important to note that spikes can occur in
response to sensory stimuli, cognitive processes, emo-
tions or any other neural activity, as well as from just
spontaneous activity, an ubiquitous property of living
neuronal networks [8, 9].

Signal transmission.— Neuronal communication
occurs through synapses, which allow the transmission
of chemical signals known as neurotransmitters from
one neuron to another. These neurotransmitters are
released by the presynaptic neuron in response to the
arrival of an action potential. This action potential
induces changes in the membrane potential of the
presynaptic neuron, leading to depolarization at the
presynaptic terminal. Consequently, voltage-dependent
calcium channels become activated, allowing the influx
of calcium ions into the presynaptic terminal. The
increase in intracellular calcium concentration triggers
the fusion of vesicles containing neurotransmitters with
the presynaptic membrane. Subsequently, neurotrans-
mitters are released into the synaptic space and diffuse
to bind with receptors on the postsynaptic membrane of
the receiving neuron, thereby generating a postsynaptic
response [5–7]. Interestingly, intracellular Calcium can
increase up to 2 orders of magnitude and, thus, by using
Calcium indicators one can monitor in the laboratory
the dynamics of a neuronal circuit.

Excitatory and inhibitory neurons.— The inter-
action among neurons can be excitatory or inhibitory,
depending on the type of neurotransmitter released at
the synapse. Excitatory synapses increase the likelihood
of action potential generation in the receiving neu-
rons, thereby promoting neuronal activity. Conversely,
inhibitory synapses reduce the probability of action
potential generation, suppressing neuronal activity [9].
It is important to note that the interaction between
inhibition and excitation plays a fundamental role in
information processing in the brain and in the regulation
of neuronal activity.

Spontaneous activity.— The brain exhibits as
much or more activity when it is in a resting state
compared to its activity during the performance of

specific tasks [10, 11]. Therefore, neurons not only
respond to external stimuli, but also generate patterns
of spontaneous activity in the absence of such stimuli.
This spontaneous activity plays a fundamental role in
various brain functions and is crucial for the formation,
survival and refinement of the correct neural circuits [8].
It is actually so important that it is present in any
neural network, in vivo and in vitro. For this reason,
it is highly studied in the context of neuronal cultures
to understand the fundamental principles governing
it [9]. In addition, it has been observed that numerous
psychiatric and neurodegenerative diseases are associ-
ated with significant alterations in spontaneous activity
patterns [10, 12], thus fostering its understanding to
treat such diseases.

Connectivity.— Connectivity plays a fundamental
role in the organisation and operation of the nervous sys-
tem, since the distribution of connections describes the
circuits of the complex network, whose regions are func-
tionally and structurally interconnected. Structural con-
nections correspond to the physical tissue that binds and
communicates neurons with each other, while functional
connections represent topological pathways of correlated
activity between active neurons. Indeed, functional links
between two neurons have to be understood in a general
sense as statistical correlations between their dynami-
cal patterns [13, 14]. Consequently, functional connec-
tions are associated with activity interdependencies, in
the sense that two neurons that systematically activate
together will be strongly functionally linked.

The notion of functionally linked neurons introduces
the concept of functional communities or modules [15],
which are groups of neurons that ‘talk’ frequently to one
another, thus exhibiting a higher internal connectivity
as compared to the connectivity with the rest of the net-
work. The modular organisation is a fundamental trait
of the brain, and it believed that it enables specialised
and efficient processing of information in different
cognitive, sensory or motor aspects [16]. Modularity
is also linked to the integration-segregation balance,
as described next, in the sense that, depending on the
number of functional communities, the network can
exhibit a higher number of segregated or integrated
states.

Integration and segregation.— Integration and
segregation are two fundamental concepts in brain organ-
isation. Segregation refers to the functional specialisation
of different brain regions. This functional segregation
allows for enhanced efficiency in information processing
and the execution of specialised tasks within localised
communities (Fig. 1A). On the other hand, integration
refers to the ability of a neural network to operate as
a unified entity, enabling the efficient exchange and pro-
cessing of information across different brain regions. This
allows the integration and coordination of information at
multiple levels, which contributes to the performance of
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FIG. 1. Schematic diagram showing a set of nodes and
edges organised in a network. A: Functional segregation indi-
cated by strong functional coupling within communities, rep-
resented in different colours, with weak or none functional
coupling between communities. This modular organisation
allows a specialised computation within each community.
B: Functional integration indicated by strong functional cou-
pling at the global level, including strong information flow
through network centres and their mutual interconnections
(red). This phenomenon allows for a global exchange of in-
formation.

complex and coordinated cognitive tasks (Fig. 1B) [17–
19].

Both integration and segregation are necessary for effi-
cient and adaptive brain processing. Moreover, the neu-
ral network of the human brain is characterised by a del-
icate balance between the two. An excess of integration
could lead to a loss of functional specialization and dif-
ficulties in the execution of specific tasks. Conversely,
an excess of segregation could limit communication be-
tween regions and affect the ability to generate adaptive
responses. Therefore, an optimal balance between in-
tegration and segregation is essential for efficient brain
functioning.

In the context of neuronal cultures, the concept of
integration-segregation balance is important since stan-
dard cultures (grown on a flat Euclidean space) exhibit
a highly synchronous, fully integrated behaviour that
confers them a very poor dynamic repertoire [9, 20].
By tuning the connectivity of a neuronal culture, e.g.,
through neuroengineering [17, 21], it is possible to escape
from such synchronicity and achieve a richer dynamics in
which segregation and integration coexist.

B. Brain dynamics as a critical phenomenon

Recent research has revealed the presence of a second-
order phase transition in brain dynamics, showing simi-
lar characteristics to systems poised in a critical state [3].
As shown in Fig. 2, such a transition separates a disor-
dered or subcritical state characterised by random activ-
ity, and an ordered or supercritical state characterised
by persistent highly correlated activity. Near the critical
point, complexity arises from competition between collec-
tive ordering and collective disordering forces, resulting
in a state with a wide variety of dynamic patterns [3].

The idea of a continuous phase transition in brain dy-

namics is related to the brain’s ability to simultaneously
integrate and segregate information. In the supercriti-
cal, ordered state (Fig. 2, yellow square), there is a shared
coactivation of activity processes, leading to highly corre-
lated synchronisation states in brain dynamics (bottom-
right activity patterns in Fig. 2). In this state, fluctu-
ations have minimal impact on dynamics and the abil-
ity to encode information is low. At the other extreme,
in the subcritical, disordered state (Fig. 2, red square,
and bottom-left activity patterns), more segregation is
observed and the system is more responsive to noise
and randomness, resulting in weakly correlated dynam-
ics that hinder the flow of information [22, 23]. Hence,
the critical point (Fig. 2, blue square and bottom-middle
patterns) reflects an optimal balance between segregation
and integration in brain behaviour.
Interestingly, the transition point corresponds to a sce-

nario in which the brain exhibits the greatest variability
in its repertoire of states. Although the brain fluctu-
ates between subcritical and supercritical states, it has
been observed that most of the time the brain remains at
the critical transition point. Therefore, the critical state
implies a delicate dynamic equilibrium, where neural ac-
tivity shows critical fluctuations and spatial correlations
are established at different scales. Moreover, it produces
enhanced functionality in a generic way, which facilitates
the task of self-organisation, adaptation and evolutionary
mechanisms [23, 24].
A key aspect of a second-order phase transition at crit-

icality is the divergence of a correlation length, which
refers to the characteristic distance over which system
properties are interrelated. This phenomenon implies
scale invariance, which means that activity patterns ex-
hibit the property of self-similarity, repeating the same
dynamical traits at different scales, i.e, without a domi-
nant characteristic scale [3].
In order to characterise a dynamical system as critical,

a classical approach has always been the use of power
laws, each with specific critical exponents that satisfy
scaling relationships. As predicted by scaling theory [25–
27]:

f(S) ∼ S−τ , (1)

f(T ) ∼ T−α, (2)

⟨T ⟩(S) ∼ Sγ , (3)

where f is the probability distribution function of the
associated variable. S and T are, respectively, the size
and duration of avalanches, i.e., the clustering of groups
of consecutive peaks within the whole system. For in-
stance, in the context of Fig. 2, avalanche sizes are the
size of collective activations (apparent blue vertical bars
in the bottom panels). The parameters τ , α and γ are
critical exponents of the system and are related through
a scaling relation:

α− 1

τ − 1
=

1

γ
. (4)
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FIG. 2. Proposed role of criticality in large-scale resting-state
brain dynamics. In the subcritical region, individual brain
regions are effectively decoupled, showing a lack of integration
(red square). This phenomenon is reflected in the activity
patterns of neuronal cultures, which are more asynchronous
and irregular because the system is more segregated and ran-
dom (bottom-left activity patterns). In contrast, in the su-
percritical region, the integration is too large and there is
a lack of segregation (yellow square), which causes a large
number of neurons to be activated in a short period of time,
indicating network bursts, i.e., highly correlated synchronisa-
tion states (bottom-right activity patterns). Near the critical
point, brain systems exhibit a dynamic balance of integra-
tion and segregation (blue square), fluctuating between vari-
ous resting-state networks. In this state, patterns of activity
(bottom-middle activity patterns) are characterised by mul-
tiple groups of coactivation patterns, establishing spatiotem-
poral correlations at various scales.

Experimentally, our study investigated criticality us-
ing the group renormalisation approach, which provides
an alternative perspective for characterising criticality in
complex systems. In this approach, other quantities are
computed, specifically the variance of activity distribu-
tions as a function of block neuron sizeK; the free energy,
which is related to the probability that all neurons within
a group are in the quiet state; and the covariance matrix
spectrum [28, 29]. The scaling exponents correspond-
ing to these quantities were obtained through procedures
detailed in Sec. III C, in which hyperscale relationships
between them were also established.

C. Neuronal cultures

In 1910 neuroscientist Ross Harrison developed a
technique that allowed visualisation and study of live
nerve cells in vitro, giving rise to the concept of neuronal

culture [1, 2]. Neuronal cultures provide a platform
for investigating the collective behaviour of neuronal
ensembles, enabling a detailed inspection of the princi-
ples of neuronal functioning, as well as the mechanisms
governing the propagation and synaptic transmission
of electrical signals. These cultures have the ability to
spontaneously activate and generate various forms of
collective spatiotemporal patterns, modelled by network
connectivity features and the balance between excitation
and inhibition [9, 20, 30]. Moreover, neuronal cultures
are ideal systems for manipulation and analysis in the
context of complex networks, allowing the extraction of
a series of network descriptors or measures that provide
information about the statistical properties of the
studied network [31]. Therefore, they are particularly
relevant for understanding the occurrence of spontaneous
activity, the relationship between network dynamics and
connectivity, as well as resilience to damage, among
other phenomena.

The structure of a neural circuit and its dynamics are
closely intertwined, and neuronal cultures can dictate the
spatial arrangement of neurons and modulate connectiv-
ity across the network based on chemical and/or physical
constraints, and combining sophisticated neuroengineer-
ing and microfabrication techniques [32, 33]. Such a
controlled environment allows the development of models
and new network metrics [31], and help the development
of new pharmacological agents or therapies [34, 35], al-
together aimed at understanding neuronal circuits from
a complex system perspective and treat neurological and
psychiatric disorders [2]. Therefore, in vitro neural net-
works make possible to study the development of connec-
tions in living neural networks and the interplay between
connectivity, activity and function. These models pro-
vide a solid basis for understanding fundamental mech-
anisms of neural network dynamics, which can often be
extrapolated successfully to the brain.

In terms of physical constraints, it is possible to
modify the structure of collective activity by changing
the surface on which neural networks are cultured,
specifically by including polydimethylsiloxane (PDMS)
topographical patterns [21]. In this way, specific
structural motifs shape the dynamics and effective
connectivity of neuronal cultures, providing connectivity
guidance and structural support to neuronal ensembles.

Patterning and connectivity guidance.— In stan-
dard cultures on a flat surface, the connectivity between
neurons is isotropic and modularity, the central property
of brain functional networks outlined above, is rather
weak. Moreover, these homogeneous cultures show a
strongly synchronous dynamic behaviour with an all-or-
none activation patterns [9] (as in the supercritcal regime
of Fig. 2) that is considered pathological. In contrast, to-
pographical modelling incorporates guidance of connec-
tions, shaping a more anisotropic connectivity that sig-
nificantly alters the collective behaviour of networks and
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enhances the richness of spontaneous activity towards
more varied activity events [21], actually as in the critical
regime of Fig. 2. This also increases the overall richness of
the neural network, generating diverse activity patterns
and specific functional connectivity features [21].

However, these topographical structures generate net-
work dynamics that still do not fully resemble in vivo
brain-like behaviour. Neurons in these structures only
connect directionally or along preestablished paths [21],
which limits the range of connectivity schemes and net-
work dynamics. To achieve more realistic connectivity
patterns and richer dynamics, our present study aims to
increase the organisational complexity of neuronal cul-
tures in order to address the structure and dynamics of
the brain. Neurons were grown on a substrate composed
of valleys and slits with a fractal spatial distribution, and
their impact on the overall dynamics of the network was
explored. Our hypothesis is that fractal patterns can pro-
vide a connectivity and activation structure that allows
interaction between groups of neurons at different scales.
This can result in richer and more complex dynamics,
as interactions between different groups of neurons can
generate emergent patterns and non-linear behaviour in
the neural network. For the specific case of our work,
three different fractal patterns were used, with different
heights and levels of fractality: rhombuses, triangles and
Sierpinski squares, with heights of 50 and 100 µm.

II. EXPERIMENTAL METHODS

A. Design of fractal patterns

As previously stated, one of the main objectives is to
achieve more realistic connectivity schemes and richer
dynamics from growing neuronal cultures on a substrate
with a fractal geometry. Therefore, in order to obtain
PDMS topographical patterns with this arrangement, it
was necessary to generate the desired fractal patterns in
a vector format, carry out a lithography process and fi-
nally elaborate a PDMS mold with topographic patterns.

Fractal patterns in a vector format.— The de-
sired fractal patterns with different orders of fractality
were generated from a vector graphics editor (Inkscape)
and exported as .svg format (Fig. 4A). The fractality
order refers to the number of iterations performed to
generate the fractal structure, which determines the lev-
els of self-similarity observed in the fractal at different
scales. A specific example could be the Sierpinski Tri-
angle, whose construction process is illustrated in Fig. 3.
In this case, one starts by dividing an equilateral trian-
gle into four smaller triangles and eliminating the cen-
tral one. This process is repeated iteratively, taking the
smaller triangles and dividing them into new sets of four
triangles and eliminating again the central ones at each
iteration.

To implement these patterns in the photolithography

FIG. 3. Sierpinski Triangle construction process.

process, it was necessary to reproduce them in a suitable
mask. Although there were several options for mask
materials, acetate masks were chosen for this work due
to their ease of handling and wide availability.

Lithography process.— The lithography process
was carried out in the clean room facilities of the Insti-
tute for Bioengineering of Catalonia (IBEC), following
a sequence of fundamental steps to obtain the desired
patterns on the silicon wafer at a specific height. This
height was achieved by uniformly applying thin films of
resin on the flat silicon substrate. The choice of resin
was based on the target height of the pattern: the resin
SO8-3050 was used to achieve a height of 50 µm and the
resin SO8-2100 was used to achieve a height of 100 µm.
In addition, it should be noted that a shadow transfer
method was used during the exposure process, which
explains why the objects represented in black in Fig. 4A
correspond to the relief areas. The results of this process
can be seen in Fig. 4B.

Topographical design with PDMS.— PDMS is a
silicon-based organic polymer on which dissociated neu-
rons are seeded. For its production, a mixture of 90%
base and 10% curing agent was poured onto the printed
circuit board, i.e., the silicon wafer with the fractal pat-
terns relief. Subsequently, the PDMS was cured at 90ºC
for 2 hours (Fig. 4C). This procedure resulted in the cre-
ation of a negative fractal topographic mould of the orig-
inal design.

B. Neuronal cultures

Preparation of PDMS substrates.— PDMS sub-
strates are widely used in neuronal culture studies due to
their mechanical and optical properties, as well as their
ability to be chemically modified. Before seeding neurons
on PDMS, a preparation process had to be carried out
to ensure a suitable surface for neuronal growth.
First, the topographical mould was punctured using

a biopsy punch 6 mm in diameter. The mould was
then placed on a clean, sterile coverslip and autoclaved
in order to sterilise it and promote better adhesion
between the PDMS and the coverslip. Next, an oxygen
plasma treatment was carried out in order to modify
the surface properties of PDMS, which is hydrophobic
in its natural state. This procedure led to a hydrophilic
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FIG. 4. A: Fractal patterns in vector format with different fractality levels, depending on the number of steps used to construct
them. The top left figure shows the Sierpinski triangle of order 5, although those of order 6 and 7 were also generated. The top
right figure represents a fractal object composed of rhombuses of 3rd order, but 4th and 5th order objects were also generated.
The lower figures correspond to the Sierpinski square of order 3 and 4, but that of order 2 was also generated. B: Optical
microscope images of the silicon wafers with the fractal patterns, which were obtained from a photolithography process. The
black objects in figures A represent the relief areas with the desired heights (50 and 100 µm), since a shadow transfer method
was used in the exposure process. C: Sketch of the experimental setup and procedure. A silicon wafer with a topographic
relief of 50 or 100 µm height (brown objects in the figure above) was used as a master mould for pouring and curing PDMS.
The resulting design corresponds to a reverse-relief replication of the original mould (middle figure). On the PDMS template,
neurons were cultured in combination with GCAMP6, which were administered via adeno-associated viruses (bottom figure).

surface that allowed to achieve a more effective coating
using a poly-D-lysine (PDL) solution, which favours the
adhesion of neurons to the growth surface. As a re-
sult, more homogeneous neuronal cultures were obtained.

Preparation of neuronal cultures.— On the day
of neuronal seeding, the process was initiated by clean-
ing the PDL-coated wells with two rinses with sterile
distilled water. This was done in order to remove any
residual PDL, as its presence is toxic to the cells. Subse-
quently, the cerebral cortex of rat embryos was extracted
and the neurons were mechanically dissociated using an
automatic pipette and a thin glass Pasteur pipette. Using
this technique, a homogeneous cell suspension containing
the individual neurons required for subsequent culturing
was obtained.

Then, 1 ml of the resulting cell solution was evenly
distributed in each well on the PDMS surface (Fig. 4C,
bottom), and the culture plate was placed in the incuba-
tor. Usually, half a brain cortex per well was required.
However, in the specific case of this work, half a cortex
was used for two wells, as the results were better. An
example of the obtained networks is shown in Fig. 5A.
Control cultures on flat PDMS were also prepared,
in order to have an essential reference to monitor the
impact of spatial anisotropies on the network dynamics
and functional organisation of the neurons.

Transduction of cultures using GCaMP6s.—
In order to visualise and monitor neuronal activity in
the cultures, the genetically encoded calcium indicator
GCaMP6s was used. To achieve this, adeno-associated

viruses (AAV) were used to introduce the GCaMP6s
gene into the cells. This gene allows the expression of
a fluorescent calcium indicator, which facilitates the
visualisation of neuronal activity by providing detailed
information on changes in intracellular calcium levels.
On day 1 in vitro (DIV 1), the wells were infected with
the adeno-associated viruses, which allowed the neurons
to acquire the ability to express the GCaMP6s marker.

Maintenance of neuronal cultures.— To ensure
the functionality and survival of the cultures over time,
it was necessary to make regular changes to the culture
medium to provide essential nutrients, growth factors
and supplements. In addition, it was necessary to
maintain the cultures in an incubator at 37◦C, 95%
humidity and 5% CO2 concentration.

C. Immunostaining

Immunostaining is a widely used technique in neuronal
culture studies to visualise and analyse protein expression
and cell structure in neuronal cultures. In this project,
basic immunostaining was performed on neuronal cul-
tures using a combination of staining with Alexa 488-
green fluorescent signal, to identify neurons in the cul-
tures (axons and dendrites); DAPI-blue fluorescent sig-
nal, to visualise cell nuclei; and Cell Mask, with red flu-
orescent signal, to provide a general labelling of cells in
the neuronal cultures, including neurons and astrocytes.
The latter are specialised cells that support neurons and
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FIG. 5. A: Bright-field image of the culture with connectivity directed by a topographical pattern composed of rhombuses.
Neurons grow in both the lower and upper regions of the topographic relief, following the shape of the pattern and thereby
generating a highly anisotropic circuit. B: Immunohistochemical images corresponding to the Sierpinski triangle configuration,
with a broad general approach (left) and two detailed approaches (right). These images show cell nuclei in blue (left), dendrites
and neuronal processes in green (middle), and the combination of both planes (lower and upper) and channels together with
astrocytes in red (right). The yellow square in the figure on the left indicates the part of the culture detailed in the figure on
the right.

that are always present in neuronal cultures.
For image acquisition of immunostained samples, a

confocal microscope was used to capture the fluorescence
signals of specific markers. These images provided de-
tailed information on the location and distribution of the
proteins of interest in the neuronal cultures. This in-
formation can be obtained in an overview field on the
order of mm (Fig. 5B, left) and in detail on the order
of µm (Fig. 5B, centre and right). In addition, images
were obtained with different focuses (bottom plane and
top plane of the culture), channels (green, red or blue)
and with the combination of these two effects (focus and
channel).

These images showed that neurons were alive and
tended to follow the edges of the relief, with some
groups of neurons remaining relatively isolated at the top.
Therefore, the fractal topography provided some orien-
tation to the connections, resulting in highly anisotropic
connectivity.

III. DATA ACQUISITION AND ANALYSIS
METHODS

A. Fluorescence calcium imaging

Fluorescence calcium imaging is a fundamental tech-
nique to study neuronal activity in neuronal cultures and
to better understand the functioning and interaction of
neurons in an in vitro environment.
The data acquisition process was carried out using

an inverted microscope, a specialised camera, a halogen
lamp and a blue/green filter for fluorescence excitation/e-
mission. In addition, the Hokawo software was used for
image acquisition and control. Thanks to this exper-

imental setup, it was possible to visualise active neu-
rons as bright objects with quasi single-cell resolution,
which allowed us to study and analyse their collective
behaviour (Fig. 6A). Importantly, measurements of the
culture started at DIV 5, at which time the fluorescence
signal became strong enough for reliable analysis. Mea-
surements were performed until DIV 18, at which time
the neurons began to degrade or detach from the PDMS
surface.

B. Measures of interest

Spontaneous activity.— Fluorescence recordings
were analysed with the Netcal software [36] run in
Matlab. In this process, 732 regions of interest (ROI)
were defined in the image (Fig. 6B) and the average
fluorescence intensity of each of these regions was ex-
tracted over the 15-minute recording duration (Fig. 6C,
top). In addition, drifts in the fluorescence traces were
corrected and the fluorescence data from each ROI was
transformed into time series of neuronal activity using
the Schmitt-trigger method. This method considers an
abrupt change in fluorescence as an episode of neuronal
activity if the fluorescence remains elevated for at least
100 ms between a lower and an upper threshold (Fig. 6C,
bottom).

Raster Plot.— Using the time series of neural
activity, a raster plot was generated (Fig. 6C, bottom),
which allowed the visualisation of the train of activity
events detected. This plot was obtained by assigning
a value of 1 when the activity of each ROI exceeded
a firing threshold at a specific time, and a value of 0
otherwise.
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FIG. 6. A: Fluorescence images of the topographical design based on the Sierpinski square. Bright dots indicate the presence
of active neurons. All cultures analysed were 6 mm in diameter and images were recorded after 6 days in vitro (DIV 6).
B: Regions of interest (ROIs) set as square boxes and covering the entire circular culture, with a total number of 732 ROIs.
The labelled ROIs, such as 1 to 30 in the centre of the culture, were used to provide representative fluorescence traces, as shown
in the figure on the right. C: The upper figure represents the normalised fluorescence traces of 4 ROIs, which have been shifted
vertically in order to improve visual clarity. Sharp peaks indicate neuronal activity, which, if it exceeds a firing threshold, its
activation time is recorded as a point on the raster plot (bottom figure).

Population activity.— Population activity A quan-
tified the ability of neurons in the network to exhibit
coordinated activity, i.e., coordinated activation of a
network fraction within a 100 ms window. Population
activity was calculated as the proportion of ROIs in the
network that activated together without repetition in a
sliding window of 1 s width and 0.1 s pitch. Population
activity ranged from 0 (no activity) to 1 (full network
activation). Sharp peaks in A identified strong coordi-
nated activity and were denoted as network bursts [21].

Propagating fronts.— The velocity of the activity
fronts was analysed by calculating the Euclidean distance
ρi from each ROI i to the activity origin (x0, y0) and
plotting the following ρi as a function of t′i activation
times relative to the activity origin [21]. These plots and
values for the analysis of the fronts were obtained from
software available in Dr. Soriano’s lab.

Dynamical richness.— Dynamical richness provides
a direct measure for this spatio-temporal variability and
reflects the ability of a neural network to exhibit a wide
range of dynamic states [17, 37]. It is computed by look-
ing at the distribution of cross-correlation values among
all neuronal pairs rij , i.e., the variability in the behaviour
of neurons, allowing to provide a single descriptor, ΘCC,
to describe such richness. This descriptor is computed as
follows. Following Refs. [17, 37], we first pooled together
all CC values rij , which vary between 0 and 1, and then
computed the corresponding distribution p(rij). For ex-
ample, a completely random dynamics in the network
would lead to rij values close to zero and therefore the
distribution p(rij) would have a single peak at zero. At
the other extreme, synchronous activity would lead to rij
values close to 1 and the distribution p(rij) would pro-
vide a single peak at 1. For rich activity, the distribution

p(rij) would be broad. Finally, ΘCC was obtained as

ΘCC = 1− m

2(m− 1)

m∑
µ=1

∣∣∣∣pµ(rij)− 1

m

∣∣∣∣ , (5)

where | · | denotes the absolute value and m = 20 is the
number of bins used for estimating the distributions.
ΘCC takes values between 0 and 1, with ΘCC = 0 for
perfectly coherent or random activity, and ΘCC = 1
for maximally patterned activity, i.e., for a distribution
p(rij) that contains all states. In general, the larger
ΘCC is, the richer is the dynamics in the culture.

C. Criticality

Brain activity in the context of criticality can be stud-
ied using the renormalisation group approach. This
makes possible to rationalise collective behaviour at very
different observational scales on the basis of the proper-
ties of the underlying microscopic components. In ad-
dition, it enables the understanding of the emergence of
quasi-universal scale invariance in spontaneous neuronal
activity [29].
This renormalisation approach aims to group the most

correlated neurons, as described later, to identify scal-
ings through power laws, ultimately allowing effective de-
scriptions of time-dependent neuronal activity to be con-
structed on progressively larger ‘coarse-grained’ scales.
In this context, the rationale of our experiments is to
assess whether fractal substrates promote the existence
of a scaling behaviour that is absent in flat substrates,
thus confirming that rich connectivity is associated with
scale invariance and criticality. In addition, the scaling
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exponents obtained from neuronal cultures can be com-
pared with those obtained from electrophysiological data
of different brain regions in mouse [29], which helps to
validate whether our in vitro preparations are adequate
models for the brain.

On the other hand, one can find evidence that
the scale invariance in neuronal activity stems from
critical dynamics at the edge of instability, due to a
number of non-trivial features typically associated with
scale-invariant critical systems. These features include a
non-Gaussian distribution of large-scale neural activity;
a non-trivial scaling of activity variance and autocorre-
lation time as a function of coarse-scale granularity; and
a power-law decay in the covariance matrix spectrum,
suggesting the existence of a scale-free hierarchical
organisation of spatio-temporal correlations.

To analyse the data in the context of criticality, the
renormalisation group approach was applied using a pair-
wise maximum correlation criterion to sequentially clus-
ter pairs of neurons. This required the choice of an ap-
propriate discrete time interval for each data set. In this
way, the activity time series of the two most correlated
neurons were summed up and normalised as described
in Ref. [29], resulting in effective time series for ‘block-
neurons’ or simply ‘clusters’ of size K = 2k=1 = 2. The
process was then repeated with the next most correlated
pair of neurons until all neurons were grouped into pairs.
Each pair of neurons shaped a cluster (Fig. 7, middle).
The next grouping consisted in looking at the most corre-
lated cluster pairs of this construction, leading to a new
group of clusters with K = 2k=2 = 4 (Fig. 7, right). This
process was iterated recursively, so after k coarse granu-
larity (RG) steps, Nk = N/2k block neurons remained,
each representing the activity of K = 2k individual neu-
rons.

FIG. 7. Scheme of group renormalisation from neuronal ac-
tivity, where each blue rectangle represents the activity of the
neuron that exceeds a certain firing threshold in a given time.
The most correlated neurons (and subsequently clusters) are
grouped together. k is the number of renormalisation steps
and K is the cluster size, i.e., the number of neurons it en-
compasses.

Then, different quantities of interest were derived

from this data [11, 28, 29, 38]:

1) Variance of the activity distributions as a function
of the size of K block neurons:

M2(K) =
1

Nk

Nk∑
i=1

[〈(
σ
(k)
i

)2
〉
−

〈(
σ
(k)
i

)〉2
]
, (6)

where σ
(k)
i is the summed activity of the original variables

within the cluster.
For fully independent variables, the variance is ex-

pected to grow linearly in K, i.e., M2(K) ∝ K, while for
perfectly correlated variables it grows as M2(K) ∝ K2.
Therefore, the non-trivial scaling is characterised by
M2(K) ∝ Kα with a certain intermediate value of the
exponent 1 < α < 2.

2) Free energy for coarse-grained variables:
Assuming that the energy of the system is zero when

no activity is present, i.e., time frames in which all signals
within a cluster are below their activation threshold, the

probability of having ”silent” block neurons (σ
(k)
i = 0),

termed Psilence, can be related to the effective free energy
of the system as:

F (K) = log(Psilence). (7)

As more and more of the initial variables σi are grouped

into cluster variables x
(k)
i (activity of the block-neuron

i at step k of the coarse-graining), one would expect
that Psilence decreases exponentially with the size K of
the clusters, leading to: F (K) ∝ Kβ where β = 1 for
initially independent variables and β = 0 for perfectly
correlated variables.

3) Scaling of the covariance matrix spectrum:
It was obtained by diagonalising the calculated covari-

ance matrix at different coarse-grained levels, allowing us
to analyse how its decomposition of spectra corresponded
with the range of eigenvalues and how its cut-offs changed
with the size of the cluster. In this way, the eigenvalues
of the covariance matrix scale as:

λr ∼ r−(2−ν)/d, (8)

where r is the rank of λr, ordered from the highest to
the smallest. If variables within clusters are considered
at each coarse granularity step, the highest possible rank
r will be given by the number of variablesK that make up
each cluster. Therefore, at criticality, we should expect:

λr ∝
(
K

r

)µ

, (9)

with µ = (2− ν)/d as a direct consequence of the power-
law decay of the correlation function in space.
One of the hyperscale relationships that can be estab-

lished between these exponents is based on the contact

9
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FIG. 8. Above the raster plots and below the corresponding population activity A are represented for the control case (A), the
Sierpinski square of 4th order (B) and the Sierpinski triangle of 5th order (C) in young cultures (DIV 6). Population activity
captures the fraction of the network that is consistently activated in a short time window. Events that spanned more than 10%
of the monitored regions of interest (ROIS) (red dashed lines) were considered significant (orange dots) and formed network
bursts of size A.

process, which is a continuous-time Markov process in a
network:

η = d− 2 +
β

ν⊥
, (10)

where ν⊥ = β/α and µ = (2− η)/d.

IV. RESULTS & DISCUSSION

A. Spontaneous activity in neuronal cultures

The collective behaviour of the neuronal cultures
was quantified by recording the spontaneous activity
in each configuration for 15 minutes, as explained in
Sec. III A. In this way, from the generated raster plots,
the temporal pattern of neuronal activation and the
spatiotemporal organisation in neuronal dynamics can
be observed in each specific case.

As shown in Fig. 8A, top panel, activity in the con-
trol cultures was characterised by episodes of highly
synchronous behaviour in which all ROIs were acti-
vated together, having network bursts of the same size
(Fig. 8A, bottom) and remained practically silent in be-
tween bursts. Therefore, these cultures had an on-off
behaviour, which differs significantly from real brain dy-
namics. By contrast, the Sierpinski square and trian-
gle configurations, showed a much richer dynamic reper-
toire, in which network bursts of different sizes coex-
isted (Figs. 8B and 8C) and there was abundant spo-
radic activity outside these bursts, resulting in a highly
rich raster plot.

The network burst sizes were reflected in the popula-
tion activity, which counts the fraction of ROIs that coac-
tivate together. In Fig 9, it can be seen that all events in
the control cultures exhibited sizes A = 1, while for the
fractal cases the event sizes varied richly from A ≥ 0.1 to
A ≃ 1 in both cases. The mean population activity was
⟨A⟩ ≃ 0.4 in the Sierpinski square case, and ⟨A⟩ ≃ 0.45 in
the Sierpinski triangle case, much lower than in controls,
and with a standard deviation of 0.5 and 0.4, respectively,
that indicates high variability.

The variety of activity patterns reflected both in the
structure of the raster plots and in the distribution of
the A values can be quantified through the parameter
ΘCC. For the control cases this parameter took values of
ΘCC ≃ 0.10, while for the Sierpinski square and triangle
this value was ΘCC ≃ 0.47 and ΘCC ≃ 0.58 respectively.
Therefore, the fractal cultures clearly exhibited a richer
variability in activity patterns.

This analysis was repeated for different configurations,
with different levels of fractality, and for all cases similar
results were obtained when the cultures were young, be-
tween 5 and 7 DIV. However, for mature cultures (DIV
12), the results were similar to the control case due to
the ever growing connections in the network over time
and that ultimately strongly link the entire culture. In
this way, the distributions of collective activations shifted
towards higher A values, especially in the case of the Sier-
pinski square. We note that the development of cultures
is complex. The change in dynamics with culture mat-
uration is associated with stronger overall interconnec-
tivity in the network and longer average axons, leading
to the formation of neuronal aggregates and long range
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connections. These connectivity changes smoothed out
the impact of topography on dynamics and favoured a
greater presence of bursts throughout the network, be-
coming a more coordinated and synchronous system.

FIG. 9. Distribution of the burst sizes A for the control case,
the Sierpinski square of 4th order and the Sierpinski trian-
gle of 5th order in young cultures (DIV 6), with their mean
value and standard deviation. In the lower part of the figure,
the values of the dynamical richness of the global activity
ΘCC corresponding to each of the configurations are shown.
The dynamical richness of the global activity represents the
variability among the activity patterns of firing neurons, and
its value is ΘCC = 1 for maximally patterned activity, and
ΘCC = 0 for perfectly coherent or random activity.

B. Repertoire of spatio-temporal activity patterns

The spatio-temporal structure of the bursts in young
cultures was analysed using colour maps of their evolu-
tion in the cultures for different configurations, as illus-
trated in Fig. 10A. In the control case, the activity prop-
agated in the form of a quasi-circular front that spanned
the entire culture and had a common origin in all bursts.
This quasi-circular front manifested itself in a gradual
colour change (from black to yellow) in the regions of in-
terest (ROI) that were furthest away from the origin of
the activity. Consequently, the activation of the whole
network and the uniform location of the explosion initi-
ation resulted in a highly rigid system.

On the other hand, different sizes and propagation pat-
terns were observed in the fractal configurations, indicat-
ing a rich variability in the burst structures and initiation
points. Therefore, not only did the richness of the system
increase, but the propagation fronts were no longer circu-
lar and adopted serpent-like trajectories. This reflected
a high variability in the possible states of the system and
a highly anisotropic connectivity under these conditions.

In addition, the propagation velocity of the fronts,
which depends on the connectivity and the balance be-

tween excitation and inhibition, was investigated in de-
tail. A high propagation velocity indicates a relatively
high connectivity and an isotropic system, as the front
can move rapidly in either direction. This phenomenon
has two implications: a higher density of connections
and longer axons. To study this effect, the characteristic
propagation velocity was obtained by linear regression,
as shown in Fig. 10B. In the control cultures, the mea-
sured velocity was approximately v ≃ 32 mm/s, while
in the cultures with fractal patterns (Sierpinski square
and triangle) it decreased substantially to approximately
v ≃ 14 mm/s and v ≃ 8 mm/s, respectively. This indi-
cates that the presence of patterns in the cultures results
in slower propagation velocity, due to the anisotropy of
the system and trapping of axons within the fractal mo-
tifs, which makes difficult for neurons to extend long ax-
ons and connect abundantly with each other, which on
average reduces propagation velocities.
Finally, this velocity analysis was completed by com-

paring the propagation velocities of all fronts for the three
configurations, as shown in Fig. 10C. A remarkable lower
velocity, by a factor 5, was observed in the data for the
Sierpinski square and triangle as compared to controls.
Indeed, the velocities differ significantly, as in the con-
trol case, the velocity was approximately ⟨v⟩ = 32 ± 8
mm/s, whereas in the case of the Sierpinski square and
triangle, the average velocities were ⟨v⟩ = 6 ± 5 mm/s
and ⟨v⟩ = 7±6 mm/s, respectively. Additionally, for the
particular case of the Sierpinski triangles, a large vari-
ability in velocities was observed (a broad distribution of
values), suggesting abrupt changes in local connectivity
across the neuronal culture that could help imprinting a
greater dynamical richness.
We remark that the average activity propagation ve-

locities were approximately 5 times lower in the Sierpin-
ski configuration compared to the control, indicating 5
times lower connectivity in fractal cultures. In this way,
low connectivity in the network allowed greater auton-
omy and diversity in the interactions between neurons,
creating an environment favourable for the emergence of
greater dynamical richness.

C. Criticality

One of the aims of this work was to test for the presence
of scale invariance and analysing whether this invariance
stems from criticality or not.
First, all quantities of interest, analysed using the

renormalisation group approach, were found to follow an
almost perfect scaling for the fractal configurations, as
shown in Fig. 11AB. This confirms the existence of scale
invariance.
Next, the values of the exponents of the quantities of

interest were examined, as well as the autocorrelation and
pairwise distribution of covariance values. The variance
M2(K) of the unnormalised activity of block neurons and
free energy (Fig. 11A) were found to scale with expo-
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FIG. 10. A: Representative examples of spatio-temporal activity fronts in young cultures (DIV 6) for the control case (left),
the Sierpinski square of 4th order (middle two figures) and the Sierpinski triangle of 5th order (right). Each coloured dot in the
image plots is an active ROI, with the colour coded according to the activation time (black to yellow). Grey regions indicate the
absence of active ROIs. The starting point of the spatio-temporal burst front is marked with a white cross and the trajectory
along the culture is indicated by a blue line. B: Determination of the propagation velocity by linearly fitting the Euclidean
distance of each ROI to the origin of activity as a function of its activation time. The data of the control case are represented
in black, those belonging to the Sierpinski triangle of 5th order in orange, and those belonging to the Sierpinski square of 4th
order in purple. The Pearson regression coefficients for the three cases were 0.93, 0.98, 0.97, respectively. C: Box plots of the
propagation velocities for the three configurations: control case, Sierpinski square of 4th order, and Sierpinski triangle of 5th
order. The average value and standard deviation are also represented.

nents α1 ≃ 1.71, β1 ≃ 0.59 and α2 ≃ 1.72, β2 ≃ 0.56 for
the third and fourth order Sierpinski square respectively,
and α ≃ 1.79, β ≃ 0.47 for the Sierpinski triangle. As
mentioned in Sec. III C, we should expect α = 1, β = 1
for independent variables and α = 2, β = 0 for fully cor-
related variables. Hence, the values obtained fall within
this interval, which consistently reveals the existence of
non-trivial scale-invariant correlations, which is a char-
acteristic associated with critical systems. In addition,
these exponents show a more favourable balance between
both statistical behaviours compared to cultures with to-
pography by non-fractal patterns, related to a previous
work of Soriano’s group [21]. This indicates that better
results from a criticality perspective are obtained when
fractality is incorporated.

In relation to the scaling of the covariance matrix spec-
trum (Fig. 11B), we obtained µ exponents of µ1 ≃ 0.81
and µ2 ≃ 0.83 for the Sierpinski squares, and µ ≃ 0.87
for the Sierpinski triangle. These data showed good
scaling and, more interestingly, their values were very
similar to those obtained from electrophysiological data

across different mouse regions, with an average of ⟨µ⟩ =
0.84 ± 0.14 [29]. Therefore, with the fractal patterns it
was possible to get exponents closer to the real dynam-
ics of a mouse brain. Moreover, the covariance matrix
spectrum reveals a power-law decay, suggesting the ex-
istence of a hierarchical organisation without scaling of
spatio-temporal correlations which is typical of critical
systems.
The exponents obtained with the fractal mature cul-

tures (Fig. 11B upper middle) were very similar to the
control case. As mentioned in Sec. IVA, they became
more synchronous, thereby the possible criticality was
eliminated and a worse scaling was generated.
On the other hand, it can be observed in Fig. 11C that

the fractal patterns have a higher dynamic richness, as
the distribution of pairwise peak count covariance values
is wider, revealing the presence of heterogeneously cor-
related pairs in all areas. In addition, two peaks are ob-
served which could be understood as two relevant time
scales, corresponding to two different burst rates con-
tributing to the collective dynamics. This suggests a
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FIG. 11. Phenomenological analysis results of the renormalisation group (RG) of the neuronal culture activity with different
topographical patterns. A: Scaling of the free energy F (k), which represents the probability of being silent. The dashed line
corresponds to the expected behaviour for uncorrelated variables. The legend of the plot specifies the different topographic
patterns of the neuronal cultures: ‘Track’ and ‘Square’ correspond to non-fractal topographical patterns whose data was
obtained from Ref. [21], FSQ1 (3rd order Sierpinski square), FSQ2 (4th order Sierpinski square), FTri (5th order Sierpinski
triangle), all corresponding to DIV 6, and the last three correspond to the same fractal configurations but in DIV 12. B: Scaling
of the covariance matrix spectrum for activity in clusters of size K = 16, 32, 64, 128 (blue, yellow, green and red markers,
respectively) in different topographic patterns: Control case, 4th order Sierpinski square in DIV 12, lines, 3rd order Sierpinski
square, 4th order Sierpinski square and 5th order Sierpinski triangle in DIV 6, in that order, from top to bottom and from
left to right. C: Distribution of pairwise peak count covariance values in the control case (C1), line case (T1) and 4th order
Sierpinski square in DIV 6 (FSQ1). D: Autocorrelations as a function of time.

scale-free hierarchical organisation in neural dynamics.

Moreover, it is worth noting that autocorrelation is an
important measure, as it assesses the similarity or tem-
poral dependence of the average activity of neurons over
time. In Fig. 11D, it can be seen that due to periodic
synchronisation, the correlation decays very fast (time
when there is no firing) and then rises again, indicating
the presence of periodic oscillations in neuronal activ-

ity (on-off behaviour). In contrast, in the fractal case,
a well-defined curve can be observed, confirming the ex-
istence of a hierarchical organisation of spatio-temporal
correlations typical of critical systems. In addition, the
dynamics no longer follow an on-off pattern, but at the
collective level there is always activity correlated with
itself.

Finally, once the critical exponents have been found,
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it is possible to verify whether they fulfil the hyperscale
relation established in Sec. III C. By substituting the ex-
pressions ν⊥ = β/α and µ = (2 − η)/d into Eq. (10), it
is obtained:

4− d(µ+ 1) = α, (11)

where d = 2, since the neuronal cultures were performed
on topographical quasi-flat 2d surface.

The exponents obtained experimentally are:

• FSQ1: α = 1, 71, β = 0.59, µ = 0.81.

• FSQ2: α = 1, 72, β = 0.56, µ = 0.83.

• FTri: α = 1, 79, β = 0.47, µ = 0.87.

Substituting them into Eq. (11) gives:

• FSQ1: 4− 2 · (0.81 + 1) = 0.38 ̸= 1.71.

• FSQ2: 4− 2 · (0.83 + 1) = 0.34 ̸= 1.72.

• FTri: 4− 2 · (0.87 + 1) = 0.26 ̸= 1.79.

In this way, it can be seen that the hyperscale relation is
not fulfilled, and therefore the dynamical system in ques-
tion does not follow the universality class proposed by the
theoretical argument based on the contact process. This
lack of agreement between the experimental results and
the theory could be associated with the limitations of the
theoretical model, which is insufficient to fully describe
the characteristics of the system under study.

D. Limitations of the study

The experimental part of this project started in
November 2022, when the fractal patterns were designed.
Shortly afterwards, weekly neuronal cultures using these
substrates began to be performed. However, optimal re-
sults were achieved at the beginning of April due to a set
of experimental difficulties. Therefore, a total of about
50 experiments were carried out, of which the last 10 were
reproducible.

Which were the main problems encountered?
Firstly, there were problems with the PDMS mould, as

bubbles appeared during the mixing and curing process,
which negatively affected the properties and homogeneity
of the PDMS. To solve this problem, a vacuum chamber
was used to reduce the atmospheric pressure, allowing the
bubbles trapped in the PDMS to expand and be removed.

Secondly, another problem was experienced with the
curing of the PDMS, as despite following the same pro-
tocol as usual, it suddenly stopped curing properly and
attached to the mould. Although an attempt was made
to fix it, in the end it was necessary to repeat the pho-
tolithography process to create new wafers with the same
fractal patterns. Soon after, it was discovered that the
PDMS had lost its curing properties due to expiration,
which meant that new PDMS had to be used.

On the other hand, it was observed that the neurons
did not follow the fractal patterns, aggregated strongly,
and exhibited rather synchronous dynamics. Initially,
this inhomogeneity was attributed to the surface coating,
so different polymers and proteins were tested to improve
cell adhesion. However, it was identified that the main
problem lay in the cell density, which favoured neuronal
aggregation and synchronisation of activity; and in the
hydrophobicity of PDMS, which made it difficult for neu-
rons to interconnect and follow fractal patterns. To ad-
dress these problems, cell density was halved and plasma
treatment was carried out every week. This improve-
ment was verified by comparing cultures with and with-
out plasma treatment and with different densities, under
the microscope and by immunostaining techniques.
Therefore, it took several months of weekly experi-

mentation with different conditions to find the optimal
conditions that would provide increased dynamic rich-
ness in the neuronal cultures. It is important to note that
this increase in dynamic richness was achieved in young
neuronal cultures with fractal geometry. However, the
results obtained with these same cultures, but with more
time in vitro, were more similar to standard cultures.
In this way, there are still challenges in the search for
more optimal results in mature neuronal cultures. This
involves exploring different culture conditions, growth
media and factors that promote neuronal development
and maturation. In addition, electrical stimulation
strategies could be implemented to modulate neuronal
activity and promote more robust organisation in the
cultures.

V. CONCLUSIONS

This project addressed the challenge of achieving a
more realistic simulation of the brain by modifying the
geometry of the substrate on which neurons are grown.
Fractal patterns were used to enhance connectivity and
promote richer dynamics in the cultures. In addition, the
hypothesis of self-organised criticality in neuronal activ-
ity patterns was investigated, which suggests that the
brain exhibits dynamics close to a critical state.
The results obtained in this study provide evidence

that neuronal cultures with fractal geometry show richer
and more complex dynamics compared to standard cul-
tures, which present highly synchronous on-off behaviour.
Fractal cultures were observed to exhibit more varied ac-
tivation patterns, with bursts of activity of different sizes
and greater spontaneous activity outside these bursts.
In addition, greater variability in neuronal coactivation
patterns was observed, as well as the emergence of spa-
tiotemporal activity fronts with more diverse structures
and slower propagation speeds. This phenomenon is as-
sociated with system anisotropy and reduced connectiv-
ity, leading to emergent patterns and more brain-like be-
haviour.
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On the other hand, the renormalisation approach
used in this study allowed to analyse the data in the
context of criticality and to characterise the system as
critical using scaling laws. The quantities of interest,
such as the variance of the activity distributions, the
free energy and the covariance matrix spectrum, showed
specific critical exponents that support the existence of
scale invariance in fractal culture dynamics. Moreover,
some of these exponents showed similarities with those
obtained from electrophysiological data of the mouse
brain. In addition, features typical of critical systems
on the edge of instability were found, such as non-trivial
scale-invariant correlations and a scale-invariant hierar-
chical organisation of spatio-temporal correlations.

These findings demonstrate the ability of spatial
constraints, represented in this case by fractal patterns,
to influence the activity and functional organisation of
neuronal cultures. This supports the idea that fractal
geometry can enhance the ability to replicate brain
dynamics and provide a more realistic experimental
platform for studying the mechanisms underlying neural
activity. Moreover, neuronal cultures with fractal
substrates support the hypothesis of self-organised
criticality in neuronal activity patterns. Therefore, this
study lays the groundwork to continue in this line of
work and seek further improvements in the replication of
experiments and in the maintenance of culture dynamics
over time.
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