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ABSTRACT 

The postoperative endometrial carcinoma treatment often includes radiotherapy (external 

radiotherapy and/or vaginal brachytherapy) to prevent the reappearance of the tumour. This project 

aims to improve the efficiency of the vaginal brachytherapy treatment by developing an automatic 

segmentation algorithm capable of delineating both the clinical target volume and the organs at 

risk, reducing the time required by experts to exert such task.  

In this project, we develop an AI-based framework that uses a V-Net architecture at its core. To 

train and evaluate the model, we use retrospective CT images and corresponding manual 

delineations from patients treated in Hospital Clinic. 

The creation of the algorithm was achieved successfully, resulting in a completely functional creator 

of automatic segmentations. About its performance, the results were found satisfactory in the cases 

of the vagina, the rectum and the bladder, having acceptable discrepancies in the dosimetry output. 

On the other hand, the bowel and the sigma models would require further improvements since the 

segmentations obtained didn’t match the ground truth. 

Overall, the project represents a step forward in the application of artificial intelligence algorithms 

to radiotherapy related processes. 

Keywords: Vaginal brachytherapy, segmentation algorithm, automatically, regions of interest, 

deep learning, V-Net, organs at risk. 
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GLOSSARY 

VBT: vaginal brachytherapy 

CT: computed tomography 

ROI: region of interest 
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CTV: clinical target volume 
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1. INTRODUCTION 

1.1. PROJECT CONTEXT AND JUSTIFICATION 

Endometrial carcinoma is the most common gynaecological cancer among women. As other types 

of cancer, it consists of an uncontrolled proliferation of malignant cells, in this case originated in the 

internal coating of the body of the uterus, known as endometrium [1]. This disease is often treated 

by surgery, where the uterus is removed, mostly eradicating the cancer. Nevertheless, this 

treatment is usually combined with postoperative radiotherapy, which aims to prevent the 

recurrence of the carcinoma.  

This prophylactic procedure, called vaginal brachytherapy (VBT), consists of inserting an applicator 

through which will enter the radiation source into the vagina. In order to compute the dose that has 

to be applied to the patient, which varies depending on the thickness of the vagina and the 

disposition and dose absorption of the nearby organs, computed tomography (CT) images must be 

acquired. These images will be used to delineate the structure of the regions of interest (ROI), a 

method called segmentation.  

This segmentation is done manually, which turns into a considerable amount of work for the 

specialist that has to exert the task. Each CT exploration contains between 150 and 300 2D slices 

that will be reconstructed in 3D volumes afterwards, so the specialist has to delineate the ROIs for 

all these images to obtain results for only one patient. This technique takes hours, consuming a lot 

of time of the specialists that could be dedicating to other tasks. Moreover, since humans are not 

exact machines, the results of the segmentation can lead to intra- and inter-rater variability caused 

by tiredness, differences of experience between specialists or simple errors in the interpretation. 

Thus, the main goal of this project is to develop an AI-based algorithm that executes automatic 

segmentation of the different ROIs: the clinical target volume (CTV), i.e., the proximal third of the 

vagina wall, and the organs at risk (OAR) that located near the radiotherapy focus. Automating this 

task will substantially reduce the time required to do dosimetry planning and eliminate the variability 

caused by human error. 
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1.2. OBJECTIVES 

Main objective 

As mentioned before, the main objective of this project is to improve the efficiency of the vaginal 

brachytherapy treatment by successfully developing a segmentation algorithm tool capable 

of delineating the ROIs automatically, which can be applied to compute the dosimetry in the 

Radiotherapy Department of Hospital Clínic. In order to achieve that, this project has been divided 

into different secondary objectives that can be combined sequentially. 

Secondary objectives 

1. Widen the existing database to train the algorithm. 

2. Anonymize and uniformize the data. 

3. Develop an AI-based framework for automatic segmentation of CTV and OARs. 

4. Assess the accuracy of the model according to quantitative metrics and its impact on dosimetry 
calculations. 

5. Study the feasibility and impact of the framework in real clinical studies. 

1.3. STRUCTURE AND METHODOLOGY   

This project is a follow-up study from previous works that built an initial structured subset of 220 

patients and used them to develop a model that segmented the CTV, excluding the surrounding 

OARs. In this work, the dataset has been extended including all the new cases of VBT done during 

last years until the 15th of August of 2023. These patients have been exported from the clinical 

record in the Radiotherapy Department of the Hospital Clínic using the Oncentra Brachy program.  

Once the data has been collected, all images have been anonymized and converted into a readable 

format for the AI-framework. This requires programming a code in Python language that removes 

traceable metadata and transforms DICOM images to NIFTI format. Besides, the new acquisitions 

have been merged with the existing dataset following the same pattern of organization and 

nomenclature, so the new data has been adapted to the organization system of the previous data. 

The AI framework has been trained and evaluated independently to assess its generalizability. A 

hold-out strategy has been used, dividing the dataset training and testing subsets. To train the 

model, we further split the training set into training and validation sets to update model parameters 

and choose optimal hyperparameters, respectively. The trained model effectively predicts the 
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relevant ROIs in VBT and has been evaluated both from the volumetric (i.e., how well the automatic 

and manual segmentations match) and dosimetry (i.e., how segmentation differences affect 

dosimetry) perspectives. For dose calculations, we used the Oncentra Brachy program from the 

Hospital Clinic Radiotherapy Department. 

This process has been carried out by programming with Python but working from the Alfa computer 

in the Biophysics laboratory of Hospital Clínic.  Some useful programs that have been used in this 

process to work remotely are PuTTY, which is a terminal emulator that allows the programming 

from an external source, and Filezilla, that allows the exchange of files between two computers. 

With the aim to ensure the correct development of the project, periodic meetings have been done. 

1.4. SCOPE AND LIMITATIONS OF THE PROJECT 

The scope of this project includes mainly the points described in the Objectives chapter. It is 

exclusively centred in patients that suffer from endometrial carcinoma that undergo VBT. It wouldn’t 

fit other cases since the morphology of the body after surgery and the radiation method might differ 

from other therapies. It also works only with CT images, as it is used in clinical practice, and do not 

generalise to other image modalities. Other images that are currently used in this field are MR 

images.  

The algorithm is set to semantically segment all the different regions of interest of the image, that 

is to say, to segment each area knowing to what organ it belongs. The number of subjects used in 

this project is acceptable to implement a trustable trained model, so data augmentation is not 

necessary.  Despite being specially thought to be applied to Hospital Clínic, it could be applied to 

any hospital with similar technologies. 

The computation requirements for training the model have been the main limitation during the 

development phase of this project. We used the computing cluster from the Biophysics department 

from the Universitat de Barcelona, which counts on a GPU of 24 GB and a RAM of 8x32 GB. That 

means that advancements are much more difficult to happen by working from home. Moreover, the 

training of the algorithm is considerably and computational resources had to be shared with other 

users, so another limitation of the process would be the limited time to be carried out. About the 

evaluation, the main limitation is that the manual segmentations used to train the model are poorly 

segmented, so the results of the automatic segmentation are not expected to be quite accurate. It 

would be preferable to work with a large database with precisely executed segmentations. 
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2. BACKGROUND 

2.1. GENERAL CONCEPTS 

2.1.1. ENDOMETRIAL CARCINOMA TREATMENT 

Endometrial carcinoma (EC) refers to a malignancy of the inner epithelial coating of the uterus, 

called endometrium. It is the most common invasive neoplasm in the female genital tract in 

developed countries and the sixth most frequent cancer among women. Its incidence and disease-

associated mortality are increasing worldwide, representing the 3% of cancer deaths in women [2]. 

The major affection of this disease occurs in postmenopausal women caused by the rise of 

estrogen levels, but lifestyle and genetic predisposition can increase the risk factor too [3]. 

The uterus is composed by the body, where endometrium is found, and the cervix, that connects 

the uterus with the vagina. EC is produced when there is an excessive estrogenic stimulation that 

promotes an uncontrolled proliferation of malignant cells in the endometrial lining [4]. Its main 

symptoms include abnormal bleeding through the vagina and pelvic pain.  

The main treatment of endometrial carcinoma is the combination of surgery with postoperative 

radiotherapy. The surgery, called hysterectomy, consists in the extraction of the whole uterus and 

often the ovaries and fallopian tubes, eliminating the area where the tumour is located.  When the 

affection has a potential risk of local recurrence, postoperative radiotherapy is applied to minimize 

such risk. The most likely region where the cancer can reappear after the uterus extraction is the 

part of the vagina wall that used to lead to the uterus, which will be the target of the radiotherapy. 

In current clinical practice, two different radiotherapy approaches are found: the whole pelvis 

external-beam radiation therapy (EBRT) and the intracavity vaginal brachytherapy (VBT). While 

EBRT is employed to treat cancer in the pelvic region in inoperable patients and cases with an 

advanced stage of the cancer, VBT is indicated in early stages of the cancer and it is more specific 

to the target. 

The main difference between EBRT and VBT (which is the subject of study of this project) is that 

in brachytherapy (BT) the radiation is exerted inside the body, in VBT case within the vagina. 

Thanks to this method, a high dose gradient can be delivered to the target, in this case the top part 

of the vagina wall, while the radiation that receive the nearby healthy organs is minimized. This is 

a desired feature since uncontrolled radiation inhibits the proliferation of tumorous cells but also 

healthy ones [5]. 
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To radiate the target, it is required the use of an applicator to guide the radiation to the target. Only 

the tip of this applicator radiates the vagina wall to exert the treatment as specifically as possible. 

This applicator, which can be seen on Figure 1 on the centre of the images, has an adaptative 

shape composed by cylinders that can vary from 2.5 to 3.5 cm of radius in function of the anatomy 

of the patient. The delivered dose per patient needs to be planned prior to each radiotherapy 

session and is computed as a trade-off between the amount of radiation delivered to the target 

volume, the so-called CTV, and the undesired radiation to the surrounding OARs. This can be 

achieved using a treatment planning software that receives two volumes as input: a CT image of 

the patient and the corresponding delineation of CTV and OAR volumes. This delineation must be 

done in advance.  

 

In order to facilitate the contouring of these organs, two more catheters are inserted into the body: 

First, the rectal catheter is used to extract the gas of the cavity, and second, the vesical catheter 

inserts a saline solution into the bladder. Both of these actions allow a better uniformity of the 

volumes.  

Once inserted the catheters and the applicator, the images are acquired with a CT scan that forms 

a 3D model of the pelvic area composed by hundreds of 2D projections in different axis. This 

hundreds of images will be the base to delineate the different regions of interest (ROI): the CTV 

Figure 1. CT images of the pelvic region (top) with their corresponding segmentations of the ROIs (bottom) – (axial, 
coronal and sagittal planes of the body, respectively) 
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(green in Figure 1), that refers to the proximal third of the vagina, and the OARs, in this case the 

bladder (blue), the bowel (red), the rectum (yellow) and the sigma (pink). This delineation process, 

also called segmentation, is done manually by specialists, which is a challenge since CT images 

have low contrast resolution and there are a lot of images for each patient. Once the segmentation 

has been done the dosimetry can be computed, obtaining the quantity of radioactive source (often 

iridium-192) that has to be inserted into the applicator. The projection of the radioactive source 

must be performed remotely once the sanitary personnel has left the room to avoid their irradiation. 

This source will emit radiation in a controlled way during a determined period, and then will be 

extracted from the body. The treatment is often delivered in more than one session. 

All in all, VBT is an effective cancer treatment in low and mid-risk patients that minimizes systemic 

side effects of radiotherapy thanks to its specificity, preserving organs and their function. 

2.1.2. AI IN MEDICINE 

Artificial intelligence (AI) concept refers to the emerging vanguard technologies that try to mimic 

human’s ability to think, learn and solve problems. To achieve this goal, computers use specific 

algorithms that work as instructions to improve performance over time as more data is being 

processed. AI has advanced to the use of machine learning (ML) with the aim of approaching 

problem solving. 

Machine learning refers to the capacity of a system to learn from a determined database, resulting 

in the conception of a model that can solve related tasks automatically [6]. Recently, this branch of 

AI has evolved into deep learning (DL), which derives to the use of artificial neural networks inspired 

by the human brain to reach accurate conclusions for more complex and non-linear problems 

without the need of human intervention. DL is conceived to learn and make decisions 

autonomously, which makes it perfect for image processing and pattern recognition tasks. 

DL has become an indispensable tool in the last few years in the medicine field, contributing to the 

improvement of several areas like robotics, diagnosis, treatments, medical statistics and human 

biology, among others. Its main application is to decipher complex patterns in large sets of medical 

data, from patient records to images, in order to analyse and understand physical and biological 

phenomena [7]. This can be very useful to manage health systems and guide physicians in 

treatment decisions. Nevertheless, DL must be wielded carefully since its methodology to obtain 

outputs can be defined as a black box that cannot be interpreted by humans, so it often requires 

human supervision to assure that the algorithm is not biased. 
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2.1.3. 3D SEGMENTATION 

Image segmentation is an essential technique in image processing and computer visualization that 

implies the segregation of an image in regions of pixels that share similar characteristics. This 

allows the recognition, identification and separation of objects of interest, which is fundamental in 

many medical applications. These applications can go from the diagnosis, identifying and 

quantifying anatomical structures and pathologies, to the treatment planning and monitoring, 

assisting surgeries by computer or treating cancer.  

Segmentation can be divided into 3 main categories: instance, semantic and panoptic. Instance 

segmentation is related to counting tasks, detecting each object of a same class. Semantic 

segmentation, on the contrary, refers to the classification of objects in labels depending on their 

characteristics, but can’t distinguish 2 objects of the same class. Panoptic segmentation represents 

the combination of the previous two methods, differentiating each object by class and number. 

Semantic segmentation is the approach that this project has chosen to exert the algorithm. 

 

 

 

 

 

 

The segmentation of medical images has the particularity of being done in 3D, which is very useful 

to analyse the anatomy and find abnormal structures in the body. Some imaging techniques that 

can be used to obtain them are CT and MR imaging.  

The implementation of DL has probably induced the biggest change in this area by automatizing a 

process that used to be done manually. Thus, the time required to execute these tasks has been 

reduced to the minimum, the inter-human variability has decreased and the personalization of the 

treatment has become an easier goal, adapting to the specific needs of each patient [5]. 3D 

segmentation has evolved thanks to the parallel advancement in computing power and complexity, 

Figure 2. Types of segmentation (source: [48]) 
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leading to the emergence of new techniques.  Overall, DL integrated to 3D segmentation has 

become a promising tool that keeps refining and spreading in the medical sector, forecasting an 

increase of relevance in the near future. 

2.2. STATE OF THE ART 

As mentioned on the previous section, in the last few years medical imaging research has 

undergone a substantial evolution due to the integration of AI-based algorithms in many subareas 

of medicine. This upgrade allows to model complex relationships found in the data and the 

automatization of processes that used to be done by specialists. 

Focusing on the cancer treatment planning, which is the subject of study in this project, 3D 

segmentation with DL is currently being applied to describe anatomically the volumes of organs, 

tumours, vasculature, and abnormalities present in the patient in a more effective way. Detecting 

the exact location of the CTV in radiotherapy and the OARs is a valuable information to define more 

precisely the execution of the procedure, maximizing the effect of radiation in the target and 

minimizing the side effects in the nearby areas. 

Many studies have been published about the implementation of DL models in 3D segmentation 

tasks related to brachytherapy cancer treatment around the pelvic region. The following tables 

show an overview of the main characteristics of the most relevant articles that tackle this topic and 

their results: 

Study Patients Cancer 
type 

Model ROI 

Wang et al, 2023 [8] 60 Cervix Modified CNN Bladder, Rectum, Sigmoid, 
S. intestine 

Olsson et al, 2022 [9] 624 Prostate MVision Rectum 

Kallis et al, 2023 [10] 40 Cervix 3D U-Net Bladder, Rectum, Sigmoid 

Lempart et al, 2023 [11] Int-170  

Ext-2054 

Pelvic U-Net  

SENet-154 

Bladder, Rectum, Bowel, 
Femoral head 

Duprez et al, 2023 [12] 100 Cervix nnU-Net Bladder, Rectum 

Zabihollahy et al, 2022 
[13] 

125 Cervix 3D U-Net Bladder 

Xiao et al, 2022 [14] 313 Cervix RefineNetPlus 3D Bladder, Rectum,  
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Table 1. Articles about the implementation of DL in 3D segmentation in cancer treatment of abdominal regions 

As can be seen in Table 1, there are plenty of articles that study the viability of applying DL in the 

treatment planning stage of cancers located in the abdominal region, such as cervix, prostate and 

pelvic cancer. In this lower area of the torso, the regions that are mainly segmented are the bladder, 

the rectum, the bowel, the sigmoid, the small intestine and the femoral head. The difference 

between this type of studies and other common segmentation studies, such as the ones located in 

the neck, is that the pelvic region has much more variability between patients than other parts of 

the body. Despite the difference in location, all the articles use CT images to carry out the study. 

There is evidence supporting the idea that the larger a database is the more reliable will be the 

output of the training of a DL algorithm, but the authors in [8] show that a robust small database 

could lead to better results than a large dataset with a poor delineation, as the one found in [10]. 

For a 3D segmentation database to be considered trustworthy it should be previously reviewed and 

approved by senior radiation oncologists specialised in delineating ROIs.  

Looking at the model column of table 1, most of the DL models used are derivations of the 3D U-

Net architecture. U-Net is the most common convolutional neural network (CNN) model for medical 

image segmentation, obtaining contours with high accuracy thanks to the details preserved in the 

residual connections. Further explanations about its functioning can be found on Section 4.1 (Study 

of solutions). 

Study Metrics Dosimetry 
evaluation 

Relative clinical 
acceptance 

DSC HD95 (mm) 

Wang et al, 2023 [8] 0.87 1.45 Yes 72%  

Olsson et al, 2022 [9] 0.86 5.90 Yes - 

Kallis et al, 2023 [10] - - Yes 30% 

Lempart et al, 2023 [11] 0.95 4.86 No 100% 

Duprez et al, 2023 [12] 0.85 9.90 Yes 65% 

Zabihollahy et al, 2022 [13] 0.85 3.70 No - 

Xiao et al, 2022 [14] 0.95 - No 100% 

Table 2. Results of the studies and clinical acceptance 

S. intestine, Femoral head 
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About the results of these studies, the two main metrics used to test whether the automatic 

segmentation resembles the manual delineation are the Dice similarity coefficient (DSC) and the 

Hausdorff distance (HD95). DSC measures the relative overlapping of the predicted voxels with 

respect to the ground truth. On the other hand, HD determines the largest minimum distance 

between the ground truth and the prediction. In these studies, the value of the DSC goes from 0.85 

to 0.95. It appears that DSC higher than 0.90 can be related to the clinical acceptance.  HD, which 

don’t exceed the 10 mm in the examples of Table 2, can be used to detect the presence of outliers 

since it is very sensitive to them. Values higher than 20 mm could be explained by the presence of 

a delineation of an incorrect region. 

On the evaluation stage, segmentation studies for radiotherapy often include volumetric and 

dosimetry evaluations. The former aims at evaluating the overlap between manual and automatic 

delineations, while the latter evaluates the treatment planning deviations when using automatic 

segmentations instead of manual delineations. In the end, what has to be verified is that the 

automatic segmentations don’t lead to a dose increase, what could cause an overexposure to the 

OAR, or decrease, leading to an ineffective treatment. For instance, the authors in [10] described 

two common measures in dosimetry, which are the dose received in 2 cubic centimetres in the 

OARs (𝐷2𝑐𝑐) and the minimum dose received by the 90% of the CTV (𝐷90). Both measures gave 

a result of near a 5% of change between the original and the automatic model. The study in [12] 

used a different parameter, combining the previous metrics mentioned by computing (𝐷2𝑐𝑐/𝐷90), 

which is called dose volume histogram (DVH) and it is used to determine the differences of radiation 

that receives each organ. The study in [11], on the other hand, used the mean dose variation 

(Δ𝐷𝑚𝑒𝑎𝑛), which takes into account the radiation received in all ROIs. The results showed that 

there were no significant dosimetry differences, with a variation inferior to 1%.  

The percentages in the relative clinical acceptance column in Table 2 refer to the number of 

automatic segmentations that did not require posterior modifications. As can be appreciated, only 

the studies that didn’t examine the dosimetry variations ([11] and [14]) were fully accepted clinically, 

since they didn’t consider the effect that the segmentation could have on the radiotherapy.  Other 

studies as [8]or [12] were partially accepted, with respective values of 65% and 72%. Despite not 

being accepted as an independent functional tool, these models can be used as a starting point for 

the segmentation process, demanding only the revision and possible editing of the automatically 

segmented structures, what entails a significant reduction of the time needed with respect to the 

traditional method. 
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In contrast with these other studies, this project focuses on endometrial carcinoma treatment since 

DL has not been applied yet into 3D segmentation for VBT. Other algorithms cannot be applied to 

this case given the significant differences in the disposition of the organs caused by the applicator, 

the rectal and vesical catheters and the lack of uterus. 

2.3. STATE OF THE SITUATION 

To do so, the project has been developed in collaboration with Hospital Clínic, specifically with the 

Radiotherapy Department, where approximately one patient per week undergoes vaginal 

brachytherapy. The images and manual segmentations of these patients are used for model 

development in the scope of this project. 

Since the goal of this radiotherapy-physics group project has a considerable complexity, it has been 

carried out by 3 different final projects: the first one consisted of data organization and 

standardization; the second one performed the model training for the CTV segmentation; and the 

last one, this project, oversees segmenting the OARs and unifying the previous two projects to 

obtain a final output. 

In May of 2023, a master’s final project [5] initiated the process by creating an adequate database 

from a collection of CT images containing the ROIs, so it could be used afterwards for a DL model 

training. This data was not organized and had not been tested in a preliminary study. CT images 

from 220 patients were collected from the medical history of the radiotherapy department, covering 

a range of time of 7 years, from 2014 to 2021. In order to work easily with the acquired data, and 

coding with Python language, the CT images were transformed from DICOM to NIFTI format. Once 

the data was transformed, it was standardized to obtain a homogeneous dataset, both in terms of 

the labels used and the structure.  

In June of 2023, a final degree’s project [15] continued the project by facing the challenge of 

evaluating the suitability of DL algorithms to delineate the CTV for dosimetry computations, 

performing the training with two different CNN. The analysed nets were V-Net and UNETR, which 

provide some improvements with respect to U-Net despite their similarity. The study showed that 

both models are reliable, there is no clear better fitting model. UNETR might be more recommended 

if data augmentation was used. On the other hand, good results can be obtained with V-Net if 

image filters are applied.  The segmentations of the vagina apex were found satisfying. 
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Finally, this third project, has undertaken the task of segmenting the OAR. This goal is perhaps the 

most challenging since the CT images have a significant variability due to the anatomical 

differences among the OARs of the patients, the location and the size of the applicator, the patient’s 

position and the orientation of the CT scan. Additionally, not all the OARs have been completely 

segmented for all patients, missing some parts. That produces a considerable reduction of the 

effective dataset. The database update counts on 78 new patients, which were treated between 

2021 and July of 2023. That sums up to a preliminary quantity of 298 subjects for the model, which 

is an acceptable amount to do the training, the validation and the test of the selected CNN, in this 

case the V-Net. To run the code that manages the data, it is required the use of the Alfa computer 

from the biophysics laboratory of Hospital Clínic, which has a GPU of 24 GB and a RAM of 8x32 

GB, allowing the processing of large amounts of information. 
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3. MARKET ANALYSIS 

The rates of uterine cancer are increasing each year by 0.6%, and death rates have risen an 

average of 1.7% per year too [16], so the use of VBT is forecasted to be stablished and increased 

in the upcoming years. Moreover, the implementation of DL in VBT is an emerging sector which 

still does not comprise much competence. The product that results from this project, that is to say, 

a 3D algorithm that segments automatically the ROI volumes for vaginal brachytherapy, can be 

interesting for different fields of medical science.  

3.1. MARKET EVOLUTION  

Despite the use of BT dates back to the start of the 20th century, it has taken profit of the new 

technologies that have emerged on the last century, changing from a hardly used technique due to 

its invasive nature to one of the most relevant therapies for uterine cancer.  

The first VBT was performed in 1903, short time after the application of radiation on medicine [17]. 

From there, many enhancements have been applied, for instance the use of an afterload to 

minimize the exposure, the use of high activity sources or the optimization of the applicator. Before 

the computerization of medicine, BT planning could not be based on the anatomy of the patient 

since the volumes could not be defined, so it was based on the type of applicator. About the 

prescription of dose, it had to be done manually looking at tables that related exposure with 

distance, which didn’t consider the difference among tissues or the OAR contour. Thanks to the 

new technologies, currently BT counts on calculus techniques and image processing that help to 

facilitate most of the planning. For instance, the Monte Carlo simulation allows to estimate the 

absorbed dose on the different tissues of the body [18].  

Due to this computerization, the dosimetry evolved to a process based on the anatomy, with 

incorporated techniques as the segmentation of the organs to provide a more specific delivery of 

radiation. Segmentation in medicine has traditionally been done manually by radiologists and 

technicians, which is a time-consuming process, so some improvements have been tried to be 

applied on the last few years. The first attempts were related to simple thresholding techniques that 

tried to discriminate between tissues, but they often required manual corrections. Then the first 

algorithms appeared, trying to automatize part of the process by analysing characteristics of the 

image. Some examples can be region-growing algorithms, edge-based methods or clustering 

algorithms, between others. Nevertheless, they were never applied to BT because its images had 

too much variability and complexity.  
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With the introduction of AI, the possibility of automatizing segmentation has become a real 

possibility using DL networks to carry out the extraction of complex features. The accuracy that 

show the recent studies described in Section 2.2 (state of the art) foreshadow a revolution in the 

way segmentation is done, spreading this upgrade in other areas with similar challenges. 

3.2. CURRENT MARKET SECTOR 

3.2.1. 3D SEGMENTATION 

Despite the lack of products on the market directly related to the 3D automatic segmentation 

applied to VBT, some products with a less specific approach can be found. Some companies with 

healthcare departments as Philips or Siemens are starting to introduce this kind of software on their 

stocks, selling the idea that it can be applied to any part of the body. Nevertheless, since the pelvic 

area has such variability, which is even higher after the uterus removal, the algorithm does not 

provide accurate results for the patients of interest for this project. The next table shows some of 

the related products that can be found nowadays in the market: 

 Product Company Description 

1 Pinnacle3 segmen
tation with SPICE 

[19] 

Philips 
Healthcare 

Atlas and structures adapt to personalize to the patient with 
probabilistic segmentation. It does not require much 

intervention and can be complemented with model-based 
segmentation. 

𝟐 Pinnacle3 Model 
based segmentation 

[20] 

Philips 
Healthcare 

Based on a large 3D organ database. The user selects an 
organ model and drops it into the CT or RM image, 

automatically segmenting it. 

3 Automated 
segmentation for 

mPCa [21] 

NMMI tools Self-contouring for metastatic prostate cancer lesions in 
whole-body PET-CT images. 

4 Syngo.MR Onco 
Engine [22] 

Siemens 
Healthineers 

Automatic segmentation of oncologic lesions in MR images 
for volumetric evaluation. 

5 Whole-body dot 
engine [23] 

Siemens 
Healthineers 

Landmark-based automatic segmentation of the anatomical 
regions of the chest, abdomen and pelvis. Main use for early 

assessment and follow up of patients. 

6 Contour 
ProtégéAI® [24] 

MIM Software 
Inc. 

Automated contouring of normal structures on CT and MR 
images. 

Table 3. 3D automatic segmentation products in the market 

As can be seen on Table 3, most of the algorithms that segment different parts of the body have 

been trained by Atlas or healthy subjects, so it would be difficult for them to contour a postoperative 
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patient image that has an unknown disposition and shape for the model. Other examples like 3 

have been designed to delineate only specific lesions or volumes, what makes them not suitable 

for other structures. Despite being conceived as an automatic tool, some algorithms as 2 require 

posterior revisions and modifications to finish the task with precision. Considering these facts, none 

of the current products satisfy the needs of the segmentation task in VBT framework. 

3.2.2. VAGINAL BRACHYTHERAPY 

As mentioned previously, the application of DL in segmentation of organs for postoperative 

endometrial carcinoma treatment has not been done yet. The main methodology currently used for 

organ contouring is by hand, and it is carried out by technicians and radiologists. Looking at the 

whole process of the brachytherapy, it is quite clear that this segmentation becomes the bottleneck 

in terms of the required time, taking between one and three hours to be performed accurately. 

Moreover, given the repetitive and tedious nature of the technique, it becomes susceptible to vague 

delineation with poor precision and incomplete segmentations. The variability of the OAR can also 

lead to human errors and subjective decisions when being implemented by specialists. 

On the other hand, Hospital Clínic also considered the possibility of applying the automatic 

segmentation tool in CT scan offered by Siemens Healthineers company named DirectORGANS. 

Nevertheless, after testing the performance, it was observed that the outcome was not segmenting 

the ROIs at all. This can be explained by the characteristics of the image. As mentioned on the 

previous section, when the image is taken in postoperative endometrial carcinoma treatment, there 

are four main differences with respect to a usual CT image of the pelvic area: Firstly, the lack of 

uterus, which also promotes a change in the disposition of the surrounding organs; secondly, the 

insertion of a vesical catheter into the bladder; thirdly, the insertion of a rectal catheter; and finally, 

the insertion of the radiation applicator through the vagina. All these items modify the anatomy of 

the patient in a way that an algorithm trained to delineate the normal structure of a body won’t be 

able to recognize the patterns. In conclusion, the Siemens algorithm proposal could not be used in 

this therapy. 

3.3. POTENTIAL CLIENTS 

Logically, the main stakeholders of this project will be related to installations with healthcare 

purposes. Hospitals can be benefitted from the implantation of this technology into their system, 

improving the accuracy and the efficiency of their VBT planning. It could also open the door to 

introducing the segmentation step in hospitals that don’t count on specialists that can execute this 
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task and count on the same planning methods for patients. This could help to personalize the 

treatment, leading to much better results.  

The application of the algorithm is suitable for any kind of healthcare installation that perform VBT, 

from public hospitals in which the government invests in the new technologies, to private ones. It 

is also appropriate either for specialised oncologic centers as Institut Català d’Oncologia or for 

general hospitals that have radiotherapy departments as Hospital Clínic. This last one would be 

the first to apply it since the algorithm is perfectly adapted to its system and would not require 

further modifications. Nevertheless, it could be applied posteriorly to any hospital worldwide that 

uses this therapy planning technique.  

Even if not considering institutions but individuals as a target for this product, oncologists and other 

specialists might be interested in reducing the time spent in doing the repetitive task of segmenting, 

to invest it in spending more time with the patient. 

Another sector that could be interested in this proposal are software companies that specialise in 

medical technology. By acquiring this algorithm, they would possess an upgrade in their product 

that no other company can offer yet, making their product distinctive with respect to similar 

competitors. An example of a candidate that could apply this technology is Siemens company, 

which is the provider of the current equipment found in the radiotherapy department of Hospital 

Clínic. 

In a minor scale, research field could also take profit of this work when developing new DL 

segmentation algorithms, studying and evaluating the methods that turned out to be successful and 

mending the mistakes that were made in the process.  
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4. CONCEPT ENGINEERING 

4.1. STUDY OF SOLUTIONS 

Since this project is a continuation of two other studies, the approach of the problem has been 

mainly solved previously. Nevertheless, this section expounds the different paths that have been 

considered through the progress of the study, from the origin of the data, the type of model or the 

type of training architecture to the metrics that have been used to evaluate the results. 

4.1.1. DATA ORIGIN  

The first decision that had to be made during the project planning was what database should be 

collected in order to train the DL model. This data would consist of anatomical images along with 

their corresponding manual segmentation of the ROIs that would serve as the ground truth for the 

model.  The main requisites for a database to be acceptable for the project were the following: First, 

the images would have to show the female pelvic region in CT or MR images, following the 

acquisition method of the VBT planning. Another relevant trait that should have the images was the 

lack of uterus characteristic of postoperative endometrial carcinoma patients. The third key point 

was that the manual segmentations had to contain at least the four OARs (bowel, bladder, rectum 

and sigma) and the CTV (the proximal third of the vagina wall). Finally, the last characteristic that 

should have the images of the database, and perhaps the most difficult one to accomplish, was 

that they should include the applicator of radiation, since its insertion often modifies the disposition 

of the organs, especially the CTV. Depending on the origin of the data, two main paths were 

explored: 

The first option was to look for public databases of CT or MR images of the pelvic region as an 

external source of data. The main advantage that it represented was that published databases 

usually count on a high number of subjects, meaning a bigger database for the training and leading 

to a more reliable and robust model. Moreover, taking into account that many records of Hospital 

Clínic have poorly executed segmentations, the idea behind looking for another set of images was 

in hopes that the segmentation was described more accurately. Finally, considering that public 

databases are result from a collection of images from different institutions, training the model with 

generalized data would be beneficial for the implementation of the model in any hospital, avoiding 

the overfitting to Hospital Clínic’s case. On the other hand, since this hypothetical database was 

supposed to be external, it was very unlikely that it would include all the attributes of VBT images 

in the desired context. 



                        Biomedical Engineering                                        Lluís Pellicer 

26 
 

An example of external database found was the so called CTPelvic1K [25], containing 1184 3D 

volumes from sub-datasets of the colon, the cervix, the abdomen and the kidney. The images were 

acquired with CT scans and most of them were sets of fractures and tumours. Only the cervix and 

abdomen sub-datasets had multiorgan segmentations and none of the images contained the 

applicator.  

The second option was to use the clinical records of the Radiotherapy department in Hospital Clínic. 

This path had the important advantage of counting on images and segmentations for the training 

that would be exactly the same type as the ones the model would have to segment afterwards. 

This includes characteristics as the region (pelvic), the acquisition of the image (CT), the OARs 

segmented, the applicator and the lack of the uterus. Another benefit of using this data was that 

the projects that preceded this work [5][15] already collected part of the database and standardized 

it, making it much easier to manage, and the database would follow similar patterns since it had 

the same origin. 

The main drawback of using these images is that, based on a preliminary analysis of the images, 

the segmentations had been done poorly in many cases, for instance segmenting only part of the 

organs or not segmenting some edge slides.  As seen in Section 2.2 (State of the art), a modest 

database would be admissible if the segmentations were well delineated, but having fewer subjects 

with incomplete labels would entail a considerable limitation for the accuracy of the model. 

Moreover, since the records of the data go back to 2014, the training would be exposed to possible 

changes in the equipment or methodology through these years that could have affected the way 

images or segmentations are done. 

External data Internal data 

More subjects 

Possibility of better labels 

Easy generalization 

Specific to postoperative endometrial carcinoma  

Containing all the OARs 

Previously collected database 

Standardized and controlled data 

May not be accessible 

Do not contain all the OARs 

Do not contain applicator 

Target different organ or disease 

Less subjects 

Vaguely described labels 

Possible changes through the years 

Table 4. Comparation between an external and an internal source of data for the model 
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4.1.2. MODEL 

In AI, models can be defined as programs that are able to recognize patterns or make decisions 

from previously unseen data. Due to the complexity of the patterns in the images that this project 

aims to delineate, the applied model must have an equivalent intricacy. That is why the options 

come down to CNN architectures, since they have enough capacity to process medical data.  

The U-Net architecture is a 2D model that has been proven to be very reliable in segmentation 

tasks. Its name refers to the U shape of the CNN. As can be seen in Figure 3, on the left part of the 

U-Net there is a contracting path that does filtering operations at different resolution levels (by 

means of downsampling operations) to extract features about the context of the input image. On 

the right part, an expansive path begins to do upsampling to locate the extracted features into 

feature maps with the same size as the input image [5]. Connecting both paths, the residual 

connections send the output information of an encoder layer to the parallel input of the decoder 

layer that is on the same level. This trait is what makes the U-Net stand out with respect other CNN 

models, since it allows to maintain high resolution details lost during the encoding phase by 

combining them with the space created in the decoding [26]. 

 

Figure 3. U-Net architecture (source: [27]) 

The number of output feature maps is equal to the number of segmentation regions (including the 

background). A final SoftMax function is applied to the output such that each voxel represents the 

probability to belong to each class. During the training, the filter weights that define the U-Net are 

updated following a gradient descend fashion according to an objective function between the 

ground truth labels and the predicted output. This way the model keeps improving as this process 

is repeated, refining the performance of the weights to assign the correct label to each voxel.  
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Recently, some upgrades have been done to the U-Net so it can be appliable to 3D images, leading 

to the creation of the three models described in Table 5. Despite following the same basic scheme 

explained, each model has its own particularities. 

 3D U-Net [26] UNETR [28]  V-Net [29] 

Encoder-decoder path Yes Yes Yes 

Residual connections encoding-decoding Yes Yes Yes 

Use of Transformer as encoder No Yes No 

Residual connections between layers No No Yes 

Use of pooling layers Yes Yes No 

Activation functions* [27] ReLu GELU PreLu 

Normalization * [30] Batch Layer - 

* Hyperparameters can be modified, but these are the recommended choice in the reference articles 

Table 5. Comparation between the three explored models 

3D U-Net is the direct evolution of the U-Net adapted to be able to segment volumetric data. It has 

the same symmetrical paths: the encoding path uses convolution layers, that extract the features 

of the image by applying filters, and pooling layers, that reduce the size of the image matrix 

condensing the information by doing averages.  

 

 

 

 

 

 

This way, the image undergoes the process for a determined number of layers following a classic 

stochastic gradient descent. Once the image is condensed and the features have been extracted, 

Figure 4. Representation of Convolution and Pooling processes (source: [26]) 
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the decoding path starts to exert de-convolutions and upsampling computations to return the image 

to its original size. 3D U-Net also uses batch normalization, which is a DL technique that stabilizes 

the training of a model by normalizing the activation function of the hidden layers, helping the model 

to be faster [31]. 

UNETR follows a resembling architecture as 3D U-Net but incorporates some improvements that 

reportedly help to obtain better results in the segmentations.  The main difference with respect to 

the 3D U-Net is the implementation of transformer blocks in the encoder path. These transformers 

consist of feedforward neural networks that allow the model to capture long-range dependencies, 

leading to an optimal learning of the global multiscale context of the image [28]. The 3D images 

must be previously converted to a 1D sequence so the transformers can operate with it. The 

decoder path does not incorporate transformers since they don’t have the capacity to capture 

information about the location, only general features. Another difference with respect to 3D U-Net 

is that instead of using batch normalization UNETR uses layer normalization, which is more 

recommended for cases in which the batch size is smaller, as in this project [32]. Overall, UNETR 

properties make the model highly efficient in segmenting small organs and boundary delineations. 

V-Net was conceived as a derivation of the U-Net model adapted to work with volumetric data. One 

of the particularities that differentiates V-Net from 3D U-Net is that, instead of employing pooling 

layers, V-Net uses convolutional layers with larger strides that substitute the pooling function, 

resulting on a faster training [26]. Another significant change is that V-Net substitutes the classic 

stochastic gradient descent by residual connections between layers, in addition to the encoder-

decoder residual connections. This modification accelerates the convergence of the training and 

improves the segmentation results. 

4.1.3. TRAINING FRAMEWORK 

The quantity, the distribution and the treatment of the database in the training, validation and test 

sets can affect the posterior performance of the model, so the design of the framework is not a 

trivial step. Taking into consideration this fact, some options were contemplated to ensure the best 

possible scenario for the model be trained. 

The first improvement that was considered to be applied was the use of data augmentation, which 

is a technique that creates artificially new data from modified copies of the existing database [33]. 

These modifications can be performed by geometric or colour transformations, by changing 

intensities, by mixing images or by applying filters. From the geometric perspective, data 
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augmentation can modify angles, translations, scale and perform non-linear deformations. From a 

colour point of view, it can be modified the contrast of the images, the histogram, the quantity of 

noise or the resolution. This tool would be desirable to generalize the model to fit better in other 

hospitals. Nevertheless, since the primary goal was to implement the algorithm to Hospital Clínic, 

where the images are always made the same way with the same CT scan, data augmentation 

would be redundant and would not provide valuable improvements. 

Hyperparameters are parameters whose value is set before the start of the training. In CNN, some 

examples of hyperparameter can be the number of layers, the type of activation function, the batch 

size or the optimizer. Most of the hyperparameters are directly recommended by Monai’s python 

package [34], which is the one used for programming DL in healthcare imaging, yet the 

hyperparameters that have substantial relevance must be studied more carefully.  

One of these important hyperparameters is the loss function. The loss function evaluates the 

difference between the predictions and the labels during the training. The aim is to reduce the loss 

during the optimization of the model. In segmentation CNN like U-Net, two main loss functions are 

used: Cross-entropy and Dice. Cross-entropy loss measures the difference between two probability 

distributions. This means that it calculates the difference between the probability of a predicted 

pixel to belong to the mask with respect to the ground truth. On the other hand, the Dice loss is a 

differentiable approximation of the reverse of the DSC (1-DSC), calculating the regions that don’t 

overlap correctly. Some studies [29] state that the Dice loss might work better in cases with class 

imbalance presence, as in most of medical images. 

Changing the focus to the distribution of the database, the images are divided into 3 main sets: the 

training, the validation and the test sets. The training set is used to allow the model to learn from 

the segmentations and fit the weights of the CNN to the optimal equation that correctly predicts the 

disposition of the organs. The validation set is used in the training phase to evaluate if the weights 

generalize correctly to new data, so it avoids overfitting. Once this process is finished, the test set 

evaluates the real outcome of the model, assessing its accuracy in unseen data. To separate the 

data, there are some methods that can be applied: 

K-fold cross-validation is one of the most popular techniques for evaluating the model. It is based 

on dividing the dataset into a specific number K number of subsets that must be previously defined. 

The data organises using (K-1) subgroups as the training set and the remaining one as the test. 

On each iteration of the training, the test subset is changed, testing the ability of the model to predict 
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unseen data to prevent overfitting. A more rudimentary way to achieve this goal is to directly divide 

the data into fixed groups of train, validation and test. This method allows a faster training since it 

does not employ iterations, yet it does not have as promising results as K-fold cross-validation. 

4.1.4. EVALUATION METRICS 

Defining how to measure the performance of a model can be determining for different reasons. 

First, it has to be chosen a metric that correctly represents what is aimed for, setting if a model gets 

closer or away from the goal. If the metric doesn’t quantify this, it will be challenging to find out if 

the model is well suited for the task that it should execute. Moreover, selecting a specific metric 

can be useful to highlight the errors in one section of the algorithm, narrowing the problem to a 

simpler approach. A similar scenario happens when pointing out the outliers of a metric, to see if 

the model generalizes correctly or there is overfitting. This way, in segmentation tasks, a large 

range of metrics can be used to define the accuracy of the model: 

Dice Similarity Coefficient (DSC) is a spatial overlap index that measures the relative number of 

voxels that have been correctly predicted between two sets of binary segmentations. The 

coefficient can go from 0, indicating no spatial overlap at all between the label set and the prediction 

set, to 1, meaning a complete coincidence [35]. DSC is defined by the formula described below: 

                                                                                                           

                                                            

 

              

                                                                      

The equation multiplies the number of correctly predicted voxels by 2 and then divides it by the 

number of voxels that sum the label (or ground truth) and the prediction segmentations. Given that 

DSC has high sensitivity to overlap, it makes the coefficient perfect to evaluate segmentation tasks. 

That is why, as seen in State of the art, it is widely used in this type of studies. Nevertheless, since 

it doesn’t consider contour details or localization accuracy, it is often combined with other metrics 

that tackle these lacks. 

Jaccard Coefficient (JC), similarly to DSC, measures the intersection between the label set and 

the prediction binary set. The main difference with DSC is that, as can be seen below, JC divides 

Figure 5. Representation of the DSC equation 
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the intersection by the union of the sets, so it is more sensitive to extreme imbalances between 

sets while DSC is better in cases where the foreground is much smaller than the background.  

 

 

 

 

Hausdorff Distance (HD) measures the largest minimum distance between a point of the label 

and a point of the prediction contours. In contrast to DSC, this metric doesn’t take into account the 

surface but the delineation of the segmentations. The equation that defines this distance is 

described below: 

                                                                        

                                                                                              

 

                                                                                                                                                                                                   

As can be seen on the formula, HD represents the largest distance between the maximum minimum 

distances of the label points with respect to the prediction and vice versa. HD is often expressed 

as HD95, which stands for the 95 percentile of HD and it refers to the distance that exceed the 5% 

of the points. HD and HD95 are effective to detect small outliers of segmentations that would be 

imperceptible for the DSC, but don’t provide valuable information about the overall performance of 

the model, so they are often used as a complementary metric. 

Mean Surface Distance (MSD) represents the average separation between points of the label and 

the prediction contour. First it calculates the average between the outlier points minimum distances 

of the labels with respect to the prediction, then it calculates the same but for the prediction with 

respect to the labels and finally computes the mean between the two numbers obtained. 

 

Figure 6. Representation of the JC equation 

Figure 7. Representation of HD equation 
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4.2. SOLUTION PROPOSAL 

Taking into account all what has been previously expounded, it was chosen the path that was 

considered to contribute the most to get good results assuming the less drawbacks as possible.  

About the data origin, the internal database of Hospital Clínic was selected, following the steps of 

the previous projects and rejecting the new proposal of collecting external data considering the lack 

of ground requisites that it satisfied.  

About the chosen option, it could be approached in three different ways: Using the previously 

collected database, using only new recent data collected exclusively for this work, or adding the 

new data to the original database. Considering that the years of acquisition of the new data (2021-

2023) weren’t too distant from the old data (2014-2021), the images didn’t differ noticeably, so there 

was no reason to not join them to obtain a bigger database. This way the third option was selected. 

Using the internal database, it had to be assumed that the segmentations that were going to be 

used to train the model didn’t have the best quality, so the results were expected to have some 

limitations.  

About the model, there was the starting limitation that the models that should be used had come 

down to UNETR or V-Net, since they were the ones used in the previous project in which the vagina 

wall was segmented. However, there was a justification behind the preselection of these two 

models, being that they are the models that best perform segmentation in medical images currently.  

That said, considering the previous project results and some preliminary tests performed on the 

beginning of this project, it was decided that the model that best adjusted to the needs of our goal 

was V-Net. Despite UNETR was slightly favoured in [15], it should be noticed that the segmentation 

targets in both projects have different properties. While the vagina wall is a small organ with few 

variations, what makes it a good target for UNETR, the OARs often are large organs with a lot of 

variation. 

Figure 8. Representation of MSD equation 
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Changing the subject to the training framework, it was decided that data augmentation was not 

necessary for this project, since the number of subjects was already considered satisfactory and 

its application would not entail noticeable better results. About the loss function, Dice loss was 

considered to provide better results in medical segmentation tasks. Despite being a more robust 

choice, K-fold cross-validation was discarded due to time limitations. Therefore, the direct 

separation was selected because of its lack of computational expensiveness. 

About the metrics used to assess the performance of the model, a DSC, HD95 and MSD 

combination was chosen to address the evaluation from different angles without using redundant 

data. Since JC is so similar to DSC, it was discarded. In order to deal with the contour inaccuracies, 

HD95 was selected rather than MSD since it is more sensitive to false little volumes that often occur 

in automatic segmentation tasks. Nevertheless, it was also implemented the MSD in the test 

evaluation to assure the maximum comprehension of the nature of the errors. 
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5. DETAIL ENGINEERING 

5.1. DATA ACQUISITION 

In order to start the project itself, the first step that was carried out was the collection of the data 

that would serve as the base for the model to learn. To do so, the records of the Radiotherapy 

Department in Hospital Clínic were revised. There, all the activities performed in the department 

are stored in chronological order. The target data were the images and segmentations of patients 

that had undergone vaginal brachytherapy with cylinder applicators from the October 6th of 2021 to 

August 15th of 2023. In this period of time, 80 patients that fulfilled the desired profile were found. 

From these patients, only the first session of brachytherapy was selected, since collecting more 

than one session would lead to a redundant database. Based on a preliminary analysis of the 

images, 2 of the 80 patients were found to be misclassified, leaving a total number of 78 subjects.  

Once the subjects were listed, their data had to be exported from the Oncentra brachytherapy 

program inside the department computer, where the information was stored in DICOM format files. 

DICOM is used in medicine for storage, transmission and processing of medical images [5]. 

However, since these DICOM images contain patient details, acquisition data and other information 

that is considered sensitive content, everything that could link the patient to the data had to be 

previously erased to respect the privacy rights. 

Programming with Python, it was developed a program that read all the slices of all the images and 

segmentations to extract the sensitive information, from the name and the date of birth of the patient 

to the medical record number (MRN) and the study ID. These labels were replaced by the ones on 

the following table: 

Before After 

Name and Surnames Sub-x 

MRN 100+x 

Date of birth 1990 / 1 / 1 

Study ID 000Y 

Table 6. Anonymization labels employed in the database. 

Before erasing all the identifying data, it was stored in a CSV document with the corresponding 

transformation to recur it in case it was necessary. Once this process was finished, each patient 

had a label Sub-x in which the x was a number from 001 to 078, and their corresponding MRN with 
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a number from 101 to 178. This was done with the aim to posteriorly order the slides of the patients, 

which were all mixed up in a unique folder. At this point, the database was safe to be extracted 

from the Hospital Clínic and operate with it. 

5.2. DATA PREPARATION 

The second process that had to be carried out was the transformation of the data into an organized 

and standardized format that could be directly introduced to the model to obtain an output. In order 

to achieve this goal, the process was divided into four subphases: the organization of the DICOM 

images into patient folders, the transformation to NIFTI format, the standardization of the data, the 

fusion with the already existing database and the registration to the template. 

5.2.1. ORGANIZATION AND FORMAT CONVERSION 

Starting with the transformation of format, converting the data from DICOM to NIFTI format was a 

crucial step to facilitate the manipulation of the data. It is relevant to note that DICOM images are 

stored in 2D slices, providing a total of 100-300 2D files for each patient. On the other hand, NIFTI 

is a standard simplified format that operates with 3D files that are defined by matrixes of voxels. 

This way, the CT images would be transformed from a group of hundreds of slices to a single file. 

On the other hand, the manual segmentations stored in DICOM-RT struct format, which is used in 

radiation therapy planning, would be divided from a single DICOM file to a group of 5 NIFTI files in 

which each one of them would contain mask of one ROI. 

To perform this conversion, it had to be modified an existing code originally programmed by [5]. 

This Python code first organized all the files by patients, copying the CT images and the RT struct 

into the corresponding patient (sub-x) folder, and ordering the CT slices by number. This way there 

were 78 folders, where each one contained the CT slices enumerated and the segmentation file of 

one patient. This process was performed with the pydicom library. The second part of the code was 

in charge of the format conversion. With the library DicomRTTool, the DICOM CT slices were 

transformed to a single file in NIFTI format, named image.nii. On the other hand, the RT struct file 

containing the five segmentations of the different organs (the CTV and the four OARs) was 

converted into five NIFTI files, one for each segmentation. They were named mask_ORGAN.nii, in 

which it was specified if the mask belonged to the vagina, the bowel, the sigma, the bladder or the 

rectum in the place of ORGAN. 
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The code also created a csv file called participants.csv that stored a list of the patients with the 

name of their folder and the number of CT slides that originally had the image, in case this 

information was posteriorly needed. 

5.2.2. DATA FUSION AND STANDARDIZATION 

With the aim to simplify the training algorithm, the collected database had to be unified and 

standardized.  This process was divided into three parts: Joining the OAR masks into one file, 

renaming all the database to agree with the adequate nomenclature and joining the new database 

with the existing database. 

Starting with the fusion of the OAR masks files, a Python code was programmed so it would create 

a new NIFTI file and fill it with the corresponding masks, providing each organ a different number, 

specified in Table 7. In consequence, the mask would not be binary anymore since each organ 

mask would have a different intensity. This way the OARs could be distinguished between each 

other. The colours of the table will refer from now on to the corresponding organs in images of 

segmentations and plots of the results to allow the maximum comprehension of the figures.  

Organ Bowel Rectum Bladder Sigma Vagina 

Intensity 1 2 3 4 5 

Table 7. Intensities assigned to the different organs in the final Mask file. 

The files were named mask_OAR.nii and were stored in new separated folders, also divided by 

subjects. Moreover, two versions of the file were created: The first version only included the OARs 

and was the one used for the first part of the project, given that the vagina had its own 

autosegmentation model conceived in the previous project [15] and was not required for the training 

of the OAR model. On the other hand, the second version included the OARs and the CTV and 

was reserved for the testing of the final algorithm that would eventually be applied into clinics, which 

had to contain all the ROIs. 

At this point of the project, files needed to train the model had the right format to start the process. 

First, the CT file, that would serve as the input of the model. Secondly, the manual segmentations 

file, that would serve as the labels or ground truth for the training to evaluate if the model was 

improving. Nevertheless, these files had to be named according to the adequate nomenclature and 

adjusted to the already existing database created in the previous projects. The resulting 

nomenclature is exposed on Table 8, which indicates the number of the subject, the number of the 
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VBT session and the type of image. The number of the subjects had to be modified to agree with 

the already existing database that had 220 patients (y = x+220).  

Data Original name Official nomenclature 

Image image.nii Sub-y_ses-0_CT.nii 

Label mask_OAR.nii Sub-y_ses-0_desc-oar_dseg.nii 

Table 8. Transformation of the file names according to the official nomenclature 

Once completed all the transformation steps summarized on Figure 9, the new database was joined 

with the previously collected database, forming a final database of 298 subjects. 

 

5.2.3. CREATION OF A TEMPLATE 

Before starting the training, a final transformation was performed to facilitate the learning process 

of the model. Instead of inserting to the model the complete CT image, only the area with clinical 

relevance was kept. By applying a template, the variability would be reduced and the performance 

of the model would improve without losing dosimetry accuracy. 

The clinical relevance of the dosimetry comprises a ratio of 2 centimetres above and below the 

applicator. The code was programmed to crop the image 2 centimetres above the tip of the 

applicator, and 2 centimetres below the end of the radiating area described by the semicircle of the 

Figure 9. Summary of the transformations of the data to adjust it to the model training. 
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top. In practice this was achieved by rigid alignment of each image to a given template where the 

cropping was defined. 

 

 

5.3. ALGORITHM DEVELOPMENT 

To create the models that would be used in the algorithm, it was employed the Alfa computer in the 

biophysics laboratory of Hospital Clínic, which had the required power to train the algorithms. With 

the aim to facilitate the use of this computer to future users, it was developed an instruction manual 

that could guide new researchers into the protocols and the functioning of Alfa. 

The programming of the algorithm was conceived on the basis of the decisions that had been 

previously made. The model architecture would be V-Net and the library Monai [34] would set the 

programming framework.  

From a preliminary analysis of the database, all the patients that didn’t have all the OAR regions 

segmented were excluded. Due to the variability and complexity of the OARs, the preliminary tries 

of training lead to the misclassification of certain areas. To facilitate the training, it was divided into 

two codes: The initialization, in which all the OARs would be segmented together to locate 

approximately the regions, and the training of each organ separately, which would provide better 

outcomes for the contouring details. 

5.3.1. INITIALIZATION 

As has been already mentioned, the preparation of the initialization model was conceived as a 

standard training of all the OAR regions. The structure of the Python program was composed by 

the division of the data, the transforms applied to the images, the setting of the model and the 

training scheme. 

Figure 10. Application of a template 
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First, the database was split using train_test_split() function. It was determined that the train-

validation set would be composed by 80% of the database and 20% would form the test set. Then, 

the 80% of the train-validation was split again into 80% train set and 20% validation set. Therefore, 

the final distribution of the database was 64% train, 16% validation and 20% test. The subjects 

were randomly distributed into the three groups to ensure the maximum heterogeneity, and the 

final result was saved. 

Following with the code, the next step was to process the images by applying transforms. Using 

Monai’s library, a series of transforms were connected to ensure the optimal interpretation of the 

data. Their function is detailed on Table 9: 

Transform Function 

LoadImaged() Loads the image, the label and the vagina segmentation into a dictionary to 

make them operable. 

EnsureChannelFirstd() Solves an ordering issue related with programming characteristics of some 

libraries. It brings the channels before the dimensions. 

Orientationd() Orients the image into specific axes to make all the set images follow the 

same coordinates. 

DivisiblePadd() Since V-Net loses resolution when the image pixels are not divisible by 16, 

this function creates a Pad of the image to make the spatial size become 

multiple of 16 in all the axis. 

ScaleIntensityRanged() The intensity of the image is normalized to highlight the differences 

between tissues. 

RandSpatialCropd() Crops the image in random windows (but with constant size) to avoid the 

image to be too computationally expensive to be processed. By doing it in 

random windows it ensures that the model learns all the parts of the image. 

AsDiscreted() Prepares the labels to be trained or evaluated, binarizing or codyifing them. 

Table 9. Description of the transforms applied to the image to be interpreted by the model. 

For the setting of model, it had to be defined that V-Net was the architecture employed and that the 

images had 3 dimensions. Besides, it was defined that there were 2 input channels (the image and 

the segmentations of the vagina) and 5 output channels (the 4 OAR and the background). As 

hyperparameters, the loss function was defined as Dice loss as specified on the section 4 (Concept 

Engineering). On the other hand, Adam’s optimizer was selected since it was the one 

recommended in Monai’s platform from an empiric study [36]. 
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Finally, a training scheme that had been described in an independent code was brought up.  

Besides the variables described on the previous paragraph, 2 more variables related with the 

epochs were introduced. An epoch can be defined as a complete cycle of training of all the 

database. The first variable created was the maximum epochs that could undergo the training 

phase, which was set to 5000. The second was the validation interval, that defined how many 

epochs had to proceed to execute another validation phase, which was set to 5. The validation 

wasn’t done in each epoch since it would be very time consuming. Once stablished the variables, 

the code would create a training and a validation csv files to store the results of the epochs. The 

vagina segmentation was loaded too to avoid the model to segment on that area. This way the 

OAR algorithm would incorporate the knowledge to never overlap the CTV region.  

To begin the training with the first epoch, the model would load all the images of the training set 

and the weights would start to be shaped from random values. On each iteration, that is to say, on 

each subject segmented, the weights of the previous iteration would be optimized to approach the 

best fit to the data. At first, the modifications of the weights on each iteration would be broad, but 

as the weights got closer to the perfect fit, the variations would get more subtle and refined. 

This way, the model would undergo 5 epochs, and then would evaluate the resulting weights in the 

unseen validation set of images to see if the weights generalize correctly with the unseen data. 

This step would avoid the overfitting of the weights to the training data. If the weights performed 

better than the last stored weights, the best_metric variable would be replaced by the new weights. 

If not, the best_metric would remain the same. If the best metric hadn’t changed in a lot of epochs, 

that was a sign that the weights were starting to overfit to the training data and the model wasn’t 

generalizable, so the loop was stopped. 

 

 

 

 

 

Figure 11. Visual representation of the training process. 
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On the evaluation stage, the training code was slightly modified to perform only the evaluation of 

the best metric model in the unseen test set and store the results.  About the transforms, they 

remained all the same with the exception of the RandSpatialCropd(), that was erased to make 

inferences in the entire image. The model part remained the same, but the metrics (DSC MSD and 

HD95) were added to evaluate the results from different perspectives. About the test scheme, the 

images were loaded, passed through the V-Net with the best metric weights from the training, and 

compared with the labels using the different metrics. Then, using Nibabel library, the segmentations 

created by the model were saved in a new folder together with the image and the manual 

segmentation. 

5.3.2. SEPARATED OAR TRAINING 

The second phase of the algorithm was to train the model to identify separately each one of the 

organs to see if it could perform better. To do so, the training code was rearranged to filter the 

labels to accept only the manual segmentation of one organ of interest. A new variable, named 

tissue_class, was created to select the desired OAR by inserting one of the numbers from the Table 

7 that identified the tissue.  

As in the initialization training, only the train and validation sets were loaded. Besides the previously 

used transforms, two new transforms were introduced to cope with the new needs of the training: 

Transform Function 

LabelFilterd() receives tissue_class as an input and filters the label to return only the 

needed organ 

RandCropByPosNegLabeld() Based on a positive-negative ratio of the image, detects the centre of 

the ROI and crops the image to include only the organ. 

Table 10. New transforms for separated OAR training. 

The rest of the code was left the same as the initialization training, including the model and the train 

scheme. The test code also remained the same as the initialization test, except for the addition of 

the mentioned modifications in the transforms and the variables. 

Once made the codes, four training and four tests were executed, one for each OAR. The best 

metric models were stored to load them on the final product. 
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5.3.3. FINAL PRODUCT 

At this point of the project, all the required models had been obtained. First, there was the model 

that segmented the vagina, which had been developed in [15]. Later, there were the initialization 

model for the OARs and the four models for the bladder, rectum, bowel and sigma, developed in 

this project.  

The final product would have as an input the DICOM CT slices from the scan and would generate 

a DICOM-RT struct file with the automatic segmentations. The code was divided into the next steps: 

1.Loading of the data: The code was programmed so, when it was run, a window would pop up 

showing the folder system of the computer to select the folder that contained the CT slices. The six 

models would also be loaded automatically. 

2.Description of the transforms: The transforms used in the final product were the already 

mentioned DivisiblePadd and ScaleIntensityRanged. Moreover, it was introduced a new transform 

named Invertd(), that inverts all the previously added transforms to return to the original image 

characteristics so it can be stored. 

3.Setting of the model: In this case, the model was actually conformed by 3 different submodels: 

The CTV model, the initialization model and the OAR models. Each model was loaded with its own 

best metric weights. 

4.CTV prediction and registration to the template: First, the DICOM image would be 

transformed to NIFTI. Then the vagina would be segmented. Using this prediction, it would be 

calculated where to derive the bounding box that defines the template of the image.  

5.Initialization: By implementing the initialization model, a first approximate segmentation of the 

OARs would be performed. With this information, each OAR would be cropped to be segmented 

accurately on the next step. 

6.Refinement of the OAR segmentations: Then, the individual OAR models would be 

implemented in the respective cropped images obtained on the previous point. This way the 

segmentation would be refined, segmenting only inside the cropping in a more accurate way. 

7.Postprocessing: With the aim to maximize the precision of the segmentation, a postprocessing 

step was added. For the bladder, the rectum and the sigma predicted segmentations, the groups 
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of foreground voxels were found, and only the biggest group would be kept. This way the false 

positive organs would be erased, leaving the real segmentation. This process could not be applied 

to the bowel due to its variability and distribution in separated groups of voxels. It was also applied 

a hierarchy defining to which organ should a voxel belong in case of overlapping of two different 

organs.  

8. Storing: Finally, the predicted segmentations would be stored after converting the NIFTI file into 

a RT struct file, which is the right format to insert the segmentations into the planning program of 

the dosimetry.  

5.4. RESULTS 

5.4.1. INITIALIZATION 

As can be seen on Figure 12, during the initialization training process, the Dice loss of the training 

was being reduced on each iteration. Meanwhile, the validation loss indicated that the weights were 

starting to overfit to the training set over the 500 epochs and were not generalizing to the validation 

set. The best initialization model was met on the early 400 epochs. 

 

Figure 12. Evolution of Training-Validation Dice Loss  

As the results of the test showed, a single model approach to segment the OAR regions would 

require further improvements. While the rectum and the bladder obtained a median DSC of 0.7 and 

0.8 respectively, the bowel and the sigma results were significantly worse, with a DSC of 0.5 and 

0.07. These results were corroborated by the MSD values, that showed an overall reasonable 

performance in the bladder, the rectum and the bowel with less than 2.5 cm of median distance 

error, but more than 5 cm in the sigma. Finally, HD95 showed that there was a significant amount 

of false predicted regions, specially in the rectum and the sigma.  
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Figure 13. Metrics of the initialization model evaluation in the test set. 

On the top part of Figure 15, an example of false 

prediction of the rectum detected by the HD95 can 

be appreciated. In this case the rectum is predicted 

on the bladder region. On the low part, there is an 

example on how the ground truth (the manual 

segmentations) isn’t always well delineated, 

compromising the reliability of the metrics. The 

overall performance of the initialization model can be 

observed on Figure 14. 

 

 

Figure 15. Differences between the manual and the 
automatic segmentation in the initialization model. 

Figure 14. Overall performance of the initialization model. 
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5.4.2. SEPARATED OAR MODELS 

For the individual training of the OARs, the results were enhanced with respect to the initialization. 

For the DSC, the median values obtained were 0.6 for the bowel (10% of increase), 0.85 for the 

rectum (15% of increase), 0.88 for the bladder (8% of increase) and 0.3 for the sigma (20% of 

increase). The HD95 values were reduced a 65% in the bowel, a 93% in the rectum, an 84% in the 

bladder and a 65% in the sigma with respect to the initialization. This indicated a substantial 

reduction in the false predicted regions. The MSD also was reduced from a median of 2.6 cm in 

the OARs to a median of 0.8 cm.    

 

The Figure 17 shows an example of each one of the model performances. As can be observed 

qualitatively, the rectum and the bladder are almost perfectly segmented, the bowel offers a good 

approximation of the real shape and the sigma is partially well segmented but not in all the regions. 

 

Figure 17. Visual representation of the performance of the individual OAR models. (1. Bowel, 2. Rectum, 3. Bladder, 4. Sigma) 

Figure 16. Metrics of the individual OAR models evaluation in the test set. 
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5.4.3. FINAL PRODUCT 

The final product consists of an executable file (EXE file) containing the algorithm. This file would 

be downloaded on the computer where the planning is performed, and with the simple step of 

opening the file the code would be run. This action would open a window showing the folders of 

the computer so the CT image could be selected. By eliminating all the intermediate steps to run 

the code from the terminal, the implementation of the algorithm won’t require any programming 

knowledge. 

 

Regarding the performance of the final product, the same three metrics were used to evaluate the 

results. As can be seen on Figure 18, by adding the individualized OAR models into the algorithm, 

the output improved with respect to the initial algorithm (the initialization). Focusing on the DSC 

results, while most of the results remained the same, the rectum’s DSC increased a 7% in the 

overlapping. This way, the final median DSC values obtained were 0.47 for the bowel, 0.74 for the 

rectum, 0.80 for the bladder, 0.07 for the sigma and 0.79 for the vagina wall.   

About the error on the contours, the results of HD95 were 6.7 cm for the bowel, 2.3 cm for the 

rectum, 2 cm for the bladder, 8.8 cm for the sigma and 0.3 cm for the vagina. This shows an overall 

69% reduction in the HD95 values with respect to the initialization, meaning that there were 

substantially less false predicted OARs. On the other hand, the MSD values obtained were 1.3 cm 

for the bowel, 0.6 cm for the rectum, 0.3 cm for the bladder, 6.5 cm for the sigma and 0.1 cm for 

the vagina. This way, the contour detail was improved a 48% globally, but the error increased a 

30% in the sigma contouring, since there was an undesired reduction of its volumes, as can be 

seen on Figure 19. 

Figure 18. Metrics of the final algorithm evaluation. 
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In a further analysis of the results, the dosimetry of 10 patients was performed with the automatic 

and manual segmentations to compare the dosimetry output. The minimization of relative difference 

in the plannings should be the goal to aim for if an algorithm has to be applied in radiotherapy, 

since it would indicate that there are no significant differences in the result of the treatment. 

 

 

 

 

 

 

 

As can be seen in Figure 20, the dosimetry differed a 5% in the CTV (the vagina), a 17% in the 

bowel, a 3% in the rectum, an 8% in the bladder and a 52% in the sigma. The planning process 

carries a general uncertainty of an 8% caused by errors in the different steps of the dosimetry [37].  

Regarding this fact, the automatic segmentations of the rectum, the bladder and the vagina would 

Figure 20. Relative dosimetry differences of the automatic segmentations with respect to the manual ones. 

Figure 19. Comparation of the final predicted segmentations with respect to the manual 
contouring. (Sagittal, coronal and axial planes, respectively in each column) 
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be acceptable in clinics. On the other hand, the bowel and the sigma would require further 

improvements to be acceptable in clinics, considering that the resultant dosimetry prescribed too 

much dose on the bowel and far not enough dose in the sigma. Nevertheless, it should be taken 

into account that this is a preliminary study to indicate the approximated results, but further 

examinations of the results and the context should be done to obtain completely reliable 

conclusions. 

5.5. DISCUSSION 

As has been presented in Section 5.4. (Results), the performance of the model has some disparity 

in the contour accuracy of the different organs. While the bladder, the rectum and the CTV have 

shown a satisfactory automatic segmentation, the bowel and the sigma seem to be poorly 

delineated from the metrics perspective. Nevertheless, these results can be explained by a 

particular decision in the postprocessing step: To avoid the overlapping of areas between two ROIs, 

which could lead to higher prescriptions of dose in the planning, it was stablished a system that 

selected the bowel rather than the sigma in case the contour coincided in space. This caused a 

substantial reduction in the sigma volume, which was substituted as bowel volume, since the limit 

between the bowel and the sigma is quite indistinctive and is prone to cause confusions.  

The change should not directly affect the output of the overall dosimetry since the prescription of 

dose in the sigma tissue is the same as in the bowel tissue, so the treatment would stay the same. 

Nevertheless, given that the metrics are performed individually on each ROI, the dosimetry results 

on the sigma were totally biased. Despite not having prior major effects on the final dosimetry, it 

would be recommendable to follow more sophisticated postprocessing strategies to adjust the 

segmentations as faithfully as possible to the original manual contours. 

Beyond the postprocessing reasoning, the poor results in the segmentation of the sigma and the 

bowel (just as the errors in the CTV the bladder and the rectum) can also be originated by the 

nature of the database employed in the training. Despite being the only acceptable option to 

execute the project, the ground truth used to evaluate the models (the manual segmentations) was 

not the optimal since the organs weren’t completely delineated and there was a lack of detail in 

some cases. This fact, together with the high variability of the ROIs disposition between patients, 

caused a limitation in the model performance. 

There are two main solutions to this problem. First, the algorithm developed in the project remains 

at disposal of Hospital Clínic to be reused to train the models with a completely new and reliable 
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set of manual segmentations, external or internal. The only thing that should be changed in the 

final product would be the models by the new ones obtained in the training. The second option 

would be to stablish a feedback system in which the product would be applied into the Radiotherapy 

Department and the automatic segmentations obtained from the new patients would be used as 

the future ground truth database. In this case, these segmentations should be carefully revised and 

edited as precise as possible by the specialists so they could be used clinically in the planning and 

in the new training, improving the output models. By doing one of the two options expounded, the 

algorithm could be more functional as an automatic tool, implying less editing by the technicians. 

Considering completed the study, it can be stated that the main goal of the Project was fulfilled. It 

was successfully programmed an algorithm capable of segmenting automatically the ROIs in 

vaginal brachytherapy, reducing the time required to carry out the task to approximately 10 minutes 

based on preliminary tests. Nevertheless, the models implemented would require further 

improvements for the algorithm to be applied into clinics as a whole product. 
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6. EXECUTION CHRONOGRAM 

6.1. WORK BREAKDOWN STRUCTURE 

In order to plan a project adequately it is necessary to analyse each one of its phases, from the 

preparation or the execution to its results. The work breakdown structure (WBS) allows a global 

visualisation of the essential groups of tasks that are needed to carry out the project, so a temporal 

schedule can be developed. 

The project planning comprised the understanding of the objectives and methodology of the project, 

the chronological planning structure across the working timeline and the reading of the literature to 

have a better understanding of the project’s scope and context. The documentation could be 

divided into the part that could be written before the execution of the project and the part reporting 

its process, adding the revision once the report was finished. The database preparation included 

the collection and transformation of the data, from anonymizing and changing the format to 

standardizing it. The programming included the training of the five models and the elaboration of 

the final algorithm. To analyse the results, the algorithm was tested with three quantitative metrics 

and by applying it to the radiotherapy department to see the effects on the dosimetry. Finally, the 

delivery of the project will be divided into the uploading of the report and the exposition. 

6.2. PERT-CPM DIAGRAM 

The PERT-CPM diagram shows the temporal implication and coordination of the different tasks by 

indicating their respective timings and interdependencies. This can help to identify the bottleneck 

path in which any delay could affect the final delivery schedule. With this knowledge it is possible 

to plan more efficiently the workflow of the project. As can be seen on Figure 22, while tasks as the 

Literature Review and the Context Reporting had time to spare, all the other tasks were classified 

as critical, requiring a special focus.  

Figure 21. WBS of the project. 
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6.3. GANTT DIAGRAM 

Finally, the GANTT diagram is set to present the temporal distribution of the tasks on the calendar. 

This sequence completes the PERT-CPM information by localizing the tasks from an initial date, in 

this case July 15th of 2023, to an end date, in this case January 26th of 2024. The total duration of 

the project has been then 6.5 months. As has been mentioned on the previous section, only two 

activities had spare time. This is representative of the lack of time available to execute this particular 

project, condensing all the tasks to the maximum to complete it for the delivery date. 

 

Figure 23. GANTT diagram of the project. [38] 

  

Figure 22. PERT-CPM diagram. 
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7. TECHNICAL FEASIBILITY 

Strengths Weaknesses 

❖ Previous programming knowledge 

❖ Satisfactory amount of subjects 

❖ Disposition of a powerful computer 

❖ Faster method than the current one 

❖ Periodic external advice from the UB 
Biomedical Imaging Group  

❖ Limited time 

❖ Unreliable ground truth for the model 

❖ High variability of the OAR contour 

❖ Required further improvements 

❖ Required revision and editing of the 
results 

Opportunities Threats 

❖ Lack of current competence 

❖ Addresses endometrial carcinoma 
cases, which are increasing  

❖ Less expensive 

❖ Potential future improvement to 
overcome manual segmentations 

❖ Possibility that big health companies 
develop the same technology 

❖ Legal aspects of using AI in medicine 

❖ Required continuous updating 

Table 11. SWOT analysis of the project  

The development of the automatic segmentation product for endometrial carcinoma treatment has 

turned out to be an arduous and complex project to make, but the results have been found 

satisfying. The SWOT analysis of Table 11 indicates the main strengths and weaknesses of the 

project and the opportunities and threats that would have to deal with in the market. 

About the context, the main handicap that had to confront the project was the reduced time to 

execute it, limiting the study of solutions and improvements that could be applied to perfect the 

results. Another one of the main weaknesses was the unreliability of the manual segmentations 

used as the ground truth for the model training. This combined with the fact that the OAR regions 

have a substantial variability, would set an initial restriction for the model performance. On the other 

hand, there were some positive parts in the conception of the project. For instance, the number of 

subjects of the database was more than enough to be reliable. Moreover, the Alfa computer in the 

biophysics laboratory was available to be used to run the codes, which would save a precious 

amount of time since this computer has enough power to process all the input data. 

During the development of the project, some external advice was received from the Biomedical 

Imaging Group of the UB, which was useful for the progress of the programming and achievement 

of the final product. Despite the long periods of time required to train the different models, the 
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process was followed quite fluently. Analysing the results of the first training (the initialization) it 

was seen that the algorithm demanded a higher level of complexity than a simple global model. 

This way, the individual OAR segmentation models were developed. By implementing bounding 

boxes and postprocessing on the algorithm, the errors of the output were minimized to the 

maximum extent possible. 

About the result, it was found that the algorithm itself worked efficiently according to its function. It 

automatically segmented the OAR regions much faster than in manual segmentation, and it 

eliminated the human error. Nevertheless, the ground truth to train the models was not as accurate 

as it should be, so it would be recommended a secondary training with finer manual segmentations 

to improve the result. For now, the algorithm output would require editing of some parts of the 

segmentation in the revision. 

About the introduction of this product to the market, there are some opportunities that it could take 

advantage of. Since there is no current product that covers the same stakeholders, there is a major 

opportunity to patent the technology and cover the needs of all the market. Moreover, since vaginal 

brachytherapy use is increasing following the growth rate of the endometrial carcinoma cases, the 

product would not become obsolete until a better technique was discovered. Given that it does not 

require much human intervention, it would globally become less expensive and more efficient, 

redistributing the time of the technicians that used to perform this task into another sector. Finally, 

benefiting from the external enhancement of deep learning technologies would open the possibility 

to overcome manual segmentations. 

On the other hand, the biggest threat of the project is that big enterprises as Siemens Healthineers 

develop their own algorithm for the same treatment. Since these companies count on big storages 

of data, the models of their algorithm would reasonably be more accurate. Another concern that 

must be considered is the regulation of the AI use, since it would affect the implementation of the 

product. Finally, it also must be taken into account that this algorithm is not a static product since it 

needs periodic updates of the models, following the changes in the CT imaging and VBT technique 

that might modify the way segmentation is performed.   
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8. ECONOMIC FEASIBILITY 

Item Description Cost per unit Total cost 

Data acquisition 

CT imaging Number of patients= 298 140 €/scan [39] 41.720 € 

Data processing 

Oncentra Brachy program Planning program 100.000 € 100.000 € 

Python software  Python 3.11 Free 0 € 

Materials 

Alfa computer Workstation Supermicro A+ 8.302 € [40] 8.302 €  

Human resources 

Biomedical engineering 
student 

Total time= 300 hours 15 €/hour [41] 4.500 € 

Director Total time= 50 hours 25 €/hour [41] 1.250 € 

TOTAL COST = 155.772 € INTRINSIC TOTAL COST= 14.052 € 

Table 12. Economic viability of the project 

This project has not entailed a direct economic investment but has taken profit of previously 

purchased items. The cost that would suppose the performance of CT imaging to 298 patients 

sums an approximated total of 41.720 €. Oncentra Brachy, the program used to exert the VBT 

planning (where the manual segmentations were done), would add a cost of 100.000 €.  

Despite it is interesting to point out the approximate cost that would have entailed the creation of a 

database, these costs should not be considered to indicate the expense of the project since they 

were not executed to develop the automatic segmentation. They were only used posteriorly as an 

internal source of data with no additional cost.  

On the other hand, what was strictly required for developing the project was the python software, 

which is a free tool, and the Alfa computer in the biophysics lab, with a cost of 8.302 €. Adding this 

to the respective salaries of a junior engineer and a biomedical engineer, the intrinsic final cost of 

the project would be 14.052 €. 
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9. REGULATIONS AND LEGAL ASPECTS 

Considering that the project has been carried out in Barcelona, it has had to stick to the legislation 

of Spain and the European Union. This way, the study was executed following the ethical principles 

of the medical investigation described in the Helsinki Declaration [42]. Moreover, since the study is 

defined as a final degree project, it is framed in the general regulations of the UB, reported in the 

Royal Decree 1393/2007 [43]. 

The law 14/2007 [44] states the regulation of biomedical investigation in Spain. The topics tackled 

in this law were related to the definition of principles that must follow the researchers and rights of 

the patients that must be fulfilled. For instance, in the investigation related to humans it must be 

guaranteed the informed consent, the non-discrimination or the confidentiality and data protection. 

The main right that had to be taken into account during the conception of the project was the 

preservation of confidentiality regarding the use of the records in the Radiotherapy Department. 

Obeying the constitutional law 3/2018 [45], the General Data Protection Regulation (GDPR) 

dictates that all the information that could relate the data to an individual has to be properly 

anonymised [46]. This information can go from locations, ethnicity, gender, biometric data to 

religious beliefs or political opinions.  

In Hospital Clínic [47], there is also an internal regulation for the processing of data, which sticks to 

the EU Regulation 2016/679. When anonymizing the data, only the main investigator can keep the 

relationship between the MRN and the code designated to the patient. Any non-anonymized data 

must be transferred through the https://compartir.clinic.cat secured platform, and the access will be 

restricted only to the participants of the study. The database can only be stored 10 years before its 

erasing in case the study is followed. After that period, the only information kept will be the trained 

models created from the database. 

The legislation of the insertion of AI in medicine is currently being discussed, but there is no 

consensus for now. Regarding this project, considering that VBT is not a life-threatening procedure, 

it is not expected to be highly regulated. Moreover, if there was an error in the dosimetry that 

endangered the security of the patient, the final responsibility would fall on the designated doctor, 

since it is always mandatory the revision of the segmentations and its approval from a human 

specialist before the application. 

 

https://compartir.clinic.cat/
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10. CONCLUSIONS AND FUTURE WORK  

The elaboration of this Final Degree Project has culminated the work of three projects involved in 

the development of an automatic segmentation tool for VBT. The final product obtained is an 

algorithm that receives the CT images of the patient as an input and returns de segmentations of 

the CTV and the OARs with the adequate format to be inserted in the planning software. This 

algorithm can be automatically run without the need for the user to have programming knowledge. 

About the secondary goals of the project, the database was successfully widened with recent 

records of Hospital Clínic’s patients after following the right steps of anonymization and 

transformation during the process. By programming a training structure with V-Net as the DL 

architecture, it was possible to obtain the models that define the performance of the algorithm. With 

the preprocessing, the models and the postprocessing steps the algorithm could be completed.  

The results obtained showed a satisfactory accuracy for the CTV, the rectum and the bladder. On 

the other hand, the bowel and the sigma were considered to require further examination. This 

disbalance was caused by an increase in the bowel’s size and a substantial decrease in the sigma 

size due to the models’ limitations and the rudimentary conception of the postprocessing step. 

Given the impact of these inaccuracies in the dosimetry, the algorithm currently would not be 

appliable to the clinics. 

However, despite the product per se isn’t still functional on its own, it can be used as a base to 

spend less time manually segmenting, having to edit only the incorrectly predicted ROIs. If the new 

segmentations are edited accurately by specialists, they can be used posteriorly as a new database 

for the same algorithms to perfect the models and obtain a marketable product. Moreover, since 

the structure of the algorithm is completely functional and it only requires an improvement in the 

models, it can be used by any healthcare centre or software company that offers VBT services. 

They would only have to upload their own data into the training algorithm, get the models and 

upload them on the final product. 

A further improvement contemplated to commercialise the product once perfected is the creation 

of a complete interface instead of using an EXE file, resulting in a more aesthetic packaging. 

 

  



                        Biomedical Engineering                                        Lluís Pellicer 

58 
 

11. BIBLIOGRAFY 

[1] “Tratamiento del cáncer de endometrio - NCI.” Accessed: Jan. 20, 2024. [Online]. Available: 

https://www.cancer.gov/espanol/tipos/uterino/paciente/tratamiento-endometrio-pdq 

[2] L. H. Ellenson, B. M. Ronnett, R. A. Soslow, R. J. Zaino, and R. J. Kurman, “Endometrial 

Carcinoma,” Blaustein’s Pathology of the Female Genital Tract, pp. 394–452, 2011, doi: 

10.1007/978-1-4419-0489-8_9. 

[3] M. Koskas, F. Amant, M. R. Mirza, and C. L. Creutzberg, “Cancer of the corpus uteri: 2021 

update,” International Journal of Gynecology & Obstetrics, vol. 155, no. S1, pp. 45–60, Oct. 

2021, doi: 10.1002/IJGO.13866. 

[4] V. Makker et al., “Endometrial Cancer,” Nat Rev Dis Primers, vol. 7, no. 1, p. 88, Dec. 2021, 

doi: 10.1038/S41572-021-00324-8. 

[5] “Biomedical imaging group - 2022-2023-TFM_SaraOrio.pdf - Tots els documents.” 

Accessed: Jan. 20, 2024. [Online]. Available: 

https://ubarcelona.sharepoint.com/sites/big/Projectes%20estudiants/Forms/AllItems.aspx?

id=%2Fsites%2Fbig%2FProjectes%20estudiants%2FTFMs%20entregats%2F2022%2D2

023%2DTFM%5FSaraOrio%2Epdf&parent=%2Fsites%2Fbig%2FProjectes%20estudiants

%2FTFMs%20entregats 

[6] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic 

Markets, vol. 31, no. 3, pp. 685–695, Sep. 2021, doi: 10.1007/S12525-021-00475-

2/TABLES/2. 

[7] A. Akay and H. Hess, “Deep learning: Current and emerging applications in medicine and 

technology,” IEEE J Biomed Health Inform, vol. 23, no. 3, pp. 906–920, May 2019, doi: 

10.1109/JBHI.2019.2894713. 

[8] A. Rosvoll Groendahl et al., “Evaluation of auto-segmentation for brachytherapy of 

postoperative cervical cancer using deep learning-based workflow,” Phys Med Biol, vol. 68, 

no. 5, p. 055012, Feb. 2023, doi: 10.1088/1361-6560/ACBA76. 

[9] C. Elisabeth Olsson, R. Suresh, J. Niemelä, S. U. Akram, and A. Valdman, 

“Autosegmentation based on different-sized training datasets of consistently-curated 

volumes and impact on rectal contours in prostate cancer radiation therapy,” Phys Imaging 

Radiat Oncol, vol. 22, pp. 67–72, Apr. 2022, doi: 10.1016/j.phro.2022.04.007. 

[10] K. Kallis et al., “Automated treatment planning framework for brachytherapy of cervical 

cancer using 3D dose predictions,” Phys Med Biol, vol. 68, no. 8, p. 085011, Apr. 2023, doi: 

10.1088/1361-6560/ACC37C. 



                        Biomedical Engineering                                        Lluís Pellicer 

59 
 

[11] M. Lempart, J. Scherman, M. P. Nilsson, and C. Jamtheim Gustafsson, “Deep learning-

based classification of organs at risk and delineation guideline in pelvic cancer radiation 

therapy,” J Appl Clin Med Phys, vol. 24, no. 9, p. e14022, Sep. 2023, doi: 

10.1002/ACM2.14022. 

[12] D. Duprez, C. Trauernicht, H. Simonds, and O. Williams, “Self-configuring nnU-Net for 

automatic delineation of the organs at risk and target in high-dose rate cervical 

brachytherapy, a low/middle-income country’s experience,” J Appl Clin Med Phys, vol. 24, 

no. 8, p. e13988, Aug. 2023, doi: 10.1002/ACM2.13988. 

[13] F. Zabihollahy, A. N. Viswanathan, E. J. Schmidt, and J. Lee, “Fully automated 

segmentation of clinical target volume in cervical cancer from magnetic resonance imaging 

with convolutional neural network,” J Appl Clin Med Phys, vol. 23, no. 9, p. e13725, Sep. 

2022, doi: 10.1002/ACM2.13725. 

[14] C. Xiao et al., “RefineNet-based 2D and 3D automatic segmentations for clinical target 

volume and organs at risks for patients with cervical cancer in postoperative radiotherapy,” 

J Appl Clin Med Phys, vol. 23, no. 7, p. e13631, Jul. 2022, doi: 10.1002/ACM2.13631. 

[15] “Biomedical imaging group - 2022-2023-TFG_ArnauAndres.pdf - Tots els documents.” 

Accessed: Jan. 20, 2024. [Online]. Available: 

https://ubarcelona.sharepoint.com/sites/big/Projectes%20estudiants/Forms/AllItems.aspx?

id=%2Fsites%2Fbig%2FProjectes%20estudiants%2FTFGs%20entregats%2F2022%2D20

23%2DTFG%5FArnauAndres%2Epdf&parent=%2Fsites%2Fbig%2FProjectes%20estudia

nts%2FTFGs%20entregats 

[16] “Rising Endometrial Cancer Rates Spur New Approaches to Prevention | Division of Cancer 

Prevention.” Accessed: Jan. 20, 2024. [Online]. Available: 

https://prevention.cancer.gov/news-and-events/blog/rising-endometrial-cancer-rates-spur-

new-approaches-prevention 

[17] G. Kemi ̇kler, “History of Brachytherapy,” Oncol, vol. 34, pp. 1–10, 2019, doi: 

10.5505/tjo.2019.1. 

[18] M. J. Rivard, J. L. M. Venselaar, and L. Beaulieu, “The evolution of brachytherapy treatment 

planning,” Med Phys, vol. 36, no. 6Part1, pp. 2136–2153, Jun. 2009, doi: 

10.1118/1.3125136. 

[19] “Philips - Pinnacle3 Autosegmentación con SPICE Rápido. Consistente. Fiable.” Accessed: 

Jan. 21, 2024. [Online]. Available: 

https://www.philips.es/healthcare/product/HCNOCTN137/autosegmentacin-con-spice-de-

pinnacle-rpida-consistente-fiable 



                        Biomedical Engineering                                        Lluís Pellicer 

60 
 

[20] “Philips - Pinnacle3 Segmentación basada en modelos.” Accessed: Jan. 21, 2024. [Online]. 

Available: https://www.philips.es/healthcare/product/HCNOCTN139/la-segmentacin-

basada-en-modelos-de-pinnacle-con-la-funcin-arrastrar-y-soltar-mejora-el-flujo-de-trabajo 

[21] “AI-segmentation – NMMItools.” Accessed: Jan. 21, 2024. [Online]. Available: 

https://nmmitools.org/category/nmmi-ai-models/ai-segmentation/ 

[22] “syngo.MR Onco Engine - Siemens Healthineers España.” Accessed: Jan. 21, 2024. 

[Online]. Available: https://www.siemens-healthineers.com/es/magnetic-resonance-

imaging/options-and-upgrades/clinical-applications/syngo-mr-onco-engine 

[23] “Whole-Body Dot Engine - Siemens Healthineers España.” Accessed: Jan. 21, 2024. 

[Online]. Available: https://www.siemens-healthineers.com/es/magnetic-resonance-

imaging/options-and-upgrades/clinical-applications/whole-body-dot-engine 

[24] “MIM Contour Protégé AI - Auto Contouring | NL-Tec,” https://www.nl-tec.com.au/, 

Accessed: Jan. 21, 2024. [Online]. Available: https://www.nl-tec.com.au/product/mim-

contour-protege-ai/ 

[25] “GitHub - MIRACLE-Center/CTPelvic1K: Resources of the paper ‘Deep Learning to 

Segment Pelvic Bones: Large-scale CT Datasets and Baseline Models’.” Accessed: Jan. 

21, 2024. [Online]. Available: https://github.com/MIRACLE-Center/CTPelvic1K 

[26] “The Hourglass Network | U-Net | V-Net | Medium.” Accessed: Jan. 21, 2024. [Online]. 

Available: https://medium.com/@calleris.enrico/hourglass-network-6e74cdb9ce2f 

[27] “V-Net, U-Net’s big brother in Image Segmentation | by François Porcher | Towards Data 

Science.” Accessed: Jan. 21, 2024. [Online]. Available: https://towardsdatascience.com/v-

net-u-nets-big-brother-in-image-segmentation-906e393968f7 

[28] A. Hatamizadeh et al., “UNETR: Transformers for 3D Medical Image Segmentation,” 

Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, 

WACV 2022, pp. 1748–1758, Mar. 2021, doi: 10.1109/WACV51458.2022.00181. 

[29] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for 

Volumetric Medical Image Segmentation”, Accessed: Jan. 21, 2024. [Online]. Available: 

http://promise12.grand-challenge.org/results/ 

[30] “Week 3: Deep Learning model Shenanigans - BASIS Independent Silicon Valley.” 

Accessed: Jan. 21, 2024. [Online]. Available: 

https://siliconvalley.basisindependent.com/2022/03/11/week-3-deep-learning-model-

shenanigans/ 



                        Biomedical Engineering                                        Lluís Pellicer 

61 
 

[31] “Introduction to Batch Normalization: Understanding the Basics.” Accessed: Jan. 21, 2024. 

[Online]. Available: https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-

normalization/ 

[32] “Review — Gaussian Error Linear Units (GELUs) | by Sik-Ho Tsang | Medium.” Accessed: 

Jan. 21, 2024. [Online]. Available: https://sh-tsang.medium.com/review-gaussian-error-

linear-units-gelus-d4d7347d1e11 

[33] “A Complete Guide to Data Augmentation | DataCamp.” Accessed: Jan. 21, 2024. [Online]. 

Available: https://www.datacamp.com/tutorial/complete-guide-data-augmentation 

[34] “Network architectures — MONAI 1.3.0 Documentation.” Accessed: Jan. 21, 2024. [Online]. 

Available: https://docs.monai.io/en/stable/networks.html#vnet 

[35] K. H. Zou et al., “Statistical Validation of Image Segmentation Quality Based on a Spatial 

Overlap Index: Scientific Reports,” Acad Radiol, vol. 11, no. 2, p. 178, 2004, doi: 

10.1016/S1076-6332(03)00671-8. 

[36] S. J. Reddi, S. Kale, and S. Kumar, “ON THE CONVERGENCE OF ADAM AND BEYOND”. 

[37] C. Kirisits et al., “Review of clinical brachytherapy uncertainties: analysis guidelines of GEC-

ESTRO and the AAPM,” Radiother Oncol, vol. 110, no. 1, pp. 199–212, 2014, doi: 

10.1016/J.RADONC.2013.11.002. 

[38] “Free Online Gantt Chart Software.” Accessed: Jan. 21, 2024. [Online]. Available: 

https://www.onlinegantt.com/#/gantt 

[39] “El precio de un TAC por privado puede ser más barato - iDoctor Asistencia Médica.” 

Accessed: Jan. 21, 2024. [Online]. Available: https://idoctor.es/blog/precio-de-un-tac-

barato-por-privado/ 

[40] “Supermicro A+ SuperWorkstation 5014A-TT (AS-5014A-TT).” Accessed: Jan. 21, 2024. 

[Online]. Available: https://www.thinkmate.com/system/a+-superworkstation-5014a-tt 

[41] “¿Cuánto cobra un biomédico al mes? | UFV.” Accessed: Jan. 21, 2024. [Online]. Available: 

https://www.ufv.es/cuanto-cobra-un-biomedico-al-mes-preguntas-grados/ 

[42] “ANEXO A Declaración de Helsinki de la Asociación Médica Mundial”. 

[43] “NORMES GENERALS REGULADORES DELS TREBALLS DE FI DE GRAU DE LA 

UNIVERSITAT DE BARCELONA ,” 2011. 

[44] “Ley 14/2007, de 3 de julio, de Investigación.” Accessed: Jan. 21, 2024. [Online]. Available: 

https://noticias.juridicas.com/base_datos/Admin/l14-2007.html 



                        Biomedical Engineering                                        Lluís Pellicer 

62 
 

[45] “BOE-A-2018-16673 Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos 

Personales y garantía de los derechos digitales.” Accessed: Jan. 21, 2024. [Online]. 

Available: https://www.boe.es/buscar/act.php?id=BOE-A-2018-16673 

[46] “What is GDPR, the EU’s new data protection law? - GDPR.eu.” Accessed: Jan. 21, 2024. 

[Online]. Available: https://gdpr.eu/what-is-gdpr/ 

[47] “Model Protocol Projectes Recerca o PS marcat CE,” 2021. 

[48] “Panoptic Segmentation: Definition, Datasets & Tutorial [2023].” Accessed: Jan. 20, 2024. 

[Online]. Available: https://www.v7labs.com/blog/panoptic-segmentation-guide 

 


