
Games and Economic Behavior 144 (2024) 104–125

Contents lists available at ScienceDirect

Games and Economic Behavior

journal homepage: www.elsevier.com/locate/geb

Queueing games with an endogenous number of machines ✩

Ata Atay a, Christian Trudeau b,∗

a Department of Mathematical Economics, Finance and Actuarial Sciences, and Barcelona Economic Analysis Team (BEAT), University of 
Barcelona, Spain
b Department of Economics, University of Windsor, Windsor, ON, Canada

A R T I C L E I N F O A B S T R A C T

JEL classification:

C44
C71
D61
D63

Keywords:

Queueing problems
Convexity
Cost sharing
Allocation problems

We study queueing problems with an endogenous number of machines, the novelty being that 
coalitions not only choose how to queue, but on how many machines. After minimizing the 
processing costs and machine costs, we share the proceeds of this cooperation, and study the 
existence of stable allocations. First, we study queueing problems, and examine how to share 
the total cost. We provide an upper bound and a lower bound on the cost of a machine to 
guarantee the non-emptiness of the core. Next, we study requeueing problems, where there is 
an existing queue. We examine how to share the cost savings compared to the initial situation, 
when optimally requeueing/changing the number of machines. Although stable allocations may 
not exist, we guarantee their existence when all machines are considered public goods, and we 
start with an initial queue in which agents with larger waiting costs are processed first.

1. Introduction

Consider a set of agents with jobs that have to be executed by a number of machines in such a way that the aim is to minimize 
the total cost based on some criterion. We observe such problems in many real-life applications such as manufacturing, health care, 
logistics, etc. In this paper, we consider queueing problems from two different perspectives; (i) queueing problems that consider 
the problem of optimally queueing the agents before they arrive, (ii) queueing problems that consider the problem of reorganizing 
(requeueing) an existing queue optimally to minimize the total weighted makespan. That is, the sum of total waiting cost of agents 
together with the cost of machines. In both problems, a set of agents wait for their jobs to be processed on machines. Each agent has 
a job that needs the same amount of processing time with a different unit waiting cost (that is linear with respect to the moment it 
can leave the system). We refer to Chun (2016) for a comprehensive survey on queueing theory.

This paper is the first one that allows for an endogenous number of machines. It thus includes the trade-off that groups have 
between the cost of maintaining multiple machines and the savings of having their jobs processed faster on said machines. As an 
example, during the COVID pandemic, health authorities not only had to decide on the order of the queue for vaccines, but also 
on the speed of the vaccination operations. Similarly, research groups have to determine if they prefer to wait for access to highly-

✩ Ata Atay is a Serra Húnter Fellow (Professor Lector Serra Húnter). Ata Atay gratefully acknowledges the support from the Spanish Ministerio de Ciencia e 
Innovación research grant PID2020-113110GB-100/AEI/10.13039/501100011033, from the Generalitat de Catalunya research grant 2021-SGR-00306 and from the 
University of Barcelona research grant AS017672. Christian Trudeau gratefully acknowledges financial support by the Social Sciences and Humanities Research 
Council of Canada [grant number 435-2019-0141]. We thank two anonymous referees and an associate editor; Youngsub Chun, Herbert Hamers, Marina Núñez, 
Zhihao Wang, Nathalie Van Raemdonck, and participants at the 12th Conference on Economic Design.

* Corresponding author.
Available online 18 January 2024
0899-8256/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail addresses: aatay@ub.edu (A. Atay), trudeauc@uwindsor.ca (C. Trudeau).

https://doi.org/10.1016/j.geb.2024.01.005
Received 2 December 2022

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
mailto:aatay@ub.edu
mailto:trudeauc@uwindsor.ca
https://doi.org/10.1016/j.geb.2024.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geb.2024.01.005&domain=pdf
https://doi.org/10.1016/j.geb.2024.01.005
http://creativecommons.org/licenses/by-nc-nd/4.0/


Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

specialized equipment or to buy new equipment for faster access. The concept of an endogenous number of machines is particularly 
relevant when studying, as we do, the problem using cooperative game theory; the concept of core stability now implies that when 
a coalition threatens to leave the group, it would do so by paying for the number of machines that minimizes its own cost.

Queueing problems have been widely studied from a normative and strategic point of view (see for instance Kayı and Ramaekers, 
2010; Mitra and Mutuswami, 2011; Hashimoto and Saitoh, 2012; Chun and Yengin, 2017; Chun et al., 2019). In this approach, the 
main aim is to identify direct mechanisms that satisfy the desiderata. A second approach, in line with this paper, is applying game 
theoretical tools to queueing problems. In this case, a TU-game is associated to a given queuing problem. Cooperative game theory 
tools are then used to share the common queueing costs.

Maniquet (2003) studies the one machine queueing problem and the associated TU-game is obtained by defining the worth of 
a coalition as the minimum waiting cost incurred by its members when they are served before the non-coalitional members. This 
is dubbed the optimistic approach. Then, he takes a normative approach. He introduces the minimal transfer rule which assigns 
positions in the queue and a compensation. The compensation is equal to half of their unit waiting cost multiplied by the number of 
agents in front of them in the queue subtracted by half of the sum of the unit waiting costs of the people behind them in the queue. 
He shows that the Shapley value (Shapley, 1953) of the (optimistic) associated TU-game coincides with the minimal transfer rule.

By contrast, Chun (2006) adopts a pessimistic approach to the queueing problem. The associated TU-game is obtained by defining 
the worth of a coalition as the minimum waiting cost incurred by its members when they are served after the non-coalitional mem-
bers. He defines the maximal transfer rule that assigns a position in the queue and a compensation to each agent. The compensation 
is equal to a half of the sum of the unit waiting costs of her predecessors minus a half of her unit waiting cost multiplied by the 
number of her followers. He shows that the Shapley value (Shapley, 1953) of the (pessimistic) associated TU-game coincides with 
the maximal transfer rule.

Towards a generalization to multiple machines, Mitra (2005) and Mukherjee (2013) study fairness properties. Mitra and Mu-
tuswami (2021) focuses on the no-envy property when there are more than one queue to serve agents.

Chun and Heo (2008) investigates queueing problems with two parallel machines from an optimistic and a pessimistic approach. 
They generalize both the maximal and the minimal transfer rules to the case with two machines serving agents. Han and Chun (2022)
generalizes this result to an arbitrary number of machines.

The need to consider pessimistic and optimistic approaches comes from the fact that agents impose negative externalities on each 
other when there are a fixed number of machines: for distinct groups 𝑆 and 𝑇 , the waiting cost of 𝑆 ∪ 𝑇 is weakly larger than 
the sum of waiting costs for 𝑆 and 𝑇 . We thus need to make assumptions on the behavior outside of a given coalition. In our case 
with an endogenous number of machines, this is not true anymore. 𝑆 and 𝑇 can duplicate their individual costs by buying enough 
machines to act independently of each other. If any other arrangement is taken by 𝑆 ∪ 𝑇 , it must be because it is less costly. Thus, 
our coalitional cost game is subadditive. This generates a more traditional interpretation of our coalitional cost function, which 
represents how much a coalition would have to pay if it stood alone. The concept of the core can therefore be applied, and it is 
desirable to propose stable allocations in which no coalition pay more than this stand-alone cost.

There is a scarce literature that studies the existence of stable allocations for queueing problems. González and Herrero (2004)
studies the existence of stable allocations for Markov queueing models with one single machine. García-Sanz et al. (2008), Özen et 
al. (2011), Zeng et al. (2018) provide stable allocation rules. However, in these cases, the number of machines is fixed.

Starting with the problem of optimally queueing players (before they arrive) on an endogenous number of machines, we identify 
the structure of the core whenever the optimal number of machines is at least half of the number of agents (Theorem 1). We then 
proceed to present a comprehensive description of the core when the optimal number of machines is equal to 1 (Theorem 2). Then, 
we illustrate the gap between Theorems 1, 2 by Example 4.

We then examine the problem when we start with an existing queue/number of machines. In this problem, that we call the 
requeueing problem, we assign to each coalition the cost savings it can generate, either by changing the order of its members in the 
existing queue, or by purchasing new machines or selling some existing ones. Many assumptions can be made on what a coalition is 
allowed to do in this situation, and what happens when the number of machines is changed.

First, what happens if a coalition 𝑆 buys new machines? Two possibilities seem reasonable: i) 𝑆 gains exclusive access to these 
machines, or ii) the whole queue moves up, benefiting not only 𝑆 . Given the link with private and public goods (see for instance 
Suijs, 1996; De and Mitra, 2017; De and Mitra, 2019), we call these approaches respectively the private and public approaches. In 
the second case, the decision of a coalition 𝑆 to add a new machine is similar to the decision of a group to make a donation towards 
a public good that maximizes the benefit of the coalition.

As an example of the public approach, take for instance internet access around the globe. The flow of internet traffic crosses 
oceans primarily through submarine communication cables. Internet Service Providers (ISPs) provide connectivity to the internet. 
Consortiums formed by ISPs from countries with landing points build different segments of these cables. The contributing ISPs are 
responsible for paying for the submarine telecommunications cable. Whenever a new cable is constructed, other regions can also 
use it for internet traffic. Essentially, the reason to have new routes (cables) is for not making the users queue on existing ones. For 
example, SEA-ME-WE4 has 17 landing points from France to Singapore. It was constructed as a complement to SEA-ME-WE3 (which 
has 39 landing points from Germany to Australia). The ISP providers from 17 landing points on SEA-ME-WE4 share the costs, while 
any data transfer from other regions (e.g. data transfer from the United States to New Zealand) can also use SEA-ME-WE4.

After briefly discussing the private requeueing game, we focus on the public version. In the spirit of machines being public goods, 
we also suppose that if a coalition sells a machine, the proceeds are equally shared among all agents, including non-coalitional mem-
bers. We complete the set of assumptions by supposing that a coalition i) can reposition any agent, even non-coalitional members, 
105

if it offers to compensate them for the extra waiting cost if their job is processed later, and ii) can sell any machine, as long, once 



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

again, that non-coalitional members are properly compensated if they wait longer. We call this game the public requeueing game 
with side-payments, and show that if the initial queue efficiently ranks the agents but on a possibly non-optimal number of machines, 
then the resulting game is always convex, and thus its core is non-empty (Theorem 3).

The result follows the vast literature on different problems on rescheduling an initial queue (see for instance Calleja et al., 2002; 
Musegaas et al., 2015; Bahel and Trudeau, 2019; Atay et al., 2021) that examine conditions guaranteeing the existence of stable 
allocations.

While the literature has made many additional restrictions on what constitutes an eligible requeue, and while we can add 
additional constraints on when a coalition can sell a machine, these restrictions will simply (weakly) reduce the value that a subset 
of agents can obtain, without changing the value obtainable by the grand coalition. Thus, adding restrictions (weakly) enlarges the 
core and its non-emptiness carries regardless of what is an acceptable rearrangement of a queue (Corollary 1).

The paper is organized as follows. In Section 2 we present queueing problems with an endogenous number of machines. In 
Section 3 we introduce the associated TU-game for queueing problems with an endogenous number of machines. We derive upper 
and lower bounds on the cost of a machine to guarantee the existence of stable allocations as well as a full characterization of the set 
of stable allocations. In Section 4 we introduce requeueing problems (and games), and mostly focus on the approach where added 
machines are public goods, and where a coalition can move non-coalitional members as desired, as long as it properly compensates 
them. We discuss the non-emptiness of the core, before extending to games with stricter constraints. Finally, we draw conclusions in 
Section 5. We consign formal proofs in Appendix A.

2. Queueing problems with an endogenous number of machines

We examine first the queueing problem. We have a set of agents 𝑁 = {1, 2, … , 𝑛}. When no confusion arises we denote by |𝑁| = 𝑛

the cardinality of the set of agents. Each agent has one job with unit processing time to be processed on a machine. The agents have 
access to an unlimited number of machines, but they must pay 𝑏 ∈ℝ+ for each machine that they use. All jobs and all machines are 
identical, and each machine can process one job per period. We assume that each machine starts processing at time 0.

Every agent 𝑖 ∈𝑁 has a waiting cost that is linear with respect to the time it spends in the system. The waiting cost function of 
an agent 𝑖 ∈𝑁 is 𝑤𝑖𝑡 where 𝑤𝑖 > 0 is the waiting (weight) cost per unit time of player 𝑖 and 𝑡 is the period at which the job has been 
processed. We suppose that 𝑤1 ≥𝑤2 ≥… ≥𝑤𝑛. We refer to the vector of weights by 𝑤 ∶= (𝑤𝑖)𝑖∈𝑁 . Let a subset of agents 𝑆 ⊆𝑁 be 
ordered according to the set 𝑁 = {1, 2, … , 𝑛}, 𝜌 ∶ 𝑆 → {1, … , ∣ 𝑆 ∣} such that 𝜌(𝑖) < 𝜌(𝑗) if 𝑖 < 𝑗. Then, we denote the waiting cost of 
the 𝑘𝑡ℎ agent in 𝑆 by 𝑤𝑆

𝑘
and 𝑤−𝑆

𝑘
≡𝑤

𝑁⧵𝑆
𝑘

be the waiting cost of the 𝑘𝑡ℎ agent outside the coalition 𝑆 . In words, if we partition 𝑁
in 𝑆 and 𝑁 ⧵ 𝑆 , and rank agents in each element in decreasing order of their waiting cost, 𝑤𝑆

𝑘
and 𝑤−𝑆

𝑘
are the 𝑘𝑡ℎ largest waiting 

costs in respectively 𝑆 and 𝑁 ⧵ 𝑆 .
A queueing problem with an endogenous number of machines can be described as (𝑁, 𝑤, 𝑏) where 𝑁 is the set of agents, 𝑤 is the 

vector of unit waiting costs and 𝑏 ∈ℝ+ is the cost of a machine.
In a queueing problem, we examine the problem before agents arrive to queue: we are looking for the optimal number of machines 

and the optimal queueing of agents on those machines, the objective being the minimization of the total cost, consisting of the agents’ 
waiting costs and the machine costs.

The solution consists in choosing a number of machines 𝑚 ∈ {1, … , 𝑛}, the assignment of agents to machines 𝜑 ∶𝑁 → {1, … , 𝑚}
and the starting time of all agents 𝑠 ∶𝑁 →ℕ ∪{0}. Given 𝑚, a queue 𝜎 = (𝜑, 𝑠) is admissible if for all 𝑖, 𝑗 ∈𝑁 , 𝜑(𝑖) = 𝜑(𝑗) ⇒ 𝑠(𝑖) ≠ 𝑠(𝑗). 
In words, if two agents are assigned to the same machine, they must have different starting times. The set of all admissible queues 
with 𝑚 machines is denoted by Σ(𝑚). A queue system is (𝑚, 𝜎), with 𝜎 ∈ Σ(𝑚).

Since no preemption is allowed, the completion time of the job of agent 𝑖 according to 𝜎 = (𝜑, 𝑠) is 𝑠(𝑖) + 1. Hence, the waiting 
cost of an agent 𝑖 ∈𝑁 can be written as 𝑐𝜎(𝑖) =𝑤𝑖(𝑠(𝑖) + 1).

We thus need to find (𝑚, 𝜎) that optimizes the following objective function:

min
𝑚∈{1,…,𝑛}

(
𝑏𝑚+ min

𝜎∈Σ(𝑚)

∑
𝑖∈𝑁

𝑐𝜎(𝑖)

)
.

It is well-established in the literature that, for the one-machine case (with equal processing times), the total cost is minimal if 
the players are arranged according to their waiting costs in a decreasing order (see Smith, 1956; Curiel et al., 1989). With multiple 
machines, it remains optimal to not process jobs of agents with larger waiting costs after those of agents with smaller waiting costs, 
i.e. 𝑤𝑖 < 𝑤𝑗 ⇒ 𝑠(𝑖) ≥ 𝑠(𝑗).

Given this result, if we install 𝑚 machines, it is optimal to queue the 𝑚 agents with the highest waiting costs (agents {1, … , 𝑚}) at 
time 0, and it is irrelevant to which machine each agent is assigned to. The next 𝑚 agents are then queued in the next period, and so 
on. We call such orderings efficient orderings. Thus, the queueing problem reduces to finding the number of machines that solves1

min
𝑚∈{1,…,𝑛}

(
𝑏𝑚+

∑
𝑖∈𝑁

(⌈
𝑖

𝑚

⌉)
𝑤𝑖

)
.

106

1 For all 𝑥 ∈ℝ, ⌈𝑥⌉ ∶= min{𝑘 ∈ℤ|𝑥 ≤ 𝑘} while ⌊𝑥⌋ ∶= max{𝑘 ∈ℤ|𝑥 ≥ 𝑘}.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

The problem of finding the optimal number of machines is simple. If the cost of a machine is very high, we buy a single one. As 
𝑏, the cost of a machine, decreases we buy more machines, up to the point where all agents have their own machines, and there is 
no more gain to add additional machines. More precisely, let 𝑟𝑤(𝑘) be the critical value (for coalition 𝑁) to buy 𝑘 machines: if 𝑏 is 
weakly above that critical value, we buy less than 𝑘 machines. If it is less than that critical value, we buy at least 𝑘 machines. Let 
𝑚(𝑆) be the optimal number of machines for coalition 𝑆 ∈𝑁 .2

Lemma 1. Fix the set of agents 𝑁 . For any weight vector 𝑤, there exists a non-increasing function 𝑟𝑤 ∶ {2, … , 𝑛} →ℝ+ such that:

(i) if 𝑏 ≥ 𝑟𝑤(2), then 𝑚(𝑁) = 1;

(ii) if 𝑟𝑤(𝑘) > 𝑏 ≥ 𝑟𝑤(𝑘 + 1) for some 1 < 𝑘 < 𝑛, then 𝑚(𝑁) = 𝑘;

(iii) if 𝑟𝑤(𝑛) > 𝑏 then 𝑚(𝑁) = 𝑛.

In what follows, we use Lemma 1 to quickly identify how many machines are bought. In particular, the cases in which a single 
machine or 𝑛 machines are bought are studied.

We illustrate the concepts by an example. Suppose that we have 3 agents, with 𝑤 = (15, 10, 5). We only need to check efficient 
orderings for different number of machines. If we buy a single machine, agent 1 waits 1 period, agent 2 waits 2 periods, and agent 
3 waits 3 periods, for a total cost of 𝑏 + 15 + 2 × 10 + 3 × 5 = 𝑏 + 50. If we buy 2 machines, agent 2 now waits a single period, and 
agent 3 for 2 periods, for a cost of 2𝑏 + 15 + 10 + 2 × 5 = 2𝑏 + 35. Finally, if we buy 3 machines, all agents wait a single period, for a 
cost of 3𝑏 + 15 + 10 + 5 = 3𝑏 + 30. Thus, we have that 𝑟𝑤(2) = 15 and 𝑟𝑤(3) = 5. Also notice that if 𝑏 = 8, the grand coalition buys 2 
machines and so does coalition {1, 2}. However, coalition {1, 3} prefers to buy a single machine. It is a general result that adding a 
player to a coalition (moving here from {1, 2} or {1, 3} to the grand coalition) or replacing an agent with a low waiting cost to one 
with a large one (moving here from {1, 3} to {1, 2}) cannot result in less machines being bought.

We can similarly define a non-increasing function 𝑟𝑤
𝑆
∶ {2, … , |𝑆|} →ℝ+ for all 𝑆 ⊂𝑁 such that |𝑆| > 1 to determine 𝑚(𝑆). For 

singletons, it is always optimal to use a single machine, and thus 𝑚({𝑖}) = 1 for all 𝑖 ∈𝑁 .
The following lemma allows to formalize some intuitions about the optimal number of machines. If a coalition grows, then the 

optimal number of machines cannot decrease, as the marginal benefit (decrease in waiting costs, net of the machine cost) of the 𝑘𝑡ℎ
machine cannot decrease. In a similar manner, if we replace an agent with a low waiting cost by one with a high waiting cost, it 
cannot be optimal to use fewer machines.

Lemma 2. For all values of 𝑤 and 𝑏, we have:

(i) 𝑚(𝑆) ≤𝑚(𝑇 ) for all 𝑆 ⊂ 𝑇 ⊆𝑁 ;

(ii) 𝑚(𝑆 ∪ {𝑖}) ≤𝑚(𝑆 ∪ {𝑗}) for all 𝑆 ⊆𝑁 ⧵ {𝑖, 𝑗}, and 𝑖 > 𝑗.

Even though the problem to determine the optimal number of machines is simple and well-behaved, the resulting cooperative 
game does not behave as well, in particular when studied under the lens of the (non-)vacuity of the core.

3. Queueing games with an endogenous number of machines

A cooperative transferable utility (TU-) game is defined by the pair (𝑁, 𝐶) where 𝑁 is the set of the players and the characteristic 
function 𝐶 assigns to each coalition 𝑇 ⊆𝑁 its cost 𝐶(𝑇 ) ∈ℝ, with 𝐶(∅) = 0. Thus, 𝐶(𝑇 ) is the stand-alone cost of a coalition 𝑇 and 
is calculated before the queue starts. Hence, when calculating 𝐶(𝑇 ), we suppose that 𝑇 selects the optimal number of machines to 
serve only its own members.

Cooperative game theory aims to allocate the value of the grand coalition in such a way that the cooperation is preserved among 
the agents. Given a cooperative game (𝑁, 𝐶), a cost allocation is 𝑦 ∈ℝ𝑁 , where 𝑦𝑖 stands for the cost paid by player 𝑖 ∈𝑁 . The total 
payment by a coalition 𝑆 ⊆𝑁 is denoted by 𝑦(𝑆) =

∑
𝑖∈𝑆

𝑦𝑖 with 𝑦(∅) = 0.

In this section, we study the set of stable allocations of the total cost, where no coalition of agents pays more than its stand-alone 
cost. To do so, for any queueing problem with an endogenous number of machines, we will introduce a TU-game and study the core

of the associated TU-game (Gillies, 1959).
Formally, let (𝑁, 𝑤, 𝑏) be a queueing problem with an endogenous number of machines. Then, the corresponding queueing game 

with an endogenous number of machines is the pair (𝑁, 𝐶) where 𝑁 is the set of players, and 𝐶 is the characteristic function that 
assigns the minimal cost 𝐶(𝑇 ) to each coalition 𝑇 ⊆ 𝑁 to queue its members, with 𝐶(∅) = 0. 𝐶(𝑇 ) includes both the waiting costs 
and the cost of machines. The core of a cooperative cost game (𝑁, 𝐶) is:

𝐶𝑜𝑟𝑒(𝐶) = {𝑦 ∈ℝ𝑁 ∣ 𝑦(𝑁) = 𝐶(𝑁), 𝑦(𝑆) ≤ 𝐶(𝑆) for all 𝑆 ⊂𝑁}.

A game is called balanced if its core is non-empty.
107

2 There might be a tie, in which case pick the lowest number of machines among optimal ones.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Concave TU-games always have a non-empty core (Shapley, 1971). Formally, a game (𝑁, 𝐶) is said to be concave if for all 𝑖 ∈𝑁

and all 𝑆 ⊆ 𝑇 ⊆𝑁 ⧵ {𝑖}, it holds 𝐶(𝑇 ∪ {𝑖}) −𝐶(𝑇 ) ≤ 𝐶(𝑆 ∪ {𝑖}) −𝐶(𝑆).

3.1. On the non-emptiness of the core of queueing games with an endogenous number of machines

We look for conditions under which the core is empty or non-empty. It turns out that for queueing games with an endogenous 
number of machines, the core can alternate between being empty and non-empty depending on the cost of a machine. Two particular 
cases are easier to analyze. If the cost of a machine is sufficiently small so that 𝑚(𝑁) ≥ 𝑛

2 , then agents wait at most 2 periods for 
their job to be processed. If the cost of a machine is sufficiently large, then 𝑚(𝑁) = 1 and the dynamic is simpler to analyze as all 
coalitions use the same number of machines.

We first examine the cases when the cost of a machine is low enough for 𝑚(𝑁) ≥ 𝑛

2 , generating Theorem 1, before examining 
the case when the cost is high enough for 𝑚(𝑁) = 1, obtaining Theorem 2. We conclude the section with an example illustrating 
Theorems 1 and 2, how the core varies with the cost of machines, including in the gap not covered in Theorems 1 and 2.

For the sake of comprehensiveness, let us introduce some notation: Let 𝜇 ≡

⌈
𝑛

2

⌉
. If 𝑛 is even, then {1, … , 𝜇} and {𝜇 + 1, … , 𝑛}

both contain 𝜇 agents, while if 𝑛 is odd, then {1, … , 𝜇} contains 𝜇 agents and {𝜇 + 1, … , 𝑛} contains 𝜇-1 agents. We start with a 
Lemma describing when the grand coalition buys at least 𝜇 machines.

Lemma 3. Let (𝑁, 𝑤, 𝑏) be a queueing problem with an endogenous number of machines. We have that 𝑚(𝑁) ≥ 𝜇 if and only if one of the 
following conditions is satisfied:

(i) 𝑛 is odd and 𝑏 ≤𝑤𝜇 +𝑤𝑛,

(ii) 𝑛 = 2,

(iii) 𝑛 = 4 and 𝑏 ≤𝑤2 +𝑤3 + 2𝑤4,

(iv) 𝑛 is even, 𝑛 ≥ 6 and 𝑏 ≤𝑤𝜇 +𝑤𝑛−1 +𝑤𝑛.

When 𝑚(𝑁) ≥ 𝜇 we can partition agents into at most 2 groups: the set 𝑁1 = {1, … , 𝑚(𝑁)} who are served in the first period, 
and the set 𝑁2 = {𝑚(𝑁) + 1, … , 𝑛} who are served in the second period. The game is then very much similar to an assignment game 
(Shapley and Shubik, 1971), in which we must match agents from different sides of the market, here agents in 𝑁1 to agents in 𝑁2. 
Our game has the characteristic that an agent 𝑖 ∈𝑁2 creates 𝑏 −𝑤𝑖 ≥ 0 with any agent in 𝑁1.3 This is a characteristic of a particular 
case of assignment games, namely Böhm-Bawerk horse market (Böhm-Bawerk, 1923) games. For instance, if 𝑁1 = {1, 2}, 𝑁2 = {3, 4}
and 𝑏 >𝑤3 ≥𝑤4, then agent 3 creates the value 𝑏 −𝑤3 with an agent in 𝑁1, whereas agent 4 creates 𝑏 −𝑤4.

If all agents from one side, say 𝑁1, create the same value with agents from 𝑁2, then our assignment game is a glove market 
game (Shapley, 1959). In this case, if ||𝑁1|| > ||𝑁2||, then the only candidate for a core allocation is for the short side of the market to 
extract all of the cooperation surplus. In our case, this corresponds to an allocation where agents in 𝑁1 pay their stand-alone cost of 
𝑏 +𝑤𝑖 while agents in 𝑁2 pay 2𝑤𝑖, the cost to wait for 2 periods, which is no larger than their stand-alone cost of 𝑏 +𝑤𝑖. While in 
assignment games a coalition of agents from the same side never generates any cooperation gain, this is not necessarily true in our 
case. For instance, a coalition of agents in 𝑆 ⊂𝑁1 would generate no benefit if and only if it would be optimal for them to buy |𝑆|
machines. If 𝑏 is large enough, this is not the case, and the core is empty. The game behaves in a slightly different manner depending 
if the number of agents is odd or even, so we illustrate with the following examples.

Example 1. Suppose first that we have three agents, with 𝑤 = (15, 10, 5). We buy at least 2 machines if 𝑏 ≤ 15. If 𝑏 ≤ 5, then any 
coalition 𝑆 buys |𝑆| machines, and 

{(
𝑏+𝑤𝑖

)
𝑖∈𝑁

}
is the only core allocation. If 5 < 𝑏 ≤ 10, then the grand coalition buys two 

machines and coalitions {1,3} and {2,3} buy a single one. It is easy to check that the allocation (𝑏+ 15, 𝑏+ 10,10) is the only core 
allocation. Notice that coalition {1,2} still buys two machines, meaning that members of 𝑁1 have no benefit to cooperate. However, 
if 10 < 𝑏 ≤ 15, coalition {1,2} buys a single machine, and our only core candidate, (𝑏+ 15, 𝑏+ 10,10), is no longer in the core.

Now add a fourth agent with a valuation of 20, so that 𝑤′ = (20, 15, 10, 5). We buy at least 3 machines if 𝑏 ≤ 10. Because the 
condition for coalition 𝑁1 = {1,2,3} to buy 3 machines is also 𝑏 ≤ 10, then agents in 𝑁1 never generate any benefit when cooperating 
among themselves, and 

(
min

(
𝑏+𝑤𝑖,2𝑤𝑖

))
𝑖∈𝑁 is the only core allocation. Notice that agent 3 together with agent 1 or agent 2, can 

create the value 𝑏 − 10 whereas agent 4 together with either of these agents can create the value 𝑏 − 5. Hence, our model bear a 
resemblance to Böhm-Bawerk horse markets.

Parts (i) and (ii) of Theorem 1 generalize the results of Example 1.
It is already known from Shapley and Shubik (1971) that the core of the Böhm-Bawerk horse market game consists of a line 

segment, with extreme points being two side-optimal core allocations. In glove market games, we also know that if both sides of the 
market are of the same size (which is only possible if 𝑛 is even) there are multiple core allocations. For instance, we can assign all 
cooperation gains to one side of the market or the other, or take any convex combination of these side-specific optimal allocations. 

3 The value created is the cost savings compared to the sum of their stand-alone costs. Separately, they each pay for a machine, and wait for a single period. 
108

Together, they pay for a single machine, the agent in 𝑁1 waits for a period and the agent in 𝑁2 waits for two periods.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Once again, this result depends crucially on the fact that agents on the same side of the market do not generate any cooperation gain, 
which is not necessarily true in our setting.

Example 2. Reconsider the above example with 4 players, and suppose that 10 < 𝑏 ≤ 35. Then 𝑚(𝑁) = 2, 𝑁1 = {1,2} and 
𝑁2 = {3,4}. As long as 𝑏 ≤ 15, coalition 𝑁1 = {1,2} still buys 2 machines, and have no cooperation gain. Then, the allocation {(

min
(
𝑏+𝑤𝑖,2𝑤𝑖

))
𝑖∈𝑁

}
is in the core, which also includes allocations more beneficial to 𝑁1. When 𝑏 > 15, coalition 𝑁1 = {1,2}

now buys a single machine and generates cooperation gains. The allocation 
(
min

(
𝑏+𝑤𝑖,2𝑤𝑖

))
𝑖∈𝑁 is no longer in the core. To 

remain in the core, we must reduce the allocations of agents in 𝑁1, which also require increasing the allocations of agents in 𝑁2. 
For 𝑏 not too large, it is feasible to construct such a core allocation, but when 𝑏 > 25, all coalitions except 𝑁 use a single machine, 
and it’s impossible to find a core allocation anymore.

Parts (iii) and (iv) of Theorem 1 formalize these arguments in Example 2. All together, Theorem 1 covers all cases in which 
𝑚(𝑁) ≥ 𝑛

2 . Recall that Lemma 3 provides the upper bound on 𝑏, as a function of 𝑛 for which this is verified. Notice that in the 

statement of the theorem we use 
⌊
𝑛

2

⌋
. Observe that if 𝑛 is even, then 𝜇 =

⌈
𝑛

2

⌉
=
⌊
𝑛

2

⌋
, but if 𝑛 is odd, 𝜇 =

⌈
𝑛

2

⌉
=
⌊
𝑛

2

⌋
+ 1.4 The proof 

of the Theorem is in Appendix A.

Theorem 1. Let (𝑁, 𝑤, 𝑏) be a queueing problem with an endogenous number of machines, (𝑁, 𝐶) be the associated TU-game and suppose 
that 𝑚(𝑁) ≥ 𝜇 =

⌈
𝑛

2

⌉
. Then we have the following:

(i) If 𝑏 ≤𝑤⌊
𝑛

2

⌋
+1

, then 𝐶𝑜𝑟𝑒(𝐶) =
{(

min
(
𝑏+𝑤𝑖,2𝑤𝑖

))
𝑖∈𝑁

}
.

(ii) If 𝑛 is odd and 𝑏 >𝑤⌊
𝑛

2

⌋
+1

, then 𝐶𝑜𝑟𝑒(𝐶) is empty.

(iii) if 𝑛 is even and 𝑏 ∈
(
𝑤⌊

𝑛

2

⌋
+1
,𝑤⌊

𝑛

2

⌋ + 2𝑤𝑛

]
, then 𝐶𝑜𝑟𝑒(𝐶) is non-empty.

(iv) if 𝑛 is even and 𝑏 >𝑤⌊
𝑛

2

⌋ + 2𝑤𝑛, then 𝐶𝑜𝑟𝑒(𝐶) is empty.

Having fully studied the case where 𝑚(𝑁) ≥ 𝜇, we now provide a full characterization of the core when 𝑚(𝑁) = 1. To do so, 
we use a technical approach and introduce another game (𝑁, �̂�) related to the cost game (𝑁, 𝐶). Before proving the results, let us 
provide an interpretation for the game �̂� .

When the cost of a machine is large enough that all coalitions use a single machine, it is still not enough to guarantee that the 
core is empty. We in fact show that as the cost of a machine goes through the threshold for all coalitions to use a single machine, the 
core is empty. As the cost of a machine keeps increasing, we reach another threshold for which the core becomes non-empty. In that 
case, we are able to provide a full description of the core. We do so by observing that there are more strict core constraints than the 
stand-alone costs. We define these constraints in a function �̂� that has the same core as our coalitional game and that is a one-bound 
core game (Gong et al. (2023)). We illustrate this function in the following example.

Example 3. Reconsider the 4-player example from above, such that 𝑤 = (20,15,10,5). Suppose that 𝑏 = 60. It is easy to verify that all 
coalitions use a single machine. Table 1 describes the core constraints for characteristic function 𝐶 and the corresponding function 
�̂� .

Consider coalition {3,4}. While we have 𝐶({3,4}) = 80, we have the core constraints 𝑦 ({1,3,4}) ≤ 115 and 𝑦 ({2,3,4}) ≤ 110. 
Adding these up, we obtain 𝑦(𝑁)+ 𝑦 ({3,4}) ≤ 225. Since 𝑦(𝑁) = 160, this simplifies to 𝑦 ({3,4}) ≤ 65. Where does this new upper 
bound on the shares of agents 3 and 4 come from? If we add agent 1 to {3,4}, there is an additional cost of 𝑤1 +𝑤3 +𝑤4 = 35. If 
we add agent 2 to {3,4}, there is an additional cost of 𝑤2 +𝑤3 +𝑤4 = 30. But if we add {1,2} to {3,4}, the additional cost is larger 
than the sum of these costs:

𝑤1 + 2𝑤2 + 2𝑤3 + 2𝑤4 = 80 > 65 =𝑤1 +𝑤2 + 2𝑤3 + 2𝑤4.

It is by this difference of 𝑤2 that the upper bound for {3,4} can be reduced. The same logic can be applied to all pairs {𝑖, 𝑗}, 
reducing the upper bound by the smallest waiting cost in 𝑁 ⧵ {𝑖, 𝑗}.

Consider now singleton {4}. We now know that the upper bound for coalition {1,4} is 80. For {2,3,4} it remains at 110. The 
corresponding core constraints are thus 𝑦({1,4}) ≤ 80 and 𝑦({2,3,4}) ≤ 110. Adding them up and simplifying as above, we obtain 
𝑦4 ≤ 30. Once again, the additional cost of adding agent 1 (considering the new upper bound for {1,4}) is 𝑤1 +𝑤4 −𝑤3 = 15, while 
the additional cost of adding agents 2 and 3 is 𝑤2 + 2𝑤3 + 2𝑤4 = 45. But if we add {1,2,3} to {4}, the additional cost is larger than 
the sum of these costs:

𝑤1 + 2𝑤2 + 3𝑤3 + 3𝑤4 = 95 > 60 =𝑤1 +𝑤2 +𝑤3 + 3𝑤4.
109

4 We thank an anonymous referee for suggesting to use both floor and ceiling functions.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Table 1

Core constraints for characteristic function 
𝐶 and the corresponding function �̂� .

𝑦1 𝑦2 𝑦3 𝑦4 𝐶 �̂�

1 . . . 80 60
1 . . 75 55

. . 1 . 70 45

. . . 1 65 30

1 1 . . 110 105
1 . 1 . 100 95
1 . . 1 90 80
. 1 1 . 95 90
. 1 . 1 85 75
. . 1 1 80 65

1 1 1 . 140 140
1 1 . 1 125 125
1 . 1 1 115 115
. 1 1 1 110 110

1 1 1 1 160 160

It is by this difference of 𝑤2 + 2𝑤3 that the upper bound can be reduced. The same logic can be applied for all agent 𝑖, with the 
upper bound reduced by one time the second smallest waiting cost and two times the smallest waiting cost of agents in 𝑁 ⧵ {𝑖}.

The resulting upper bounds are represented as function �̂� in the table. Notice that for any agent, there are only two possible 
incremental costs: a large one when he joins the empty set, and a smaller one when he joins any non-empty set. Moreover, for all 
agents the difference between the large and small incremental costs is the same. In our example it is 10. This naturally leads us to 
conclude that agents must pay at least their small incremental costs, which are respectively 50, 45, 35 and 20. See that it allows to 
share 150 out of the cost of 160. We have 10 left to distribute, which is the difference between the large and small incremental costs. 
We can distribute that 10 in any (non-negative) way in the core. We show in part i) of the theorem below that it is no accident and 
holds in general, if b is large enough.

Suppose now that 𝑏 = 40. Then, we can calculate �̂� in the same manner: for all coalitions the cost is reduced by 20. It is then easy 
to check that �̂� is no longer subadditive, and its core is empty. It then follows that the core of 𝐶 is empty.

Intuitively, when 𝑏 is large enough for all coalitions to use a single machine but not large enough for �̂� to be subadditive, the gains 
obtained from saving the cost of additional machines are not large enough to compensate for the cost generated by the additional 
congestion on the unique machine, resulting in an empty core.

In what follows we formalize the findings of Example 3.5 We need the following notation. For 𝑥 ∈ ℝ+, let Δ(𝑁, 𝑥) be the set of 
vectors 𝑦 ∈ ℝ𝑁

+ such that 𝑦(𝑁) = 𝑥. For all 𝑘 ∈𝑁 , let 𝐴𝑘 =
∑
𝑖>𝑘

𝑤𝑖 + 𝑘𝑤𝑘. Let 𝐴 = (𝐴1, … , 𝐴𝑛). We can see 𝐴𝑘 as the incremental 

cost when 𝑘 joins the grand coalition: given that a single machine is used, 𝑘 has to wait 𝑘 periods to be served, and it delays all 
agents with higher rank (and thus no larger waiting costs) by one period. The necessary condition for 𝐶𝑜𝑟𝑒(�̂�) to be non-empty 

is 𝑏 ≥
𝑛∑

𝑖=1
(𝑖 − 1)𝑤𝑖 and can be interpreted as the benefit of staying with one machine if the alternative was to buy a (hypothetical) 

machine, at cost 𝑏, that can serve 𝑛 − 1 agents concurrently. The core then consists in each agent paying his 𝐴𝑘, and any division of 

the surplus 𝑏 −
𝑛∑

𝑖=1
(𝑖 − 1)𝑤𝑖.

Theorem 2. Let (𝑁, 𝑤, 𝑏) be a queueing problem with an endogenous number of machines, and (𝑁, 𝐶) be the associated TU-game. Then,

(i) if 𝑏 ≥
∑𝑛

𝑖=1(𝑖 − 1)𝑤𝑖, then 𝐶𝑜𝑟𝑒(𝐶) =𝐴 +Δ(𝑁, 𝑏 −
∑𝑛

𝑖=1(𝑖 − 1)𝑤𝑖).

(ii) if 𝑏 ∈
[
𝑤2 +

𝑛∑
𝑖=3

(
𝑖−

⌈
𝑖

2

⌉)
𝑤𝑖,

∑𝑛

𝑖=1(𝑖− 1)𝑤𝑖

)
, then 𝐶𝑜𝑟𝑒(𝐶) = ∅.

The formal proof is consigned in Appendix A. While Theorem 1 covers the cases in which 𝑚(𝑁) ≥ 𝜇, Theorem 2 covers instances 
where 𝑚(𝑁) = 1. Notice that if 𝑛 ≤ 4 all cases are covered. However, for 𝑛 > 4, a gap exists, for cases such that 1 < 𝑚(𝑁) < 𝜇, for 
which we have no results. In such cases, there is at least one agent that waits three periods or more to have his job processed. We 
conclude this section by illustrating with an example, showing that the core is sometimes empty, sometimes not, in that interval.

5 The cost game �̂� can be rewritten as a value game 𝑉 = (∣ 𝑆 ∣ −1)(𝑏 −∑𝑛

𝑖=1(𝑖 − 1)𝑤𝑖). This game is an upper-bound core game (Gong et al., 2023), and hence a 
110

1-convex game (Driessen, 1985). Moreover, Dehez (2021) remarks that a cost game is 1-concave if and only if the associated value game is 1-convex.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Example 4. We extend the above examples by adding a fifth agent with a valuation of 20, so that 𝑤 = (20, 20, 15, 10, 5). Theorem 1i) 
tells us that if 𝑏 ≤ 15, then (𝑏 + 20, 𝑏 + 20, 𝑏 + 15, 20, 10) is the only core allocation. Theorem 1ii) tells us that the core is empty for 
𝑏 ∈ ]15,20]. Theorem 2ii) tells us that if 𝑏 ∈ [65,100[, the core is also empty. Finally, Theorem 2i) tells us that for 𝑏 ≥ 100 the core is 
(70,70,60,45,25) + Δ(𝑁, 𝑏 − 100).

It remains to check for 𝑏 ∈ (20,65), over which 𝑚(𝑁) = 2, meaning that 𝐶(𝑁) = 2𝑏 + 105. Suppose first that 𝑏 ∈ (20,25). Then, 
coalition {2,3,4,5} uses 2 machines, at a cost of 2𝑏 + 60, which implies that we must have 𝑦1 ≥ 45. Since 𝑦1 ≤ 𝐶({1}) = 𝑏 + 20, we 
have that the core is empty if 𝑏 < 25.

Suppose next that 𝑏 ∈ [25,35]. One can verify that the allocation 
(

𝑏

2 + 27.5, 𝑏2 + 27.5, 𝑏2 + 22.5, 𝑏2 + 12.5,15
)

is in the core. For 

𝑏 ∈ [35,40], the allocation 
(

𝑏

2 + 30, 𝑏2 + 30, 𝑏2 + 20, 𝑏2 + 10,15
)

is in the core. Thus, the core is non-empty for 𝑏 ∈ [25,40].
Finally, for 𝑏 ∈ (40,65), notice first that we have 𝐶({1,4}) +𝐶({2,3,5}) = 𝐶(𝑁), so we must have 𝑦 ({1,4})) = 𝐶({1,4}) = 𝑏 +40 in 

all core allocations. Since 𝐶({1,3,4}) = 𝑏 + 80, it implies that we must have 𝑦3 ≤ 40. But, since 𝐶(𝑁) = 2𝑏 +105 and 𝐶({1,2,4,5}) =
𝑏 + 105, it implies that we must have 𝑦3 ≥ 𝑏. But since 𝑏 > 40, we have no core allocations.

Overall, Example 4 shows that in the gap between Theorems 1 and 2, in which 1 < 𝑚(𝑁) < 𝜇, we typically have ranges of 𝑏 for 
which the core is empty and some others where the core is non-empty. Given that in these cases the resulting cost game does not 
have as nice of a structure as in Theorems 1 and 2, we are unable to provide general conditions for the (non-) vacuity of the core.

4. Requeueing games with an endogenous number of machines

While queueing problems consider the minimal cost of organizing the queue for a set of players, starting from scratch, in the 
following we consider requeueing problems where possible cost savings can be obtained when we rearrange a given queue. In our 
study of the problem with an endogenous number of machines, this implies that we start with a given number of machines, and that 
the reorganization can include adding or removing machines.

Then, a requeueing problem with an endogenous number of machines can be described by (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) where 𝑚0 is the initial 
number of machines and 𝜎0 is the initial (existing) queue. Our first aim is to find an optimal queue system that minimizes the total 
costs, as in Section 2. As for queueing games, we build a characteristic function for the requeueing games, now associating to each 
coalition 𝑇 ⊆𝑁 the maximum cost savings 𝑉 (𝑇 ) it can generate from the initially existing queue system. As in the previous section 
we are interested in core allocations; as we have moved from a cost to a value function, core inequalities are reversed.

We will distinguish between two cases based on whether new machines are exclusive for a set of agents (private) or available for 
all agents (public).

4.1. Private requeueing games

In the private case, if a coalition buys a new machine, it gains exclusive use of that machine and if a coalition sells a machine it 
recovers the full value of that machine. These two assumptions can be seen as “exclusive” use of machines for a coalition and hence 
they are “private” machines for a coalition.

Two intuitive bounds for a non-empty core occur. First, setting the machine cost so high makes every coalition to prefer not 
buying a new machine. If there is only one initial machine, which cannot be sold, we are left with the problem of reorganizing the 
queue on the existing machine, making the problem equivalent to one with a single machine and no possibility to add more. This 
problem has been studied extensively since Curiel et al. (1989). For this case, it is proved that the core is always non-empty. Second, 
if the cost of a machine is so low that every coalition wants to buy a machine for each of its members, then the only core allocation 
consists of allocating to each agent the net benefit of moving to a new machine if that agent is not already served in the first period.

4.2. Public requeueing games with side payments

Given the lack of general results in between these trivial cases, we focus on the case where machines are “public”, and for which 
we are able to offer more results. To illustrate, imagine a large employer in a small, isolated community. If it makes a donation to 
the local health system to buy medical equipment, the extra equipment is a public good that can be used by the whole community. 
However, the waiting cost of the donor’s employees to receive treatment will be reduced, yielding a private gain for the employer 
that might make the donation worthwhile even from a selfish perspective.

We illustrate this by an example.

Example 5. Consider (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) with 𝑁 = {1, 2, 3, 4, 5}. The waiting costs per unit for agents are given by the weight vector 
𝑤 = (𝑤𝑖)𝑖∈𝑁 = (20, 15, 13, 13, 5), and the cost of a machine is 𝑏 = 18.

First, we suppose that (𝑚0, 𝜎0) is such that we order agents in the queue on one machine according to their weights, in decreasing 
order:
111

𝑚1 1 2 3 4 5 .



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Notice that agent 1 is a dummy player since she is served first, moving to another machine is strictly worse for her. If a new line 
opens up, the initial queue 𝜎0 is split up in two: 1 and 2 are served first, 3 and 4 second, and 5 third and the new queue system 
(𝑚′, 𝜎′) is

𝑚1 1 3 5

𝑚2 2 4
.

Then, we can calculate the worth of the coalition 𝑇 = {2, 4, 5}, as the waiting costs saved by its members only, net of the new 
machine cost. In other words, when we add machines a coalition receives the gains its members make in waiting costs, as the queue 
moves up, but must fully pay for the new machines.

To properly express how this requeueing occurs, we build from the initial queue 𝜎0 = (𝜑0, 𝑠0) a priority order 𝜋, which allows us 
to determine which agent moves up when new machines become available. Formally, for any 𝑖, 𝑗 ∈𝑁

𝜋(𝑖) < 𝜋(𝑗)⇔
{
𝑠0(𝑖) < 𝑠0(𝑗) or {𝑠0(𝑖) = 𝑠0(𝑗) and 𝜑0(𝑖) < 𝜑0(𝑗)}

}
.

In words, to rank agents we first look at the period in which they are served, and break ties by giving priority to agents served 
on machines identified with lower numbers. Note that adding machines will lead to efficient orderings if and only if the order 𝜋 is 
(1, 2, 3, … , 𝑛).

Notice that in a requeueing game a coalition 𝑇 has much less ability to choose an alternative queue system. Once it has chosen a 
new number of machines, agents requeue automatically using the ordering 𝜋. In fact, conceptually, while the private game supposes 
the existence of separate queues at each machine, the public game makes the implicit assumption of a single queue, with agents 
simply going to the first free available machine when their turn comes up.

For a fixed number of machines, requeueing problems have considered different assumptions on what is an acceptable requeueing, 
for instance limiting the possibility for a coalition 𝑆 to move its members in front of agents in 𝑁 ⧵ 𝑆 . See Curiel et al. (1993) for 
a discussion of the various alternatives. This analysis becomes more complicated with an endogenous number of machines as the 
queues - and thus one’s neighbors - change with the number of machines.

We initially consider a simple variant, that we call the public game with side payments: a coalition 𝑆 can change the queue as 
desired, even moving down agents in 𝑁 ⧵ 𝑆 , as long as they provide them with side payments that cover their additional waiting 
costs. This approach has two advantages. First, it is easily tractable. In particular, if the initial queue is an efficient ordering, then we 
are able to describe the requeueing decisions, which have a structure comparable to the queueing problems of the previous section. 
In particular, we are able to relate the decisions of 𝑆 and 𝑇 , if 𝑆 ⊂ 𝑇 , which allows us to show that the resulting game is convex, 
and thus has a non-empty core. Secondly, since the assumption of side payments is the least constraining, any game with stricter 
constraints will generate less value for all coalitions and the same value for the grand coalition, and thus a core allocation for the 
game with side payments is also a core allocation for these games with stricter constraints.

As for selling some of the initial machines, we make two assumptions in the public game with side payments. First, we suppose 
that a coalition 𝑆 can sell as many machines as it wants (one machine must always be kept) and requeue agents as desired on the 
remaining machines, as long as it fairly compensates agents in 𝑁 ⧵ 𝑆 if they have to wait a longer time. Second, we suppose, since 
these machines are public goods, that the revenues from the sale of machines must be split equally among all agents in 𝑁 . Coalition 
𝑇 thus receives a fraction |𝑇 |

𝑛
of the proceeds.

Let 𝑉𝑠𝑝(𝑇 , 𝑘) be the function giving the value (possibly negative) that we obtain if we force coalition 𝑇 to use 𝑘 machines in the 
public game with side payments. We then have that 𝑉𝑠𝑝(𝑇 ) =max𝑘=1,...,𝑛 𝑉𝑠𝑝(𝑇 , 𝑘).

Let �̂� be the function assigning to each coalition the optimal number of machines to use in the public game with side-payments.6

We offer results on the structure of �̂� when we start with an efficient initial ordering.

Lemma 4. Let (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) be a public requeueing problem such that 𝜎0 is an efficient ordering. Then, we have:

i) for all 𝑆, 𝑇 ⊆𝑁 , (�̂�(𝑆) −𝑚0)(�̂�(𝑇 ) −𝑚0) ≥ 0.

ii) if 𝑆 ⊂ 𝑇 ⊆𝑁 , then ||�̂�(𝑆) −𝑚0|| ≤ ||�̂�(𝑇 ) −𝑚0||.
In words, part i) confirms that we cannot have some coalition buying machines while others sell machines. Either all coalitions 

buy machines (or stay put) or all coalitions sell machines (or stay put). Part ii) says that if 𝑆 is a subset of 𝑇 , 𝑇 will make at least as 
many transactions as 𝑆 : if 𝑆 buys some machines, 𝑇 will buy at least as many, and if 𝑆 sells some machines, 𝑇 will sell at least as 
many.

This structure allows us to guarantee the non-emptiness of the core for public requeueing games with side-payments when the 
initial queue is an efficient ordering. We show that the game with side-payments, (𝑁, 𝑉𝑠𝑝), is convex which guarantees the existence 
of stable allocations, 𝐶𝑜𝑟𝑒(𝑉𝑠𝑝) ≠ ∅. We consign the formal proof to Appendix A.
112

6 There could be many, in which case we pick the lowest one.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Theorem 3. Let (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) be a public requeueing problem such that 𝜎0 is an efficient ordering, and let (𝑁, 𝑉𝑠𝑝) be the associated 
public requeueing game with side payments. Then, 𝑉𝑠𝑝 is convex. Hence, 𝐶𝑜𝑟𝑒(𝑉𝑠𝑝) ≠ ∅.

We conclude this subsection by showing that the initial queue being an efficient ordering is crucial to the result. Without the 
assumption the core might be empty.

Example 6. Consider (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) with 𝑁 = {1, 2, 3, 4}, 𝑚0 = 1, and the ordering induced by 𝜎0 being 𝜋 = (4, 3, 2, 1). The waiting 
costs per unit for agents are 𝑤 = (13, 7, 6, 1), and the cost of a machine is 𝑏 = 15.

Notice first that the initial queue (4, 3, 2, 1) is not optimal:

𝑚1 4 3 2 1 .

We start by looking at coalition {1}. Agent 1 can offer to switch place with agent 4, offering 3 as compensation, for a net gain of 
3 × 13 − 3 = 36. Given the limited gain there is no appetite to buy additional machines. Thus, 𝑉𝑠𝑝({1}) = 36.

Consider next coalition {2}. In the same way, we obtain 𝑉𝑠𝑝({2}) = 12 by having agent 2 compensate agent 4 with a payment of 
2 to switch place.

Next, consider coalition {1, 2}. The best they can do is to move to the efficient ordering, obtained by having agent 1 switch place 
with agent 4 (with a compensation of 3) and agent 2 switch place with agent 3 (with a compensation of 6). Notice that this is also 
the surplus obtained by coalition 𝑁 . We thus obtain that 𝑉𝑠𝑝({1, 2}) = 𝑉𝑠𝑝(𝑁) = 3 × 13 + 7 − 6 − 3 = 37.

Thus, 𝑉𝑠𝑝({1}) + 𝑉𝑠𝑝({2}) > 𝑉𝑠𝑝({1, 2}) = 𝑉𝑠𝑝(𝑁), and 𝑉𝑠𝑝 is not superadditive, much less convex. In fact, its core is empty.

4.3. Extending to constrained requeueing

As discussed in the previous subsection, the literature on requeueing with a fixed number of machines has considered various 
constraints on eligible changes to queues. See Curiel et al. (1993) and Slikker (2006). Such analysis is particularly complex with an 
endogenous number of machines because changing the number of machines changes the queues and an agent’s neighbors, which 
typically affect eligible changes. One such restriction (which we summarize as the “no swap” assumption) supposes that members in 
a coalition can only changes spots with a neighbor, i.e. it cannot jump over a non-coalitional member. A less constraining assumption 
(the “swap” assumption) allows to jump over a non-coalitional member, as long as they do not have to wait longer than in the initial 
queue. We thus need to consider an agent’s neighbors before and after the change in the number of machines, opening the door for 
strategic changes simply to increase the set of possibilities.

Another difficulty is how to manage sales of machines. A strict assumption consists in supposing that a coalition can sell a machine 
only if all users of said machine are part of the coalition. Users are then moved at the end of the queues of other machines, possibly 
swapping with other coalitional members. A more lenient assumption allows a coalition to sell a machine that has non-coalitional 
members among its users, as long as these agents can be relocated on other machines without seeing their wait times increase. Still, 
in both cases, it might be impossible for a coalition to sell 𝑘 < 𝑚0 machines.

The next example illustrates the differences between the assumptions.

Example 7. Consider six agents on two machines, with the initial queue system as follows:

𝑚1 5 3 1

𝑚2 4 2 6
.

Consider coalition {1, 2} and its possibilities to requeue without changing the number of machines. Under the “side-payment” 
assumption, agent 1 swaps with agent 5, offering a compensation of 2𝑤5, and agent 2 swaps with agent 4, offering a compensation 
of 𝑤4, for a net gain of 2𝑤1 +𝑤2 −𝑤4 − 2𝑤5. Under the “swap” assumption, agents 1 and 2 can swap spots with each other, as it 
leaves other agents unaffected. Gains are 𝑤1 −𝑤2. Under the “no swap” assumption, this swap is blocked by agent 6, who would see 
agent 1 move in front of him. Thus, no requeueing is possible.

To illustrate different possibilities when adding a machine, consider coalition {1, 2, 3}. After adding a machine, the queue moves 
up and the queue on machine 1 is 5-2, on machine 2 it is 4-1 and on machine 3 it is 3-6. Under the “side payment” assumption, 
agents 1 and 2 move to the first position on their machine, compensating agents 4 and 5 with, respectively, 𝑤4 and 𝑤5, for a net 
gain of 2𝑤1 +𝑤2 +𝑤3 −𝑤4 −𝑤5 − 𝑏. Under the “swap” assumption, agents 1 and 3 can swap spots either before the machine was 
added (they were neighbors on machine 1) or after (they are not on the same machine, but the swap leaves other agents unaffected). 
The gain is 2𝑤1 − 𝑏. Under the “no swap” assumption, these swaps are blocked by agent 6, who would see someone move in front of 
him. Thus, the gain is 𝑤1 +𝑤3 − 𝑏.

Finally, to illustrate the different possibilities when selling a machine, consider coalition {1, 2, 4}. Under the “side payment” as-
sumption, the coalition can sell a machine and move to the optimal queue 1-2-3-4-5-6, paying agents 3,5,6 respective compensations 
of 𝑤3, 4𝑤5 and 3𝑤6, for a net gain of 𝑏2 + 2𝑤1 −𝑤3 − 3𝑤4 − 4𝑤5 − 3𝑤6. Under the more lenient assumption for sales, the only way 
113

to not hurt the non-coalitional members is to put them at the front of the new queue. The best way to proceed is to pick queue 



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

5-3-6-1-2-4, for a gain of 𝑏2 −𝑤1 − 3𝑤2 − 5𝑤4. Under the stricter assumption for sales, it is impossible for coalition {1, 2, 4} to sell a 
machine, as they are not the sole users of a machine.

We consider the requeueing game with side payments to have minimal constraints – loosening constraints further would allow 
for a coalition 𝑆 to move non-coalitional members further down the queue without proper compensation.

While there are multiple games to consider by combining the various constraints, we can provide some results without looking 
precisely at these games, by using the following fact. Adding any constraints on requeueing (the “swap” or “no swap” assumptions) 
or on selling machines (the “lenient” and the “strict” assumptions) cannot increase the value created by a coalition, and leaves 
unchanged the value created by the grand coalition, for which the constraints do not apply. Thus, adding constraints (weakly) 
enlarges the core.

Proposition 1. Let (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) be a public requeueing problem and 𝑉𝑐 and 𝑉𝑐′ be public requeueing games with different constraints 
on eligible requeueing. If the constraints in 𝑉𝑐′ are stricter than in 𝑉𝑐 , then, for all 𝑆 ⊂ 𝑁 we have 𝑉𝑐(𝑆) ≥ 𝑉𝑐′ (𝑆), 𝑉𝑐(𝑁) = 𝑉𝑐′ (𝑁) and 
𝐶𝑜𝑟𝑒 

(
𝑉𝑐
)
⊆ 𝐶𝑜𝑟𝑒 

(
𝑉𝑐′

)
.

Thus, for instance, moving from the “swap” assumption to the “no swap” assumption (weakly) enlarges the core, as does moving 
from the “lenient” to the “strict” assumption on machine sales.

Given Theorem 3 and Proposition 1, the following corollary is immediate.

Corollary 1. Let (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) be a public requeueing problem such that 𝜎0 is an efficient ordering and let (𝑁, 𝑉𝑐 ) be an associated 
public requeueing game with weakly stricter constraints on eligible requeueing than the public requeueing game with side-payments. Then, 
∅ ≠ 𝐶𝑜𝑟𝑒(𝑉𝑠𝑝) ⊆ 𝐶𝑜𝑟𝑒(𝑉𝑐).

An important consequence of Theorem 3 is that whenever each agent owns a machine at the initial queue, then the core is always 
non-empty, regardless of the assumptions on what constitutes an eligible requeueing.

Corollary 2. Given a public requeueing problem (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) such that 𝑚0 = |𝑁|, and let (𝑁, 𝑉𝑐 ) be an associated public requeueing 
game with weakly stricter constraints on eligible requeueing than the public requeueing game with side payments. Then, ∅ ≠ 𝐶𝑜𝑟𝑒(𝑉𝑠𝑝) ⊆
𝐶𝑜𝑟𝑒(𝑉𝑐).

Recall that we guarantee the existence of stable allocations by showing that the game with side-payment is convex when the 
order of agents in the original queue is optimal. The following example shows that even if the initial queue is an efficient ordering, 
the assumption of side payments is crucial for the convexity result.

Example 8. Consider (𝑁, 𝑚0, 𝜎0, 𝑤, 𝑏) with 𝑁 = {1, 2, 3, 4}, 𝑚0 = 4, and 𝜎0 being the efficient ordering. The waiting costs per unit for 
agents are 𝑤 = (𝑤𝑖)𝑖∈𝑁 = (52, 28, 24, 4), and the cost of a machine is 𝑏 = 60.

Notice that at the initial queue there are four machines 𝑚0 = 4 and hence each agent’s job is processed at a different machine:

𝑚1 1

𝑚2 2

𝑚3 3

𝑚4 4

.

Since each agent starts at a different machine, there is no distinction between the assumption that all users must be part of the 
coalition selling a machine or that the coalition must simply guarantee that non-coalitional members are not moved to a later spot. 
In what follows we use 𝑉𝑐(𝑅) for any 𝑅 ⊆𝑁 to denote the value created by 𝑅.

For singleton coalitions {𝑖}𝑖∈𝑁⧵{4}, they would not sell their machine: 𝑉𝑐({𝑖}) = 0 for 𝑖 = {1, 2, 3}, whereas coalition {4} sells her 
machine, 𝑉𝑐({4}) = 11.

For two-player coalitions {1, 2}, {1, 3}, and {1, 4} selling one machine is optimal whereas selling two machines is optimal for 
{2, 3}, {2, 4}, and {3, 4} with 𝑉𝑐({1, 2}) = 2, 𝑉𝑐({1, 3}) = 6, 𝑉𝑐({1, 4}) = 26, 𝑉𝑐({2, 3}) = 8, 𝑉𝑐({2, 4}) = 28, 𝑉𝑐({3, 4}) = 32.

For all three-player coalitions selling two machines is optimal with the worth 𝑉𝑐({1, 2, 3}) = 38, 𝑉𝑐({1, 2, 4}) = 58, 𝑉𝑐({1, 3, 4}) =
62, and 𝑉𝑐({2, 3, 4}) = 62.

Finally, for the grand coalition it is best to sell two or three machines with the worth 𝑉𝑐 ({1, 2, 3, 4}) = 92.
Then, we obtain for 𝑆 = {1, 3}, 𝑇 = {1, 3, 4}, and 𝑖 = 2 that

𝑉𝑐({1,2,3}) − 𝑉𝑐({1,3}) > 𝑉𝑐({1,2,3,4}) − 𝑉𝑐({1,3,4}).
114

That is, 𝑉𝑐(𝑆 ∪ {𝑖}) − 𝑉𝑐(𝑆) > 𝑉𝑐(𝑇 ∪ {𝑖}) − 𝑉𝑐(𝑇 ) which contradicts convexity. Hence, 𝑉𝑐 is not convex.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

When selling machines, using the side-payments game is an effective way to obtain a core allocation. However, as it creates a 
symmetric game, it eliminates all differences between agents, offering few alternatives to an equal division of the value created. 
Example 8 shows that without side-payments agent 4 has a bigger role than others in creating value, which should imply a larger 
share. While a thorough analysis of a fair and stable allocation in these games is left for further research, a quick fix would be to 
assign the marginal value vector in the decreasing order of waiting cost, resulting in Example 8 in an allocation of (11, 21, 30, 30), 
which at least approximates the fact that agents with lower waiting costs create more value.

5. Concluding remarks

This paper studies queueing problems from a game theoretical point of view. The novelty of this paper is that the number of 
machines is endogenous. For a given problem, agents are allowed to (de)activate as many machines as they want, at a cost. We 
have distinguished two types of queueing problems: without and with an initial queue. For the first case, we have provided both a 
lower and an upper bound on the cost of machine to guarantee the non-emptiness of the core. Moreover, in some instances we have 
provided a full characterization of the core by means of concavity. For the second case, although we have shown that the core may 
be empty, we have guaranteed balancedness when all machines are accessible to all agents and the initial ordering correctly ranks 
agents in decreasing order of their waiting costs.

Compared to the earlier literature, our main innovations are (i) the existence of an endogenous number of machines at a given 
queueing problem, (ii) the cost associated with a machine to (de)activate it and (iii) the introduction of public queueing problems 
with an initial queue.

An interesting direction for future research is to characterize axiomatically an allocation rule that always selects a stable allocation 
for balanced requeueing games. Furthermore, although we have a counterexample showing that stable allocations may not exist 
when swaps are allowed for public requeueing games with the initial queue not an efficient ordering (Example 6),7 it is still an open 
question whether it is also the case when swaps are not allowed.

Declaration of competing interest

None.

Data availability

No data was used for the research described in the article.

Appendix A

We consign to this Appendix formal proofs. We organize them based on the sections in which they are presented.

A.1. Proofs of Section 2

Proof of Lemma 1. Fix 𝑁 and 𝑤. The total cost when 𝑘 machines are used would be cheaper than when 𝑘 −1 machines are used if

𝑏𝑘+
∑
𝑖∈𝑁

(⌈
𝑖

𝑘

⌉)
𝑤𝑖 ≤ 𝑏(𝑘− 1) +

∑
𝑖∈𝑁

(⌈
𝑖

𝑘− 1

⌉)
𝑤𝑖

which simplifies to

𝑏 ≤
∑
𝑖∈𝑁

(⌈
𝑖

𝑘− 1

⌉
−
⌈
𝑖

𝑘

⌉)
𝑤𝑖

=𝑤𝑘 +
𝑛∑

𝑖=𝑘+1

(⌈
𝑖

𝑘− 1

⌉
−
⌈
𝑖

𝑘

⌉)
𝑤𝑖. (a)

The inequality (a) provides an upper-bound on the cost of a machine such that we prefer to use 𝑘 machines to 𝑘 − 1 machines. 
Let us denote this number obtained in (a) by 𝑟𝑤(𝑘). This defines a function 𝑟𝑤 ∶ {2, … , 𝑛} →ℝ+.

We next show that this function is non-increasing. We show that 𝑟𝑤(𝑘) ≤ 𝑟𝑤(𝑘 − 1), that is,

𝑤𝑘 +
𝑛∑

𝑖=𝑘+1

(⌈
𝑖

𝑘− 1

⌉
−
⌈
𝑖

𝑘

⌉)
𝑤𝑖 ≤𝑤𝑘−1 +

𝑛∑
𝑖=𝑘

(⌈
𝑖

𝑘− 2

⌉
−
⌈

𝑖

𝑘− 1

⌉)
𝑤𝑖. (b)

7 It is left to the reader to verify that coalition {1, 4} can obtain a value of 36, coalition {2, 4} a value of 12, coalition {3, 4} a value of 5 and coalition {1, 2, 3} a 
115

value of 31. It is then impossible to satisfy all these core constraints and budget balance.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

By assumption, 𝑤𝑘 ≤𝑤𝑘−1. We will show that

𝑛∑
𝑖=𝑘+1

(⌈
𝑖

𝑘− 1

⌉
−
⌈
𝑖

𝑘

⌉)
𝑤𝑖 ≤

𝑛∑
𝑖=𝑘

(⌈
𝑖

𝑘− 2

⌉
−
⌈

𝑖

𝑘− 1

⌉)
𝑤𝑖,

which together with 𝑤𝑘 ≤ 𝑤𝑘−1 show that the inequality holds. To do so, we compare the right-hand side and the left-hand side 
summands of the same order in the inequality (b). We see that(⌈

𝑘+ 1
𝑘− 1

⌉
−
⌈
𝑘+ 1
𝑘

⌉)
𝑤𝑘+1 ≤

(⌈
𝑘

𝑘− 2

⌉
−
⌈

𝑘

𝑘− 1

⌉)
𝑤𝑘(⌈

𝑘+ 2
𝑘− 1

⌉
−
⌈
𝑘+ 2
𝑘

⌉)
𝑤𝑘+2 ≤

(⌈
𝑘+ 1
𝑘− 2

⌉
−
⌈
𝑘+ 1
𝑘− 1

⌉)
𝑤𝑘+1

⋮(⌈
𝑛− 1
𝑘− 1

⌉
−
⌈
𝑛− 1
𝑘

⌉)
𝑤𝑛−1 ≤

(⌈
𝑛− 2
𝑘− 2

⌉
−
⌈
𝑛− 2
𝑘− 1

⌉)
𝑤𝑛−2(⌈

𝑛

𝑘− 1

⌉
−
⌈
𝑛

𝑘

⌉)
𝑤𝑛 ≤

(⌈
𝑛− 1
𝑘− 2

⌉
−
⌈
𝑛− 1
𝑘− 1

⌉)
𝑤𝑛−1

0 ≤
(⌈

𝑛

𝑘− 2

⌉
−
⌈

𝑛

𝑘− 1

⌉)
𝑤𝑛,

and we see that removing a machine is costlier in terms of waiting costs if there are fewer machines in the initial problem. Applying 
the result recursively, starting with 𝑟𝑤(𝑛), we obtain that 𝑟𝑤 is non-increasing.

It remains to show that we can define 𝑚 using 𝑟𝑤. Let 𝐶(𝑁, 𝑘) be the cost for coalition 𝑁 if it uses 𝑘 machines. Suppose 
that 𝑏 ≥ 𝑟𝑤(2). Then, since 𝑟𝑤 is non-increasing, 𝑏 ≥ 𝑟𝑤(𝑘) for all 𝑘 ∈ {2, … , 𝑛}. This implies that 𝐶(𝑁, 𝑘) ≤ 𝐶(𝑁, 𝑘 + 1) for all 
𝑘 = 1, … , 𝑛 − 1. By transitivity, 𝐶(𝑁, 1) ≤ 𝐶(𝑁, 𝑘) for all 𝑘 ∈ {2, … , 𝑛} and thus 𝑚(𝑁) = 1.

Suppose next that 𝑟𝑤(𝑘) > 𝑏 ≥ 𝑟𝑤(𝑘 + 1) for some 1 < 𝑘 < 𝑛. By the same argument as above, 𝑏 ≥ 𝑟𝑤(𝑘 + 1) implies that 𝐶(𝑁, 𝑘) ≤
𝐶(𝑁, 𝑙) for all 𝑙 ∈ {𝑘 + 1, … , 𝑛}. Since 𝑟𝑤 is non-increasing, 𝑟𝑤(𝑘) > 𝑏 implies that 𝑟𝑤(𝑙) > 𝑏 for all 𝑙 = 2, … , 𝑘. This implies that 
𝐶(𝑁, 𝑙) < 𝐶(𝑁, 𝑙 − 1) for all 𝑙 = 2, … , 𝑘. By transitivity, 𝐶(𝑁, 𝑘) < 𝐶(𝑁, 𝑙) for all 𝑙 ∈ {1, … , 𝑘 − 1}. Combining with the previous 
result, we obtain 𝑚(𝑁) = 𝑘.

Finally, suppose that 𝑟𝑤(𝑛) > 𝑏. By the same argument as above, we have that 𝐶(𝑁, 𝑛) < 𝐶(𝑁, 𝑙) for all 𝑙 ∈ {1, … , 𝑛 − 1} and we 
obtain 𝑚(𝑁) = 𝑛. □

Proof of Lemma 2. Let 𝑟𝑤
𝑆
(𝑘) be the equivalent of 𝑟𝑤(𝑘) for coalition 𝑆 .

i) If 𝑚(𝑇 ) ≥ |𝑆|, the result is immediate. Thus, suppose that 𝑚(𝑇 ) < |𝑆|.
We show that for any 𝑆 ⊂ 𝑇 ⊆𝑁 and 𝑘 = 2, … , |𝑆|, we have that 𝑟𝑤

𝑆
(𝑘) ≤ 𝑟𝑤

𝑇
(𝑘). That is,

𝑟𝑤
𝑆
(𝑘) =𝑤𝑆

𝑘
+

|𝑆|∑
𝑙=𝑘+1

(⌈
𝑙

𝑘− 1

⌉
−
⌈
𝑙

𝑘

⌉)
𝑤𝑆

𝑙

≤𝑤𝑇
𝑘
+

|𝑆|∑
𝑙=𝑘+1

(⌈
𝑙

𝑘− 1

⌉
−
⌈
𝑙

𝑘

⌉)
𝑤𝑇

𝑙

≤𝑤𝑇
𝑘
+

|𝑇 |∑
𝑙=𝑘+1

(⌈
𝑙

𝑘− 1

⌉
−
⌈
𝑙

𝑘

⌉)
𝑤𝑇

𝑙

= 𝑟𝑤
𝑇
(𝑘),

where the first inequality comes from the fact that 𝑤𝑆
𝑘
≤𝑤𝑇

𝑘
for all 𝑘.

Then, if 𝑏 ≥ 𝑟𝑤
𝑇
(2), 𝑏 ≥ 𝑟𝑤

𝑆
(2) and 𝑚(𝑆) = 𝑚(𝑇 ) = 1. Otherwise, 𝑚(𝑆) is the highest integer such that 𝑏 < 𝑟𝑤

𝑆
(𝑚(𝑆)). But since 

𝑟𝑤
𝑆
(𝑚(𝑆)) ≤ 𝑟𝑤

𝑇
(𝑚(𝑆)), we have 𝑏 < 𝑟𝑤

𝑇
(𝑚(𝑆)), and thus 𝑚(𝑆) ≤𝑚(𝑇 ), as desired.

ii) The proof is identical to part i), replacing 𝑆 by 𝑆 ∪ {𝑖} and 𝑇 by 𝑆 ∪ {𝑗}. □

A.2. Proofs of Section 3

Proof of Lemma 3. (i) If 𝑛 is odd, and 𝑁 uses 𝜇 machines, agents 1, … , 𝜇 are served in the first period, and others in the second 
period, for a cost of 𝜇𝑏 +

∑𝜇

𝑖=1𝑤𝑖 +
∑𝑛

𝑖=𝜇+1 2𝑤𝑖. If we remove one machine, agent 𝜇 is now served in the second period, and agent 𝑛
in the third period. Thus, we prefer to use 𝜇 machines if 𝑏 ≤𝑤𝜇 +𝑤𝑛.

(ii) When 𝑛 = 2, 𝜇 = 1.
(iii) When 𝑛 = 4, 𝜇 = 2. If we use 2 machines, the cost is 2𝑏 +𝑤1 + 𝑤2 + 2𝑤3 + 2𝑤4. If we use a single machine, the cost is 

𝑏 +𝑤1 + 2𝑤2 + 3𝑤3 + 4𝑤4. Thus, we use at least 2 machines if 𝑏 ≤𝑤2 +𝑤3 + 2𝑤4.
(iv) When 𝑛 is even, 𝜇 = 𝑛

2 . If 𝑁 uses 𝜇 machines, agents 1, … , 𝜇 are served in the first period, and others in the second period, 
for a cost of 𝜇𝑏 +

∑𝜇

𝑖=1𝑤𝑖 +
∑𝑛

𝑖=𝜇+1 2𝑤𝑖. If 𝑛 ≥ 6 and we remove one machine, agent 𝜇 is now served in the second period, and agents 
116

𝑛 − 1 and 𝑛 in the third period. Thus, we prefer to use 𝜇 machines if 𝑏 ≤𝑤𝜇 +𝑤𝑛−1 +𝑤𝑛. □



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Now, we can provide the proof of Theorem 1.

Proof of Theorem 1. Notice that when 𝑛 is odd 𝜇 =
⌊
𝑛

2

⌋
+ 1 and when 𝑛 is even 𝜇 = 𝑛

2 =
⌊
𝑛

2

⌋
.

(i) We first show that the allocation 𝑦 =
(
min

(
𝑏+𝑤𝑖,2𝑤𝑖

))
𝑖∈𝑁 is budget balanced.

First, notice that if we use 𝑘 > 𝜇 machines, then agents in {1, … , 𝑘} are served in the first period and agents in {𝑘 + 1, … , 𝑛} are 
served in the second period. Removing a machine moves agent 𝑘 from the first group to the second, with all other agents served 
as before. Thus, the 𝑘𝑡ℎ machine generates waiting cost savings of 𝑤𝑘 and we have 𝑟𝑤(𝑘) = 𝑤𝑘 for all 𝑘 > 𝜇. Also, by Lemma 3, 
𝑚(𝑁) ≥ 𝜇.

Let 𝐶(⋅, 𝑘) be the cost function that assigns to each coalition the total cost if it uses 𝑘 machines to process their jobs. For 𝑘 ≥ 𝜇,

𝐶(𝑁,𝑘) = 𝑘𝑏+
𝑘∑
𝑖=1

𝑤𝑖 +
𝑛∑

𝑖=𝑘+1
2𝑤𝑖.

Thus,

𝐶(𝑁) = min
𝑘∈{𝜇,…,𝑛}

{
𝑘𝑏+

𝑘∑
𝑖=1

𝑤𝑖 +
𝑛∑

𝑖=𝑘+1
2𝑤𝑖

}

= 𝑏(𝜇 − 1) +
𝜇−1∑
𝑖=1

𝑤𝑖 + min
𝑘∈{𝜇,…,𝑛}

{
𝑏(𝑘− 𝜇 + 1) +

𝑘∑
𝑖=𝜇

𝑤𝑖 +
𝑛∑

𝑖=𝑘+1
2𝑤𝑖

}

=
𝜇−1∑
𝑖=1

(
𝑏+𝑤𝑖

)
+

𝑛∑
𝑖=𝜇

min
(
𝑏+𝑤𝑖,2𝑤𝑖

)
=
∑
𝑖∈𝑁

min
(
𝑏+𝑤𝑖,2𝑤𝑖

)
=
∑
𝑖∈𝑁

𝑦𝑖.

The third equality comes from the fact that for all 𝑘 > 𝜇, 𝑟𝑤(𝑘) = 𝑤𝑘, implying that we use at least 𝑘 machines if and only if 
𝑏 +𝑤𝑘 ≤ 2𝑤𝑘. While 𝑟𝑤(𝜇) ≥𝑤𝜇 , by assumption 𝑏 ≤𝑤⌊

𝑛

2

⌋
+1

≤𝑤𝜇 . The fourth equality also comes from the fact that by assumption, 

𝑏 ≤𝑤𝜇 .
It remains to prove that the core constraints are satisfied, i.e., 𝑦(𝑇 ) ≤ 𝐶(𝑇 ) for all 𝑇 ⊂ 𝑁 . Fix 𝑇 ⊂ 𝑁 and suppose that 𝜅 is the 

optimal number of machines for 𝑇 .
We have that

∑
𝑖∈𝑇

𝑦𝑖 ≤ 𝜅𝑏+
𝜅∑
𝑖=1

𝑤𝑇
𝑖
+

|𝑇 |∑
𝑖=𝜅+1

2𝑤𝑇
𝑖

≤ 𝐶(𝑇 ),

where the first inequality is obtained by assigning 𝑏 +𝑤𝑖 to the first 𝜅 agents in 𝑇 and 2𝑤𝑖 to others, regardless of which of these 
two values is minimal, and the second inequality comes from the fact that the expression is exactly the cost of coalition 𝑇 if 𝜅 ≥

|𝑇 |
2 , 

with the cost no smaller otherwise. Thus the core constraint is satisfied. Since 𝑇 is arbitrarily chosen, the proof is complete.
Next, we show that this is the unique core allocation.
If 𝑏 <𝑤𝑛, then 𝐶(𝑆) = |𝑆|𝑏 +∑

𝑖∈𝑆 𝑤𝑖 for all 𝑆 ⊆𝑁 and the result is immediate. Thus, suppose that 𝑏 ≥𝑤𝑛.

Suppose that 𝑤𝑘+1 ≤ 𝑏 <𝑤𝑘 for 𝑘 ∈
{⌊

𝑛

2

⌋
+ 1,… , 𝑛− 1

}
. Then, by Lemma 1, 𝐶(𝑁) = 𝑘𝑏 +

∑𝑘

𝑖=1𝑤𝑖 +
∑𝑛

𝑖=𝑘+1 2𝑤𝑖.

Consider coalition 𝑁 ⧵ {𝑖} for 𝑖 ∈ {1,… , 𝑘}. If they use 𝑘 machines, the cost is 𝑘𝑏 +
∑𝑘

𝑗=1𝑤𝑗 +
∑𝑛

𝑗=𝑘+1 2𝑤𝑗 − 𝑤𝑖 − 𝑤𝑘+1. If 

they use 𝑘 − 1 machines, the cost is (𝑘 − 1)𝑏 +
∑𝑘

𝑗=1𝑤𝑗 +
∑𝑛

𝑗=𝑘+1 2𝑤𝑗 − 𝑤𝑖, as 𝑘 − 1 ≥
⌊
𝑛

2

⌋
≥

𝑛−1
2 . Thus, it prefers to use 𝑘 − 1

machines if 𝑏 ≥𝑤𝑘+1, which is satisfied. If they use 𝑘 − 2 machines, the cost is at least (𝑘 − 2)𝑏 +
∑𝑘

𝑗=1𝑤𝑗 +
∑𝑛

𝑗=𝑘+1 2𝑤𝑗 −𝑤𝑖 +𝑤𝑘

(as some agents might have to wait more than 2 periods now), and as 𝑏 <𝑤𝑘 it prefers to use 𝑘 − 1 machines. Thus, 𝐶(𝑁 ⧵ {𝑖}) =
(𝑘 − 1)𝑏 +

∑𝑘

𝑗=1𝑤𝑗 +
∑𝑛

𝑗=𝑘+1 2𝑤𝑗 −𝑤𝑖.
Notice that 𝐶(𝑁 ⧵ {𝑖}) +𝐶({𝑖}) = 𝐶(𝑁), and thus in any core allocation, we must have 𝑦𝑖 = 𝐶({𝑖}) = 𝑏 +𝑤𝑖 for all 𝑖 ∈ {1,… , 𝑘}.
Next, consider coalition {𝑖, 𝑗}, with 𝑖 ∈ {1,… , 𝑘} and 𝑗 ∈ {𝑘+ 1,… , 𝑛}. If it uses a single machine, the cost is 𝑏 +𝑤𝑖 + 2𝑤𝑗 . If it 

uses 2 machines, the cost is 2𝑏 +𝑤𝑖 +𝑤𝑗 . It prefers to use a single machine as 𝑏 ≥𝑤𝑘+1 ≥𝑤𝑗 . Thus, 𝐶({𝑖, 𝑗}) = 𝑏 +𝑤𝑖 + 2𝑤𝑗 . Since 
𝑦𝑖 = 𝑏 +𝑤𝑖, we obtain a core constraint of 𝑦𝑗 ≤ 2𝑤𝑗 for all 𝑗 ∈ {𝑘+ 1,… , 𝑛}. Given the value of 𝐶(𝑁), our only core candidate is 
𝑦𝑖 = 𝑏 +𝑤𝑖 for all 𝑖 ∈ {1,… , 𝑘} and 𝑦𝑗 = 2𝑤𝑗 for all 𝑗 ∈ {𝑘+ 1,… , 𝑛}.

It remains to show the result for 𝑏 =
⌊
𝑛

2

⌋
+ 1. It follows immediately using the same procedure as above, with the non-⌊ ⌋ ⌊ ⌋
117

consequential difference that coalition 𝑁 is indifferent between using 𝑛

2 + 1 and 𝑛

2 machines.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Given that we have shown that the allocation is a core allocation, our proof of (i) is complete.
(ii) From Lemma 3 we know that 𝑚(𝑁) ≥ 𝜇. We show that 𝑚(𝑁) = 𝜇. If we use 𝜇 + 1 machines, we must pay an extra 𝑏, but 

agent 𝜇 + 1 moves from being served in the second period to the first period, and thus the net marginal savings are 𝑤𝜇+1 − 𝑏 < 0 as 
𝑏 >𝑤𝜇 ≥𝑤𝜇+1 and 𝑛 being odd implies that 𝜇 =

⌊
𝑛

2

⌋
+ 1.

Next, we show that for all 𝑗 ∈ {1,… , 𝜇}, coalition 𝑁 ⧵ {𝑗} uses 𝜇 − 1 machines. If we use an extra machine, we must pay 
an extra 𝑏, but agent 𝜇 + 1 moves from being served in the second period to the first period, and thus net marginal savings are 
𝑤𝜇+1 − 𝑏 < 0. If we use one less machine, the last agent in {1,… , 𝜇} ⧵ {𝑗} moves from the first to the second period, and (at least) 
agent 𝑛 moves from the second to the third period. Thus, the net savings are at most 𝑏 −𝑤𝜇 −𝑤𝑛 < 0. Thus, the cost for the coalition 
is (𝜇 − 1)𝑏 +

∑𝜇

𝑖=1𝑤𝑖 −𝑤𝑗 +
∑𝑛

𝑖=𝜇+1 2𝑤𝑖.
Together, the two results above show that 𝑦𝑗 ≥ 𝐶(𝑁) −𝐶(𝑁 ⧵ {𝑗}) = 𝑏 +𝑤𝑗 in any core allocation.
Since we also have that 𝑦𝑗 ≤ 𝐶({𝑗}) = 𝑏 +𝑤𝑗 , we must have 𝑦𝑗 = 𝑏 +𝑤𝑗 for all 𝑗 ∈ {1,… , 𝜇} in any core allocation.
Consider coalition {𝜇 − 1, 𝜇}. We have that

𝑦𝜇−1 + 𝑦𝜇 = 2𝑏+𝑤𝜇−1 +𝑤𝜇

> 𝑏+𝑤𝜇−1 + 2𝑤𝜇

= 𝐶({𝜇 − 1, 𝜇})

where the inequality comes from 𝑏 >𝑤𝜇 . Thus, the core is empty.

(iii) We divide in three intervals: 𝑏 ∈
[
𝑤𝜇+1,𝑤𝜇+1 +𝑤𝑛

]
, 𝑏 ∈

[
𝑤𝜇+1 +𝑤𝑛,𝑤𝜇 +𝑤𝑛

]
and 𝑏 ∈

[
𝑤𝜇 +𝑤𝑛,𝑤𝜇 + 2𝑤𝑛

]
. For each inter-

val, we provide an allocation and show that it lies in the core.

Case 1: 𝑏 ∈
[
𝑤𝜇+1,𝑤𝜇+1 +𝑤𝑛

]
.

We show that the following allocation 𝑦 ∈ℝ𝑛 is in the core: 𝑦𝑖 =
𝑏

2 +𝑤𝑖 +
𝑤𝜇+1
2 for all 𝑖 ∈ {1,… , 𝜇}, and 𝑦𝑗 =

𝑏

2 + 2𝑤𝑗 −
𝑤𝜇+1
2 for all 

𝑗 ∈ {𝜇 + 1,… , 𝑛}.
First, from Lemma 3 we know that 𝑚(𝑁) ≥ 𝜇. We show that 𝑚(𝑁) = 𝜇. If 𝑁 adds a machine, the net gain is 𝑤𝜇+1 − 𝑏 < 0. This 

implies that our allocation is budget-balanced.
Next, we pick 𝑆 ⊆ {1,… , 𝜇} and 𝑇 ⊆ {𝜇 + 1,… , 𝑛} and show that 𝑦(𝑆 ∪ 𝑇 ) ≤ 𝐶(𝑆 ∪ 𝑇 ). Let 𝑠 = |𝑆| and 𝑡 = |𝑇 |.
We have that

𝑦(𝑆 ∪ 𝑇 ) = 𝑠+ 𝑡

2
𝑏+

∑
𝑖∈𝑆

𝑤𝑖 +
∑
𝑖∈𝑇

2𝑤𝑖 +
𝑠− 𝑡

2
𝑤𝜇+1,

and

𝐶(𝑆 ∪ 𝑇 ) ≤𝑚𝑏+
𝑠∑

𝑘=1

⌈ 𝑠𝑘
𝑚

⌉
𝑤𝑠𝑘

+
𝑡∑

𝑘=1

⌈
𝑠+ 𝑡𝑘

𝑚

⌉
𝑤𝑡𝑘

,

where 𝑠𝑘 and 𝑡𝑘 are the 𝑘𝑡ℎ agent in 𝑆 and 𝑇 , respectively. Thus, we need to show that

𝑠+ 𝑡

2
𝑏+

∑
𝑖∈𝑆

𝑤𝑖 +
∑
𝑖∈𝑇

2𝑤𝑖 +
𝑠− 𝑡

2
𝑤𝜇+1 ≤𝑚𝑏+

𝑠∑
𝑘=1

⌈ 𝑠𝑘
𝑚

⌉
𝑤𝑠𝑘

+
𝑡∑

𝑘=1

⌈
𝑠+ 𝑡𝑘

𝑚

⌉
𝑤𝑡𝑘

.

Case 1.1: 𝑠 + 𝑡 ≤ 2𝑚 and 𝑠 ≤𝑚.
𝑠 + 𝑡 ≤ 2𝑚 guarantees that no agent wait for more than 2 periods, and 𝑠 ≤ 𝑚 guarantees that all agents in 𝑆 are served in the first 
period. Thus, the inequality simplifies to

𝑚−𝑠∑
𝑘=1

2𝑤𝑡𝑘
+ (𝑠− 𝑡)𝑤𝜇+1 ≤ (2𝑚− 𝑠− 𝑡)𝑏.

Since 𝑏 ≥𝑤𝜇+1, a sufficient condition is

𝑚−𝑠∑
𝑘=1

2𝑤𝑡𝑘
+ (𝑠− 𝑡)𝑤𝜇+1 ≤ (2𝑚− 𝑠− 𝑡)𝑤𝜇+1

𝑚−𝑠∑
𝑘=1

2𝑤𝑡𝑘
≤ (𝑚− 𝑠)2𝑤𝜇+1.

On the left-hand side, we have 𝑚 − 𝑠 terms, all no larger than 2𝑤𝜇+1, and thus the sufficient condition is verified.

Case 1.2: 𝑠 + 𝑡 ≤ 2𝑚 and 𝑠 >𝑚.
𝑠 + 𝑡 ≤ 2𝑚 guarantees that no agent wait for more than 2 periods, and 𝑠 > 𝑚 guarantees that all agents in 𝑇 are served in the second 
118

period. Thus, the inequality simplifies to



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

−
𝑠∑

𝑘=𝑚+1
2𝑤𝑠𝑘

+ (𝑠− 𝑡)𝑤𝜇+1 ≤ (2𝑚− 𝑠− 𝑡)𝑏.

Since 𝑏 ≥𝑤𝜇+1, a sufficient condition is

−
𝑠∑

𝑘=𝑚+1
2𝑤𝑠𝑘

+ (𝑠− 𝑡)𝑤𝜇+1 ≤ (2𝑚− 𝑠− 𝑡)𝑤𝜇+1

(𝑠−𝑚)2𝑤𝜇+1 ≤

𝑠∑
𝑘=𝑚+1

2𝑤𝑠𝑘
.

On the right-hand side, we have 𝑠 −𝑚 terms, all no smaller than 2𝑤𝜇+1, and thus the sufficient condition is verified.

Case 1.3: 𝑠 + 𝑡 > 2𝑚 and 𝑠 ≤𝑚.
𝑠 + 𝑡 > 2𝑚 implies that some agent will wait for more than two periods, and 𝑠 ≤ 𝑚 implies that all agents in 𝑆 are served in the first 
period. Thus, the inequality simplifies to

(𝑠+ 𝑡− 2𝑚)𝑏 ≤
𝑡∑

𝑘=1

(⌈
𝑠+ 𝑡𝑘

𝑚

⌉
− 2

)
2𝑤𝑡𝑘

+ (𝑡− 𝑠)𝑤𝜇+1.

Notice that agents 𝑡𝑘 with 𝑘 = 1, … , 2𝑚 − 𝑠 are served in the second period, while others are served in the third period or later. Thus, 
we have that

𝑡∑
𝑘=1

(⌈
𝑠+ 𝑡𝑘

𝑚

⌉
− 2

)
2𝑤𝑡𝑘

≥

𝑡∑
𝑘=2𝑚−𝑠+1

2𝑤𝑡𝑘
.

Therefore, a sufficient condition, using 𝑏 ≤𝑤𝜇+1 +𝑤𝑛, is

(𝑠+ 𝑡− 2𝑚)
(
𝑤𝜇+1 +𝑤𝑛

)
≤

𝑡∑
𝑘=2𝑚−𝑠+1

2𝑤𝑡𝑘
+ (𝑡− 𝑠)𝑤𝜇+1

which simplifies to

(𝑠+ 𝑡− 2𝑚)𝑤𝑛 ≤ (𝑚− 𝑠)2𝑤𝜇+1 +
𝑡∑

𝑘=2𝑚−𝑠+1
2𝑤𝑡𝑘

.

The summation on the right-hand side contains 𝑠 + 𝑡 − 2𝑚 terms all at least as large as 𝑤𝑛. Since 𝑚 ≥ 𝑠, the first term on the 
right-hand side is non-negative, and thus the sufficient condition is satisfied.

Case 1.4: 𝑠 + 𝑡 > 2𝑚 and 𝑠 >𝑚.
𝑠 + 𝑡 > 2𝑚 implies that some agent will wait for more than two periods, and 𝑠 > 𝑚 implies that some agents in 𝑆 are served in the 
second period. Notice also that it is never optimal to have 𝑚 < 𝑠

2 , so that at worst, agents in 𝑆 wait two periods. Thus, the inequality 
simplifies to

(𝑠+ 𝑡− 2𝑚)𝑏 ≤
𝑠∑

𝑘=𝑚+1
2𝑤𝑠𝑘

+
𝑡∑

𝑘=1

(⌈
𝑠+ 𝑡𝑘

𝑚

⌉
− 2

)
2𝑤𝑡𝑘

+ (𝑡− 𝑠)𝑤𝜇+1.

As in the case above, we have that

𝑡∑
𝑘=1

(⌈
𝑠+ 𝑡𝑘

𝑚

⌉
− 2

)
2𝑤𝑡𝑘

≥

𝑡∑
𝑘=2𝑚−𝑠+1

2𝑤𝑡𝑘
.

Therefore, a sufficient condition, using 𝑏 ≤𝑤𝜇+1 +𝑤𝑛, is

(𝑠+ 𝑡− 2𝑚)
(
𝑤𝜇+1 +𝑤𝑛

)
≤

𝑠∑
𝑘=𝑚+1

2𝑤𝑠𝑘
+

𝑡∑
𝑘=2𝑚−𝑠+1

2𝑤𝑡𝑘
+ (𝑡− 𝑠)𝑤𝜇+1,

which simplifies to

(𝑠−𝑚)2𝑤𝜇+1 + (𝑠+ 𝑡− 2𝑚)𝑤𝑛 ≤

𝑠∑
𝑘=𝑚+1

2𝑤𝑠𝑘
+

𝑡∑
𝑘=2𝑚−𝑠+1

2𝑤𝑡𝑘
.

The first summation on the right-hand side contains (𝑠 − 𝑚) terms, all no smaller than 2𝑤𝜇+1. The second summation contains 
𝑠 + 𝑡 − 2𝑚 terms, all no smaller than 𝑤𝑛. Thus, the sufficient condition holds.
119

All together, we have verified all combinations, and Case 1 is complete.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Case 2: 𝑏 ∈
[
𝑤𝜇+1 +𝑤𝑛,𝑤𝜇 +𝑤𝑛

]
.

Using the same technique as for Case 1, we can show that the following allocation 𝑦 ∈ ℝ𝑛 is in the core: 𝑦𝑖 = 𝑏 +𝑤𝑖 −
𝑤𝑛

2 for all 
𝑖 ∈ {1,… , 𝜇}, 𝑦𝑗 = 2𝑤𝑗 +

𝑤𝑛

2 for all 𝑗 ∈ {𝜇 + 1,… , 𝑛}.

Case 3: 𝑏 ∈
[
𝑤𝜇 +𝑤𝑛,𝑤𝜇 + 2𝑤𝑛

]
.

Using the same technique as for Case 1, we can show that the following allocation 𝑦 ∈ ℝ𝑛 is in the core: 𝑦𝑖 =
𝑏

2 +𝑤𝑖 +
𝑤𝜇

2 for all 
𝑖 ∈ {1,… , 𝜇}, 𝑦𝑗 =

𝑏

2 + 2𝑤𝑗 −
𝑤𝜇

2 for all 𝑗 ∈ {𝜇 + 1,… , 𝑛}.

(iv) From Lemma 3 we know that 𝑚(𝑁) ≥ 𝜇. We show that 𝑚(𝑁) = 𝜇, and thus 𝐶(𝑁) = 𝑏𝜇 +
∑

𝑖∈𝑁1
𝑤𝑖 +

∑
𝑖∈𝑁2

2𝑤𝑖. If it were to 
add a machine, the net gain would be 𝑤𝜇+1 − 𝑏 < 0, confirming that 𝑚(𝑁) = 𝜇.

Second, we show that 𝐶(𝑁 ⧵ {𝜇 + 1}) = (𝜇 − 1)𝑏 +
∑𝜇−1

𝑗=1 𝑤𝑗 +2𝑤𝜇 +
∑𝑛−1

𝑗=𝜇+2 2𝑤𝑗 +3𝑤𝑛. If it were to add a machine, the net gain 
would be 𝑤𝜇 +𝑤𝑛 − 𝑏 < 0. If it were to remove a machine, the net gain would be 𝑏 −𝑤𝜇−1 −𝑤𝑛−2 −𝑤𝑛−1 < 0.

Since in any core allocation we must have that 𝑦𝜇+1 ≥ 𝐶(𝑁) −𝐶(𝑁 ⧵ {𝜇 + 1}), we obtain

𝑦𝜇+1 ≥ 𝑏−𝑤𝜇 + 2𝑤𝜇+1 −𝑤𝑛.

Recall that since 𝜇 = 𝑚(𝑁), 𝑁1 = {1, … , 𝜇} and 𝑁2 = {𝜇 + 1, … , 𝑛}. Now, consider 𝑆 ⊂ 𝑁1 and 𝑇 ⊂ 𝑁2 ⧵ {𝜇 + 1} such that 𝑛 ∈ 𝑇

and that |𝑆| = |𝑇 | = 𝑘.
We have that 𝐶(𝑆 ∪ 𝑇 ) ≤ 𝑘𝑏 +

∑
𝑖∈𝑆 𝑤𝑖 +

∑
𝑖∈𝑇 2𝑤𝑖. We also have that 𝐶(𝑁 ⧵ (𝑆 ∪ 𝑇 )) ≤ (𝜇 − 𝑘)𝑏 +

∑
𝑖∈𝑁1⧵𝑆 𝑤𝑖 +

∑
𝑖∈𝑁2⧵𝑇 2𝑤𝑖. 

This, along with the value of 𝐶(𝑁), shows that if any of these inequalities is strict, the core is empty, completing the proof. Suppose 
otherwise. Then, in any core allocation we have 𝑦(𝑆 ∪ 𝑇 ) = 𝐶(𝑆 ∪ 𝑇 ) = 𝑘𝑏 +

∑
𝑖∈𝑆 𝑤𝑖 +

∑
𝑖∈𝑇 2𝑤𝑖.

Consider coalition 𝑆 ∪ 𝑇 ∪ {𝜇 + 1}. We have that 𝐶(𝑆 ∪ 𝑇 ∪ {𝜇 + 1}) ≤ 𝑘𝑏 +
∑

𝑖∈𝑆 𝑤𝑖 +
∑

𝑖∈𝑇 ⧵{𝑛} 2𝑤𝑖 + 2𝑤𝜇+1 + 3𝑤𝑛. Since 
𝑦(𝑆 ∪ 𝑇 ) = 𝐶(𝑆 ∪ 𝑇 ), we have that in any core allocation we must have

𝑦𝜇+1 ≤ 𝐶(𝑆 ∪ 𝑇 ∪ {𝜇 + 1}) −𝐶(𝑆 ∪ 𝑇 )

= 2𝑤𝜇+1 +𝑤𝑛.

Therefore, a necessary condition for the existence of a core allocation is

𝑏−𝑤𝜇 + 2𝑤𝜇+1 −𝑤𝑛 ≤ 2𝑤𝜇+1 +𝑤𝑛

or

𝑏 ≤𝑤𝜇 + 2𝑤𝑛

which is not satisfied. Therefore, the core is empty. □

Making use of Lemmata 1, 2 we can provide the proof of Theorem 2.

Proof of Theorem 2. Notice that 𝑤2 +
𝑛∑

𝑖=3

(
𝑖−

⌈
𝑖

2

⌉)
𝑤𝑖 = 𝑟𝑤(2), and thus by Lemma 1, 𝑚(𝑁) = 1. By Lemma 2, 𝑚(𝑆) = 1 for all 

𝑆 ⊆𝑁 , and thus all coalitions use a single machine. Recall that 𝑤𝑇
𝑘

denotes the waiting cost of the 𝑘𝑡ℎ agent in 𝑇 , according to the 

order in 𝑁 and 𝑤−𝑇
𝑘

≡𝑤
𝑁⧵𝑇
𝑘

. Thus, for all ∅ ≠ 𝑇 ⊆𝑁 , 𝐶(𝑇 ) = 𝑏 +
∑|𝑇 |

𝑖=1 𝑖𝑤
𝑇
𝑖

and let �̂�(𝑇 ) ∶= 𝐶(𝑇 ) −
𝑛−|𝑇 |−1∑

𝑖=1
𝑖𝑤−𝑇

𝑖+1.

The proof consists in showing that 𝐶𝑜𝑟𝑒(�̂�) = 𝐶𝑜𝑟𝑒(𝐶), then for part (i), to show that �̂� as a very specific structure yielding the 
given core,8 and for part (ii), in the given interval, that �̂� is not subadditive.

Notice first that �̂�(𝑇 ) = 𝐶(𝑇 ) if |𝑇 | ≥ 𝑛 − 1. Suppose that we have shown that 𝑦(𝑇 ) ≤ �̂�(𝑇 ) in any core allocation if |𝑇 | > 𝑚. We 
need to show that it implies that 𝑦(𝑇 ) ≤ �̂�(𝑇 ) in any core allocation if |𝑇 | =𝑚.

Fix 𝑇 such that |𝑇 | = 𝑚 and fix 𝑘 ∈𝑁∖𝑇 . We consider the core constraints for 𝑇 ∪ {𝑘} and 𝑁∖ {𝑘}. Since both contain at least 
𝑚 + 1 agents, by the recursive argument we must have 𝑦 (𝑇 ∪ {𝑘}) ≤ �̂� (𝑇 ∪ {𝑘}) and 𝑦 (𝑁 ⧵ {𝑘}) ≤ �̂� (𝑁 ⧵ {𝑘}). By summing them 
up and using the fact that 𝑦(𝑁) = 𝐶(𝑁) = �̂�(𝑁) we obtain 𝑦(𝑇 ) ≤ �̂�(𝑇 ∪ {𝑘}) + �̂�(𝑁 ⧵ {𝑘}) − �̂�(𝑁).

We have that 𝐶(𝑇 ∪ {𝑘}) = 𝑏 +
∑|𝑇 |+1

𝑖=1 𝑖𝑤
𝑇∪{𝑘}
𝑖

, �̂�(𝑇 ∪ {𝑘}) = 𝐶(𝑇 ) −
∑𝑛−|𝑇 |−2

𝑖=1 𝑖𝑤
−(𝑇∪{𝑘})
𝑖+1 and �̂�(𝑁 ⧵ {𝑘}) = 𝐶(𝑁 ⧵ {𝑘}) = 𝑏 +∑𝑛−1

𝑖=1 𝑖𝑤
𝑁⧵{𝑘}
𝑖

and �̂�(𝑁) = 𝐶(𝑁) = 𝑏 +
∑𝑛

𝑖=1 𝑖𝑤𝑖.
Thus,

�̂�(𝑇 ∪ {𝑘}) + �̂�(𝑁 ⧵ {𝑘}) − �̂�(𝑁) = 𝑏+
|𝑇 |+1∑
𝑖=1

𝑖𝑤
𝑇∪{𝑘}
𝑖

−
𝑛−|𝑇 |−2∑

𝑖=1
𝑖𝑤

−(𝑇∪{𝑘})
𝑖+1 +

𝑛−1∑
𝑖=1

𝑖𝑤
𝑁⧵{𝑘}
𝑖

−
𝑛∑

𝑖=1
𝑖𝑤𝑖.

8 While the resulting game has a simple enough structure to analyze its core directly, we can provide an alternative proof by showing that the resulting game, 
120

written as a value sharing game, is a symmetric one-bound core game (Driessen, 1985; Gong et al., 2023).



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

We simplify this expression by looking at the terms associated to 𝑤𝑗 , for a given 𝑗 ∈𝑁 . Before proceeding, we observe that for 
all 𝑘 ∈𝑁 and all 𝑇 ∈𝑁 ⧵ {𝑘}, the rank of agent 𝑘 in 𝑇 ∪ {𝑘} plus its rank in 𝑁 ⧵ 𝑇 is exactly 𝑘 + 1. Agent 𝑘’s waiting cost appears 
in the second and fifth terms. In the second term, it appears with a weight equal to its rank in 𝑇 ∪ {𝑘}. In the fifth term, the weight 
is −𝑘. Using the equality established above, this simplifies to its rank in 𝑁 ⧵ 𝑇 , minus one.

Next, we consider agent 𝑗 ≠ 𝑘, and distinguish several cases.

Case 1: 𝑗 ∈ 𝑇 such that 𝑗 < 𝑘. Then, the waiting cost of agent 𝑗 appears in the second, fourth and fifth terms. Since it is the 𝑗𝑡ℎ agent 
in 𝑁 ⧵ {𝑘} and in 𝑁 , the fourth and fifth terms cancel out. It remains in the second term, where it appears with a weight equals to 
its rank in 𝑇 ∪ {𝑘}, which is the same as its rank in 𝑇 .

Case 2: 𝑗 ∈ 𝑇 such that 𝑗 > 𝑘. Then, the waiting cost of agent 𝑗 appears in the second, fourth and fifth terms. Since it is the (𝑗 − 1)𝑡ℎ
agent in 𝑁 ⧵ {𝑘} and the 𝑗𝑡ℎ in 𝑁 , the fourth and fifth terms simplify to −𝑤𝑗 . In the second term, the waiting cost of agent 𝑗 appears 
with a weight equal to its rank in 𝑇 ∪ {𝑘}. Since 𝑗 > 𝑘, the rank in 𝑇 ∪ {𝑘} minus one is equal to the rank in 𝑇 .

Case 3: 𝑗 ∉ 𝑇 such that 𝑗 < 𝑘. Then, the waiting cost of agent 𝑗 appears in the third, fourth and fifth terms. Since it is the 𝑗𝑡ℎ agent 
in 𝑁 ⧵ {𝑘} and in 𝑁 , the fourth and fifth terms cancel out. It remains in the third term, where it appears with a weight equals to its 
rank in 𝑁 ⧵ (𝑇 ∪ {𝑘}) minus one. Since 𝑗 has the same rank in 𝑁 ⧵ 𝑇 , this is equal to its rank in 𝑁 ⧵ 𝑇 minus one.

Case 4: 𝑗 ∉ 𝑇 such that 𝑗 > 𝑘. Then, the waiting cost of agent 𝑗 appears in the third, fourth and fifth terms. Since it is the (𝑗 − 1)𝑡ℎ
agent in 𝑁 ⧵ {𝑘} and the 𝑗𝑡ℎ in 𝑁 , the fourth and fifth terms simplify to −𝑤𝑗 . In the third term it appears with a weight equals to its 
rank in 𝑁 ⧵ (𝑇 ∪ {𝑘}) minus one. Adding the simplification of the fourth and fifth terms, we obtain its rank in 𝑁 ⧵ (𝑇 ∪ {𝑘}) minus 
two. Since 𝑗 > 𝑘, this is equal to its rank in 𝑁 ⧵ 𝑇 minus one.

Putting everything together, we can simplify the expression, differentiating if an agent belongs to 𝑇 or not. If it does, the agent is 
in Cases 1 or 2. If not, it is in Cases 3 or 4, or it is agent 𝑘. We obtain:

�̂�(𝑇 ∪ {𝑘}) + �̂�(𝑁 ⧵ {𝑘}) − �̂�(𝑁) = 𝑏+
|𝑇 |∑
𝑖=1

𝑖𝑤𝑇
𝑖
−

𝑛−|𝑇 |−1∑
𝑖=1

𝑖𝑤−𝑇
𝑖+1

= �̂� (𝑇 ) .

Thus, we have the core constraint 𝑦(𝑇 ) ≤ �̂�(𝑇 ). This completes the recursive argument, and 𝑦 ∈𝐶𝑜𝑟𝑒(𝐶) implies that 𝑦 ∈ 𝐶𝑜𝑟𝑒(�̂�). 
Given that �̂� ≤ 𝐶 and �̂�(𝑁) = 𝐶(𝑁), this completes the proof that 𝐶𝑜𝑟𝑒(�̂�) = 𝐶𝑜𝑟𝑒(𝐶).

We now establish the value of incremental costs for the function �̂� .
Fix ∅ ≠ 𝑇 ⊆𝑁 ⧵ {𝑘}. Then, we have that

�̂�(𝑇 ∪ {𝑘}) − �̂�(𝑇 ) =
|𝑇 |+1∑
𝑖=1

𝑖𝑤
𝑇∪{𝑘}
𝑖

−
|𝑇 |∑
𝑖=1

𝑖𝑤𝑇
𝑖
−

𝑛−|𝑇 |−2∑
𝑖=1

𝑖𝑤
−(𝑇∪{𝑘})
𝑖+1 +

𝑛−|𝑇 |−1∑
𝑖=1

𝑖𝑤−𝑇
𝑖+1

=
∑
𝑖>𝑘

𝑤𝑖 + 𝑘𝑤𝑘

=𝐴𝑘

The equality is based on the following observations: if 𝑖 < 𝑘 and 𝑖 ∈ 𝑇 , then its rank in 𝑇 ∪ {𝑘} is the same as in 𝑇 , and the terms 
cancel out. The same is true if 𝑖 ∈𝑁 ⧵ 𝑇 . If 𝑖 > 𝑘 and 𝑖 ∈ 𝑇 , the rank of 𝑖 is one higher in 𝑇 ∪ {𝑘} than in 𝑇 . If 𝑖 > 𝑘 and 𝑖 ∈𝑁 ⧵ 𝑇 , 
the rank of 𝑖 is one smaller in 𝑁 ⧵ (𝑇 ∪ {𝑘}) than in 𝑁 ⧵𝑇 . In all cases, the difference is 𝑤𝑖. As for 𝑘, it appears in the first and fourth 
terms. The weight on its waiting cost is its rank in 𝑇 ∪ {𝑘} plus its rank in 𝑁 ⧵ 𝑇 minus 1. For all agents, that equals 𝑘.

This result is independent of 𝑇 , as long as 𝑇 ≠ ∅. For 𝑇 = ∅, notice that �̂�({𝑘}) = 𝑏 +𝑤𝑘−
∑𝑛−2

𝑖=1 𝑖𝑤
−{𝑘}
𝑖+1 = 𝑏 +𝑤𝑘 −

∑
𝑖<𝑘(𝑖 −1)𝑤𝑖 −∑

𝑖>𝑘(𝑖 − 2)𝑤𝑖.
A necessary condition for 𝐶𝑜𝑟𝑒(�̂�) to be non-empty is �̂�({𝑘}) + �̂�(𝑁∖ {𝑘}) ≥ �̂�(𝑁), or equivalently

�̂�(𝑁) − �̂�(𝑁∖{𝑘}) =
∑
𝑖>𝑘

𝑤𝑖 + 𝑘𝑤𝑘 ≤ 𝑏+𝑤𝑘 −
∑
𝑖<𝑘

(𝑖− 1)𝑤𝑖 −
∑
𝑖>𝑘

(𝑖− 2)𝑤𝑖 = �̂�({𝑘})

which simplifies to

𝑏 ≥

𝑛∑
𝑖=1

(𝑖− 1)𝑤𝑖.

Therefore, in the interval given in statement (ii), the core is empty, as desired.
To complete the proof of statement (i), notice that the inequality above, in the given interval is satisfied, which also implies that 

�̂� is concave. Thus, the extreme points of its core are given by the allocations 𝑦𝑘 , for all 𝑘 ∈𝑁 , such that

𝑦𝑘
𝑗
=
{

𝑏+𝑤𝑘 −
∑

𝑖<𝑘(𝑖− 1)𝑤𝑖 −
∑

𝑖>𝑘(𝑖− 2)𝑤𝑖 if 𝑘 = 𝑗

𝐴𝑗 otherwise
121

as it only matters if an agent 𝑘 is picked first, and pays �̂�({𝑘}), or not, and pays 𝐴𝑘.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

As established above, we have that 𝑏 +𝑤𝑘 −
∑

𝑖<𝑘(𝑖 − 1)𝑤𝑖 −
∑

𝑖>𝑘(𝑖 − 2)𝑤𝑖 −𝐴𝑘 = 𝑏 −
∑𝑛

𝑖=1(𝑖 − 1)𝑤𝑖, allowing us to rewrite the 
allocation as

𝑦𝑘
𝑗
=
{

𝐴𝑘 + 𝑏−
∑𝑛

𝑖=1(𝑖− 1)𝑤𝑖 if 𝑘 = 𝑗

𝐴𝑗 otherwise
.

Since 𝐶𝑜𝑟𝑒(�̂�) is the convex combination of these extreme points, and since 𝑏 −
∑𝑛

𝑖=1(𝑖 − 1)𝑤𝑖 is non-negative and independent 
of 𝑘, it is immediate that 𝐶𝑜𝑟𝑒(𝐶) = 𝐶𝑜𝑟𝑒(�̂�) =𝐴 +Δ 

(
𝑁,𝑏−

∑𝑛

𝑖=1(𝑖− 1)𝑤𝑖

)
, as desired. □

A.3. Proofs of Section 4

Proof of Lemma 4. i) First, it is immediate that if a coalition prefers to buy 𝑘 > 1 machines than use 𝑚0 machines, it also prefers to 
buy one machine to using 𝑚0 machines. In the same way, if a coalition prefers to sell 𝑘 > 1 machines to using 𝑚0 machines, it also 
prefers to sell one machine to using 𝑚0 machines. Thus, we only need to show that there cannot be 𝑆, 𝑇 ⊆𝑁 such that 𝑆 prefers to 
buy a machine to using 𝑚0 machines and 𝑇 prefers to sell a machine to using 𝑚0 machines.

Suppose first that 𝑆 prefers to buy a machine to using 𝑚0 machines. Thus, 
∑

𝑖∈𝑆

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0+1

⌉)
𝑤𝑖 − 𝑏 > 0. But, we have that

∑
𝑖∈𝑆

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0 + 1

⌉)
𝑤𝑖 − 𝑏 ≤

∑
𝑖∈𝑁

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0 + 1

⌉)
𝑤𝑖 − 𝑏

≤
∑
𝑖∈𝑁

(⌈
𝑖

𝑚0 − 1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 − 𝑏

≤
∑
𝑖∈𝑁

(⌈
𝑖

𝑚0 − 1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 −

|𝑇 |
𝑛

𝑏

and thus 
∑

𝑖∈𝑁

(⌈
𝑖

𝑚0−1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 −

|𝑇 |
𝑛
𝑏 > 0, which can be rewritten as |𝑇 |

𝑛
𝑏 −

∑
𝑖∈𝑁

(⌈
𝑖

𝑚0−1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 < 0 which indicates 

that 𝑇 does not prefer to sell 1 machine to using 𝑚0 machines.

Suppose next that 𝑆 prefers to sell a machine to using 𝑚0 machines. Thus, |𝑆|
𝑛
𝑏 −

∑
𝑖∈𝑁

(⌈
𝑖

𝑚0−1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 > 0. But, we have 

that |𝑆|
𝑛

𝑏−
∑
𝑖∈𝑁

(⌈
𝑖

𝑚0 − 1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 ≤ 𝑏−

∑
𝑖∈𝑁

(⌈
𝑖

𝑚0 − 1

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖

≤ 𝑏−
∑
𝑖∈𝑁

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0 + 1

⌉)
𝑤𝑖

≤ 𝑏−
∑
𝑖∈𝑇

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0 + 1

⌉)
𝑤𝑖

and thus 𝑏 −
∑

𝑖∈𝑇

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0+1

⌉)
𝑤𝑖 > 0, which can be rewritten as 

∑
𝑖∈𝑇

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑚0+1

⌉)
𝑤𝑖 − 𝑏 < 0, which indicates that 𝑇

does not prefer to buy 1 machine to using 𝑚0 machines.

ii) Suppose that 𝑆 buys machines. Then, by part i), so does 𝑇 . We have that 
∑

𝑖∈𝑆

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆)

⌉)
𝑤𝑖 − 𝑏 

(
�̂�(𝑆) −𝑚0

)
≥∑

𝑖∈𝑆

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

𝑘

⌉)
𝑤𝑖 − 𝑏 

(
𝑘−𝑚0

)
for all 𝑘 =𝑚0, … , �̂�(𝑆). Add 

∑
𝑖∈𝑇 ⧵𝑆

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆)

⌉)
𝑤𝑖 on both sides to obtain

∑
𝑖∈𝑇

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆)

⌉)
𝑤𝑖 − 𝑏

(
�̂�(𝑆) −𝑚0

)
≥
∑
𝑖∈𝑇

(⌈
𝑖

𝑚0

⌉
−
⌈
𝑖

𝑘

⌉)
𝑤𝑖 − 𝑏

(
𝑘−𝑚0

)
for all 𝑘 =𝑚0, … , �̂�(𝑆), and thus 𝑇 buys at least as many machines as 𝑆 .

Suppose next that 𝑆 sells machines. Then, by part i), so does 𝑇 . We have that |𝑆|
𝑛
𝑏(𝑚0 − �̂�(𝑆)) −

∑
𝑖∈𝑁

(⌈
𝑖

�̂�(𝑆)

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 ≥|𝑆|

𝑛
𝑏(𝑚0 − 𝑘) −

∑
𝑖∈𝑁

(⌈
𝑖

𝑘

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 for all 𝑘 = �̂�(𝑆), … , 𝑚0. We then have that

|𝑇 |
𝑛

𝑏(𝑚0 − �̂�(𝑆)) −
∑
𝑖∈𝑁

(⌈
𝑖

�̂�(𝑆)

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖 ≥

|𝑇 |
𝑛

𝑏(𝑚0 − 𝑘) −
∑
𝑖∈𝑁

(⌈
𝑖

𝑘

⌉
−
⌈

𝑖

𝑚0

⌉)
𝑤𝑖

for all 𝑘 = �̂�(𝑆), … , 𝑚0, and thus 𝑇 sells at least as many machines as 𝑆 . □

Next, we provide the formal proof of Theorem 3 in Section 4 showing that the game with side-payments for requeueing problems, 
122

(𝑁, 𝑉𝑠𝑝), is convex and hence its core is non-empty, 𝐶𝑜𝑟𝑒(𝑉𝑠𝑝) ≠ ∅.



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Proof of Theorem 3. To ease on the notation, we use 𝑉 instead of 𝑉𝑠𝑝. Fix 𝑆 ⊂ 𝑇 ⊆ 𝑁 ⧵ {𝑖}. We show that 𝑉 (𝑆) + 𝑉 (𝑇 ∪ {𝑖}) ≥
𝑉 (𝑆 ∪ {𝑖}) + 𝑉 (𝑇 ).

By Lemma 4, either all coalitions buy machines (or stay put) or all coalitions sell machines (or stay put). We consider these two 
cases separately.

Case 1: All coalitions sell machines.
We have that

𝑉 (𝑆) ≥
(
𝑚0 − �̂�(𝑆 ∪ {𝑖})

)
𝑏
|𝑆|
𝑛

−
∑
𝑗∈𝑁

(⌈
𝑗

�̂�(𝑆 ∪ {𝑖})

⌉
−
⌈

𝑗

𝑚0

⌉)
𝑤𝑗

since 𝑆 has the option to pick �̂�(𝑆 ∪ {𝑖}). In the same way, we have

𝑉 (𝑇 ∪ {𝑖}) ≥
(
𝑚0 − �̂�(𝑇 )

)
𝑏
|𝑇 |+ 1

𝑛
−
∑
𝑗∈𝑁

(⌈
𝑗

�̂�(𝑇 )

⌉
−
⌈

𝑗

𝑚0

⌉)
𝑤𝑗

Summing these inequalities and rearranging, we obtain

𝑉 (𝑆) + 𝑉 (𝑇 ∪ {𝑖}) ≥
(
𝑚0 − �̂�(𝑆 ∪ {𝑖})

)
𝑏
|𝑆|
𝑛

−
∑
𝑗∈𝑁

(⌈
𝑗

�̂�(𝑆 ∪ {𝑖})

⌉
−
⌈

𝑗

𝑚0

⌉)
𝑤𝑗

+
(
𝑚0 − �̂�(𝑇 )

)
𝑏
|𝑇 |+ 1

𝑛
−
∑
𝑗∈𝑁

(⌈
𝑗

�̂�(𝑇 )

⌉
−
⌈

𝑗

𝑚0

⌉)
𝑤𝑗

≥
(
𝑚0 − �̂�(𝑆 ∪ {𝑖})

)
𝑏
|𝑆|+ 1

𝑛
−
∑
𝑗∈𝑁

(⌈
𝑗

�̂�(𝑆 ∪ {𝑖})

⌉
−
⌈

𝑗

𝑚0

⌉)
𝑤𝑗

+
(
𝑚0 − �̂�(𝑇 )

)
𝑏
|𝑇 |
𝑛

−
∑
𝑗∈𝑁

(⌈
𝑗

�̂�(𝑇 )

⌉
−
⌈

𝑗

𝑚0

⌉)
𝑤𝑗

= 𝑉 (𝑆 ∪ {𝑖}) + 𝑉 (𝑇 ),

where the second inequality comes from the following observation: When coalitions are selling machines, 𝑉 is symmetric. Thus, 
Lemma 4 part ii) implies that if |𝑅| ≥ ||𝑅′||, �̂�(𝑅) ≤ �̂�(𝑅′). In our case, this implies that �̂�(𝑇 ) ≤ �̂�(𝑆 ∪ {𝑖}).

Case 2: All coalitions buy machines.
Since in this case 𝑉 is no longer symmetric, we need to distinguish two subcases: a) �̂�(𝑇 ) ≥ �̂�(𝑆 ∪ {𝑖}) and b) �̂�(𝑇 ) < �̂�(𝑆 ∪ {𝑖}).
a) �̂�(𝑇 ) ≥ �̂�(𝑆 ∪ {𝑖}).
We have that

𝑉 (𝑆) ≥
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 −

(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

as 𝑆 had the option to pick �̂�(𝑆 ∪ {𝑖}). In the same way, we have

𝑉 (𝑇 ∪ {𝑖}) ≥
∑
𝑗∈𝑇

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑇 )

⌉)
𝑤𝑖 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

as 𝑇 ∪ {𝑖} had the option to pick �̂�(𝑇 ).
Summing these inequalities and rearranging, we obtain

𝑉 (𝑆) + 𝑉 (𝑇 ∪ {𝑖}) ≥
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 −

(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

+
∑
𝑗∈𝑇

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑇 )

⌉)
𝑤𝑖 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

≥
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑖

−
(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

+
∑
𝑗∈𝑇

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

= 𝑉 (𝑆 ∪ {𝑖}) + 𝑉 (𝑇 )

where the second inequality comes from the fact that �̂�(𝑇 ) ≥ �̂�(𝑆 ∪ {𝑖}).
123

b) �̂�(𝑇 ) < �̂�(𝑆 ∪ {𝑖}).



Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

We have that

𝑉 (𝑆) ≥
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

as 𝑆 had the option to pick �̂�(𝑇 ). In the same way, we have

𝑉 (𝑇 ∪ {𝑖}) ≥
∑
𝑗∈𝑇

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑖

−
(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

as 𝑇 ∪ {𝑖} had the option to pick �̂�(𝑆 ∪ {𝑖}).
Summing these inequalities and rearranging, we obtain

𝑉 (𝑆) + 𝑉 (𝑇 ∪ {𝑖}) ≥
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

+
∑
𝑗∈𝑇

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑖

−
(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

=
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏+

∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗

+
∑

𝑗∈𝑇 ⧵𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑖

−
(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

≥
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

+
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 +

∑
𝑗∈𝑇 ⧵𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗

+
(⌈

𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑖 −

(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

=
∑
𝑗∈𝑆

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑗 +

(⌈
𝑖

𝑚0

⌉
−
⌈

𝑖

�̂�(𝑆 ∪ {𝑖})

⌉)
𝑤𝑖

−
(
�̂�(𝑆 ∪ {𝑖}) −𝑚0

)
𝑏

+
∑
𝑗∈𝑇

(⌈
𝑗

𝑚0

⌉
−
⌈

𝑗

�̂�(𝑇 )

⌉)
𝑤𝑗 −

(
�̂�(𝑇 ) −𝑚0

)
𝑏

= 𝑉 (𝑆 ∪ {𝑖}) + 𝑉 (𝑇 )

where the second inequality comes from the fact that �̂�(𝑆 ∪ {𝑖}) > �̂�(𝑇 ). □

References

Atay, A., Calleja, P., Soteras, S., 2021. Open shop scheduling games. Eur. J. Oper. Res. 295, 12–21.
Bahel, E., Trudeau, C., 2019. Stability and fairness in the job scheduling problem. Games Econ. Behav. 117, 1–14.
Böhm-Bawerk, E., 1923. Positive Theory of Capital. Translated by W. Smart. G.E. Steckert, original publication 1891.
Calleja, P., Borm, P., Hamers, H., Klijn, F., Slikker, M., 2002. On a new class of parallel sequencing situations and related games. Ann. Oper. Res. 109, 265–277.
Chun, Y., 2006. A pessimistic approach to the queueing problem. Math. Soc. Sci. 51, 171–181.
Chun, Y., 2016. Fair Queueing. Springer.
Chun, Y., Heo, E.J., 2008. Queueing problems with two parallel servers. Int. J. Econ. Theory 4, 299–315.
Chun, Y., Yengin, D., 2017. Welfare lower bounds and strategy-proofness in the queueing problem. Games Econ. Behav. 102, 462–476.
Chun, Y., Mitra, M., Mutuswami, S., 2019. A characterization of the symmetrically balanced VCG rule in the queueing problem. Games Econ. Behav. 118, 486–490.
Curiel, I., Pederzoli, G., Tijs, S., 1989. Sequencing games. Eur. J. Oper. Res. 40, 344–351.
Curiel, I., Potters, J., Prasad, R., Tijs, S., Veltman, B., 1993. Cooperation in one machine scheduling. Z. Oper.-Res. 38, 113–129.
De, P., Mitra, M., 2017. Incentives and justice for sequencing problems. Econ. Theory 64, 239–264.
De, P., Mitra, M., 2019. Balanced implementability of sequencing rules. Games Econ. Behav. 118, 342–353.
Dehez, P., 2021. 1-convex transferable utility games, a reappraisal. Mimeo.
Driessen, T.S.H., 1985. Properties of 1-convex n-person games. OR Spektrum 7, 19–26.
García-Sanz, M.D., Fernández, F.R., Fiestras-Janeiro, M.G., García-Jurado, I., Puerto, J., 2008. Cooperation in Markovian queueing models. Eur. J. Oper. Res. 188, 
124

485–495.

http://refhub.elsevier.com/S0899-8256(24)00007-1/bib2269B5AA0FA8C0E3BA0416E11DF94A8Ds1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib767F1A0C3DBD8E18179BAE3826768FDBs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib76563678BB9A25873C26E22641D74902s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib9506D1C22D90030941CA8B1094BC4F14s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib3A4ECEE0E7B9226CD478CF5F8A740E1As1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib48351D3DF27085233D804425D81C486Ds1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibAE68D535BF94473C0032987FCBA52213s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib81DDC29945208100A7688CBEC9A7C46Bs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib8F65CF69DF089F8CA0EE7340D9427401s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib8BC8936992CA9F0CEB63E811E8009B50s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib8203613565A1E802E92E607D828FD2C7s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib6CFCD67448A199831C004108A8B2B54As1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib849628D142CACF20B090B4BEC40F73D9s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibE7679E5DE9C88F47625212112797AA4Bs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibC36C694CB7B62186215DD5127FE44F6As1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibC36C694CB7B62186215DD5127FE44F6As1


Games and Economic Behavior 144 (2024) 104–125A. Atay and C. Trudeau

Gillies, D.B., 1959. Solutions to general non-zero-sum games. In: Tucker, A.W., Luce, R.D. (Eds.), Contributions to the Theory of Games IV. Princeton University Press, 
pp. 47–85.

Gong, D., Dietzenbacher, B., Peters, H., 2023. One-bound core games. Mimeo.
González, P., Herrero, C., 2004. Optimal sharing of surgical costs in the presence of queues. Math. Methods Oper. Res. 59, 435–446.
Han, C., Chun, Y., 2022. The Shapley value in positional queueing problems. Mimeo.
Hashimoto, K., Saitoh, H., 2012. Strategy-proof and anonymous rule in queueing problems: a relationship between equity and efficiency. Soc. Choice Welf., 473–480.
Kayı, Ç., Ramaekers, E., 2010. Characterizations of Pareto-efficient, fair, and strategy-proof allocation rules in queueing problems. Games Econ. Behav. 68, 220–232.
Maniquet, F., 2003. A characterization of the Shapley value in queueing problems. J. Econ. Theory 109, 90–103.
Mitra, M., 2005. Incomplete information and multiple machine queueing problems. Eur. J. Oper. Res. 165, 251–266.
Mitra, M., Mutuswami, S., 2011. Group strategyproofness in queueing models. Games Econ. Behav. 72, 242–254.
Mitra, M., Mutuswami, S., 2021. No-envy in the queueing problem with multiple identical machines. In: Borkotokey, S., Kumar, R., Mukherjee, D., Rao, K.S.M., 

Sarangi, S. (Eds.), Game Theory and Networks: New Perspectives and Directions. In: Indian Statistical Institute Series. Springer, pp. 161–176.
Mukherjee, C., 2013. Weak group strategy-proof and queue-efficient mechanisms for the queueing problem with multiple machines. Int. J. Game Theory 42, 131–163.
Musegaas, M., Borm, P., Quant, M., 2015. Step out–step in sequencing games. Eur. J. Oper. Res. 246, 894–906.
Özen, U., Reiman, M.I., Wang, Q., 2011. On the core of cooperative queueing games. Oper. Res. Lett. 39, 385–389.
Shapley, L.S., 1953. A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (Eds.), Contributions to the Theory of Games II. Princeton University Press, pp. 307–317.
Shapley, L.S., 1959. The solutions of a symmetric market game. Ann. Math. Study 40, 145–162.
Shapley, L.S., 1971. Cores of convex games. Int. J. Game Theory 1, 11–26.
Shapley, L.S., Shubik, M., 1971. The assignment game I: the core. Int. J. Game Theory 1, 111–130.
Slikker, M., 2006. Relaxed sequencing games have a nonempty core. Nav. Res. Logist. 53, 235–242.
Smith, W., 1956. Various optimizers for single-stage production. Nav. Res. Logist. Q. 3, 59–66.
Suijs, J., 1996. On incentive compatibility and budget balancedness in public decision making. Econ. Des. 2, 193–209.
125

Zeng, Y., Zhang, L., Cai, X., Li, J., 2018. Cost sharing for capacity transfer in cooperating queueing systems. Prod. Oper. Manag. 27, 644–662.

http://refhub.elsevier.com/S0899-8256(24)00007-1/bibC40D8B31550A38EC6DE4254BB98F5A64s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibC40D8B31550A38EC6DE4254BB98F5A64s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib71F6E3B6F0B89F12840EBA811336CA9Ds1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib9F4C2B1BFEE395F1DDC58B80D09E2D06s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib4D7E7AF43B42AF1E6D02C6F7C7A763C9s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib18844D73221532BCC0C933C6FBDE2F57s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib45185A7D366D48672BE7FCBC814D5ED9s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib3FBB0E07BB5A87C93A9E306973F31EFFs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibFC5678DB54659BC47E7A65137621DB1As1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibFC5678DB54659BC47E7A65137621DB1As1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibDFC385CB3524D42DBD3FF68B0153DF94s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibABF26DA74E247BFE5AD766020DD75921s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibB6FABFAF0AAFB97C9F58ED2BAC974D4Ds1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib019AF902730A88C49A0DB208094FB8C2s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibB29DF33B907C20BD2BE0FF0B149EFFFCs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib16EC9CDEFB2A2DCB058F52BD24AC117Bs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib368516974748DCB3B88E7C4668C2AE28s1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibD32B399D19C9E3BF9012537E73AC0FAEs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib73EBB0E2299C89DC70A54ABBDE5C0A7Cs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bib2170D89959DFF464669BAA308B36CDCDs1
http://refhub.elsevier.com/S0899-8256(24)00007-1/bibD79E6BAB4D176113D8F7C816218AF443s1

	Queueing games with an endogenous number of machines
	1 Introduction
	2 Queueing problems with an endogenous number of machines
	3 Queueing games with an endogenous number of machines
	3.1 On the non-emptiness of the core of queueing games with an endogenous number of machines

	4 Requeueing games with an endogenous number of machines
	4.1 Private requeueing games
	4.2 Public requeueing games with side payments
	4.3 Extending to constrained requeueing

	5 Concluding remarks
	Declaration of competing interest
	Data availability
	References


