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Abstract

Objective: The regulation of negative emotions entails the modulation of subcortical

regions, such as the amygdala, by prefrontal regions. There is preliminary evidence

suggesting that individuals at higher weight may present with hypoactivity in pre-

frontal regulatory systems during emotional regulation, although the directionality of

these pathways has not been tested. In this study, we compared fronto-amygdalar

effective connectivity during cognitive reappraisal as a function of BMI in 48 adult

women with obesity and 54 control participants.

Methods: Dynamic causal modeling and parametric empirical Bayes were used to

map effective connectivity between the dorsomedial prefrontal cortex, orbitofrontal

cortex, dorsolateral prefrontal cortex, and the amygdala.

Results: Difficulty in Emotion Regulation Scale scores were higher in the obesity

group compared with control participants (p < 0.001). A top-down cortical model

best explained our functional magnetic resonance imaging data (posterior

probability = 86%). Participants at higher BMI were less effective at inhibiting activity in
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the amygdala via the orbitofrontal cortex and dorsomedial prefrontal cortex during reap-

praisal compared with those at lower BMI. In contrast, increased excitatory modulation

of dorsolateral prefrontal cortex-to-amygdalar connectivity was found in participants at

lower BMI.

Conclusions: These findings support a framework involving alterations in fronto-

amygdalar connectivity contributing to difficulties in regulating negative affect in

individuals at higher weight.

INTRODUCTION

High body weight is thought to be maintained by hypothalamic signals

influencing calorie intake, glucose metabolism, and energy expendi-

ture, as well as by psychological factors [1]. Specifically, deficits in

emotional regulation are thought to contribute to the onset and main-

tenance of higher weight as there is mounting evidence indicating that

individuals at higher weight are more likely to use food intake as a

maladaptive emotion-regulation strategy [2].

Emotional regulation encompasses efforts through which peo-

ple alter the experience and/or expression of their emotions [3]. Of

these emotion-regulation strategies, neuroimaging research has

largely focused on cognitive reappraisal, which involves reinterpret-

ing the meaning of affectively charged stimuli or events in terms

that alter their emotional impact. Meta-analyses on the neurobio-

logical correlates of cognitive reappraisal in healthy control individ-

uals have converged in demonstrating that the prefrontal cortex

(PFC) modulates activity in regions associated with negative affect,

such as the amygdala and the insula, with the amygdala being the

subcortical region most found to be modulated during reapprai-

sal [4, 5].

Two previous studies have examined the cognitive reappraisal of

negative emotions in individuals at higher weight and with obesity

using functional magnetic resonance imaging (fMRI). One study found

that young adults with higher weight displayed increased functional

connectivity between the right anterior insula and the dorsolateral

and dorsomedial prefrontal cortices (dlPFC and dmPFC, respectively)

during reappraisal [6]. Relatedly, another study identified that adult

women with obesity presented with a decreased response in the ven-

tromedial PFC when reappraising negative emotions [7], with ventro-

medial PFC activity levels during cognitive reappraisal being

negatively correlated with self-reported difficulties in emotional regu-

lation. These studies, however, have examined task-induced activa-

tions and functional connectivity during reappraisal, but no study thus

far, to our knowledge, has modeled the causal dynamics of between-

region connectivity. Dynamic causal modeling (DCM) allows for test-

ing causal excitatory and inhibitory connectivity by inferring the

causal architecture of a network of regions (i.e., nodes) and estimating

their “effective connectivity,” that is, the extent to which the activity

of one region directly influences activity in other regions or the modu-

latory effects of a task on causal architecture [8]. DCM, therefore, can

deliver more refined neurobiological models of emotion-regulation

alterations in individuals at higher weight and provide more informed

insights on which regions and pathways are, for example, potentially

well suited for focal stimulation.

Study Importance

What is already known?

• Deficits in emotional regulation contribute to the onset

and maintenance of higher weight.

• Individuals at higher weight are more likely to use food

intake as a maladaptive emotion-regulation strategy.

• Individuals at higher weight may present with hypoactiv-

ity in prefrontal regulatory systems during emotional reg-

ulation, though the directionality of these pathways has

not been tested.

What does this study add?

• This study used dynamic causal modeling to determine

how BMI impacts fronto-amygdalar effective connectiv-

ity during cognitive reappraisal.

• We found strong evidence to support that higher BMI is

associated with less effective inhibitory modulation of

the amygdala by prefrontal control regions during

reappraisal.

How might these results change the direction of

research or the focus of clinical practice?

• This study represents a meaningful step forward in

improving our understanding of how emotion-regulation

mechanisms are affected in women with higher BMI.

• Our findings uphold prevalent models of emotional regu-

lation and support that altered neurobiological function

contributes to the difficulties in adequately assessing and

managing negative affective states at higher weight.

• Targeting emotion-regulation processes may be beneficial

for some at higher weight.
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Considering the robust evidence of emotional regulation-modulat-

ing amygdala activity via the PFC, the present study aimed to model the

causal architecture of fronto-amygdalar interactions in women at higher

weight and healthy control individuals during cognitive reappraisal using

DCM. Specifically, we sought to test how body mass index (BMI)

accounted for individual differences in the modulatory effects of cogni-

tive reappraisal on prefrontal-amygdala pathway dynamics. We hypoth-

esized that we would observe decreased prefrontal modulation of

amygdala activity as a function of increased BMI.

METHODS

Participants

Our sample was made up of 102 adult women with BMI ranging

between 18.5 and 60. A total of 48 of these participants had obesity

(BMI > 30) and were recruited from the Bariatric and Metabolic Surgery

Unit and the Endocrinology and Nutrition Unit at Bellvitge University

Hospital in Barcelona, Spain. The recruitment period was between 2016

and 2021. A total of 44 control participants without obesity (BMI < 30)

were recruited from the local community. All participants underwent the

Mini-International Neuropsychiatric Interview [9] with staff psychologists

from the Department of Psychiatry at Bellvitge University Hospital.

Inclusion criteria included being female and being between 18 and

55 years of age. Exclusion criteria included the presence of an intellectual

disability, the presence or history of neurological or major medical disor-

ders, the presence or history of an eating disorder or other psychiatric

conditions (i.e., psychotic disorders, bipolar disorder, substance depen-

dence, or mood disorders), binge-eating episodes, or the presence of

MRI contraindications. Participants without obesity were asked to report

maximum lifetime BMI, and those who endorsed having had obesity

(BMI > 30) were excluded from the study. Participants received compen-

sation for participating in the study.

The present study was carried out in accordance with the latest

version of the Declaration of Helsinki. The Bellvitge University Hospi-

tal Clinical Research Ethics Committee and Institutional Review Board

approved the study (PR146/14). Signed informed consent was

obtained from all participants.

Clinical measures

All participants completed the Difficulties in Emotion Regulation Scale

(DERS) [10]. This 36-item self-report measure assesses emotion-

regulation difficulties using six separate subscales. Higher scores indi-

cate greater emotion-regulation impairment.

Anthropometric measures

A Tanita BC-420MA was used to assess body composition and calcu-

late BMI. This noninvasive validated device uses bioelectrical

impedance analysis to measure weight and body composition vari-

ables (i.e., body fat percentage) [11]. Height was measured via

stadiometer.

fMRI cognitive reappraisal paradigm

A modified version of the cognitive reappraisal task [12] was used. It

included three conditions “LookNeutral,” “LookNegative,” and

“Regulate,” which were presented following a block design. Blocks

were presented displaying neutral or negative picture stimuli (Figure 1)

that participants were instructed to (1) LookNeutral (passively observe

neutral images); (2) LookNegative (actively sustain the emotions eli-

cited by the negative images); or (3) Regulate (reappraise and reduce

the intensity of negative emotions by means of previously trained

cognitive reappraisal techniques). Further descriptions of the task

have been reported elsewhere [7], and they can be found in the online

Supporting Information.

Statistical analysis of behavioral data

Statistical analysis for clinical and behavioral data was carried out

with SPSS Statistics version 21 (IBM Corp.). Interactions between

in-scanner ratings for each condition (LookNeutral, LookNegative,

and Regulate) and group were evaluated using repeated-measures

ANOVA to behaviorally confirm participants’ ability to engage in the

task. We used independent sample t tests for between-group com-

parisons as well as Pearson correlations for evaluating linear associ-

ations between variables. Shapiro–Wilk tests were performed to

confirm normality of the variables of interest, and we checked for

the presence of outliers.

F I G U R E 1 Functional MRI task example images for LookNeutral,
LookNegative, and Regulate conditions. Participants were presented
with neutral and negative images and were instructed to either
(1) LookNeutral or passively observe neutral images; (2) LookNegative
or maintain emotions elicited by negative images; or (3) Regulate or
reappraise negative emotions elicited by negative images. [Color
figure can be viewed at wileyonlinelibrary.com]
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fMRI acquisition and preprocessing

Neuroimaging data were acquired using a 3.0-T Philips Ingenia MRI scan-

ner equipped with a 32-channel head coil. During acquisition, T2-

weighted echo-planar imaging was obtained (repetition time [TR]

= 2000 milliseconds, echo time [TE] = 25 milliseconds, field of

view = 228 � 228 mm, 76 � 76 matrix, flip angle = 90�, 40 axial sec-

tions of 3-mm thickness, 234 scans). A sagittal three-dimensional T1-

weighted turbo-gradient-echo sequence (233 sections, TR = 10.63 milli-

seconds, TE = 4.91 milliseconds, flip angle = 8�, field of

view = 240 � 225, 1-mm3 voxels) was also obtained for anatomical

reference.

Prior to preprocessing, we applied an artifact reduction method

using the BrainWavelet toolbox [13]. Next, using MATLAB version

9.3 (R2017b, The MathWorks Inc.) and the MATLAB-based CONN-

fMRI Functional Connectivity toolbox version 18.4 [14], implemented

in SPM12, functional images were aligned to the first volume of the

time series using a six-parameter rigid body spatial transformation and

a least-squares minimization in combination with an unwarping algo-

rithm aimed at correcting motion and motion-related distortions.

Slice-timing correction was then applied. Artifact detection/

identification toolbox (ART)-based automatic volume outlier detection

was also run for later volume scrubbing. Functional and structural

images were subjected to simultaneous gray matter, white matter,

and cerebrospinal fluid segmentation, and a bias correction was per-

formed to remove smoothly varying intensity differences across

images. These image segments were subsequently spatially normal-

ized through nonlinear transformations to the Montreal Neurological

Institute stereotactic space, and images were resliced to a 2-mm iso-

tropic resolution. Finally, images were smoothed with an isotropic

gaussian kernel of 8-mm full width at half maximum.

After preprocessing, data were denoised using temporal despik-

ing, regressing out confounding factors (i.e., effect of blood oxygen

level-dependent [BOLD] signal small ramping effects at the beginning

of each scan session and the six rigid realignment parameters, as well

as their first-order derivatives), controlling for total gray matter signal,

linear detrending, the ART scrubbing protocol, and band-pass filtering

(0.008–0.09 Hz). The ART scrubbing protocol regressed out the effect

of outlier volumes whose signal intensity deviated >5 SDs from the

mean time series signal intensity or that showed evidence of displace-

ment superior to 0.9 mm in relation to the preceding volume. Two

participants were excluded because of excessive movement. Further

information on fMRI acquisition and analysis can be found in the

online Supporting Information.

First and second level general linear model

Prior to DCM, a general linear model (GLM) was used to identify

regions undergoing significant activation changes during task perfor-

mance. The BOLD response at each voxel was convolved with the

SPM12 canonical hemodynamic response function using a 128-sec-

ond high-pass filter. Next, three contrasts of interest were defined for

first-level (single-participant) analysis: (1) LookNegative > LookNeutral,

(2) Regulate > LookNegative, and (3) LookNegative > Regulate. The

first contrast indexed brain activations associated with negative emo-

tional reactivity, whereas the second and third contrasts indexed

increases and decreases in activations during cognitive reappraisal.

Contrast images for participants were then carried forward to a

second-level random-effects GLM using a one-sample t test design.

For our GLM analyses, whole-brain false discovery rate (FDR)-

corrected statistical thresholds were applied (pFDR < 0.05), in addition

to an arbitrary 10 voxel cluster-extent threshold (KE ≥ 10 voxels).

DCM

DCM uses a Bayesian framework to estimate how neural activity of

one region (i.e., a node) influences activity in another region. As such,

DCM provides more detailed and physiologically valid mapping

between brain activity and psychological states than contrasts with

correlation-based functional connectivity, which is inherently

undirected.

Time series extraction

Following published guidelines [15], we determined the volumes of

interest (VOIs) for the DCM model space informed by our obtained

GLM results. Specifically, we extracted time series from three differ-

ent prefrontal peaks, the right dlPFC, left dmPFC, and the left orbito-

frontal cortex (OFC), which showed significant activation differences

in the Regulate versus LookNegative contrast, and from a right amyg-

dala cluster, which was significantly activated in the

LookNegative > LookNeutral contrast. VOIs were defined as 4-mm-

radius spheres centered on the group-level (second-level) analyses

peak coordinates. Next, we identified the local maximum within these

VOIs for each participant using a p < 0.05 uncorrected threshold.

Participant-level peaks were constrained to be a maximum of 8 mm

away from the group-level maximums. Using these criteria, from our

sample of 102 adult women, VOI information was retrieved for

33 patients with obesity and 36 healthy-weight control participants,

which were included in our final DCM analysis.

Model space specification

Candidate model spaces were specified using DCM 12.5 in SPM

12 (Statistical Parametric Mapping; version 7771; https://www.fil.ion.

ucl.ac.uk/spm/software/spm12/). DCM models contain three compo-

nents: endogenous connections between regions, also known as

intrinsic parameters (DCM.A matrix), modulatory effects on these con-

nections or extrinsic parameters by a task condition (DCM.B), and

driving inputs (DCM.C) to regions themselves [16]. As described ear-

lier, regions included in the model were the right amygdala, right

dlPFC, left dmPFC, and left OFC. A full model was created for each

participant (i.e., 42 = 16 connectivity parameters), assuming bidirec-

tional endogenous connections (DCM.A matrix) and bidirectional

2286 DCM AND EMOTIONAL REGULATION
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modulation by cognitive reappraisal (Regulate) between all regions.

Driving input from emotional reactivity (LookNegative) was assumed

for the right amygdala (DCM.C matrix).

Parametric empirical Bayes model estimation

After specification, using a parametric empirical Bayes (PEB)

framework for DCM, all individual connectivity parameters of

interest were tested at the group level to characterize how individ-

ual differences in neural circuitry were accounted for by BMI.

Within the PEB framework, this is completed by iteratively com-

paring different reduced models. We defined five models, which

differed on which pathways Regulate exerted a modulatory influ-

ence. These were based on predominant theoretical frameworks of

emotional regulation, which describe a top-down PFC appraisal

system acting on the amygdala [17], including the following

(Figure 2):

F I GU R E 2 Candidate PEB models. Nested PEB models that differed on the location of the modulation by Regulate. The nodes making up the
models were the right amygdala (green), the right dlPFC (yellow), the dmPFC (red), and the left OFC (blue). All models assumed bidirectional
intrinsic connectivity between regions and a driving input by LookNegative into the amygdala. (A) Full model is fully modulated in all connections
by Regulate. (B) Bidirectional model with Regulate modulating all connections from the amygdala to the dlPFC, dmPFC, and OFC, and vice versa.
Cortical model (C) with connections from the dlPFC, dmPFC, and OFC to the amygdala modulated by Regulate and (D) where only connections
from the amygdala to the dlPFC, dmPFC, and OFC were modulated by Regulate. dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial
prefrontal cortex; OFC, orbitofrontal cortex; PEB, parametric empirical Bayes [Color figure can be viewed at wileyonlinelibrary.com]
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• A full model, with Regulate modulating all connections, including

connections between prefrontal regions.

• A bidirectional model, with Regulate modulating all connections

from the amygdala to the dlPFC, dmPFC, and OFC, and vice versa,

while excluding connections between prefrontal regions.

• A cortical model in which connections from the dlPFC, dmPFC, and

OFC to the amygdala were modulated by Regulate.

• A subcortical model in which connections from the amygdala to

the dlPFC, dmPFC, and OFC were modulated by Regulate.

• And a null model without any fronto-amygdalar modulation by

Regulate.

F I GU R E 3 GLM results and DCM node placement. The first and second rows depict the GLM results of LookNegative vs. LookNeutral and
Regulate vs. LookNegative contrasts, respectively, in both study groups, pFDR < 0.05, 10 voxel cluster-extent threshold (KE ≥ 10 voxels). The third
row displays the nodes included for the DCM model space: the right amygdala (green), the right dlPFC (yellow), the left dmPFC (red), and the left
OFC (blue). The last image is the representation of our model assuming bidirectional intrinsic connectivity between all DCM nodes. DCM, dynamic
causal modeling; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; GLM, general linear model; OFC, orbitofrontal cortex
[Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 1 Sample characteristics

Variable

HC (n = 36) OB (n = 33)

Mean SD Mean SD t p

Age (y) 31.64 10.54 41.61 9.63 4.08 <0.001

BMI 21.04 2.01 43.92 6.50 19.11 <0.001

Body fat

percentage

14.02 2.23 55.48 12.83 17.64 <0.001

DERS 65.08 14.03 85.91 23.53 4.41 <0.001

Note: Bold indicates significant difference (p < 0.05).

Abbreviations: DERS, Difficulties in Emotion Regulation Scale; HC, healthy

control; OB, obesity.

2288 DCM AND EMOTIONAL REGULATION
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Bayesian model comparison was used to compare the full PEB

model against the nested PEB models. Last, we computed the Bayes-

ian model average, the average of parameter values across models

weighted by each model’s posterior probability. The Bayesian model

average was thresholded to retain only parameters with a posterior

probability > 75% [18] to determine the optimal (winning) model from

all candidate models.

PEB: design matrix specification

The spm.dcm.peb function was used to specify and estimate the PEB

model, which included the group-level design matrix indicating the

between-participant parameters to be tested. This matrix included a

first column including ones (to model across participant commonali-

ties; that is, the constant or group mean) and BMI in the second col-

umn. In addition, we included age as a confounding regressor. All

regressors were mean centered so that the intercept was interpret-

able as the mean connectivity value. This approach allowed us to

obtain the mean connectivity strength across all participants and to

determine how differences in connection strength were influenced

by BMI.

F I GU R E 4 Second-level dynamic causal modeling modulatory effects by emotional regulation. Average of the parameter Bayesian model
average differences due to BMI. Differences due to BMI in the cortical model; in this model the connections from the three prefrontal clusters to
the right amygdala are modulated by Regulate. Bar plots are thresholded for parameters >75% Pp and error bars correspond to 90% Bayesian
CI, computed from the leading diagonal of the covariance matrix. Nodes displayed are: the right amygdala (green), the right dlPFC (yellow), the left
dmPFC (red), and the left OFC (blue). dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; Pp, posterior probability;
OFC, orbitofrontal cortex [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 2 Location of the GLM group maximums for VOIs
included in the DCM model space

Region

MNI coordinates

t Cluster KEx y z

Right amygdala 20 �2 �18 10.58 904

Left dmPFC �32 �2 60 3.88 42

Right dlPFC 36 32 36 4.88 1187

Left OFC �18 42 �16 5.69 2043

Note: GLM results contrast images for both groups of participants. Three

different prefrontal clusters, the right dlPFC, left dmPFC, and the OFC, which

showed significant activation increases in the Regulate > LookNegative

contrast and right amygdala cluster, which was significantly activated in the

LookNegative > LookNeutral contrast. pFDR < 0.05, 10 voxel cluster-extent

threshold (KE ≥ 10 voxels).

Abbreviations: DCM, dynamic causal modeling; dmPFC, dorsomedial

prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; GLM, general linear

model; cluster KE, extent in voxels; MNI, Montreal Neurological Institute;

OFC, orbitofrontal cortex; VOIs, volumes of interest.

T AB L E 3 DCM parameter estimates

DCM parameter

Model

parameter

Effect size in

Hz [90% CI]

Posterior

probability

Modulation by

emotional

regulation [B]

BMI

dlPFC-amy �0.009 [0 to �0.02] 0.80

dmPFC-amy 0.008 [0 to 0.02] 0.80

OFC-amy 0.013 [0 to 0.03] 0.80

Note: Modulatory parameters represent context-dependent changes in

coupling between regions induced by emotional regulation.

Abbreviations: amy, amygdala; DCM, dynamic causal modeling; dlPFC,

dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex;

OFC, orbitofrontal cortex.
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Finally, to determine predictive validity (i.e., whether BMI can be

predicted from the individual connections in the final reduced model),

leave-one-out cross validation was performed [19]. This procedure

iteratively fits the PEB model to all but one participant and predicts

the covariate of interest BMI for the excluded participant.

RESULTS

Sociodemographic and clinical results

Sociodemographic information on the study sample is summarized in

Table 1. As expected, participants with obesity had a significantly

higher body fat percentage and BMI than control participants

(p < 0.001). Participants with BMI > 30 were older than those with

BMI < 30 (p < 0.001), and DERS scores were also significantly higher

in the obesity group in comparison to lean participants (p < 0.001).

fMRI task behavioral results

Participant in-scanner ratings demonstrated that negative affect

was significantly higher during the LookNegative condition (mean-

= 3.71 ± 0.91) in comparison to the LookNeutral condition (mean-

= 1.52 ± 0.76; p < 0.001), indicating significant emotional reactivity

across participants. Importantly, negative affect was significantly

reduced during the Regulate condition compared with the LookNega-

tive condition, indicating successful cognitive reappraisal across par-

ticipants (mean = 3.18 ± 1.08; p < 0.001).

GLM

Akin to previous cognitive reappraisal studies [20, 21], we identified sig-

nificant activations in the PFC during the Regulate > LookNegative

contrast, whereas significant amygdala activations were observed in the

LookNegative > LookNeutral contrast. We selected the peak maximums

from these two contrasts to define our VOIs and extract the time series

(right amygdala, right dlPFC, left dmPFC, and left OFC) for our DCM

model space. These VOIs are depicted in Figure 3, and the Montreal

Neurological Institute coordinates for these regions are presented in

Table 2. See Supporting Information Tables S1 and S2 for the complete

GLM results.

BMI-associated differences in fronto-amygdalar
connectivity during cognitive reappraisal

The cortical model best explained the differences in fronto-amygdalar

modulation during cognitive reappraisal due to BMI with a posterior

probability of 86%. Significant model parameters are presented in

Table 3. As shown in Figure 4, participants with a higher BMI were

less effective at inhibiting activity in the amygdala via the OFC and

dmPFC during cognitive reappraisal compared with those with a lower

BMI. Leave-one-out cross validation revealed that the modulatory

effect of cognitive reappraisal on OFC-to-amygdala connectivity had

the capacity to predict higher BMI (Figure 5; r(67) = 0.31, p < 0.005).

In contrast, increased excitatory modulation of dlPFC-to-amygdala

connectivity was found in participants with a lower BMI. We have

included the results of an analysis featuring an age-matched sample in

Supporting Information Tables S3 and S4.

DISCUSSION

This study used DCM to determine how BMI impacts fronto-amygda-

lar effective connectivity during cognitive reappraisal. We found

strong evidence to support that higher BMI is associated with less

effective inhibitory modulation of the amygdala by prefrontal control

regions during reappraisal. Specifically, our neuroimaging time series

F I GU R E 5 (A) Leave-one-out cross validation to themodulation from theOFC to the amygdala. The out-of-samples estimate of BMI scores for each
participant (red line) with 90%CI (shaded area). The dashed orange line is the actual group effect. (B) Participant BMI scores can be reliably predicted based
on their modulation ofOFC-to-amygdala effective connectivity during emotional regulation (p = 0.005, r = 0.31). OFC, orbitofrontal cortex [Color figure
can be viewed atwileyonlinelibrary.com]
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data were best explained by a model configuration in which higher

BMI was linked to a causal effective connectivity architecture defined

by reduced downregulation of amygdala activity by the OFC and the

dmPFC. Moreover, we found that the dlPFC had stronger modulatory

effects on the amygdala in patients with a lower BMI.

Circuit models of emotional regulation have posited that the OFC

acts as a primary prefrontal conduit to modulate activity in subcortical

regions [22], which is facilitated by its dense reciprocal connections

with the amygdala via the uncinate fasciculus [23]. The OFC is impli-

cated in inhibitory control, and recent studies have highlighted how

OFC function is impacted in individuals with higher BMI [24]. Serving

as a key center for allocating value to rewards and orchestrating moti-

vated eating behavior [25], our evidence of decreased OFC modula-

tion of amygdala activity during effortful emotional regulation aligns

with predominant models of emotion-regulation impairment, and it is

indicative of dysfunction in this pathway potentially contributing to

deficits in both affect regulation and food-related inhibitory con-

trol [26]. In addition, leave-one-out cross validation analysis on OFC-

amygdala effective connectivity parameters demonstrated that BMI

values could be reliably predicted by the extent to which participants

were able to modulate this pathway. As previous research has identi-

fied decreased OFC gray matter density [27] and total OFC volume

[28] in participants with higher BMI, altered OFC function could rep-

resent a distinguishing feature of higher BMI and a mechanism

through which the reinforcing properties of food are used to alleviate

negative affect. This is supported by recent translational research

identifying a glutamatergic OFC-lateral hypothalamus circuit as a

novel stress-sensitive anorexigenic neural pathway involved in the

cortical control of food intake [29].

Parallels between our OFC-amygdala finding can be made with

our evidence of altered dmPFC function during affective proces-

sing [30]. Alterations in both pathways have been found to contribute

to deficits in mentalizing (i.e., formulating thoughts surrounding inter-

nal mental states and intentions) [31], although the dmPFC is under-

stood to be specifically involved in volitional emotional regulation as

neurofeedback training has been shown to lead to an increase in top-

down connectivity from the dmPFC onto the amygdala [32].

Decreases in dmPFC activity during emotional regulation have been

described in other psychiatric disorders that are often highly comorbid

with obesity [33], including mood and anxiety disorders, [34], depres-

sion [35], and generalized anxiety disorder [36].

Our study complements previous research demonstrating that

changes in effective connectivity between dorsal and ventral prefron-

tal regions moderate emotional regulation [37], as we found that

dlPFC-to-amygdala modulation during cognitive reappraisal was asso-

ciated with lower BMI. dlPFC-mediated processes, such as working

memory, are essential to the successful execution of cognitive reap-

praisal given that model-based control techniques (i.e., the manipulat-

ing and updating of appraisals) is underpinned by this circuitry [38]. In

the context of food intake, dlPFC activity directly after a diet has been

found to predict real-world diet success in patients with obesity at a

1-year follow-up, suggesting that impaired dlPFC function may under-

lie risk factors such as ineffective affect regulation and impulse

control [39]. Likewise, dlPFC response during food cue presentation,

in combination with GLP-1 levels, has been found to individually fore-

cast subsequent weight change. However, it is worth noting that ana-

tomical studies have shown that the dlPFC is sparsely connected to

the amygdala and that it has minimal projections from the amyg-

dala [22]. As such, it is likely that the impact of the dlPFC on the

amygdala is via an indirect pathway or pathways [40], which may con-

tribute to the disrupted balance between goal-directed and habitual

control systems and between internal/external monitoring processes

found in populations at higher weight [41].

There are several limitations to the present study. Our sample

consisted only of women, and it would be beneficial to feature

more diverse samples moving forward. In relation to our DCM ana-

lyses, this hypothesis-driven technique relies on a priori assumptions

on which brain regions to include in a model space and is therefore

limited in the number of regions that can be evaluated. In this

sense, the dual opposing system mechanism mentioned previously

does not fully capture the nuances of recent findings suggesting the

involvement of thalamic and subcortical hubs during affect proces-

sing and model-based cognition [42] or include subcortical regions

proposed to contribute to overeating [43]. For instance, alterations

in insula-prefrontal connectivity have been associated with emotion-

regulation deficits in individuals at high weight and could be investi-

gated using DCM in the future [6]. Moreover, although our fronto-

amygdala network aligns with previous models of emotional regula-

tion, mapping a system including other regions that are modulated

by cognitive reappraisal would be of interest. Using a causal search

algorithm (e.g., GIMME), which is capable of including more regions

than DCM, could support more complex model explanations of cog-

nitive reappraisal in individuals at higher weight. It is also worth not-

ing that the cross-sectional nature of our study design does not

allow for inferences to be made regarding causality. Past research

has linked child emotional reactivity to emotional and external eat-

ing [44], though it would be of interest to ascertain whether there

are neurobiological markers for detecting increased risk before

harmful eating behaviors ensue. Last, successful emotional regula-

tion can be accomplished in many ways and here we examined only

reappraisal. Future work should examine the neurobiological sub-

strates of varied emotion-regulation strategies (e.g., detachment,

focusing on positive aspects, acceptance) to better understand how

strategy selection impacts regulation success as a function of BMI,

as well as examine the level of mental effort participants require

while engaging in emotional regulation during scanning.

CONCLUSION

This study represents a meaningful step forward in improving

our understanding of how emotion-regulation mechanisms might

be affected in women with higher BMI. Using DCM, we mapped

the directionality of impacted fronto-amygdalar pathways during

cognitive reappraisal and used a leave-one-out cross validation

to pinpoint which circuitry can robustly identify higher BMI. Our
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findings align with and further uphold prevalent models of emo-

tional regulation and support the notion that altered neurobio-

logical function contributes to the difficulties in adequately

assessing and managing negative affective states at higher

weight.O
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