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a b s t r a c t

This paper reports the study of new Ni/ZnO-based catalysts for hydrogen production from

substoichiometric acetone steam reforming (ASR). The effect of CeO2 introduction is

analyzed regarding the catalytic behavior and carbon deposits formation. ASR was studied

at 600 �C using a steam/carbon ratio S/C ¼ 1. Ni/xCeZnO (x ¼ 10, 20, 30 CeO2 wt %) catalysts

showed a better performance than the bare Ni/ZnO. Ni/xCeZnO generated a lower amount

and less ordered carbon deposits than Ni/ZnO. The higher the CeO2 content in Ni/xCeZnO,

the lower the amount of carbon deposits in the post-reaction catalyst. The highest H2

production under ASR at the experimental conditions used was achieved for the Ni/

xCeZnO catalysts. In-situ DRIFTS-MS experiments under ESR conditions showed different

reaction pathways over Ni/20CeZnO and Ni/ZnO catalysts.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

The production of hydrogen from biomass-derived substrates

is of current interest due to the concerns of CO2 global emis-

sions. Biomass-derived oxygenates such as alcohols are the

most studied H2-carriers [1]. Particularly, the H2 production

from ethanol has been extensively studied due to its actual

production and easy handle [2]. The ethanol steam reforming

(ESR) can give up to 6 mol of H2 permole of ethanol converted.

However, depending on the catalysts used, the ESR gives be-

sides H2 and CO2 several by-products such as CH4, CO and C2þ
compounds such as ethylene and acetone, which diminish the

H2-yield [3]. Moreover, the formation of these C2þ compounds

has been related to the formation of carbon deposits, which

could produce the deactivation of the catalyst [3,4]. In this

context and for preventing the catalyst deactivation, the study

of acetone steam reforming (ASR) is of great interest.
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CH3COCH3(g) þ 5H2O(g) 4 3CO2(g) þ 8H2(g)

DH�
298 K ¼ 246.3 kJ mol�1

Moreover, acetone is used as a model molecule for the

study of bio-oil steam reforming to H2 [5e8], and plays a role in

the reforming of several oxygenate subtracts such as acetic

acid [6e9]. However, the ASR has beenmuch less studied than

ESR [1].

Different transition metal-based catalysts have been used

for the steam reforming of oxygenates. Besides noble metals,

Ni, Co have been largely studied as active phases regarding

their ability to break CeC, CeH andCeO bonds. Both Co andNi

have been proved to be effective for steam reforming of C2 and

C3 oxygenate substrates, i.e. ethanol, glycerol among others

[1,3,10,11]. Nowadays, exists interest in the use Ni-based cat-

alysts for reforming processes of oxygenate subtracts due to

their widely recognized application for hydrocarbon steam

reforming processes, their cost and availability [5,6,11].

Besides the metallic active phase, the composition and

nature of the support plays a major role in steam reforming

processes [1,3,10,11]. We have recently reported the effect of

the support on the carbon deposits formed under sub-

stoichiometric ESR conditions over Ni-based catalysts [12].

ZnO has been extensively used in the past as support of Co-

based catalysts for efficient ESR processes [10]. On the other

hand, it is well-known that CeO2 plays a main role associated

with the presence of oxygen vacancies [11,13].

In the present work, we report a study of new Ni-based

catalysts focusing on the effect of CeO2 in Ni/ZnO-based cat-

alysts for H2 production from ASR. The catalysts were deeply

characterized before and after use, and their characteristics

correlated with their performance in ASR under sub-

stoichiometric conditions (H2O/acetone ¼ 3 M, steam to car-

bon ratio (S/C)¼ 1). For such purposes, X-ray diffraction (XRD),

oxygen storage capacity (OSC), H2-temperature programmed

reduction (H2-TPR) and Raman spectroscopy analysis of the

catalysts were carried out; the reduction process was followed

by in-situ XRD analysis at the Brazilian synchrotron facilities.

Moreover, in-situ DRIFTS-MS experiments under ESR condi-

tions were carried out with several samples.

Materials and Methods

Catalyst preparation and characterization

Catalysts were prepared by the co-precipitation method using

aqueous solutions of Ni2þ, Ce3þ and Zn2þ nitrates and sodium

carbonate as precipitating agent. After filtration and thorough

washing with water, the precipitates were dried at 85 �C and

calcined at 600 �C. The Ni content was kept about 10 wt%, and

the catalysts were labelled: Ni/ZnO and Ni/xCeZnO, where x

stands for the wt% of CeO2 (x ¼ 10, 20 and 30).

The chemical composition of the catalysts was determined

by inductively-coupled plasma atomic emission spectrometry

using an ICP-OES Perkin Elmer Optima 3200RL equipment. N2

adsorption-desorption BET isotherms were recorded at

�196 �C using a Micromeritics Tristar-II. The specific surface

area (SBET) was calculated by multi-point BET analysis of the

nitrogen adsorption isotherms.

Raman spectroscopy was performed using a Jobin-Yvon

LabRam HR 800, fitted to an optical Olympus BXFM micro-

scopewith a CCD detector cooled to�70 �C and a 532 nm laser.

XRD patterns catalysts were recorded using a Siemens D-500

X-ray diffractometer with nickel-filtered CuKa1 radiation. The

XRD profiles were collected between 2q ¼ 20� and 100�, with a

step width of 0.05� counting 3 s at each step. The mean crys-

tallite size of the particles was calculated according to the

Debye-Scherrer equation. On the other hand, the reduction

process under H2 up to 700 �C was followed by in-situ XRD at

the Brazilian Synchrotron Light Laboratory (LNLS) at Campi-

nas (Brazil).

The oxygen storage capacity of the catalysts (OSC) was

measured using a Sensys Evo DSC instrument (Setaram)

equipped with a 3D thermal flow sensor. Before analysis, the

samples (50 mg) were reduced with H2/Ar (12%, vol/vol); the

temperature was linearly increased at 10 �C/min up to 800 �C
andwas kept at 800 �C during 5min. Then, theywere cooled to

300 �C under Ar flow. A stream of O2/He (10% vol/vol) was

periodically injected into the reduced sample until saturation

and accordingly the consumption of oxygen was calculated.

H2-TPR experiments were performed using aMicromeritics

AutoChem II 5920 analyser. The sample (40 mg) was exposed

to a flow of H2/Ar (12% v/v), and the temperature was linearly

increased at 10 �C min�1 up to 800 �C.
In-situ DRIFTS-MS experiments were carried out under ESR

conditions (water/ethanol vapour ratio of 6 mol/mol) using a

Bruker Vertex 70 spectrophotometer equipped with a liquid

nitrogen-cooled MCT detector, a DRIFTS catalytic chamber

and coupled to a ThermoStar mass spectrometer. The recor-

ded spectra consisted of 128 scans at a spectral resolution of

4 cm�1 and corrected with the subtraction of adsorbed water

spectrum.

Catalytic tests

Catalytic tests were carried out under atmospheric pressure

in a continuous-flow tubular fixed-bed stainless steel reactor.

The catalyst (200 mg) was mixed with inactive SiC (0.5 mm)

up to a catalytic volume of approximately 1 mL. The tem-

perature was measured using a thermocouple in direct con-

tact with the catalytic bed. Before the reaction, the catalyst

was in-situ reduced under an H2/Ar 10% vol/vol mixture at

700 �C for 1.5 h; then, the flow switched to Ar and kept at

600 �C. A liquid mixture of water/acetone (molar ratio ¼ 3, S/

C ¼ 1) was injected (0.015 ml min�1) using a Gilson 307 pump,

evaporated at 200 �C and mixed with a flow of Ar and N2 (30%

v/v of N2, as internal standard) in a custom-built system, and

then directed to the reactor in continuous-flow mode. The

catalytic behavior of reduced catalysts was analyzed at 600 �C
for 20 h under a gas hourly space velocity (GHSV) of about

7800 h�1; the first data point was taken after 1 h under

stream. Besides acetone, gasification products H2, CO, CO2

and CH4 (only traces of C2 and C3 compounds were detected),

were on-line analyzed in the reactor effluent using an on-line

Bruker 450 GC equipped with TCD and FID detectors; water

and heavier products were not quantified. The acetone con-

version (XAcetone) and the gas phase product distribution,

expressed as the molar concentration of the i product (Si),

were calculated as follows:
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XAcetone (%) ¼ 100(Acetonein e Acetoneout)/Acetonein and

Si ¼ ni/ntotal, respectively; where ni is the number of moles of

the i product and ntotal is the total number of moles of the

gaseous products analyzed (H2, CO, CO2 and CH4). The yield of

H2 was referred to the maximum attainable production of H2

under the substoichiometric ASR conditions used; H2 yield

(%) ¼ 100 � (mol H2/6 mol Acetonein).

The post-reaction catalysts were analyzed by XRD, Raman

spectroscopy and temperature programmed oxidation with

thermogravimetric-mass spectrometry analysis (TG-TPO-MS).

For this experiment, about 50 mg of the spent catalyst previ-

ously sieved to separate out the SiC, was treated under an air

flow at 10 �C min�1 up to 800 �C. The heat flow and mass

change were continuously registered and the outlet gases

analyzed on-line by an Omnistar (Pfeiffer) mass spectrometer.

Results and discussion

Table 1 shows the chemical composition and several charac-

teristics of the catalysts. The Na content was in all cases

<0.1 wt%. The BET areas of Ni/xCeZnO (18e19 m2g-1) are only

slightly higher than that of the bare Ni/ZnO (13 m2g-1).

From XRD analysis of calcined samples (Fig. 1), besides the

presence of ZnO (JCDPS 36-1451) and CeO2 phases (JCDPS 34-

394), the presence of NiOwas confirmed. Table 1 also compiles

the calculated crystallite size of the NiO phase for the calcined

samples. Slightly smaller NiO crystallites were found in Ni/

xCeZnO when compared with those in Ni/ZnO.

The OSC values determined for Ni/xCeZnO samples are

higher than that of Ni/ZnO (Table 1). For Ni/xCeZnO, the

higher the content of CeO2, the higher the OSC value found.

Fig. 2 shows the Raman spectra in the 50-1000 cm�1 range

of Ni/ZnO and Ni/xCeZnO catalysts. The spectrum of Ni/ZnO

catalyst shows two Raman bands at 100 cm�1 and 437 cm�1

which are related to the E2 (low and high, respectively)

phononmodes, characteristic of the bulk ZnO [14]. For the Ni/

xCeZnO spectra, as the CeO2 content increases, a progressive

diminution of these bands is observed and simultaneously, a

rising of a well-defined band located at 460-464 cm�1 is

clearly visible that is attributed to the optical Raman F2g
mode of CeO2 [15]. Weak intensity Raman shifts in the 200-

300 cm�1 region are visible for the Ni/20CeZnO and Ni/

30CeZnO catalysts, which are ascribed to the second-order

Raman features of CeO2 [15]. Moreover, for Ni/20CeZnO and

Ni/30CeZnO catalysts, a low intensity band at about 600 cm�1

can be observed. A Raman shift in this position has been

related with the presence of oxygen vacancies in the ceria

lattice [15,16]; this in good agreement with the determined

OSC values.

Fig. 3 shows the H2-TPR profiles registered for the catalysts.

All catalysts presented a main H2-consumption peak with

maximum located between 450 �C and 530 �C and a shoulder

in the temperature range of 550e750 �C. Peaks in the range

350e450 �C could be assigned to the reduction of NiO, which

Table 1 e Several characteristics of catalysts.

Catalyst Ni (%wt) BET (m2/g) OSC (mmol/g) H2-consumption (mol H2/mol Ni) d (nm) (XRD)

NiO NixZny Ni0

Ni/ZnO 9.75 13 487 1.08 39 27 e

Ni/10CeZnO 9.77 18 509 1.18 27 80 40

Ni/20CeZnO 9.56 19 520 1.19 28 37 e

Ni/30CeZnO 9.47 18 568 1.19 33 97 37
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Fig. 1 e XRD at 25 �C of calcined catalysts and after the in-

situ XRD reduction process from 25 �C up to 700 �C. Phases:
Ni�; NiO; C]CeO2; Z ¼ ZnO and NZ ¼ NixZny.
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does not interact with the support [17,18]. An increase in the

interaction between Ni2þ species and the support produce an

increase in the temperature of reduction of Ni2þ species

[12,19].

The Ni/ZnO catalyst presented the maximum of H2 con-

sumption at 455 �C. Ni/xCeZnO catalysts showed broad peaks

of hydrogen consumption with maximum at a higher tem-

perature (515e528 �C) than that of Ni/ZnO. For Ni/xCeZnO, the

higher the CeO2 content, the higher the temperature of the

peak of H2 consumption. These facts point to the existence of

different interactions between the Ni2þ species and the sup-

port as a function of CeO2 content. The hydrogen consump-

tion (Table 1), slightly exceeds that expected for the Ni2þ

reduction (H2/Ni2þ ¼ 1 mol/mol), this excess is slightly higher

for Ni/xCeZnO than that for Ni/ZnO; this could be related with

a partial reduction of the supports.

As stated above, the reduction process was followed by in-

situ XRD analysis (Fig. 1). In all cases after the H2-treatment at

700 �C, XRD patterns indicated the disappearance of the NiO

and ZnO phases, present at 25 �C for the calcined samples, and

the observation of new diffraction peaks at 2q ¼ 43.2� and

50.4�, which points to the formation of NixZny phases (JCDPS

65-5310, JCDPS 47-1019). For Ni/10CeZnO and Ni/30CeZnO

catalysts, peaks characteristics of Ni0 (37 nm and 40 nm,

respectively) were also found (Table 1). Table 1 also shows the

crystallite size of NixZny determined from the in-situ XRD

analysis. The Ni/ZnO and Ni/20CeZnO catalysts presented

smaller NixZny crystallite size (27 nm and 37 nm, respectively)

than Ni/10ZnO and Ni/30CeZnO (80 nm and 97 nm,

respectively).

As stated in the Materials and Methods section, in-situ

DRIFTS-MS experiments under ESR at 600 �C were carried out

over Ni/ZnO and Ni/20CeZnO catalysts. For these experi-

ments, the reduced catalyst was placed in the DRIFTS cham-

ber, firstly pretreated at 600 �C under a H2/He (12%, vol/vol)

flow for 30 min, then cooled down to 120 �C under He flow;

further, temperature was raised up to 600 �C, the background

spectrum registered and, the flow switched to a He-saturated

flow with water/ethanol vapour (6 mol/mol). DRIFT and mass

spectra were recorded as a function of time. The m/z frag-

ments corresponding to CH3CH2OH, CH3CHO, CH3COCH3,

CH3COOH, CH4, CO2, CO and H2 were on-line analyzed by MS.

The main products detected during this experiment were H2,

CH4, CO2 and acetone. Fig. 4A and B shows the profiles

recorded for H2, CH4 and acetone in the first 15 min under ESR

conditions for both catalysts. As can be seen for Ni/20CeZnO,

H2 and CH4 evolved initially and negligible acetone formation

was detected in the period of analysis (15 min). Contrarily, for

Ni/ZnO, the MS analysis during the initial minutes under ESR

conditions at 600 �C indicated that, after the initial production

of H2, which occurred in this case at about 10 min under re-

action, the evolution of CH4 and acetone by-products took

place. The presence of CeO2 in the Ni/20CeZnO catalyst could

prevent in some extension the formation of acetone under

ESR conditions.

The corresponding spectra registered during the in-situ

DRIFTS analysis under ESR are shown in Fig. 4C. The spectrum

of Ni/ZnO catalyst exhibits a set of bands in the 1600-

1450 cm�1 region which can be related to themodes yas (COO),

ys (COO), das (CH3) and ds (CH3) of different surface carboxylate

(acetate-type) species (spectrum a in Fig. 4C) [20e24]. More-

over, several bands above 1700 cm�1, e.g. with well-defined

maxima at 1742 cm�1 and 1701 cm�1, could be related to

y(C]O) vibration of adsorbed acetone and acetaldehyde [25].

However, the broadness of these bands together the presence

of other absorptions, as those centered at 1673 cm�1 and

1648 cm�1, points to the presence of other unsaturated

carbonylic species as 2-butenal [26e31]. Contrarily, the spec-

trum corresponding to the Ni/20CeZnO catalyst at the same

conditions (spectrum b in Fig. 4C) do not shows clear absorp-

tions above 1700 cm�1, but only very low intensity bands

related to surface unsaturated carbonylic and carboxylate

species. However, a new band centered at 1585 cm�1, which is

not present in the case of the Ni/ZnO, is visible. A band at this

position has been related with the presence of different

carboxylate species (formate type) adsorbed at ZnO [32]. From

the DRIFTS results, different surface reaction intermediates

are identified for the Ni/ZnO and Ni/20CeZnO catalysts under

ESR conditions. This could result in a different evolution of
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Fig. 3 e Temperature programmed reduction (H2-TPR)

profiles of catalysts.
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products, as identified by on line MS analysis under ESR at

600 �C. The evolution of surface carboxylates to H2, CH4 and

CO2 appears to be the main reaction pathway. However, for

Ni/ZnO additional routes of surface species and their further

evolution to acetone and unsaturated aldehydes seems to

exist. From these results, a less favored route to acetone for-

mation under ESR for the Ni/20CeZnO catalyst than for the

bare Ni/ZnO could be proposed. It is well known that acetone

can undergo aldol condensation and oligomerization re-

actions resulting in the formation of coke/oligomer products

[5,33]. Under ESR conditions, a less favored route to acetone

formation could reduce the carbonaceous deposits formation

using Ni/xCeZnO catalysts when compared with Ni/ZnO

counterpart.

Finally, the reduced catalysts were tested under sub-

stoichiometric ASR conditions (S/C ¼ 1) at 600 �C. Under these

conditions, for all catalysts similar initial acetone conversion

values were obtained (in all cases below 100%); this allowed a

proper comparison of the catalytic behavior of the samples

along time (20 h). Table 2 shows the initial and final conver-

sion values obtained for the catalysts under ASR (S/C ¼ 1). As

can be seen, despite initial acetone conversion was similar for

all catalysts, the Ni/xCeZnO systems showed less deactivation

over the reaction time than that observed for the bare Ni/ZnO

catalyst. The catalyst that presented the lowest deactivation

was Ni/20CeZnO. Table 2 also shows the initial distribution of

H2, CO and CO2 products (Si, mol/mol) for the catalysts; minor

amounts of CH4 were found at the ending of the reaction

Fig. 4 e In-situ DRIFTS-MS results under ESR conditions (T ¼ 600 �C, water/ethanol vapour ¼ 6 mol/mol); A and B, mass

spectra profiles of initial evolution of selected products over Ni/ZnO and Ni/20CeZnO catalysts, respectively; C, the

corresponding DRIFT spectra registered after 15 min for a) Ni/ZnO and b) Ni/20CeZnO catalysts.
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period. Although at the initial reaction time the H2/COx ratio is

close to the expected for the sub stoichiometric ASR condi-

tions used (ca. 2), this value increased with reaction time. The

initial and final hydrogen yield for the catalysts under the

substoichiometric ASR conditions appears also compiled in

Table 2. These results points that under the ASR (S/C ¼ 1)

conditions used, the reforming reaction is only achieved in a

minor extension; among others, decomposition, condensa-

tion and polymerization reactions can take place in larger

extension. However, for Ni/xCeZnO catalysts, an enhance-

ment in the productivity towards hydrogen is observed.

Moreover, after 20 h under reaction, Ni/20CeZnO and Ni/

30CeZnO catalysts still show a H2 yield over 20% under the

substoichiometric ASR conditions (Table 2).

Post-reaction catalysts were analyzed by XRD, Raman

spectroscopy and TG-TPO-MS. In all cases, after the ASR re-

action, the presence of Ni0 and NiO was determined from XRD

analysis. Table 3 compiles the Ni0 crystallite size determined

from themost intense diffraction peak Ni (111) of the Ni0 cubic

phase (JCDPS 03-065-2865) for the post-reaction samples. The

Ni/xCeZnO samples exhibited lower values than that deter-

mined for the Ni/ZnO sample. Moreover, as expected after the

substoichiometric ASR conditions used (S/C ¼ 1), all catalysts

showed the formation of carbonaceous deposits as deter-

mined from TG-TPO-MS and Raman spectroscopy analysis.

Table 3 shows the determined rate of formation of carbona-

ceous deposits from TG-TPO-MS analysis after 20 h under

ASR. The higher amount of carbonaceous deposits was found

for the bare Ni/ZnO catalyst. A decrease of the carbonaceous

deposits was found for the Ni/xCeZnO catalysts when

compared to the Ni/ZnO catalyst, which in turn diminished

with the content of CeO2 in the catalyst and, according the

determined OSC values.

Moreover, the TPO-MS profile of evolved CO2 during the

analysis (Fig. 5) indicates that the temperature of starting the

combustion of the carbonaceous deposits was lower for the

Ni/xCeZnO catalysts than for the bare Ni/ZnO catalyst.

Raman spectroscopy analysis was used to determine the

degree of graphitization of the carbonaceous deposits by using

the relative intensity of the characteristic D and G bands. The

IG/ID values determined for the post-reaction catalysts are

compiled in Table 3. The graphitization character of the

carbonaceous deposits formed follows the trend: Ni/ZnO >Ni/

10CeZnO > Ni/20CeZnO > Ni/30CeZnO. From the Raman

analysis results it appears that, the higher is the CeO2 content,

the poorer graphitization of the carbon deposits exists. That

pointing to the more graphitic nature of the deposits for the

Ni/ZnO sample in agreement with the results from the TG-

TPO-MS analysis.

Conclusions

Ni/xCeZnO catalysts showed a better performance under the

substoichiometric ASR conditions used (S/C ¼ 1) than the bare

Ni/ZnO; the highest H2-yield was found for the Ni/30CeZnO

catalyst.

The amount of carbonaceous deposits and their graphitic

nature in post-reaction ASR (S/C ¼ 1) is lower for Ni/xCeZnO

than for Ni/ZnO catalysts. The higher the CeO2 content in Ni/

xCeZnO, the lower the amount of carbonaceous deposits in

the post-reaction catalyst. This is related with the OSC values

that increased with the amount of CeO2 in the catalysts.

In-situ DRIFTS-MS experiments under ESR conditions

pointed to different reaction pathways over Ni/20CeZnO and

Ni/ZnO catalysts; in the former the formation of acetone by-

product was less favored. Thus, subsequent oligomerization

reactions and carbon formation could be prevented under ESR

conditions over Ni/20CeZnO respect to Ni/ZnO.
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Table 2e Initial and final acetone conversion (XAcetone), H2

yield and, initial product (H2, CO, CO2) distribution (mol/
mol) for the catalysts under ASR conditions; T¼ 600 �C, S/
C ¼ 1, GHSV ¼ 7800 h¡1, reaction time ¼ 20 h.

Catalyst XAcetone (%) H2 CO CO2 H2 yield (%)

INITIAL FINAL INITIAL FINAL

Ni/ZnO 89 75 0.61 0.06 0.33 16.5 9.8

Ni/10CeZnO 82 79 0.76 0.05 0.19 27.3 16.7

Ni/20CeZnO 85 84 0.67 0.05 0.28 24.7 21.6

Ni/30CeZnO 89 81 0.65 0.09 0.26 38.7 30.7

Table 3 e Several characteristics of post-reaction
catalysts.

Catalyst dNi0

(XRD) (nm)
Raman
(IG/ID)

Carbonde position
(gC.gcat

�1 .h�1)

Ni/ZnO 44 0.60 0.090

Ni/10CeZnO 25 0.55 0.082

Ni/20CeZnO 23 0.50 0.065

Ni/30CeZnO 21 0.43 0.065

Fig. 5 e Temperature programmed oxidation (TG-TPO-MS),

CO2-profiles, of post-reaction catalysts after the

substoichiometric ASR test (20 h).
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