
ARTICLE

Integrative pathway enrichment analysis
of multivariate omics data
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Multi-omics datasets represent distinct aspects of the central dogma of molecular biology.

Such high-dimensional molecular profiles pose challenges to data interpretation and

hypothesis generation. ActivePathways is an integrative method that discovers significantly

enriched pathways across multiple datasets using statistical data fusion, rationalizes con-

tributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer

Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome

sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding

and non-coding mutations and revealed frequently mutated pathways and additional cancer

genes with infrequent mutations. We also analyzed prognostic molecular pathways by

integrating genomic and transcriptomic features of 1780 breast cancers and highlighted

associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and

RNA-seq data for master regulators of the Hippo pathway across normal human tissues

identified processes of tissue regeneration and stem cell regulation. ActivePathways is a

versatile method that improves systems-level understanding of cellular organization in health

and disease through integration of multiple molecular datasets and pathway annotations.
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Pathway enrichment analysis is an essential step for inter-
preting high-throughput (omics) data that uses current
knowledge of genes and biological processes. A common

application determines statistical enrichment of molecular path-
ways, biological processes and other functional annotations in
long lists of candidate genes1. Genomic, transcriptomic, pro-
teomic and epigenomic experiments emphasize complementary
aspects of underlying biology and are best analyzed integratively,
as is now routinely done in large-scale projects such as The
Cancer Genome Atlas (TCGA)2, Clinical Proteome Tumor
Analysis Consortium (CPTAC), International Cancer Genome
Consortium (ICGC)3,4, Genotype-Tissue Expression (GTEx)5,
and others6. Thus, simultaneous analysis of multiple candidate
gene lists for characteristic pathways is increasingly needed.

Numerous approaches are available for interpreting single gene
lists. For example, the GSEA algorithm can detect upregulated
and downregulated pathways in gene expression datasets7. Web-
based methods such as Panther8, ToppCluster9, and g:Profiler10

detect significantly enriched pathways amongst ranked or
unranked gene lists and are generally applicable to genes and
proteins from various analyses. Some approaches allow analysis
of multiple input gene lists however these primarily rely on
visualization rather than data integration to evaluate the con-
tribution of distinct gene lists towards each detected pathway9,10.
Finally, no methods are available for unified pathway analysis of
coding and non-coding mutations from whole-genome sequen-
cing (WGS) data, or integrating these with other types of DNA
aberrations such as copy number changes and balanced genomic
rearrangements.

Cancer genomes are characterized by multiple classes of
mutations, including single nucleotide variants (SNVs), small
insertions–deletions (indels), copy number alterations, and
translocations. These affect a small number of frequently mutated
pan-cancer driver genes such as TP53, less-frequent and tissue-
specific genes such as SPOP in prostate cancer, and numerous
infrequently mutated genes. The majority of currently known
driver mutations of SNVs and indels affect protein-coding
sequence11 and only few high-confidence non-coding drivers
have been found, such as the mutation hotspots in the TERT
promoter12. Discovery of coding and non-coding driver muta-
tions is a major goal of large cancer whole genome sequencing
efforts. The PCAWG Consortium aggregated whole genome
sequencing data from 2658 cancers across 38 tumor types gen-
erated by the ICGC and TCGA projects. These sequencing data
were re-analysed with standardized, high-accuracy pipelines to
align to the human genome (reference build hs37d5) and identify
germline variants and somatically acquired mutations, as descri-
bed in the PCAWG marker paper4. A consensus analysis of
variant calls in PCAWG tumors generated a high-confidence
catalog of driver mutations in protein-coding driver genes (CDS)
and non-coding regions of 5′ and 3′ untranslated elements
(UTRs), promoters and enhancers13. A consensus pathway and
network analysis of PCAWG driver mutations used knowledge of
molecular pathways and gene interaction networks as priors to
further discover infrequent candidate driver variants including
those in the non-coding genome14.

Here we report the development of the ActivePathways
method that uses data fusion techniques to address the challenge
of integrative pathway analysis of multi-omics data. It detects
significantly enriched pathways across multiple datasets, includ-
ing those pathways that are not apparent in any individual
dataset. We present several analyses to demonstrate this method.
First, we integrate cancer driver genes with coding and non-
coding mutations predicted using the PCAWG dataset13 and
reveal numerous processes and additional genes with frequent
coding and non-coding mutations. Second, we integrate patient

clinical information with transcriptomic and copy number
alterations in breast cancers of the METABRIC project15 to dis-
cover prognostic pathways and processes in breast cancer sub-
types. Third, we integrate transcriptomic data of normal tissues of
the GTEx project5 with ChIP-seq data to infer gene regulatory
networks and biological processes downstream of the Hippo
pathway of tissue growth control and regeneration. Thus Acti-
vePathways is a versatile method for combining diverse multio-
mics datasets.

Results
Multi-omics pathway enrichment analysis with ActivePath-
ways. ActivePathways is a simple three-step method that extends
our earlier work10 (Fig. 1). It requires two input datasets. The first
input is a table of P-values with genes listed in rows and evidence
from distinct datasets listed in columns. The columns can include
P-values of differential gene expression, gene essentiality, muta-
tion or copy number alteration burden and many others that are
derived using platform-specific quantification methods. The sec-
ond input is a collection of gene sets that represents collective
knowledge of gene function and interactions we refer to as
pathways. The most common analysis utilizes biological processes
from gene ontology16 (GO) and molecular pathways from the
Reactome database17. Depending on the hypothesis, these data
may also include many other types of gene sets such as targets of
transcription factors or microRNAs.

In the first step of ActivePathways, we derive an integrated
gene list that for each input gene aggregates significance from
multiple omics datasets. The integrated gene list is compiled by a
fusion of gene significance from different omics datasets (i.e.,
evidence) using the Brown’s extension18 of the Fisher’s combined
probability test. The Brown’s method considers dependencies
between datasets and thus provides more conservative estimates
of significance for genes that are supported by multiple similar
omics datasets. The integrated input gene list is then ranked by
decreasing significance and filtered using a lenient cut-off,
designed to capture additional candidate genes with sub-
significant signals while discarding the bulk of insignificant genes
(unadjusted Brown Pgene < 0.1). In the second step, a pathway
enrichment analysis is conducted on the integrated gene using a
ranked hypergeometric test10 and a collection of gene sets (i.e.,
biological processes, molecular pathways, and other gene
annotations). The ranked hypergeometric test is designed to
capture smaller pathways tightly associated with few top-ranking
genes and also broader processes associated with larger subsets of
input genes. The family-wise multiple testing correction method
by Holm19 is then applied across tested pathways to select the
pathways significantly enriched in the integrated gene list
(Qpathway < 0.05). In the third step, we perform a similar analysis
on the gene lists of individual omics datasets separately to
determine the omics evidence supporting the integrative pathway
analysis results determined in step 2. Importantly, the third step
also highlights pathways that are only found through data
integration and are not apparent in any single omics dataset
separately, providing the added value of integrated analysis.
Finally, the method provides input files for Enrichment Map20 for
visualizing resulting pathways with the corresponding omics
evidence.

Integrating coding and non-coding drivers in 2658 cancer
genomes. We performed an integrative pathway analysis of driver
genes predicted in the PCAWG project based on somatic SNVs
and indels. This analysis comprised 29 cancer patients cohorts of
histological tumor types and 18 meta-cohorts combining multiple
types of tumors, with 47 cohorts in total (Supplementary Table 1).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13983-9

2 NATURE COMMUNICATIONS |          (2020) 11:735 | https://doi.org/10.1038/s41467-019-13983-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ActivePathways identified at least one significantly enriched
process or pathway in 89% of these cohorts (42/47, Qpathway <
0.05, ranked hypergeometric test) (Fig. 2a). We analyzed the
evidence supporting predictions of enriched pathways: most
cohorts showed enrichments in pathways supported by protein-
coding mutations in genes (37/47 or 79%). This serves as a
positive control since the majority of currently-known cancer
driver genes have frequent protein-coding mutations.

Non-coding mutations in genes also contributed broadly to the
discovery of frequently mutated biological processes and path-
ways: 24/47 cohorts (51%) showed significantly enriched path-
ways that were apparent when only analyzing non-coding driver

scores corresponding to UTRs, promoters or enhancers. The
majority of PCAWG tumor cohorts (41/47 or 87%) revealed some
frequently mutated pathways that were apparent when integrat-
ing coding and non-coding mutations however remained
undetected when considering either coding or non-coding
mutations separately, emphasizing the value of our integrative
approach. As expected, cohorts with more patient tumor samples
generated more significantly enriched pathways (Spearman ρ=
0.74, P= 2.3 × 10−9; Supplementary Fig. 1), suggesting that larger
datasets are better powered to distinguish rarely mutated genes
involved in biological pathways and processes. Discovery of
pathways enriched in non-coding mutations suggests that our
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Fig. 1 Method overview. a ActivePathways requires as input (1) a matrix of gene P-values for different omics datasets, and (2) a collection of gene sets
corresponding to biological pathways and processes. b In step (1), gene P-values are merged using the Brown procedure and filtered to produce an
integrated gene list that combines evidence from datasets and is ranked by decreasing significance with a lenient threshold. In step (2), pathway
enrichment analysis is conducted on the integrated gene list using the ranked hypergeometric test that determines the optimal level of enrichment in the
ranked gene sub-list for every pathway. In step (3), separate gene lists are compiled from individual input datasets and analyzed for pathway enrichment
using the ranked hypergeometric test, to find supporting evidence for each pathway from the integrative analysis. c ActivePathways provides a list of
enriched pathways in the integrated gene list, the associated genes with significant Brown P-values, and annotations of evidence supporting each pathway.
Results of ActivePathways are visualized as enrichment maps where nodes correspond to pathways and pathways with many shared genes are connected
into networks representing broader biological themes.
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integrative pathway analysis is an attractive strategy for
illuminating the dark matter of the non-coding cancer genome.

We studied the adenocarcinoma cohort of 1773 samples of 16
tumor types. Integrative pathway analysis highlighted 432 genes
that were significantly enriched in 526 pathways (Qpathway < 0.05)
(Fig. 2b). As expected, the majority of pathways were only

supported by genes with frequent coding mutations (328/526 or
62%). However, an additional set of 101 pathways (19%) was
supported by both coding and non-coding gene mutations, 72
pathways (14%) were only apparent in the integrated analysis of
both coding and non-coding mutations, and 25 (5%) were only
enriched in non-coding mutations. Accumulation of these

0

250

500

750

Pan
ca

n−
no

−ly
m

ph

Pan
ca

n−
no

−s
kin

−m
ela

no
m

a

Pan
ca

n

Pan
ca

n−
no

−s
kin

−m
ela

no
m

a−
lym

ph

M
et

a_
Car

cin
om

a

M
et

a_
Ade

no
ca

rc
ino

m
a

M
et

a_
Dige

sti
ve

_tr
ac

t

Ly
m

ph
−B

NHL

M
et

a_
Ly

m
ph

at
ic_

sy
ste

m

M
et

a_
Hem

at
op

oie
tic

_s
ys

te
m

M
et

a_
CNS

Colo
Rec

t−
Ade

no
Ca

M
et

a_
Fem

ale
_r

ep
ro

du
cti

ve
_tr

ac
t

M
et

a_
Glio

m
a

Liv
er

−H
CC

M
et

a_
Squ

am
ou

s

Pan
c−

Ade
no

Ca

Skin
−M

ela
no

m
a

Ute
ru

s−
Ade

no
Ca

Eso
−A

de
no

Ca

Sto
m

ac
h−

Ade
no

Ca

CNS−G
BM

Bre
as

t−
Ade

no
Ca

M
et

a_
Bre

as
t

CNS−M
ed

ull
o

M
et

a_
Lu

ng

Hea
d−

SCC

Blad
de

r−
TCC

M
et

a_
Kidn

ey

Lu
ng

−A
de

no
Ca

Lu
ng

−S
CC

Bon
e−

Le
iom

yo

M
et

a_
Sar

co
m

a

Kidn
ey

−R
CC

CNS−P
ilo

Astr
o

M
ye

loi
d−

M
PN

Ly
m

ph
−C

LL

Thy
−A

de
no

Ca

Pan
c−

End
oc

rin
e

Ova
ry

−A
de

no
Ca

Pro
st−

Ade
no

Ca

Kidn
ey

−C
hR

CC

M
et

a_
M

ye
loi

d

CNS−O
lig

o

Cer
vix

−S
CC

Bon
e−

Oste
os

ar
c

Bilia
ry

−A
de

no
Ca

N
um

be
r 

of
 e

nr
ic

he
d 

pa
th

w
ay

s

Evidence of mutations
Coding

Non−coding

Combined only

Coding & non−coding

Organ
development

Axon
development

Pre-mRNA
transcription

TP53 dependent
DNA damage

response

RNA processing
and splicing

Chromatin
modification

Cell cycle

Hemo-
poiesis

Protein
catabolic
process

Protein
localization

Toll-like
receptor

Signal transduction
(FGFR, ERBB,

PDGF, AKT)

WNT
signaling

Neuron
death

MAP kinase
activity

Cell cycle

a

b c

d

1 3 5

–log10 (P)

Regulation of kidney
development 

Metanephros
development

Cell differentiation
involved in kidney

development

Kidney
development

Renal system
development

Nephron
epithelium

development

Mesonephros
development

Nephron
epithelium
morpho-
genesis

Ureteric bud
morphogenesis

Mesonephric epithelium
development

Nephron tubule
development

* ***

. * .

.

*** * * .

*** *** *** *** **** *** ***

* *** . ** .

.

***

. * .

*** * * ***

*** *** *** *** ** ** * * ** * * * * * * .*

S
O

X
4

S
O

X
9

#

S
M
A
D
3

LG
R

4
C

O
L4

A
1

T
E

K
S

A
LL

1
M

E
F

2C
S

E
R

P
IN

B
7

T
S
C
1

H
N

F
1B

B
A
X

IQ
G

A
P

1
M
Y
C

H
E

S
1

#
G
A
T
A
3

#
S
M
A
D
4

#
C
T
N
N
B
1

#

Brown P
Enhancer
Promoter

5′UTR
3′UTR

CDS

CGC gene; #PCAWG driver. P < 0.1
*P < 0.05
**P < 0.01

***P < 0.001

Head and brain
development

* - Drivers from gene-
  focused analysis

- Additional cancer genes
  from pathway analysis

e

** *** ** * ** ** * *** ** ** * * * * * * * ** ** *** *** ** * ** * * **** * * ** * A
X

IN
2

B
C

L1
1A

B
C

L6

B
C

L9
C

A
S

P
8

C
H

D
4

C
LT

C

C
T

C
F

C
X

C
R

4

D
D

X
3X

E
IF

4A
2

E
LL

F
A

T
1

F
LI

1

G
A

T
A

2

G
N

A
S

H
LA

−
A

H
N

R
N

P
A

2B
1

ID
H

1

K
D

M
5C

K
LF

4

K
M

T
2D

LM
O

1

M
Y

C

N
F

1

N
F

2

P
A

X
8

P
IC

A
LM

P
LC

G
1

P
R

R
X

1

R
P

L5

S
F

P
Q

S
M

A
D

3S
M

A
R

C
A

4

S
M

A
R

C
B

1

S
R

S
F

2

S
R

S
F

3

S
T

A
G

2

S
U

F
U

S
U

Z
12

T
B

L1
X

R
1

T
B

X
3

T
C

F
7L

2

T
S

C
1

U
2A

F
1

X
P

O
1

Z
N

F
52

1

0

5

10

15

20

B
ro

w
n

 in
te

g
ra

te
d

 p
–

va
lu

e
, 
–

lo
g

1
0

47 additional cancer genes from pathway analysis (of 333 total; P = 4.0 × 10–24)
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individually infrequent non-coding mutations into relevant
pathways and processes is apparent in our integrative analysis
and remains undetected in a gene-focused analysis.

The major biological themes with frequent protein-coding
mutations included hallmark cancer processes such as ‘apoptotic
signaling’ (24 genes; Qpathway= 4.3 × 10−5) and ‘mitotic cell cycle’
(8 genes; Qpathway= 0.0026), and additional biological processes
such as chromatin modification and RNA splicing that are
increasingly recognized in cancer biology. Thus, ActivePathways
captures the expected cancer pathways enriched in driver genes
with protein-coding mutations as positive controls. In contrast to
these solely protein-coding driver associations, a large group of
developmental processes and signal transduction pathways was
detected as enriched in both coding and non-coding mutations in
genes; for example ‘embryo development process’ was supported
by mutations in exons, 3′UTRs and gene promoters (68 genes;
Qpathway= 2.9 × 10−12), while the Reactome pathway ‘repression
of WNT target genes’ was only apparent in the integrated analysis
of coding and non-coding mutations but not in either
dataset alone (5 genes, Qpathway= 0.016). In summary, these data
show that ActivePathways is a sensitive approach for integrating
multi-omics signals such as coding and non-coding mutations,
interpreting supporting omics evidence, and finding additional
functional associations that are not apparent in any single input
dataset.

Pathway-based prioritization of rarely mutated cancer genes.
Pathway analysis can identify candidate genes that would other-
wise remain undetected in gene-based analyses. ActivePathways
enhances such discovery by integrating signals across multiple
datasets. In the pathway analysis of coding and non-coding
mutations in PCAWG, we focused on a group of processes
involved in kidney development that were exclusively detected
through the integration of coding and non-coding mutations
(Fig. 2c, d). ActivePathways found 18 genes involved in these
processes, only five of which were predicted as driver genes in the
consensus driver analysis of the PCAWG project13. Additional
known cancer genes included the oncogeneMYC with 13 patients
with 3′UTR mutations (driver P-value PUTR3= 4.8 × 10−4), the
transcription factor SMAD3 of the TGF-β pathway with 14
patients with protein-coding mutations (PCDS= 4.0 × 10−4) and
the growth inhibitory tumor suppressor gene TSC1 with 23
patients with protein-coding mutations (PCDS= 1.4 × 10−4) as
well as candidate cancer genes such as IQGAP1 with ten patients
with promoter mutations (Ppromoter= 8.2 × 10−4) that encodes a
signaling protein involved in cell motility and morphology. The
additional genes remained below the FDR-adjusted significance
cut-off in the gene-focused consensus driver analysis (Q=
0.17–0.62), however were found by ActivePathways due to their
associations with kidney development. Thus ActivePathways can

exploit functional gene annotations and multiple omics signals to
find further candidate genes that remain undetected in gene-
focused analyses.

We evaluated the effects of our data integration strategy and
examined all 333 pathway-associated candidate genes detected in
the adenocarcinoma cohort (Fig. 2e). As expected, these included
a considerable proportion of known cancer genes. First, as
positive controls we found 60/64 significantly mutated genes that
were also identified in the PCAWG consensus driver analysis13.
In addition, we found a set of 47/333 known cancer genes
annotated in the COSMIC Cancer Gene Census database11 that
were not detected in the driver analysis, significantly more than
expected by chance alone (seven genes expected, Fisher’s exact
P= 4.0 × 10−24). Those included well-known cancer driver genes
MYC, IDH1, NF1, and BCL9. ActivePathways was able to detect
these additional genes for several reasons. First, the integrated
gene list was filtered using a lenient statistical cut-off in
ActivePathways (Pgene < 0.1) that allowed a long tail of 273/333
genes with less-frequent mutations to be detected through
pathway associations. Second, certain genes were upgraded
through the data fusion procedure as a single stronger P-value
per gene was derived by combining multiple weaker P-values
corresponding to the coding regions, promoters, UTRs, enhancers
of the gene. This affected 17/333 pathway-associated genes
including six known cancer genes (HNRNPA2B1, STAG2,
TCF7L2, SUZ12, CLTC, and ZNF521), Thus, the integration
procedure prioritized specific pathway-related genes compared to
their original rankings in individual mutation datasets. However,
the majority of genes showed reduced significance after the fusion
and were excluded from the pathway analysis: 3543 genes had at
least one significant P-value prior to data fusion (Pgene < 0.1)
while 88% of these (3112) were considered insignificant following
the Brown P-value combination step. In contrast, the majority of
pathway-associated genes (220/333) showed improved rankings
in the integrated gene list compared to their original rankings in
individual input datasets. This formal combination of P-values
across omics datasets is therefore more conservative than a naïve
approach of selecting a top P-value for every gene. Thus,
ActivePathways finds additional candidate genes that remain
undetected in gene-by-gene analyses and are highlighted due to
their multiple omics signals in pathways.

Integrating prognostic CNA and mRNA signals in breast
cancer. To demonstrate an integrative analysis of patient clinical
information with multiple types of omics data, we studied the
pathways and processes associated with patient prognosis in
breast cancer. We leveraged the METABRIC dataset15 of 1780
breast cancer samples drawn from all four subtypes (HER2-
enriched, basal-like, luminal-A, luminal-B) and evaluated all
genes using three types of prognostic evidence. mRNA abundance

Fig. 2 Pathway enrichment analysis of cancer driver genes with ActivePathways. a Bar plot shows number of significantly enriched pathways (Q < 0.05)
among predicted driver genes with coding and non-coding mutations in the PCAWG dataset. The majority of pathways detected by ActivePathways are
supported by protein-coding mutations, as expected (dark green bars), while non-coding mutations (orange, red) reveal additional pathways. Pathways
shown in dark red are found only in the integrated gene list of coding and non-coding mutations but not in gene lists of individual mutation scores.
b Enrichment map shows pathways enriched in frequently mutated genes in the adenocarcinoma cohort of 1773 tumors. Nodes in the network represent
pathways and similar pathways with many common genes are connected. Groups of similar pathways are indicated. Nodes are colored by supporting
evidence from coding and non-coding cancer mutations. Arrow indicates kidney developmental processes. c The group of enriched kidney developmental
processes is apparent from integrated evidence of coding and non-coding mutations but is not found among coding or non-coding candidate genes
separately. d Heatmap shows P-values of driver genes involved in kidney developmental processes, including driver genes found in the driver analysis
(indicated with #) and additional genes only found in the pathway analysis. Top row shows merged P-values from the Brown procedure. Genes listed in the
Cancer Gene Census (CGC) database are indicated in boldface letters. e Pathway analysis recovers most genes of the driver list from PCAWG (orange
asterisks), as well as additional infrequently mutated genes apparent due to their pathway associations. Additional known cancer genes detected in the
pathway analysis are listed (green dots) and occur more frequently than expected from chance alone.
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profiles were deconvolved between mRNA abundance levels in
tumor cells (TC) and tumor-adjacent cells (TAC) using the
ISOpure algorithm21,22. mRNA values were associated with
patient survival using median dichotomization and log-rank tests.
Gene copy number alterations (CNA) were included as the third
type of evidence and associated with patient survival using log-
rank tests.

ActivePathways identified 192 significantly enriched GO
biological processes and Reactome pathways across the four
subtypes of breast cancer, of which nine pathways were enriched
in multiple cancer subtypes and 33 pathways were only apparent
through the integrative pathway analysis but not in any of the
CNA or mRNA datasets alone. The major findings enriched in
prognostic signatures in breast cancer subtypes involved the
processes and pathways of immune response, apoptosis, ribosome
biogenesis and chromosome segregation (Fig. 3a).

Immune activity was associated with prognostic genes in
basal-like and HER2-enriched breast cancers with significant
enrichment of GO processes such as ‘immune system develop-
ment’ (Qbasal= 3.0 × 10−4, 113 genes; QHER2= 0.035, 61 genes;
ranked hypergeometric test) and ‘lymphocyte differentiation’
(QHER2= 6.8 × 10−4, 46 genes; Qbasal= 8.4 × 10−4, 45 genes).
The majority of related genes were associated with improved
patient prognosis upon increased mRNA abundance in tumor
cells or tumor-adjacent cells, comprising 50/61 genes in the
HER2-enriched subtype and 78/113 genes in the basal subtype
(Fig. 3b). Interestingly, only a minority of these genes (10) were
significant in both of the two breast cancer subtypes, suggesting
different modes of immune activity in subtypes and emphasizing
the power of our pathway-based approach. Basal-like breast
cancers were associated with additional 67 terms involving
immune response and blood cells, however no immune-related
terms were enriched for luminal subtypes of breast cancers.
Prognostic features of immune-related genes in HER2-enriched
and basal-like breast cancers are well known23,24. Our pathway-
based findings indicate that immune activity in breast tumor
cells and in the surrounding microenvironment negatively
affects tumor progression and improves prognosis.

Apoptosis was associated with patient prognosis in HER2-
enriched and luminal-A breast cancers through enriched GO
processes such as ‘negative regulation of apoptotic process’
(QHER2= 0.030, 122 genes; QluminalA= 0.015, 228 genes) and
‘programmed cell death’ (QHER2= 0.015, 125 genes; QluminalA=
0.016, 231 genes) (Fig. 3c). Interestingly, anti-apoptotic pathways
were only detected in the integrative analysis and not in genomic
and transcriptomic gene signatures separately. Among the genes
negatively regulating apoptosis, DUSP1 provided the strongest
prognostic signal in HER2-enriched breast cancers. This was
apparent in the molecular stratification of samples by mRNA of
tumor cells (log-rank PTC= 0.019, HR= 1.5) and tumor-adjacent
cells (PTAC= 8.3 × 10−4, HR= 1.8) as well as gene copy number
amplifications (PCNA= 9.8 × 10−4, HR= 2.8) (Fig. 3d). DUSP1
encodes a phosphatase signaling protein of the MAPK pathway
that is over-expressed in malignant breast cancer cells and
inhibits apoptotic signaling25. HER2 over-expression is known to
suppress apoptosis in breast cancer26. Anti-apoptotic signaling is
a hallmark of cancer and expectedly associated with worse patient
prognosis.

ActivePathways also identified prognostic pathway associations
that were only apparent in single subtypes of breast cancer. For
example, the prognostic genes for luminal-B subtype were
enriched in processes related to ‘chromosome segregation’
(QluminalB= 0.017, 41 genes) that have been associated with
worse outcome in breast cancer27. As another example, luminal-
A breast cancers were associated with prognosis in ribosomal and
RNA processing genes, such as ‘ribosome biogenesis’ (QluminalA=

6.9 × 10−10, 60 genes) and ‘rRNA metabolic process’ (QluminalA=
1.8 × 10−13, 64 genes). Although not described specifically in the
luminal-A subtype, ribosomal mRNA abundance has been shown
to be prognostic in breast cancer as a marker of cell
proliferation28,29. In summary, ActivePathways can be used for
integrating clinical data with multiomics information of mole-
cular alterations. Such analyses can provide leads for functional
studies and biomarker development.

Interpreting co-expressed and DNA-bound targets of Hippo
TFs. To demonstrate the use of ActivePathways for studying gene
regulation, we analyzed transcriptomes of non-cancerous human
tissues from the GTEx project5. We focused on the Hippo sig-
naling pathway involved in organ size control, tissue homeostasis
and cancer30,31 and studied regulatory networks downstream of
the two transcription factors (TFs) YAP and TAZ (encoded by
YAP1 and WWTR1). YAP and TAZ are evolutionarily conserved
master regulators of Hippo signaling in mammals that respond to
intracellular and extracellular signals of cell–cell interactions, cell
polarity, mechanical cues, G protein-coupled receptor signaling,
and cellular energy status30,31.

We performed an integrative pathway enrichment analysis of
transcriptomics and epigenomics data of the two master
regulators of the Hippo pathway. First, we predicted transcrip-
tional target genes for YAP and TAZ (1898 and 1319 genes,
respectively), using co-expression analysis and robust rank
aggregration32 over 9642 transcriptomes of 40 tissue types in
GTEx (Q < 0.05). Second, we studied the set of 2356 target genes
of YAP that have DNA-binding sites at gene promoters derived
from a YAP ChIP-seq study33 reanalyzed in the ReMap
database34 (Q < 0.05). The three gene lists with corresponding
significance values were used as input to ActivePathways for the
integrative analysis.

Integrative analysis of transcriptional and DNA-binding target
genes of YAP/TAZ resulted in 225 significantly enriched GO
processes and Reactome pathways (Qpathway < 0.05) (Fig. 4a). The
resulting pathways are expected in the context of Hippo signaling
and included development and morphogenesis, cell motility,
organization of actin cytoskeleton and cell–cell junctions, signal
transduction pathways such as EGFR, Wnt, Robo, TGF-beta, rho
GTPase, and others. ActivePathways highlighted 2066 genes in
these pathways. We examined known members of the Hippo
pathway and found 13 of 32 genes among pathway-associated
genes (WWTR1, LATS1, WWC1, YWHAQ, YAP1, MAPK8,
MAPK9, STK3, TNIK, TEAD3, MAP4K3, MINK1, TEAD1), more
than expected from chance alone (four genes expected, P= 3.6 ×
10−5, Fisher’s exact test). We also compiled an extended list of
106 Hippo-related genes30,31,35 and confirmed that these were
enriched in pathway-associated genes (36/308 genes expected,
P= 9.1 × 10−26, Fisher’s exact test) (Fig. 4b). A large fraction of
pathways (55 or 24%) was only identified in the integrated
analysis and not in any input dataset alone, underlining the
advantage of detecting significantly enriched pathways across
multiple complementary omics datasets. Similarly, Hippo-related
genes were either supported by ChIP-seq data alone (54 genes),
mRNA data alone (30 genes), or both by mRNA and ChIP-seq
data (22 genes), concordant with the notion that RNA-seq and
ChIP-seq show limited agreement regarding TF target genes and
provide complementary insights into gene regulation. Thus, our
integrative analysis of co-expression networks and TF–DNA
interactions of Hippo master regulators expectedly converges on
Hippo-related genes and pathways.

In addition to GO terms and pathways, ActivePathways can be
used to interpret omics data with other classes of functional gene
sets such as TF target genes. To further elucidate gene regulatory
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networks downstream of YAP/TAZ, we considered potential
enrichments of DNA-binding target genes of 161 TFs profiled in
ChIP-seq studies of the ENCODE project36. We found a
regulatory network of 17 TFs and 1426 target genes enriched in
the YAP/TAZ regulome (Q < 0.05, ranked hypergeometric test)
(Fig. 4c). These included the DNA-binding targets of the master

regulators of pluripotent stem cells37 NANOG (208/774 target
genes, Q= 1.3 × 10−6) and POU5F1 (107/406 target genes, Q=
7.3 × 10−11). This finding is in agreement with the role of Hippo
pathway activity in stem cell regulation38. The regulatory network
was significantly enriched in 50 Hippo-related genes (25 expected,
P= 1.2 × 10−7, Fisher’s exact test) and six core Hippo genes (two
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expected, P= 0.030; WWTR1, VGLL4, TNIK, MAPK8, MOB1A,
LATS1), similarly to the pathway-based analysis above. However,
the two analyses revealed distinct genes: 886 genes were
commonly found by both analyses, 1180 genes were found only
in the pathway-based analysis, and 540 genes were found only in
the TF-based analysis (Fig. 4d). Thus, integrative enrichment
analysis of TF target genes provides complementary information
to GO terms and pathways. In summary, this analysis highlights
genes and pathways related to Hippo signaling in human tissues
and demonstrates the use of ActivePathways for studying gene
regulatory networks across complementary omics datasets and
technology platforms.

Evaluating the robustness and sensitivity of ActivePathways.
We carefully benchmarked ActivePathways using the dataset of
cancer driver genes predicted by PCAWG13. First, we compared
the performance of ActivePathways with six methods used in the
PCAWG pathway and network analysis working group14 (Hier-
archical HotNet39,40, SSA−ME41, NBDI42, induced subnetwork
analysis40, CanIsoNet43, hypergeometric test). These diverse
methods used molecular interaction networks, functional gene
sets and/or transcriptomics data to analyze the PCAWG pan-
cancer dataset of predicted cancer driver genes. A subsequent
consensus analysis defined pathway-implicated driver gene lists
with protein-coding and non-coding mutations, based on a
majority vote of the pathway and network analysis methods14.
ActivePathways recovered these consensus gene lists with the
highest accuracy: 100% of coding driver genes (87/87) and 85% of
non-coding candidate genes (79/93) were detected (Fig. 5a). Thus
ActivePathways agreed the most with the ensemble of several
other methods in prioritizing known and candidate cancer driver
genes using pathway and network context.

We also compared the performance of ActivePathways with a
standard approach of pathway enrichment analysis that considers
a single statistically-filtered gene list using a ranked hypergeo-
metric test1,10 (Fig. 5b). To this end, we analyzed individual gene
lists of protein-coding and non-coding drivers of the PCAWG
adenocarcinoma cohort using multiple gene selection thresholds
(Q < 0.05, Q < 0.1, Q < 0.25, P < 0.1). ActivePathways showed
increased sensitivity of pathway enrichment analysis compared to
the standard approach, in particular for pathways involving non-
coding mutations that were not promimently represented in any
single gene lists. Even compared to the analysis employing the
most lenient gene selection filter (P < 0.1), ActivePathways
identified 72 additional pathways that were only apparent
through the integration of coding and non-coding mutations
and remained undetected in the analysis of individual datasets.
Thus, our method provides additional information to common
approaches that focus on single gene lists.

We evaluated the robustness of ActivePathways to parameter
variations and missing data. We varied the parameter Pgene that
determines the ranked gene lists used in the pathway enrichment
analysis (default threshold Pgene < 0.1). The majority of PCAWG
cohorts (40/47 or 85%) retrieved significantly enriched pathways

even with a considerably more stringent threshold (Pgene < 0.001),
however 67% fewer pathways were found compared to the default
threshold in the median cohort (Supplementary Fig. 2). We then
evaluated the robustness of ActivePathways to missing data by
randomly removing subsets of driver scores from the initial
dataset. Even when removing 50% of gene driver P-values with
P < 0.001, the majority of cohorts (37/47 or 79%) had at least one
significantly enriched pathway, however 66% fewer pathways
were found on average (Supplementary Fig. 3).

We evaluated the expected false positive rates of ActivePath-
ways. We tested 1,000 simulated datasets for each of 47 patient
cohorts and expectedly found no significant pathways in 92% of
these simulations (Supplementary Fig. 4). Simulated data were
obtained by randomly reassigning P-values of driver predictions
to different genomic elements, a conservative approach that
disrupts pathway annotations of genes while retaining the
presence of strong P-values observed in the real data. The
median family-wise false discovery rate of ActivePathways
computed across cohorts (7.2%) slightly exceeded the applied
multiple testing correction (Q < 0.05). Higher rates were observed
in cohorts including melanoma tumors, potentially due to
abundant promoter mutations caused by impaired nucleotide
excision repair in protein-bound genomic regions44. We
evaluated quantile-quantile (QQ) plots of pathway-based ranked
hypergeometric P-values from ActivePathways and found that
these often deviated from the expected uniform distribution and
appeared statistically inflated (Supplementary Fig. 5). However,
P-values derived from simulated gene scores showed no inflation
in our simulations. Anticipating that the most significant cancer
driver genes associated with protein-coding mutations, we
performed partial simulations. We constructed datasets with
simulated gene P-values for protein-coding mutations and true P-
values for non-coding mutations. As expected, partially simulated
datasets showed a lesser extent of P-value inflation, suggesting
that highly significant known cancer genes are responsible for
inflation due to their involvement in many pathways. Statistical
testing of highly redundant pathways and processes violates the
independence assumption of statistical tests and multiple testing
procedures, a known caveat of pathway enrichment analysis1,
which likely explains the observed distribution of significance
values of our method. Collectively, these benchmarks show that
ActivePathways is a sensitive and robust method for detecting
significantly enriched pathways and processes through integrative
analysis of multi-omics data.

Discussion
Integrative pathway enrichment analysis helps distill thousands of
high-throughput measurements to a smaller number of pathways
and biological themes that are most characteristic of the experi-
mental data at hand, ideally leading to mechanistic insights and
candidate genes for follow-up studies. In particular, a joint ana-
lysis of complementary datasets often leads to insights that are
unavailable in any particular dataset. ActivePathways provides a
generally available framework for systematically prioritizing genes

Fig. 3 Prognosis-associated pathways in four molecular subtypes of breast cancer. a Enrichment maps of prognostic pathways and processes were found in
an integrative analysis of mRNA abundance in tumor cells (TC), tumor-adjacent cells (TAC), and gene copy number alterations (CNA) of the METABRIC
dataset. Multicolored nodes indicate pathways that were prognostic according to several types of molecular evidence. Blue nodes indicate pathways that were
only apparent through merging of molecular signals. b Hazard ratios (HR) of prognostic genes related to immune system development in basal and HER2-
enriched subtypes of breast cancer. Strongest HR value of TC, TAC is shown. Genes commonly found in basal and HER2-enriched tumors are shown. Known
cancer genes are shown in boldface. c Heatmap shows genes, corresponding log-rank P-values, and merged Brown P-values related to the GO process
‘negative regulation of apoptotic process’ that was found by integrating prognostic omics data in HER2-enriched breast cancer. d Kaplan–Meier plots show
the strongest prognostic signal related to apoptotic signaling, the phosphatase DUSP1 that significantly associates with reduced patient survival through
increased tumor-adjacent mRNA level (left), increased tumor mRNA level (center) and gene copy number amplification (right). Log-rank P-values are shown.
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and pathways across multiple omics datasets that utilizes fusion
of gene significance. This allows us to identify pathways
and processes that stand out when the data are combined, yet are
not apparent in any single analyzed dataset. The use of

ActivePathways is demonstrated in the three case studies above.
In our example of cancer driver discovery, pathway analysis
provides complementary insights to gene-focused driver dis-
covery as it also focuses on sub-significant genes that are clustered
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into relevant biological processes and carry coding and non-
coding mutations. In the integrative analysis of molecular
alterations in breast cancer subtypes, we find a spectrum of genes
and pathways whose molecular signatures in the tumors or the
microenvironment have potential prognostic significance. A
subset of these findings, such as anti-apoptotic signaling, is only
apparent through data integration. In the final example, we use
ActivePathways to associate the co-expression and DNA-binding
networks of Hippo master regulators to downstream pathways
and processes with multi-omics evidence.

Our general pathway analysis strategy is applicable to diverse
kinds of datasets where well-calibrated P-values are available for
the entire set of genes or proteins. A multi-omics study may
quantify genes using a series of genomic, transcriptomic and
proteomic experiments and compute corresponding P-values.
Data from epigenomic experiments and genome-wide association

studies can be also analyzed after signals have been appropriately
mapped to genes, for example by identifying ChIP-seq peaks in
gene promoters similarly to our GTEx analysis. Clinical and
phenotypic information of patients can be also included through
association and survival statistics, as shown in our analysis of
prognostic signatures of breast cancer subtypes. Our method is
expected to work with raw, unadjusted P-values and also with Q-
values adjusted for multiple testing, however it is primarily
intended for unadjusted P-values for increased sensitivity. Acti-
vePathways conducts multiple testing correction at the pathway
level and reports significantly enriched pathways at a family-wise
error rate cutoff, regardless of the gene-specific multiple testing
correction applied upstream. Quantification of genes and proteins
through P-values is more robust than quantification through their
abundance measures such as counts or fold-changes. P-values
provided to ActivePathways need to be computed using dedicated

Fig. 4 Integrative pathway enrichment analysis of Hippo target genes across human tissues. a Enrichment map of GO processes and Reactome
pathways enriched in the target genes of transcriptional regulators YAP and TAZ of the Hippo pathway. Co-expressed target genes of YAP and TAZ across
normal human tissues of the GTEx dataset (pathways are shown in green and yellow, respectively) and DNA-binding target genes of YAP from ChIP-seq
experiments (shown in blue) were analyzed. Pathways only found through the integration of ChIP-seq and RNA-seq data are shown in red. b Euler diagram
shows 106 Hippo-related genes that were significantly enriched in the detected pathways and supported by a combination of signals in RNA-seq and ChIP-
seq datasets. Core Hippo genes detected in the analysis are listed. c Regulatory network of 17 TFs and 1,426 target genes detected in the ActivePathways
analysis of gene sets representing transcription factor target genes. Transcription factors with enriched target genes in the YAP/TAZ regulome are shown
in multi-colored circles. Target genes are colored by increasing statistical significance (turquoise to red). d Integrative analysis of pathways and GO
processes is complementary to the analysis of transcription factor targets. Euler diagram shows total number of pathway-associated identified in the
analysis of GO and Reactome terms (left) and TF target genes from ENCODE (right). Numbers of Hippo-related genes are shown in brackets.
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Fig. 5 Benchmarking of ActivePathways. a Comparison of ActivePathways with six additional pathway and network analysis methods used in the PCAWG
pathway and network consensus analysis. ActivePathways best recovers the consensus lists of pathway-implicated driver genes with coding and non-
coding mutations (indicated by asterisk). The consensus lists are shown in the leftmost bars of the plot and have been compiled through a majority vote of
the seven methods in the PCAWG pathway and network analysis working group. b Comparison of ActivePathways (leftmost bars) and common pathway
enrichment analysis using multiple significance cut-offs of PCAWG gene lists with protein-coding and non-coding mutations. ActivePathways shows
increased sensitivity of pathway analysis even at the most lenient gene list significance cut-offs and recovers additional pathways only detected through
integration of multiple datasets (dark red).
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methods for individual omics platforms such that inherent biases
in the data are accounted for prior to pathway analysis. In our
example of cancer driver discovery, appropriately computed P-
values of driver gene predictions from the PCAWG project13

account for confounding factors of somatic mutations, such as
gene sequence length and nucleotide content, mutation signatures
active in different types of tumors45 and biological correlates of
mutation frequency such as transcription and replication tim-
ing46. On the one hand, considering all such variations directly in
the pathway enrichment analysis would require substantially
more complex models. On the other hand, directly analyzing
pathways using simpler metrics (such as mutation counts or
frequencies) would propagate any upstream biases to the pathway
enrichment analysis and cause challenges with false positives and
data interpretation. Thius, given appropriately derived P-values
for genes, proteins and other molecules, ActivePathways can be
applied to a wide range of analyses.

Our method comes with important caveats. First, we only eval-
uate genes and proteins annotated in pathway databases. Such
databases have variable coverage, rely on frequent data updates47

and may miss sparsely annotated candidate genes. The most general
type of pathway enrichment analysis considers biological processes
and molecular pathways however many kinds of gene sets available
in resources such as MSigDB48 can be used to expand the scope of
ActivePathways. Second, pathway information is highly redundant
and analyses of rich molecular datasets often result in many sig-
nificant results reflecting the same underlying pathway. We address
this redundancy by visualizing and summarizing pathway results as
enrichment maps1,20 that summarize multiple similar pathways and
processes into general biological themes. Statistical inflation of
results accompanied by biological redundancy is addressed by a
stringent multiple testing correction. Third, the analysis treats
pathways as gene sets and does not consider interactions of genes in
pathways. This simplified strategy allows us to consider a wider
repertoire of pathways and processes as reliable mechanistic inter-
actions are often context-specific and limited to a small subset of
well-studied signaling pathways. Several advanced methods such as
HotNet39, PARADIGM49, and GeneMania50 model pathways
through gene and protein interactions.

Translation of discoveries into improved human health
through actionable mechanistic insights, biomarkers, and mole-
cular therapies is a long-standing goal of biomedical research. For
example, next-generation cancer genomics projects such as
ICGC-ARGO aim to collect multi-omics datasets with detailed
clinical profiles that will present new challenges for pathway and
network analysis techniques. In summary, ActivePathways is
integrative pathway analysis method that improves systems-level
understanding of cellular organization in health and disease.

Methods
Integrated and evidence-based gene lists. The main input of ActivePathways is
a matrix of P-values where rows include all genes of a genome and columns
correspond to evidence from omics datasets. To interpret multiple omics datasets, a
combined P-value is computed for each gene using a data fusion approach,
resulting in an integrated gene list. The integrated gene list is computed by merging
all P-values of a given gene into one combined P-value using the Brown’s exten-
sion18 of the Fisher’s combined probability test that accounts for overall covaria-
tion of P-values from different sources of evidence. The integrated gene list of
Brown P-values is then ranked in order of decreasing significance and filtered using
a lenient threshold (unadjusted P < 0.1 by default). Evidence-based gene lists
representing different omics datasets are based on ranked P-values from individual
columns of the input matrix and filtered using the same significance threshold.

Statistical enrichment of pathways. Statistical enrichment of pathways in ranked
lists of candidate genes is carried out with the ranked hypergeometric test. The test
considers one pathway gene set at a time and analyzes increasing subsets of input
genes from the top of the ranked gene list. The same procedure is used for

integrated and evidence-based gene lists. At each iteration, the test computes the
hypergeometric enrichment statistic and P-value for the set of genes shared by the
pathway and top sub-list of the input gene list. For optimal processing speed, only
gene lists ending with a pathway-related gene are considered. The ranked hyper-
geometric statistic selected the input gene sub-list that achieves the strongest
enrichment and the smallest P-value as the final result for the given pathway, as:

Ppathway ;G
� �

¼ min; argminn
� � Xmin n;Kð Þ

x¼k

K

k

� �
N � K

n� k

� �

N

n

� � ;

where Ppathway stands for the hypergeometric P-value of the pathway enrichment at
the optimal sub-list of the significance-ranked candidate genes, G represents the
length of the optimal sub-list, i.e., the number of top genes from the input gene list,
N is the number of protein-coding genes with annotations in the pathway database,
i.e., in Gene Ontology and Reactome, K is the total number of genes in a given
pathway, n is the number of genes in a given gene sub-list considered, and k is the
number of pathway genes in the considered sub-list. For a conservative estimate of
pathway enrichment, we consider as background N the universe of genes contained
in input gene sets (terms from pathway databases and ontologies) rather than the
complete repertoire of protein-coding genes. To obtain candidate genes involved in
the pathway of interest, we intersect pathway genes with the optimal sub-list of
candidate genes. The ranked hypergeometric P-value is computed for all pathways
and resulting P-values are corrected for multiple testing using the Holm-
Bonferroni method of family-wise error rate (FWER)19. Significant pathways are
reported by default (Q < 0.05).

Evaluating omics evidence of enriched pathways. Each evidence-based gene list
derived from a single omics dataset is also analyzed for enriched pathways with the
ranked hypergeometric test. Pathways found in the integrated gene list are then
labeled for supporting evidence in the case they are also found as significant in any
evidence-based gene list. A pathway is considered to be found only through data
integration and labeled as combined-only if it is identified as enriched in the inte-
grated gene list but not identified as enriched in any of the evidence-based gene lists at
equivalent significance cut-offs (default Q < 0.05). Each detected pathway is addi-
tionally annotated with pathway genes apparent in the optimal sub-list of candidate
genes separately for the integrated gene list and each evidence-based gene list.

Pathways and processes. We used gene sets corresponding to biological processes
of Gene Ontology16 and molecular pathways of the Reactome database17 down-
loaded from the g:Profiler web server10 on Jan 26th 2018. Large general gene sets
with more than a thousand genes and small specific gene sets with less than five
genes were excluded to avoid statistical inflation of large gene lists and inter-
pretation challenges with very small lists.

Enrichment map visualization. ActivePathways creates input files for the
EnrichmentMap app20 of Cytoscape51 for network visualization of similar path-
ways and their coloring according to supporting evidence. Enrichment maps for
adenocarcinoma driver mutations, prognostic quantification of molecular altera-
tions of breast cancer, and transcriptional networks downstream of Hippo sig-
naling were visualized with stringent pathway similarity scores (Jaccard and
overlap combined coefficient 0.6) and manually curated for the most representative
groups of similar pathways and processes. Singleton pathways that were redundant
with larger groups of pathways were merged with the latter or discarded. Coloring
of pathways in the adenocarcinoma enrichment map was rearranged by merging
colors of pathways supported by non-coding mutation scores of promoters,
enhancers and/or UTRs into one group.

Coding and non-coding mutations of the PCAWG dataset. We used Active-
Pathways to analyze driver predictions of coding and non-coding mutations across
white-listed 2583 whole cancer genomes of the ICGC-TCGA PCAWG project. P-
values of driver predictions were computed separately for protein-coding
sequences, promoters, enhancers and untranslated regions (UTR3, UTR5 across
multiple subsets of samples representing histological tumor types and pan-cancer
cohorts as reported in the PCAWG driver discovery study13. We used gene-
enhancer mapping predictions provided by PCAWG, excluded enhancers with
more than five target genes, and selected the most significant enhancer for each
gene, if any. Unadjusted P-values for coding sequences, promoters, enhancers and
UTRs were compiled as input matrices and analyzed as described above. Missing P-
values were conservatively interpreted as ones. Results from ActivePathways were
validated with two lists of cancer genes. Predicted drivers from the PCAWG
consensus analysis13 were selected as statistically significant findings (Q < 0.05)
following a stringent multiple testing correction spanning all types of elements
(exons, UTRs, promoter, enhancers). The curated list of known cancer genes was
retrieved from the COSMIC Cancer Gene Census (CGC) database11. One-tailed
Fisher’s exact tests were used to estimate enrichment of these genes in our results,
using all human protein-coding genes as the statistical background set.
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Prognostic CNA and mRNA signals in breast cancer. ActivePathways was used
to evaluate prognostic pathways in breast cancer subtypes. Multiple types of omics
data were used for an integrative analysis: mRNA gene expression data and gene
copy number alteration (CNA) data of the were derived from the METABRIC
cohort of 1991 patients with a single primary fresh frozen breast cancer specimen
each15. Curtis et al.15 classified the patients into the intrinsic breast cancer subtypes
using the PAM50 mRNA-based classifier52 resulting in 330 basal-like breast can-
cers, 238 HER2-enriched breast cancers, 721 luminal-A breast cancers, 491
luminal-B breast cancers. Using these data, we computationally deconvolved tumor
cell (TC) mRNA and tumor adjacent cell (TAC) mRNA abundance levels from the
bulk profiled specimens. TC mRNA was deconvolved using the ISOpure21 method
release 2010b in MATLAB. TAC mRNA abundance profiles were computed using
the ISOpure.calculate.tac function from the R package ISOpureR22 v1.1.2. The
deconvolution analyses were performed independently for each breast cancer
subtype. The mRNA univariate survival analysis was conducted as follows. For
each gene, patients were dichotomized based on mRNA abundance. Dichot-
omization was either based on the median mRNA abundance for that gene or a
fixed value of 6.5. Based on the mRNA abundance distribution of genes on the Y
chromosome in female samples, the value 6.5 was estimated as the threshold for
noise for non-expressed genes. Median dichotomization was used if the median
was above 6.5 or if there were no events in one of the groups when dichotomizing
based on 6.5. The high and low groups based on mRNA abundance were compared
by univariate log-rank tests for overall patient survival. TC and TAC mRNA
abundance values were evaluated independently. Survival modeling was performed
in the R statistical environment (v3.4.3) using the survival package (v2.42–3). The
CNA univariate survival analysis was conducted as follows. For each gene, we
assessed whether more gains or losses were apparent. The copy number status with
a higher count was subsequently used to separate patients into two groups: those
with the chosen copy number status and the remaining patients. The two groups
were then used for overall survival modeling with log-rank tests.

Hippo pathway target genes in mRNA and ChIP-seq data. This analysis
included two types of omics data, mRNA abundance measurements from RNA-seq
experiments and transcription factor DNA-binding measurements from chromatin
immunoprecipitation sequencing (ChIP-seq) experiments. The RNA-seq dataset of
human tissues was downloaded from GTEx v7 data portal (https://www.gtexportal.
org/home/). The dataset included transcript abundance values of 21,518 protein-
coding genes in 11,688 samples across 53 tissues. Tissues with less than 25 available
samples and low gene expression (mean TPM < 1.0; transcripts per million) were
excluded from further analysis, resulting in 40 tissues and 9672 samples with
mRNA abundance profiles of 19,025 genes. Transcriptional target gene lists for the
master transcription factors YAP and TAZ (encoded by YAP1, WWTR1) were
predicted separately in the following two steps. First, we computed pairwise
Pearson correlations between a given TF and all other genes within a tissue of
interest and ranked these by the significance P-value of positive correlations.
Second, the resulting ranked gene lists were then aggregated into one master target
gene list across the GTEx tissues using the robust rank aggregation (RRA)
method32 with default parameters (Qgene < 0.05). FDR-adjusted values of genes
from RRA for YAP and TAZ were used as the first and second evidence for input of
ActivePathways, respectively. For DNA-binding targets of YAP, we retrieved ChIP-
seq binding sites in three cell lines (CCLP1, MSTO, and HUCCT1) from an earlier
study33 that were reprocessed in the ReMap database34. Binding sites were filtered
by statistical significance (Q < 0.05) and mapped to gene promoters of the human
genome (hg19) using gene promoters defined in the PCAWG driver analysis13. If a
promoter had multiple binding sites, the site with the strongest FDR-value was
selected as a representative site for that gene. FDR-adjusted values of genes with
YAP DNA-binding sites were used as the third evidence for input of Active-
Pathways. Significantly enriched pathways among the putative target genes of YAP
and TAZ were subsequently detected using ActivePathways. We compiled a list of
308 Hippo-related genes from the KEGG pathway database35 and two recent
review papers30,31. To validate the analysis, we tested the overall sets of genes
identified by ActivePathways for enrichment of Hippo-related genes using Fisher’s
exact tests. The Hippo analysis was conducted separately for two collections of
functional gene sets. First, we tested GO biological processes and Reactome
pathways similarly to analyses described above. Second, we used gene sets corre-
sponding to transcription factor binding sites (TFBS) derived from the ENCODE
project36.

Method benchmarking. We benchmarked ActivePathways using multiple
approaches, including simulated datasets of P-values, method parameter variations,
and partial replacement of P-values scores with insignificant P-values. Bench-
marking was performed on the PCAWG predictions of cancer driver genes with
coding and non-coding mutations. To evaluate the false discovery rate of Active-
Pathways, we created simulated datasets by reassigning all observed P-values to
random genes and their genomic elements. Simulations were conducted separately
for different tumor cohorts. One thousand simulated datasets were analyzed with
ActivePathways and those with at least one significantly detected pathway counted
towards false discovery rates. A separate set of simulations maintained the posi-
tions of non-coding P-values among genes and randomly reassigned P-values

corresponding to protein-coding mutations, expectedly leading to a reduction in
detected pathways as the PCAWG datasets primarily included strong P-values for
genes with frequent protein-coding mutations. Quantile-quantile analysis and QQ-
plots were used to compare P-value distributions of pathways discovered from true
P-values, partially shuffled P-values (true non-coding and shuffled protein-coding
P-values), and fully shuffled P-values. To evaluate robustness of ActivePathways,
we randomly replaced a fraction of significant driver P-values in the true dataset
(P < 0.001) with insignificant P-values (P= 1). We tested different fractions of
missing values (10, 25, and 50%) across a thousand datasets of randomly selected
missing data points. We concluded that most PCAWG cohorts included sig-
nificantly enriched pathways even with large fractions of missing data. To further
evaluate robustness, we tested different values of the Brown P-value threshold used
to select the integrated gene list for pathway enrichment analysis. The default
parameter value (Pgene < 0.1) was compared to alternative values (0.001, 0.01, 0.05,
and 0.2). We concluded that ActivePathways found enriched pathways in most
tumor cohorts even at more stringent gene selection levels.

Ethical review. Sequencing of human subjects’ tissue was performed by ICGC and
TCGA consortium members under a series of locally approved Institutional Review
Board (IRB) protocols as described in Hudson et al. Informed consent was
obtained from all human participants. Ethical review of the current data analysis
project was granted by the University of Toronto Research Ethics Board (REB)
under protocol #30278, “Pan-cancer Analysis of Whole Genomes: PCAWG”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Somatic and germline variant calls, mutational signatures, subclonal reconstructions,
transcript abundance, splice calls and other core data generated by the ICGC/TCGA Pan-
cancer Analysis of Whole Genomes Consortium is described in the marker paper4 and
available for download at https://dcc.icgc.org/releases/PCAWG. Additional information
on accessing the data, including raw read files, can be found at https://docs.icgc.org/
pcawg/data/. In accordance with the data access policies of the ICGC and TCGA projects,
most molecular, clinical and specimen data are in an open tier which does not require
access approval. To access potentially identifiable information, such as germline alleles
and underlying sequencing data, researchers will need to apply to the TCGA Data Access
Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page= login)
for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance
Office (DACO; http://icgc.org/daco) for the ICGC portion. In addition, to access somatic
single nucleotide variants derived from TCGA donors, researchers will also need to
obtain dbGaP authorization. Derived PCAWG datasets described specifically in this
manuscript can be found at the locations listed below. Additional relevant datasets are
listed in the PCAWG study of pathways and networks14.

Label Synapse ID ICGC DCC URL ICGC DCC
Filename

Access
(Open/
Controlled)

PCAWG driver
P-values

syn8494939 https://dcc.icgc.
org/releases/
PCAWG/
networks/

final_integration_
results_2017_
03_16.tar.gz

Open

PCAWG pathway
and network
method results

syn21413360 https://dcc.icgc.
org/releases/
PCAWG/
networks/

pathway_and_
network_method_
results.tar.gz

Open

PCAWG pathway
and network
consensus results

syn11654843 https://dcc.icgc.
org/releases/
PCAWG/
networks/

method_results_
2017_10_10.tar.gz

Open

Enhancer-gene
mappings

syn7201027 https://dcc.icgc.
org/releases/
PCAWG/
networks/

map.enhancer.
gene.txt.gz

Open

Coding and non-
coding elements

syn21416282 https://dcc.icgc.
org/releases/
PCAWG/
networks/

gene-coding-and-
non-coding-
elements.tar.gz

Open

Code availability
ActivePathways is freely available as an R package and source code on the GitHub
repository https://github.com/reimandlab/ActivePathways and in the Comprehensive R
Archive Network (CRAN). Additional scripts are available upon request. The core
computational pipelines used by the PCAWG Consortium for alignment, quality control
and variant calling are available to the public at https://dockstore.org/search?search=pcawg
under the GNU General Public License v3.0, which allows for reuse and distribution.
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