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Classical intervals have been a very useful tool to analyze uncertain and imprecise mod-els, in 
spite of operative and interpretative shortcomings. The recent introduction of modal intervals helps 
to overcome those limitations. In this paper, we apply modal in-tervals to the field of probability, 
including properties and axioms that form a theoretical framework applied to the Markovian 
analysis of Bonus-Malus systems in car insurance. We assume that the number of claims is a Poisson 
distribution and in order to include uncertainty in the model, the claim frequency is defined as a 
modal interval; therefore, the transition probabilities are modal interval probabilities. Finally, the 
model is ex-emplified through application to two different types of Bonus-Malus systems, and the 
attainment of uncertain long-run premiums expressed as modal intervals.
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1. Introduction

Uncertainty and inaccuracy have been treated from different points of view. Thus,

for instance, fuzzy sets and fuzzy numbers, introduced by Zadeh,25 as well as rough

sets15,24,27 and intervals are widely used tools in this area. Since the beginning of

the implementation of classical intervals,9,11 they have been used in many fields.

However, it was not until the recent introduction of modal intervals5,16 that 
their

use has taken an important step forward in two ways. On the one hand, 
their

use has advanced in the operative sense, as modal intervals considerably 
extend

the possibilities of solving problems whose resolution is not possible using classical

intervals; and on the other hand, the advance has been in an interpretative sense,

as the rigidity of the interpretation of interval calculus is overcome by the use of

modal intervals.
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One of the fields we consider in this paper is the application of modal intervals 
to probability.

Since the mid twentieth century, many theories of imprecise probabilities have 
been developed. Dempster2 and Shafer17 introduced the theory of evidence that 
characterizes uncertainties as discrete masses of probability associated with a set 
of power values. Another important contribution is the theory of possibility put 
forward by Zadeh26 and Dubois and Prade3 which represents uncertainties using 
necessity–possibility pairs. In 2000, Weichselberger22 introduced an interval prob-

ability incorporating classical intervals into the probability value fulfilling the Kol-

mogorov properties. Wang19,20 used generalized intervals, which conceptually lead 
to modal intervals, to study interval probability. Nowadays we can find some other 
studies about interval probability (see Refs. 7, 23).

Meanwhile, the Bonus-Malus system (BMS) has become the most common form 
of rating in car insurance. In this system, the bonus class of the policyholder is 
updated from one year to the next as a function of the current class and the number 
of claims made during the year: penalties are applied in the case of claims having 
been made, and premium discounts are achieved by claim-free policyholders.

The basic idea of this system is that the policyholder moves through different 
levels of premium according to the number of claims occurs. That is to say, bonuses 
are attained by not filing claims (a reward for careful drivers), and a malus is 
applied if many claims have been made. In a generic BMS, a basic premium is fixed 
depending on rating factors and the type of coverage. This basic premium is paid by 
drivers without a known claim history. Then, a Bonus-Malus scale is defined. This 
scale includes percentages of the basic premium to be paid after the occurrence of k 
claims. Each percentage of the basic premium is included in a state, and transitions 
between the states are fixed by the number of claims made.

Practically, penalties and discounts are included in the Bonus-Malus scale that is 
defined using a finite number of levels with their own premiums, and the transition 
rules between them that depend on the claims made. Assuming that the number of 
claims per year is independent, the process can be considered to be a Markov chain, 
and therefore, the transition probabilities must be obtained from the hypothesis 
used to model the claim experience. For more details concerning the BMS, see 
Refs. 1, 4, 6, 10, 13, 14.

In this paper, we propose an approach based on the uncertainty of the claim 
frequency. If the number of claims is a Poisson distribution with parameter λ, in 
order to introduce unpredictability, the claim frequency, λ, is not a certain value 
and can be considered as an interval. Niemiec12 assumes a classical interval to 
describe the value of λ. Further, the transition probabilities become generalized 
imprecise probabilities.20,21 We extend this point of view under the framework of 
modal intervals.

The paper is organized as follows: in Section 2, we present the main concepts in-

volved in interval calculus; while Section 3 includes the required definition of modal 
interval probability. In Section 4, the BMS is modified through the introduction of
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uncertainty into the claim frequency, which means that we must use the concepts

previously considered. Also in Section 4, we develop a numerical application.

2. Interval Calculus

Given two real numbers a and b such that a ≤ b, classical interval theory defines

the interval [a, b] of the real line as:

[a, b] = {x ∈ R | a ≤ x ≤ b} .

The set of classical intervals11 is represented by I (R).

Given a real continuous function, f , its extension on the set of classical intervals

is represented by F and if [a1, b1] , . . . , [an, bn] are classical intervals, then F is

defined as:

F ([a1, b1] , . . . , [an, bn]) = {f (x1, . . . , xn) | xi ∈ [ai, bi]} . (1)

As f is a continuous function, the set:

Y = {f (x1, . . . , xn) | xi ∈ [ai, bi]} ,

is also a classical interval and thus:

Y =

[
min

xi∈[ai,bi]
f (x1, . . . , xn) , max

xi∈[ai,bi]
f (x1, . . . , xn)

]
.

The calculus Y = F ([a1, b1] , . . . , [an, bn]) can be semantically interpreted in two

ways:

(∀x1 ∈ [a1, b1]) . . . (∀xn ∈ [an, bn]) (∃y ∈ Y ) such that y = f (x1, . . . , xn) ,

or also:

(∀y ∈ Y ) (∃x1 ∈ [a1, b1]) . . . (∃xn ∈ [an, bn]) such that y = f (x1, . . . , xn) .

(2)

Classical intervals present some shortcomings; one of which comes from the fact

that the solution [x, y] of the interval equation [a, b] + [x, y] = [c, d] must satisfy

a + x = c and b + y = d. This solution exists on I (R) only under the condition

b − a ≤ d − c, but even when the interval equation has a solution, this solution

cannot be obtained by any syntactic interval computation on I (R).

This problem is overcome by the use of modal intervals.

A modal interval is a pair consisting of a classical interval and a quantifier:

A = ([a, b] , Q) where [a, b] ∈ I (R) and Q ∈ {∃,∀} .

The set of modal intervals is represented by I∗ (R).

A modal interval A is said to be proper if A = ([a, b] ,∃); while A is said to be

improper if A = ([a, b] ,∀).
The canonical notation of modal intervals expresses an improper interval A =

([a, b] ,∀) as A = [b, a], and a proper interval A = ([a, b] ,∃) as A = [a, b], identifying

a proper interval with the associated classical interval.
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Thus, using this canonical notation, the improper interval ([1, 3] , ∀) is repre-

sented by [3, 1], while the proper interval ([2, 7] , ∃) corresponds to the classical 
interval [2, 7].

We will say that the modality of an interval is proper if its quantifier is existen-

tial, while the modality will be improper if its quantifier is universal.

Within the set of modal intervals, we must emphasize the dual operator defined

by

dual ([a, b] , Q) =

{
([a, b] ,∀) if Q = ∃ ,
([a, b] ,∃) if Q = ∀ .

(3)

Thus, using the canonical notation of an interval, dual ([a, b]) = [b, a].

If f is a real continuous function, its extension on the modal intervals X =

([a1, b1] , . . . , [an, bn]) is represented by F (X) and it is defined similarly as the

extension defined on the classical intervals (1) as

F (X) =

[
min
xp∈XP

max
xi∈Xi

f (xp, xi) , max
xp∈XP

min
xi∈Xi

f (xp, xi)

]
,

where Xp are the proper intervals that are components of X, and Xi are the im-

proper intervals that are components of X.

Note that when the function f is reduced to one of the elementary arithmetic

operations {+,−,×, /}, the previous extension defines the calculation of these arith-

metic operators on the set of the modal intervals. For more details, see Ref. 16.

The distributive property of the product with respect to the sum, which is not

fulfilled in calculations with classical intervals, is still not fulfilled in the set of modal

intervals and is reduced to a subdistributive property. In this, if A,B and C are

modal intervals, then A × (B + C) ⊆ A × B + A × C; although if B and C both

belong to some zones16,18 in the interval plane defined by the modal interval A,

then the distributive law is fulfilled.

Using modal intervals, some of the limitations inherent to the set of classical

intervals are overcome. Thus, the solution of the interval equation [a, b] + [x, y] =

[c, d] is [x, y] = [c, d] − dual ([a, b]). In the same way, the solution of the interval

equation [a, b] × [x, y] = [c, d] is [x, y] = [c, d] /dual ([a, b]) , bearing in mind that

0 /∈ [a, b] .

The interval equation [3, 6] + [x, y] = [4, 8] has a solution in the set of classical

intervals, but to evaluate it we need the dual operator of modal intervals described

above (3). The solution of this equation is [x, y] = [4, 8] − dual ([3, 6]) and hence

[x, y] = [1, 2] . Meanwhile, the equation [3, 6] + [x, y] = [5, 7] has no solution in the

set of classical intervals, but in contrast it does have a solution in the set of modal

intervals. The solution is [x, y] = [5, 7] − dual ([3, 6]), that is: [x, y] = [2, 1], which

corresponds to an improper interval.

Another important contribution made by modal intervals is the improvement

they offer of semantic interpretation in interval calculations [16, Theorem 3.3.1].

Thus, if f is a real continuous function and we consider the modal intervals
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X = ([a1, b1] , . . . , [an, bn]), the semantic interpretation of the calculus

Y = F (X) =

[
min
xp∈XP

max
xi∈Xi

f (xp, xi) , max
xp∈XP

min
xi∈Xi

f (xp, xi)

]
,

is:

(∀xp ∈ Xp) (∃y ∈ Y ) (∃xi ∈ Xi) such that y = f (xp, xi) if Y is proper,

(∀xp ∈ Xp) (∀y ∈ Y ) (∃xi ∈ Xi) such that y = f (xp, xi) if Y is improper,

where Xp are the proper interval components of X; and Xi are the improper interval

components of X.

3. Interval Probability

Definition 1. Let Ω be a sample-space and let A be a σ-algebra of random events

in Ω. A modal interval probability is a function P : A → I∗ (R) that satisfies the

following axioms

• ∀A ∈ A P (A) ∈ I∗ (R) ,

• ∀A ∈ A P (A) ≥ [0, 0] ,

• P (Ω) = [1, 1] ,

• For any countable mutually disjoint events, Ai ∩ Aj = ∅ for all i 6= j, then

P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai) .

Proposition 1. The calculus established in Axiom 4 of Definition 1 is semanti-

cally interpreted in the following way.

If ∀i ∈ {1, . . . , k}P (Ai) are proper intervals and ∀j ∈ {k + 1, . . . , n}P (Aj) are

improper intervals, then:

• If P (
⋃n
i=1Ai) is a proper interval, the interpretation of the calculus

P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai) is:

{∀pi ∈ P (Ai)}i=1,...,k ∃p ∈ P

(
n⋃
i=1

Ai

)
{∃pj ∈ P (Aj)}j=k+1,...,n such that p =

k∑
i=1

pi +
n∑

j=k+1

pj.

• If P (
⋃n
i=1Ai) is an improper interval, the interpretation of the calculus

P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai) is:

{∀pi ∈ P (Ai)}i=1,...,k ∀p ∈ P

(
n⋃
i=1

Ai

)
{∃pj ∈ P (Aj)}j=k+1,...,n such that p =

k∑
i=1

pi +
n∑

j=k+1

pj.

Proof. As a consequence of the application of the ∗-semantic interval theorem [16,

Theorem 3.3.1] to the calculus P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai).
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Example 1. Let Ω be a sample-space, A a σ-algebra of random events in Ω, and

P a modal interval probability function: P : A → I∗ (R).
If A1, A2, A3, A4 ∈ A are mutually disjoint events with probability values

P (A1) = [0.1, 0.15], P (A2) = [0.5, 0.1], P (A3) = [0.1, 0.3] and P (A4) = [0.2, 0.1]

then, as P
(
∪4
i=1Ai

)
=
∑4
i=1 P (Ai) it will be P

(
∪4
i=1Ai

)
= [0.9, 0.65].

As P (A1) and P (A3) are proper intervals, P (A2) , P (A4) and P
(
∪4
i=1Ai

)
are

improper intervals, it follows the semantic interpretation:

(∀p1 ∈ [0.1, 0.15]) (∀p3 ∈ [0.1, 0.3]) (∀p ∈ [0.65, 0.9]) (∃p2 ∈ [0.1, 0.5]) (∃p4 ∈ [0.1, 0.2])

such that p = p1 + p2 + p3 + p4.

The following properties can be deduced from the axioms established in the

above Definition 1, as their proofs are simple deductions from those axioms.

(1) P (∅) = [0, 0] ,

(2) If A ⊆ B then P (A) ≤ P (B) ,

(3) ∀A ∈ A P (A) ≤ [1, 1] .

One of the most important properties in the calculation of probabilities relates

the probability of an event A with the probability of its complementary event, Ac.

When working with modal interval probabilities, this relationship is established

using the dual operator in the following way:

(4) ∀A ∈ A P (Ac) = [1, 1]− dual (P (A)) .

Note that from the last Property 4, it is clear that the probability of A and the

probability of Ac have distinct modalities. That is, P (A) is a proper interval if and

only if P (Ac) is an improper interval.

This transcends classical interval probability theory, since using classical inter-

vals it is impossible to obtain this result coherently.

The above Property 4, which uses the dual operator, is equivalent to:

∀A ∈ A P (A) + P (Ac) = [1, 1] .

However, the equality P (Ac) = [1, 1] − P (A) is obviously false, as explained in

Section 2 above.

Example 2. Let Ω be a sample-space, A a σ-algebra of random events in Ω, and

P : A → I∗ (R) a modal interval probability function. Let A1, A2, A3 ∈ A be

mutually disjoint events such that A1 ∪A2 ∪A3 = Ω.

If the interval values of the probabilities P (A1) and P (A2) are known: P (A1) =

[0.1, 0.3] and P (A2) = [0.5, 0.6] then, as P (A1) + P (A2) + P (A3) = [1, 1], it

will be P (A3) = 1 − dual (P (A1) + P (A2)), that is P (A3) = [0.4, 0.1], which is

semantically interpreted as:

(∀p1 ∈ [0.1, 0.3]) (∀p2 ∈ [0.5, 0.6]) (∃p3 ∈ [0.1, 0.4]) such that p1 + p2 + p3 = 1.
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For a given event A ∈ A, we define a conditional probability measure P (·|A)

such that P (B|A) is the conditional probability of B given A for any event B ⊆ Ω.

Definition 2. If P is a modal interval probability, the modal interval conditional

probability measure P (·|A) for an event A ⊆ Ω with P (A) > [0, 0] is defined by:

P (B|A) =
P (B ∩A)

dual (P (A))
,

for any event B ⊆ Ω.

Using the interval modal operation, we can show that the modal interval con-

ditional probability P (·|A) is a probability measure, as

• ∀B ∈ A P (B|A) ∈ I∗ (R),

• ∀B ∈ A P (B|A) ≥ [0, 0],

• P (Ω|A) = P (Ω∩A)
dual(P (A)) = P (A)

dual(P (A)) = [1, 1],

• For any countable mutually disjoint events, Bi ∩ Bj = ∅ for all i 6= j, applying

Definition 2:

P
(⋃n

i=1
Bi|A

)
=
P ((

⋃n
i=1Bi) ∩A)

dual (P (A))

and using the laws of the algebra of sets, it follows that (
⋃n
i=1Bi) ∩ A =⋃n

i=1 (Bi ∩A) and consequently:

P
(⋃n

i=1
Bi|A

)
=
P (
⋃n
i=1 (Bi ∩A))

dual (P (A))
.

Thus, applying Axiom 4 in Definition 1, we have:

P
(⋃n

i=1
Bi|A

)
=

∑n
i=1 P (Bi ∩A)

dual (P (A))

which is

P
(⋃n

i=1
Bi|A

)
=

1

dual (P (A))
·
(∑n

i=1
P (Bi ∩A)

)
.

Finally, we can apply the distributive law in modal intervals as all the

modal intervals are positive and hence they belong to the same distributive

zone.16,18 Thus, P (
⋃n
i=1Bi|A) =

∑n
i=1

P (Bi∩A)
dual(P (A)) and it will be P (

⋃n
i=1Bi|A) =∑n

i=1 P (Bi|A) .

From Definition 2, the equality P (B∩A) = P (B|A) ·P (A) is obviously fulfilled.

Given P a modal interval probability, a finite sequence of random variables

{Xn}n∈{1,...,k} verifies the Markov property if, for all n ∈ {1, . . . , k}:

P (Xn+1 = in+1|Xn = in, . . . , X1 = i1) = P (Xn+1 = in+1|Xn = in) = pinin+1

where pinin+1 =
[
pinin+1 , pinin+1

]
∈ I∗ (R) .
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We can group the elements
[
pinin+1

, pinin+1

]
in a modal interval matrix P called

the modal transition matrix:

P =


[
p11, p11

]
· · ·
[
p1r, p1r

]
...

. . .
...[

pr1, pr1
]
· · ·
[
prr, prr

]
 ,

fulfilling for all i ∈ {1, . . . , r} :

r∑
j=1

[
pij , pij

]
= [1, 1] .

A modal interval Markov chain is a pair (P,L (0)), where P is the transition

modal matrix and L (0) the initial distribution vector.

4. Bonus-Malus System using Modal Intervals

In this section, we apply the foregoing concepts and definitions concerning modal

interval probabilities to a BMS. Following Lemaire10 , policyholders are divided

into a finite number of classes, such that each policy stays in one class through each

period, usually a year. The premium depends only on the class the policyholder

belongs to and that class for a given period is fixed by the class in the previous

period and the number of claims made during that period.

A BMS is analyzed considering the theory of Markov chains. It is necessary to

define a scale system with r classes and a premium scale b = (b1, . . . , br), where bi is

the premium paid by policyholders in class i. The transition probabilities between

classes are included in a transition matrix defined as P = [pij ] , where pij is the

probability of moving for class i to class j, that is to say, the probability of a certain

number of claims, defined in the Bonus-Malus scale system.

Let us define L(0) = (l01, . . . , l
0
r),

∑r
i=1 l

0
i = 1 as the initial distribution of

policyholders in each class. We can obtain the distribution of policyholders in each

class in period t = 1, 2, ..., i.e. L(t) = (lt1, . . . , l
t
r), as L(t) = L(t− 1) ·P or, applying

a recursive method, L(t) = L(0) · Pt. The steady-state distribution is the vector

L(∞) = (l∞1 , . . . , l
∞
r ), which satisfies L(∞) = L(∞) ·P, that is to say, the steady-

state distribution does not change over time. Using the previous definitions, it is

possible to obtain the average premium paid by a policy holder in the steady state,

denoted as Π. The long-run premium is defined as Π =
∑r
i=1 bil

∞
i .

In this paper, the claim frequency is uncertain. The origin of this uncertainty can

be fluctuations, a lack of information that introduces errors in models, or numerical

or measurement errors. To introduce this hypothesis into the model, we assume that

the parameter that determines the number of claims is not a certain value, it is a

modal interval, so we modify the analysis using modal interval probabilities.
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Therefore, from now on, the transition probabilities are modal interval proba-

bilities, pij = [pij , pij ], where P is the modal transition matrix:

P =


p11 =

[
p11, p11

]
· · · p1r =

[
p1r, p1r

]
...

. . .
...

pr1 =
[
pr1, pr1

]
· · · prr =

[
prr, prr

]
 ,

where for all i ∈ {1, . . . , r},
∑r
j=1 pij = [1, 1] .

The distribution of policyholders in each class at time t is the vector of modal

intervals L (t) = (Lt1, . . . ,L
t
r), and

∑r
j=1 Ltj = [1, 1]. L (t) can be obtained as

L(t) = L(0) ·P = (L0
1, . . . ,L

0
r) ·


p11 · · · p1r

...
. . .

...

pr1 · · · prr

 ,

where the steady-state distribution L(∞) = (L∞1 , . . . ,L
∞
r ) is

L(∞) = L(∞) ·P = (L∞1 , . . . ,L
∞
r ) ·


p11 · · · p1r

...
. . .

...

pr1 · · · prr

 ,

and where Π =
∑r
i=1 biL

∞
i =

[
Π,Π

]
is the mean asymptotic premium: a modal

interval.

Below, we present some applications to different forms of BMS.

From now on, we assume that the number of claims, N , a discrete random

variable, follows a Poisson distribution, N ∼ Po (λ); and due to the uncertainty, we

assume that the claim frequency, λ, is a modal interval: λ = [λ1, λ2]. The density

function required to obtain the probabilities of occurrences of k claims assuming

N ∼ Po (λ) is

P (N = k) =
λk

k!
e−dual(λ) ,

where P (N = k) is a modal interval probability. Assuming N ∼ Po (λ), we obtain

P (N = 0) =
[λ1, λ2]0

0!
e−dual[λ1,λ2] = [e−λ1 , e−λ2 ] ,

P (N = 1) =
[λ1, λ2]1

1!
e−dual[λ1,λ2] = [λ1e

−λ1 , λ2e
−λ2 ] ,

P (N = 2) =
[λ1, λ2]2

2!
e−dual[λ1,λ2] = [λ2

12e−λ1 , λ2
22e−λ2 ],

P (N ≥ 1) = [1, 1]− dual (P (N = 0)) = [1, 1]− dual[e−λ1 , e−λ2 ] = [1− e−λ1 , 1− e−λ2 ],
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P (N ≤ 1) = P (N = 0) + P (N = 1) = [e−λ1(1 + λ1), e−λ2(1 + λ2)],

P (N ≥ 2) = [1, 1]− dual[P (N ≤ 1)] = [1, 1]− dual[e−λ1(1 + λ1), e−λ2 (1 + λ2)]

= [1− e−λ1(1 + λ1), 1− e−λ2(1 + λ2)].

The previous probabilities are the modal transition probabilities included in the

modal transition matrix P. We will now focus our attention on two examples of

BMS.

Example 3. [8, Cf. Example 2] We assume that the policyholder pays a premium c

if one or more claims occurred in the preceding two-year period. In other situations

the driver pays a ≤ c. Three classes are defined, with the modal transition matrix

being

P =

 P (N ≥ 1) P (N = 0) 0

P (N ≥ 1) 0 P (N = 0)

P (N ≥ 1) 0 P (N = 0)

 .

If N ∼ Po ([λ1, λ2]),

P =


[
1− e−λ1 , 1− e−λ2

] [
e−λ1 , e−λ2

]
0[

1− e−λ1 , 1− e−λ2
]

0
[
e−λ1 , e−λ2

]
[
1− e−λ1 , 1− e−λ2

]
0

[
e−λ1 , e−λ2

]

 .

We can obtain L (1), knowing that L (1) = L (0) · P. Assuming L(0) =

(L0
1,L

0
2,L

0
3),
∑3
i=1 L0

i = [1, 1],

L (1) =
([

1− e−λ1 , 1− e−λ2
]
,
[
L0

1e
−λ1 ,L0

1e
−λ2
]
,
[(

L0
2 + L0

3

)
e−λ1 ,

(
L0

2 + L0
3

)
e−λ2

])
and considering L(t) = L(t− 1) ·P, we obtain

L(2) = L(3) = . . . = L(∞) = (L∞1 ,L
∞
2 ,L

∞
3 ) ,

where:

L∞1 =
[
1− e−λ1 , 1− e−λ2

]
,

L∞2 =
[
e−λ1

(
1− e−λ1

)
, e−λ2

(
1− e−λ2

)]
,

L∞3 =
[
e−2λ1 , e−2λ2

]
.

If λ1 < λ2, L∞1 is a proper interval and L∞3 is an improper interval. As for L∞2 , it

is a proper interval if λ1 < λ2 < ln (2), and an improper interval if ln (2) < λ1 < λ2.

If λ1 < ln (2) < λ2, then L∞2 can be a proper or an improper interval.

Let us now calculate the long-run premium. Knowing that if the policyholder is

in the first or second class the premium to be paid is c, and if the policyholder is

in the third class, a is to be paid, Π is

Π = c · L∞1 + c · L∞2 + a · L∞3 = [c+ (a− c)e−2λ1 , c+ (a− c)e−2λ2 ] .
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Let us assume that λ1 < λ2, then Π and L∞1 are proper intervals and L∞3 is

an improper interval. However, depending on the values of λ1 and λ2, L∞2 can be

proper or improper.

Case 1: ln (2) < λ1 < λ2. L∞1 is a proper interval, and L∞2 and L∞3 are improper

intervals, with Π also being a proper interval. The ∗-semantic interpretation is:

(∀l∞1 ∈ L∞1 ) (∃π ∈ Π) (∃l∞2 ∈ L∞2 ) (∃l∞3 ∈ L∞3 ) such that π = c · l∞1 +c · l∞2 +a · l∞3 .

Case 2: λ1 < λ2 < ln (2). L∞1 and L∞2 are proper intervals, L∞3 is an improper

interval and the result Π is also a proper interval, the ∗-semantic interpretation is:

(∀l∞1 ∈ L∞1 ) (∀l∞2 ∈ L∞2 ) (∃π ∈ Π) (∃l∞3 ∈ L∞3 ) such that π = c · l∞1 +c · l∞2 +a · l∞3 .

If λ1 > λ2, L∞1 is an improper interval and L∞3 is a proper interval. As L∞2 is a

proper interval if ln (2) < λ2 < λ1, and an improper interval if λ2 < λ1 < ln (2). If

λ2 < ln (2) < λ1, then L∞2 can be a proper or an improper interval.

Let us assume [λ1, λ2] = [0.038, 0.042], then the transition modal matrix is:

P =

 [0.0372, 0.0411] [0.9627, 0.9588] 0

[0.0372, 0.0411] 0 [0.9627, 0.9588]

[0.0372, 0.0411] 0 [0.9627, 0.9588]

 ,

and assuming that the initial distribution is L(0) = (0.5, 0.3, 0.2) then, we can

obtain L (1) and the steady-state distribution L(∞)

L (1) = ([0.0372, 0.0411] , [0.4813, 0.4794] , [0.4813, 0.4794]) ,

L(2) = . . . = L(∞) = ([0.0372, 0.0411] , [0.0358, 0.0394] , [0.9268, 0.9194]) .

If c = 100 and a = 90, the long-run premium is:

Π = [90.7318, 90.8056].

As L∞1 = [0.0372, 0.0411] , L∞2 = [0.0358, 0.0394] are proper intervals, L∞3 =

[0.9268, 0.9149] is an improper interval, and the result Π = [90.7318, 90.8056] is

also a proper interval, the ∗-semantic interpretation is:

(∀l∞1 ∈ [0.0372, 0.0411]) (∀l∞2 ∈ [0.0358, 0.0394]) (∃π ∈ [90.7318, 90.8056])

(∃l∞3 ∈ [0.9149, 0.9268]) such that π = 100 · l∞1 + 100 · l∞2 + 90 · l∞3

That is, for any percentage of policies in the first class comprised between 3.72%

and 4.11%, and for any percentage of policies in the second class comprised between

3.58% and 3.94%, there exists a value for the long-run premium comprised between

90.73 euros and 90.80 euros, which ensures the existence of a percentage of policies

in the third class of between 91.49% and 92.68%.
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Example 4. Irish Bonus-Malus system. This system is defined by the following 
table:

Class after k claims

i bi 0 1 2+

6 100 5 6 6

5 90 4 6 6

4 80 3 6 6

3 70 2 5 6

2 60 1 4 6

1 50 1 3 6

The modal transition matrix is:

P =



P (N = 0) 0 P (N = 1) 0 0 P (N ≥ 2)

P (N = 0) 0 0 P (N = 1) 0 P (N ≥ 2)

0 P (N = 0) 0 0 P (N = 1) P (N ≥ 2)

0 0 P (N = 0) 0 0 P (N ≥ 1)

0 0 0 P (N = 0) 0 P (N ≥ 1)

0 0 0 0 P (N = 0) P (N ≥ 1)


,

If N ∼ Po ([λ1, λ2]), with [λ1, λ2] = [0.038, 0.042], then:

P (N = 0) = [0.9627, 0.9588] ,

P (N = 1) = [0.0365, 0.04027] ,

P (N ≥ 1) = [0.0372, 0.0411] ,

P (N ≥ 2) = [0.0007, 0.0008] .

If L(0) = (0.1, 0.2, 0.3, 0.18, 0.12, 0.1):

L(1) = ([0.2888, 0.2876] , [0.2888, 0.2876] , [0.1769, 0.1766] ,

[0.1228, 0.1231] , [0.1072, 0.1079] , [0.0153, 0.0169]) ,

L(2) = ([0.5560, 0.5516] , [0.1703, 0.1693] , [0.1288, 0.1296] ,

[0.1138, 0.1151] , [0.0212, 0.0233] , [0.0096, 0.0108]),

...

with the steady-state distribution being:

L(27) = L(28) = . . . = L(∞) = (L∞1 ,L
∞
2 ,L

∞
3 ,L

∞
4 ,L

∞
5 ,L

∞
6 ) ,

where L∞1 = [0.9206, 0.9118], L∞2 = [0.0356, 0.0391], L∞3 = [0.0370, 0.0407], L∞4 =

[0.0034, 0.0042], L∞5 = [0.0022, 0.0027] and L∞6 = [0.0009, 0.0011].
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Then, the calculus

Π = 50 · L∞1 + 60 · L∞2 + 70 · L∞3 + 80 · L∞4 + 90 · L∞5 + 100 · L∞6 ,

leads to the long-run premium, Π:

Π = [51.316, 51.474] .

As L∞1 is an improper interval, and the other values L∞2 ,L
∞
3 ,L

∞
4 ,L

∞
5 ,L

∞
6 and Π

are proper intervals, the semantic interpretation for this result is:

(∀l∞2 ∈ L∞2 ) (∀l∞3 ∈ L∞3 ) (∀l∞4 ∈ L∞4 ) (∀l∞5 ∈ L∞5 ) (∀l∞6 ∈ L∞6 ) (∃π ∈ Π) (∃l∞1 ∈ L∞1 )

such that π = 50 · l∞1 + 60 · l∞2 + 70 · l∞3 + 80 · l∞4 + 90 · l∞5 + 100 · l∞6 .

That is, for any percentage of policies in the second class (l∞2 ) between 3.56

and 3.91%, for any percentage of policies in the third class (l∞3 ) between 3.7% and

4.07%, for any percentage of policies in the fourth class (l∞4 ) between 0.34% and

0.402%, for any percentage of policies in the fifth class (l∞5 ) between 0.22% and

0.27%, and for any percentage of policies in the sixth (l∞6 ) class between 0.09%

and 0.11%, there exists a value of the long-term premium (Π) between 51.316 and

51.474, that ensures the existence of policies in the first class between 91.18% and

92.06%.

Let us emphasize that in the last two examples we have used an improper

interval, as in Example 3, L∞3 is an improper interval and in Example 4, L∞1 is also

an improper interval.

5. Conclusions

In this paper, we have treated the concept of modal interval probability as an

extension of classical interval probability. We study the probabilistic axioms under

the point of view of modal interval analysis.

Using the modal interval probability, we can solve some problems inherent to

the classical interval probability. These problems are solved both from the point of

view of the calculation and from the interpretative point of view. We have taken ad-

vantage of these modal probabilities to include uncertainty inside the probabilities

that define the Markovian analysis of Bonus-Malus systems.

In the examples provided in the text, it becomes clear not only the consistency

of the modal probabilistic calculation but also the correct semantic interpretations

that do not exist in the classic interval probabilistic calculation.

For future research on the structure here presented, it is interesting to consider

the following two lines: The first one, deepen the use of modal intervals in the field

of interval probability. The second one, consider different fields that have already

been discussed in the classical interval probability theory. In this setting, we will

be able to provide the correct semantic interpretation of the calculations.
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