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H I G H L I G H T S  

• Key parameters to fit the price of life settlements are mortality multiplier and internal rate of return. 
• These parameters are modelled as triangular fuzzy numbers. 
• The fuzzy price of the life settlement is then obtained. 
• This fuzzy price is approximated by three different approaches. 
• Several properties of these triangular approximations are evaluated.  
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A B S T R A C T   

Existing literature asserts that the growth of life settlement (LS) markets, where they exist, is hampered by 
limited policyholder participation and suggests that to foster this growth appropriate pricing of LS transactions is 
crucial. The pricing of LSs relies on quantifying two key variables: the insured’s mortality multiplier and the 
internal rate of return (IRR). However, the available information on these parameters is often scarce and vague. 
To address this issue, this article proposes a novel framework that models these variables using triangular fuzzy 
numbers (TFNs). This modelling approach aligns with how mortality multiplier and IRR data are typically 
provided in insurance markets and has the advantage of offering a natural interpretation for practitioners. When 
both the mortality multiplier and the IRR are represented as TFNs, the resulting LS price becomes a FN that no 
longer retains the triangular shape. Therefore, the paper introduces three alternative triangular approximations 
to simplify computations and enhance interpretation of the price. Additionally, six criteria are proposed to 
evaluate the effectiveness of each approximation method. These criteria go beyond the typical approach of 
assessing the approximation quality to the FN itself. They also consider the usability and comprehensibility for 
financial analysts with no prior knowledge of FNs. In summary, the framework presented in this paper represents 
a significant advancement in LS pricing. By incorporating TFNs, offering several triangular approximations and 
proposing goodness criteria of them, it addresses the challenges posed by limited and vague data, while also 
considering the practical needs of industry practitioners.   

1. Introduction 

A life settlement (LS) refers to an arrangement wherein a policy
holder sells their life insurance contract to an investor, rather than 
accepting the surrender value proposed by the insurer [60]. By entering 
into this agreement, the buyer obtains the right to receive the pre
determined death benefit upon the insured’s demise, as agreed upon 
between the insurer and policyholder, while also assuming the re
sponsibility of paying the outstanding premiums. Several factors can 

influence a policyholder’s decision to pursue an LS, including the 
perceived simplicity of the transaction, social influence, and perceived 
ethical considerations [14]. However, the primary motivation for opting 
for an LS, as opposed to claiming the surrender value, stems from the fact 
that the former generally offers a larger sum compared to the latter. This 
discrepancy arises from the pricing of LSs, which takes into account the 
actual mortality probabilities of the insured, exceeding the standard 
probabilities for their age [89], whereas the surrender value paid by the 
insurer is calculated using those standard probabilities. 
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Fig. 1 illustrates the various parties and processes involved in an LS 
transaction. On the selling side, the policyholder, with the assistance of a 
broker, explores the secondary market to find the most favourable trade 
for their policy. Ideally, the policyholder’s insurance broker would have 
informed them about the availability of LS agreements as an alternative 
to surrendering the policy during the initial purchase, i.e., in the primary 
market. On the buying side, the intermediaries, known as LS providers, 
purchase the insurance policies on behalf of institutional investors such 
as LS funds, specialized alternative investment funds, and insurance 
companies. These entities then engage in trading activities within the so- 
called tertiary markets [28]. The tertiary market involves the buying 
and selling of life insurance policies among investors. It is common for 
institutional investors that have acquired policies to securitize a portion 
of their portfolio. Therefore, negotiations in this segment encompass not 
only the policies themselves but also the trading of securities backed by 
the expected death benefits from the underlying policies. 

The intricate nature of LSs implies the intervention of various parties 
that facilitate their development with the maximum guarantees for all 
parties. Among these parties, a crucial role is played by medical un
derwriters (MUs), also known as life expectancy (LE) providers, who 
offer a fundamental service. MUs issue LE certificates that include a 
mortality multiplier, which is used to determine the insured’s LE (as 
discussed in Subsection 3.1). Both LS brokers and LS providers acquire 
these estimates to price the policies during the trading process. MUs 
derive mortality multipliers by combining information from various 
experts, including doctors, medical databases, life actuaries, and other 
relevant sources. Other parties include tracking agents who monitor 
insureds’ health and report deaths, document depositaries for 
agreement-related paperwork, and independent legal and financial ad
visors who provide impartial guidance. 

Recent research conducted by Andrés Sánchez and González Vila 
Puchades [13] highlights the significant development observed in the LS 
market, particularly in the United States, which is the most advanced 
market in this domain. Projections suggest that the market volume of LSs 
is expected to exceed $60 billion by 2025, with an estimated annual 
gross market potential of $212 billion between 2019 and 2028. Despite 
these promising figures, the growth of LSs is impeded by limited 
participation from policyholders. To address this issue, the authors 
conduct a study and conclude that performance expectancy plays a 
crucial role in fostering a positive attitude towards LSs. In other words, 
for LSs to be appealing to policyholders, they must offer significantly 
higher amounts than the alternative of surrendering the policy. More
over, the perception of usefulness is enhanced by factors such as ex
pected easiness, which relates to agile and efficient procedures, as well 
as social influence. The acceptance of LSs by policyholders relies on the 
endorsement of financial advisors and insurance brokers. It is imperative 
for these professionals to perceive LSs as a convenient option for their 

clients, as their support and positive perception can significantly influ
ence policyholders’ consideration of LS transactions. 

Both performance expectancy and social influence emphasize the 
importance of proper pricing in LSs. By accurately pricing LSs, policy
holders are more likely to receive attractive offers that surpass the value 
of policy surrender. This creates a financial incentive for policyholders 
to engage in LS transactions. Moreover, appropriate pricing contributes 
to the perception of usefulness. When LSs are priced accurately, poli
cyholders develop confidence in the fairness and transparency of the 
process. They can trust that the offered amounts accurately reflect the 
true value of their policies. This perception of usefulness encourages 
policyholders to view LSs as a viable option for selling their life insur
ance policies. Additionally, adequate pricing is linked to social influ
ence. The perception of financial advisors and insurance brokers plays a 
vital role in shaping policyholders’ utilization of LSs. When these pro
fessionals view LSs as a convenient and advantageous option for their 
clients, they are more inclined to recommend and support such trans
actions. Accurate pricing ensures that financial advisors and insurance 
brokers can confidently present LSs as a valuable solution, thereby 
influencing policyholders to consider this type of agreement. In sum
mary, it is evident that accurate valuation of LSs is pivotal in attracting 
policyholders, creating a perception of usefulness, and gaining support 
from financial advisors and insurance brokers. Through appropriate 
pricing, LSs can offer higher amounts, serve as a practical alternative to 
policy surrender, and generate positive social influence, all of which 
contribute to the growth of the LS market. 

However, it is important to acknowledge that pricing LSs poses sig
nificant challenges. The pricing of LSs relies on the quantification of two 
essential variables: the insured’s mortality multiplier (or its associated 
LE) and the internal rate of return (IRR). As mentioned earlier, the 
estimation of the mortality multiplier is carried out by MUs. On the other 
hand, the IRR is determined by a valuation agent. Unlike the mortality 
multiplier, which depends on factors such as the insured’s physical and 
mental health, lifestyle, etc., the IRR is influenced by the inherent risk 
associated with LSs. This risk level is often higher than that of stocks 
[38]. The increased risk is primarily due to several uncertainty factors 
affecting LSs, such as longevity risk, inaccuracies in LE estimation, the 
potential for fraud within the underlying life insurance policy, limited 
liquidity in LS markets, insurer default risk, and other related variables 
[24,27]. In summary, the pricing of LSs relies on the quantification of 
the insured’s LE, provided through mortality multipliers by LE pro
viders, as well as the determination of the IRR, which reflects the 
heightened risk associated with LSs compared to other assets, stemming 
from various uncertainty sources impacting the market. 

The actuarial literature presents various approaches to pricing LSs, 
including deterministic, probabilistic, stochastic, and fuzzy methods [1, 
30,57,72,89] The deterministic approach views the life insurance policy 

Fig. 1. Parties and processes in an LS transaction. 
Source: Own elaboration from Braun et al. [28]. 
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as a financial transaction with a term exactly equal to the insured’s LE. It 
evaluates only the premiums and death benefit occurring over this term. 
Under the probabilistic approach, all premiums and the death benefit 
are considered, taking into account their probabilities of occurrence. In 
the stochastic approach, the insured’s actual mortality probabilities 
obtained from their mortality multiplier are utilized. A random variable 
called "Whole years of life for the insured” is considered and a related 
random variable, "Stochastic price of the LS," is derived. While the 
mathematical expectation of this random variable is equal to the price 
obtained using the probabilistic approach, the stochastic approach 
provides a comprehensive understanding of all possible price values and 
their respective probabilities. The works by Zollars et al. [89], Lubovich 
et al. [57], and Brockett et al. [30] assume that both the mortality 
multiplier (if used) and the IRR are real (crisp) values. However, in the 
recent approach by Aalaei [1], it is argued that the intrinsic nature of the 
IRR cannot be modelled as a crisp value. Instead, the author proposes 
pricing LSs with the use of a fuzzy IRR. 

LSs are traded on over-the-counter markets, which are characterized 
by lower levels of transparency compared to centralized markets. 
Moreover, each life insurance policy considered for trading in an LS 
transaction possesses unique characteristics that pose challenges when 
applying standard actuarial procedures for assessment. The available 
information for pricing a specific life policy often involves multiple 
sources of uncertainty [56,85,86]. This includes the presence of false or 
irrelevant information, the absence of crucial data, the difficulty of 
incorporating individual psychological profiles and resilience capacities, 
and uncertainties related to medical advances in medicines, treatments, 
and lifestyle choices. Following Viertl and Hareter [78], stochastic 
variability can be effectively addressed using probability theory, while 
fuzzy sets can account for other relevant kind of uncertainty, such as 
imprecision, as is the case in variables relevant to LSs. In the context of 
insurance, Shapiro [69] emphasizes the applicability of FNs, a specific 
type of fuzzy sets, in modelling parameters that require subjective 
actuarial judgment. FNs offer a means to represent and work with lin
guistic expressions, such as "approximately 6%" or "relatively high," 
which are often encountered in insurance settings. 

Building upon the insights of Aalaei [1], this paper acknowledges the 
challenges associated with accurately estimating the IRR and recognizes 
the suitability of FNs for modelling the imprecision inherent in this 
variable. However, in contrast to the author’s perspective, this study 
extends the application of FNs to also represent the insured’s mortality 
multiplier, considering it as an imprecise value. For instance, if different 
MUs provide mortality multiplier estimates of 8 and 9, it can be inferred 
that the mortality multiplier for the insured lies in the range of 
"approximately 8.5". By representing both the mortality multiplier and 
the IRR as FNs, the pricing of LSs is performed using Fuzzy Financial 
Mathematics (FFM). 

The foundation of FFM can be attributed to the pioneering works of 
Kaufmann [49], Buckley [31], and Li Calzi [54] in the late 1980 s and 
early 1990 s. Their contributions laid the groundwork for incorporating 
fuzzy sets into financial modelling and analysis. Since then, FFM has 
been further developed and applied in various research studies, 
including more recent papers like Voloshyn et al. [80], which build upon 
that foundation to explore a fuzzy mathematical model of financial risks. 
FFM has also been applied in actuarial settings, both in non-life and life 
insurance domains. In the context of non-life insurance, researchers such 
as Cummins and Derrig [35], Derrig and Ostaszewski [36], 
Andrés-Sánchez and Terceño [16], Andrés-Sánchez [6], Heberle and 
Thomas [43], and Villacorta et al., [79] utilize FFM to address uncer
tainty in non-life insurance pricing or reserving. Meanwhile, Mircea and 
Covrig [61] and Ungureanu and Vernic [77] develop cash-flow models 
with fuzzy parameters to assess the probability of ruin for insurers. On 
the other hand, Romaniuk [68] analyses the behaviour of a non-life 
insurer’s portfolio, which consists of two layers: a classical risk pro
cess and a catastrophe bond. In the field of life insurance, Lemaire [53], 
Ostaszewski [66], Betzuen et al. [25], and Andrés-Sánchez and 

González-Vila [8–10] incorporate fuzzy interest rates within a classical 
actuarial mathematics framework to price endowments, annuities, and 
death benefits. Additionally, researchers like Anzilli [17], Anzilli and 
Facchinetti [18], and Anzilli et al. [19] adjust the value of life 
equity-linked contracts using the option-pricing framework of Brennan 
and Schwartz [29] and possibilistic parameters. Moreover, 
Andrés-Sánchez et al. [15] propose the incorporation of fuzzy infor
mation in pricing substandard annuities, while Omrani et al. [65] use 
fuzzy data envelopment analysis to evaluate the performance of Iranian 
insurance firms. Likewise, Andrade and Valencia [5] propose a fuzzy 
random survival forest to model lapse rates in a life insurance portfolio 
containing imprecise or incomplete data. 

The body of literature outlined in above paragraph serves as the 
foundation for the present study, which aims to develop a novel framework 
for pricing LSs by modelling the uncertainty associated with information 
on mortality multipliers and IRRs using FNs. The proposed framework 
encompasses all the necessary steps for pricing an LS, including the cali
bration of uncertain parameters using limited available market data, 
calculation of a fuzzy price for the LS using FFM, and simplification of the 
fuzzy price to facilitate subsequent calculations and assessments. This 
approach may offer a valuable solution for pricing LSs, enabling parties 
involved in the LS industry to obtain comprehensive information regarding 
the value of LSs across various scenarios. Therefore, it facilitates the 
determination of appropriate LS prices and, consequently, contributes to 
fostering the desired growth of life insurance secondary markets, as pre
viously discussed. By providing a robust methodology that accounts for 
uncertainty and imprecision, this paper intends to contribute to the 
advancement and development of the LS market. 

The main contributions of this paper can be summarized in three 
points:  

(1) By incorporating FNs to model the uncertainty surrounding both 
the mortality multiplier and the IRR, this study effectively ad
dresses a literature gap that previously neglected to consider the 
mortality multiplier as a fuzzy variable. The inclusion of FNs for 
both variables allows for a more accurate representation of their 
imprecision, providing a comprehensive framework.  

(2) A new methodology, inspired by Cheng [34], is presented. This 
methodology addresses the challenge of fitting fuzzy mortality 
multipliers and fuzzy IRRs using triangular FNs. This approach is 
aligned with the information available in the context of potential 
LS trades. The mortality multiplier is typically derived from a set 
of point estimates provided by two or three medical underwriters 
(MUs), as outlined by Xu [85]. On the other hand, the IRR is often 
obtained from crisp IRR values observed in recent comparable 
trades, as reported by AA Partners Ltd [2].  

(3) The evaluation of LS prices using triangular parameters does not 
yield a triangular FN as the result. However, employing a trian
gular approximation can be highly valuable for fitting the final 
price of LSs. Triangular approximations strike a balance between 
simplifying computations and interpretations without over
simplifying the underlying complexity [39]. Therefore, we 
calculate three alternative approximations commonly used in 
fuzzy financial contexts. To evaluate the quality of these trian
gular approximations, we propose six novel criteria that focus on 
closeness, better adherence to the most reliable values, unbi
asedness, preservation, interpretability, and ease of calculation. It 
is worth noting that the criteria we introduce go beyond the 
typical approach of assessing the approximation quality to the FN 
itself (see, e.g., [22,41,48]). Our criteria also consider the us
ability and comprehensibility for financial analysts and practi
tioners without prior knowledge of FNs. We believe this is a 
crucial aspect since, as mentioned, the LS-related insurance in
dustry requires new approaches to improve pricing techniques 
and foster further development. 
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The remaining sections of this work are organized as follows. Section 
2 provides an overview of some definitions of FNs used in this study. In 
Section 3, we present the concepts of conventional life actuarial math
ematics necessary for LS pricing. The proposed methodology for pricing 
LSs is presented in Section 4. In Section 5, we show a practical appli
cation of the developed framework through a numerical example and 
provide a discussion of the obtained results. Finally, Section 6 summa
rizes the key conclusions of this paper and offers potential directions for 
future extensions. 

2. Fuzzy numbers 

2.1. Basics on fuzzy numbers 

Fuzzy Sets, which were first introduced by Zadeh [87] in his seminal 
paper, form the basis of Fuzzy Set Theory (FST). A fuzzy set Ã can be 
defined as Ã =

{(
x, μ

Ã
(x)
)
|x ∈ X

}
, where μ

Ã 
is known as the mem

bership function and is a mapping from the referential set X to the in
terval [0, 1], i.e. μ

Ã
: X→[0,1]. Therefore, 0 indicates non-membership in 

the fuzzy set Ã and 1 indicates absolute membership. Alternatively, a 
fuzzy set can be represented by its α-level sets or α-cuts. An α-cut is a 
crisp set Aα where Aα =

{
x ∈ X|μ

Ã
(x) ≥ α

}
, ∀α ∈ (0, 1], with the 

convention that Aα=0 is the closure of the support of Ã, i.e. all x ∈ X that 
μ

Ã
(x) ≥ 0. Within FST, a key concept for representing uncertain quan

tities is that of a FN. A fuzzy number (FN) is a fuzzy set Ã defined on the 
reference set R. It is normal, i.e., its membership function μ

Ã
(x) attains 

the value 1 for some x ∈ X, convex, i.e., all its α-cuts are convex, and 
its α-cuts are closed and bounded intervals. Therefore, they can be 

represented as confidence intervals Aα =
[
A(α),A(α)

]
, where A(α)

(A(α)) are continuously increasing (decreasing) functions of the mem
bership level α ∈ [0, 1]. In this paper, to model fuzzy information, we use 
triangular fuzzy numbers (TFNs), which are denoted as Ã = (A, lA, rA). The 
membership function and its corresponding α-cuts are: 

μ
A
∼(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − A + lA

lA
A − lA < x ≤ A

A + rA − x
rA

A < x ≤ A + rA

0 otherwise

(1a)  

Aα =
[
A(α),A(α)

]
= [A − lA(1 − α),A+ rA(1 − α) ] (1b) 

The value A is the core (mode or centre) of the TFN Ã and can be 
understood as its most reliable value, i.e., μ

Ã
(A) = 1. The parameters 

lA, rA ≥ 0 are the spreads or radiuses and indicate the variability of Ã 
with respect to its core A. The interval 

A0 =
[
A(0),A(0)

]
= [A− lA,A+rA] is the support of Ã. It contains all 

possible values of the variable Ã that are constrained by the lower and 
upper bounds A− lA and A + rA, respectively. 

TFNs are used in countless practical applications, including actuarial 
ones because they are easy to handle arithmetically and well-suited to 
quantify imprecise predictions. For example, an actuary’s statement "I 
expect that over the next 2 years the yield on 10-year government bonds 
will be 1.5% and deviations no greater than 0.05%" can be quantified in 
a very natural way as (0.015, 0.005, 0.005). Furthermore, when the 
information about a variable is vague and imprecise, and no information 
about how to model this kind of uncertainty is available, the principle of 
parsimony leads to representing that information in the simplest way 
possible. The linear form of TFNs meets that requirement. On the other 
hand, this kind of fuzziness is very intuitive and can be interpreted 

naturally by practitioners. 
We acknowledge that the use of TFNs may have limitations when 

dealing with imprecise information that involves multiple sources of 
vagueness. Various extensions of fuzzy sets have been proposed in the 
literature to address these limitations. For example, intuitionistic fuzzy 
sets introduced by Atanassov [21] allow for simultaneous consideration 
of the membership degree and non-membership degree of each element. 
Turksen [76] proposes interval-valued fuzzy sets, where the member
ship degree is represented by a closed subinterval of the unit interval. 
Hesitant fuzzy sets, suggested by Torra [75], are motivated by the dif
ficulty that can arise when establishing the membership degree of an 
element and this difficulty is because there are some possible values that 
make to hesitate about which would be the right one. In summary, these 
modelling approaches provide a more nuanced and richer representa
tion of variables subject to uncertainty compared to FNs. However, they 
require the estimation of a larger number of parameters. In contrast, the 
use of FNs, particularly linear ones, offers a simpler way to represent 
information [88]. This simplicity can be highly desirable in situations 
where information is scarce [48] or where human subjective judgment is 
necessary [46], such as in the case of the secondary market for life in
surance, which operates as an over-the-counter market. Consequently, it 
is not surprising that a significant portion of the literature on fuzzy 
applications to actuarial and insurance topics incorporates the model
ling of uncertainty using FNs with linear shapes. 

The expected interval of the FN Ã, EI
(

Ã
)

, is a representative real in

terval of that FN: 

EI
(

A
∼
)
=

⎡

⎣
∫1

0

A (α)dα,
∫1

0

A(α)dα

⎤

⎦ (2a) 

and for A
∼

= (A, lA, rA): 

EI
(

A
∼
)
=

[

A −
lA

2
,A +

rA

2

]

(2b) 

Let f(⋅) be a continuous real valued function of n-real variables xj, j =
1, 2,…, n, and let Ã1, Ã2,…, Ãn n FNs. The extension principle in Zadeh 
[87] allows us to define a FN B̃ induced by the FNs Ã1, Ã2,…, Ãn through 

f(⋅) as B̃ = f
(

Ã1, Ã2,…, Ãn

)
. Although it is usually impossible to obtain 

the membership function of B̃, it is often possible to obtain a closed 
expression for its α -cuts, Bα. If f(⋅) is increasing with respect to the first m 
variables, m ≤ n, and decreases in the last n − m variables, Buckley and 
Qu [33] demonstrate: 

Bα =
[
B(α),B(α)

]
=

[

f
(

A1(α),A2(α),…,Am(α),Am+1(α),Am+2(α),…An(α)
)

,

f
(

A1(α),A2(α),…Am(α),Am+1(α),Am+2(α),…,An(α)
)]

(3a) 

Eq. (3a) holds significant relevance in the present study because the 
functional relations that will be used to price LSs are continuous and 
exhibit an increasing or decreasing behaviour. 

In the case in which Ãj =
(
Aj, lAj , rAj

)
, j = 1,2, …, n, Bα in (3a) 

becomes: 

B(α) =f (A1 − lA1 (1 − α),…,Am − lAm (1 − α),Am+1 + rAm+1 (1 − α), ...,
An + rAn (1 − α) )

(3b)  

B(α) =f (A1 + rA1 (1 − α),…,Am + rAm (1 − α),Am+1 − lAm+1 (1 − α),…,

An − lAn (1 − α) )
(3c)  

and, generally, B̃ does not maintain the triangular shape of Ãj =
(
Aj, lAj ,

rAj

)
, j = 1,2,…,n.. 
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2.2. Triangular approximations of nonlinear functions of triangular fuzzy 
numbers 

FST has proven to be highly valuable in modelling imprecision, as 
evidenced by numerous scientific papers and practical applications. 
When evaluating nonlinear functions of TFNs, the result is not a TFN. 
However, once this result is obtained, the variable being modelled is 
described precisely, as its α-cuts yield exact numerical quantities. This 
observation gives rise to a dilemma concerning excessive precision in 
describing imprecise phenomena. While α-cuts provide detailed numeric 
information on membership grades, this level of detail can have both 
positive and negative implications. On one hand, analysts may benefit 
from abundant data, but on the other hand, an overly detailed description 
can overwhelm the general interpretation of the outcomes. Furthermore, 
complex shapes of membership functions can pose challenges in calcu
lations. Simplified expressions, such as those related to linear expressions 
are often sufficient to capture vagueness and provide tractable tools for 
handling and interpretation (see, e.g., [51]). Consequently, various ap
proximations of FNs have been developed. Among these, triangular ap
proximations have garnered significant attention since they allow the 
resulted FN to be represented by only three parameters (i.e., the lower and 
upper bounds of the support, and the core). The objective of these ap
proximations is to simultaneously reduce computational efforts and 
simplify interpretation, striking a balance between accuracy and practi
cality, and preserving the triangular shape of initial data. Grzegorzewski 
and Mrówka [39] highlight that a triangular approximation offers more 
richness compared to a simple transformation of an FN into a single crisp 
representative value. On the other hand, Grzegorzewski and 
Pasternak-Winiarska [41] argue that complex shapes of FNs can pose 
challenges in computations and intuitive result interpretation. Premature 
defuzzification can result in a significant loss of information, making it 
preferable to retain fuzzy information throughout the calculations as 
much as possible. The triangular approximation strikes a balance be
tween computational simplification and interpretation, avoiding exces
sive simplification of fuzzy parameters. Furthermore, TFNs have an 
intuitive interpretation, making them potentially valuable in 
decision-making processes. This explains why there is a wide literature 
developing methods to approximate non-TFNs to triangular ones. 

We present three possible triangular approximations to the FN B̃ 
induced by f when evaluated with the TFNs 
Ãj =

(
Aj, lAj , rAj

)
, j = 1, 2,…, n. These approximations, that will be 

denoted as ̃B
T
=
(
BT, lBT , rBT

)
, are the secant approach (SA), the gradient 

approach (GA) and the expected interval approach (EIA).  

• Secant approach 
This approach fits a triangular form to B̃ by means of the secant 

lines linking the lower bounds of the 0-cut and the 1-cut (i.e., B(0)
and B(1)) and the upper bounds of these two α -cuts (i.e., B(0) and 
B(1)). Therefore, it maintains the core and the support of the original 
FN B̃. Despite being simple, this approach fits well not only several 
nonlinear arithmetical operations [49] but also financial functions 
[7,48,49] and actuarial calculations [15,43,79]. Thus: 

BT = B(1) = B(1) = f (A1,…,Am,Am+1,…,An) (4a)  

lBT = BT − f (A1 − lA1 ,…,Am − lAm ,Am+1 + rAm+1 ,…,An + rAn ) (4b)  

rBT = f (A1 + rA1 ,…,Am + rAm ,Am+1 − lAm+1 ,…,An − lAn ) − BT (4c)    

• Gradient approach 
The gradient approach is based on the approximation to non-linear 

operations with L-R FNs developed in Dubois and Prade [37]. It is 
built up from the first-order Taylor polynomial expansion from the 
1-cut to any α-cut. So, let us approximate B(α) in (3a) from B(1) using 

the Taylor expansion to the first degree with B(α) ≈ B(1) +
dB(1)

dα (α − 1), with analogous expression for B(α). If we name the 
vector comprising the cores of Ãj, j = 1, 2,…, n, AC = (A1,A2,…,An),

it is straightforward to see that B̃
T
=
(
BT, lBT , rBT

)
where: 

BT = f (AC) (5a)  

lBT =
∑m

j=1

∂f (AC)

∂xj
lAj −

∑n

j=m+1

∂f (AC)

∂xj
rAj (5b)  

rBT =
∑m

j=1

∂f (AC)

∂xj
rAj −

∑n

j=m+1

∂f (AC)

∂xj
lAj (5c)  

Andrés-Sánchez and Terceño [16] applied this triangular approx
imation to price life insurance and to calculate nonlife claim re
serves. Andrés-Sánchez and González-Vila [10,11] also use this 
approach to simplify some calculations with fuzzy parameters in a 
life actuarial mathematics context. Often, this approximation allows 
obtaining the left and right spreads by using financial measures of 
volatility such as the interest rate duration in pricing life contin
gencies [10] or the so-called “the greeks” in option pricing [7].  

• Expected interval approach 
The expected interval approach is built up by adapting the trape

zoidal approximation method by Grzegorzewski and Mrówka [39, 
40] and Ban [22] to the particular case of a triangular shape. 

Following this methodology, the approximation B̃
T 

must preserve 

EI
(

B̃
)

and minimize its distance to B̃ with the distance measure 

d
(

B̃, B̃
T)

: 

d
(

B̃, B̃
T)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫1

0

(
B(α) − BT(α)

)2
dα +

∫1

0

(
B(α) − BT(α)

)2dα

√
√
√
√
√

Then, by solving: 

Minimize
∫1

0

(
B(α)− BT +lBT (1− α)

)2
dα+

∫1

0

(
B(α)− BT − rBT (1− α)

)2dα  

subject to 

BT −
lBT

2
=

∫1

0

B(α)dα  

BT +
rBT

2
=

∫1

0

B(α)dα  

lA, rA ≥ 0,

we obtain: 

If 2
∫1

0

B (α)dα +

∫1

0

B(α)dα ≤ 3

⎛

⎝
∫1

0

αB (α)dα +

∫1

0

αB(α)dα

⎞

⎠

≤

∫1

0

B (α)dα + 2
∫1

0

B(α)dα :

BT = −

∫1

0

B(α)dα −

∫1

0

B(α)dα+ 3
∫1

0

αB(α)dα+ 3
∫1

0

αB(α)dα (6a) 
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lBT = − 4
∫1

0

B(α)dα − 2
∫1

0

B(α)dα+ 6
∫1

0

αB(α)dα+ 6
∫1

0

αB(α)dα (6b)  

rBT = 2
∫1

0

B(α)dα+ 4
∫1

0

B(α)dα − 6
∫1

0

αB(α)dα − 6
∫1

0

αB(α)dα (6c)  

If 2
∫1

0

B(α)dα+

∫1

0

B(α)dα > 3

⎛

⎝
∫1

0

αB(α)dα+

∫1

0

αB(α)dα

⎞

⎠ :

BT =

∫1

0

B(α)dα (6d)  

lBT = 0 (6e)  

rBT = 2
∫1

0

B(α)dα − 2
∫1

0

B(α)dα (6 f)  

Finally, if 3

(∫1

0

αB (α)dα +

∫1

0

αB(α)dα

⎞

⎠ >

∫1

0

B (α)dα+ 2
∫1

0

B(α)dα :

BT =

∫1

0

B(α)dα (6 g)  

lBT = 2
∫1

0

B(α)dα − 2
∫1

0

B(α)dα (6 h)  

rBT = 0 (6i)   

3. Pricing life settlements with crisp parameters 

3.1. Pricing life contingencies with nonstandard probabilities 

The present value of unitary whole life insurance to be paid at the 
end of the death year is: 

Ax =
∑ω− x

t=1
(1 + i)− t

t− 1/qx (7a)  

where t− 1/qx stands for the mortality probability between years t − 1 and 
t for a person aged x years, ω is the maximum attainable age in the base 
mortality table and i is the interest rate used to price the life insurance. 

Since t− 1/qx = t− 1px⋅qx+t− 1, being t− 1px the probability that a person 
aged x survives t − 1 years and qx+t− 1 the one-year mortality probability 
of person aged x + t − 1, i.e., the probability that this person dies within 
the next year, Eq. (7a) can be rewritten as: 

Ax =
∑ω− x

t=1
(1 + i)− t

t− 1px⋅qx+t− 1 (7b) 

On the other hand, the present value of a unitary post payable whole 
life annuity is: 

ax =
∑ω− x

t=1
(1 + i)− t

tpx (7c) 

The LE of a person aged x is: 

ex =
∑ω− x

t=1
tpx =

∑ω− x

t=1

∏t− 1

k=0
(1 − qx+k) (8) 

Eqs. (7a)-(7c) and (8) implicitly suppose that present values are 
obtained with standard probabilities from a mortality table base. To 
price life contracts in the case of nonstandard LEs, such as LSs or 
enhanced annuities, these equations are also used, but standard proba
bilities are replaced by those that best suit the insured’s health status. To 
obtain these nonstandard probabilities, the actual one-year mortality 
probability, q∗

x, is adjusted from a linear transformation of the standard 
one-year mortality probability qx or, alternatively, from a linear trans
formation of the force of mortality [64,67]. The most usual way to fit q∗

x 
is by means of the so-called mortality multiplier model in such a way 
that: 

q∗
x = min{1, β⋅qx} (9a)  

where β is the mortality multiplier. Therefore, if β > 1(〈1), the insured’s 
LE is below (above) the average. It is easy to check in (9a) that q∗

x is 
increasing with respect to β if β⋅qx< 1. Otherwise, it is neither increasing 
nor decreasing. 

From q∗
x, the following nonstandard probabilities can be easily ob

tained: 

tp
∗
x =

∏t− 1

j=0

(
1 − q∗

x+j

)
=
∏t− 1

j=0

(
1 − min

{
1, βqx+j

})
(9b)  

t|q
∗
x = tp

∗
x ⋅q∗

x+t = min{1, βqx+t}⋅
∏t− 1

j=0

(
1 − min

{
1, βqx+j

})
(9c) 

Similarly, the adjusted LE e∗x is: 

e∗x =
∑ω− x

t=1
tp

∗
x =

∑ω− x

t=1

∏t− 1

j=0

(
1 − min

{
1, βqx+j

})
(9d)  

3.2. Determining life settlement prices 

Let a life insurance be considered in (7a) for a person aged x0 with 
premiums to be paid as in (7c). At the beginning of the contract, the 
insurer states the equilibrium between the benefit and premiums by 
equalling: 

∑ω− x0

t=1
Cx0+t⋅(1 + i0)

− t
t− 1/qx0 =

∑ω− x0

t=1
Px0+t⋅(1 + i0)

− t
tpx0  

where Cx0+t and Px0+t are, respectively, the premium and the benefit 
payable at age x0 + t. 

The interest rate at the initial stage, i0, is commonly referred to as the 
technical interest rate. Its value is determined based on the insurer’s 
ability to generate profits from investing premiums in various assets. 
Typically, these assets have low-risk profiles, such as government bonds, 
making i0 a representation of the risk-free rate. Furthermore, it is 
assumed that the insured’s LE is of standard nature. Once the life in
surance contract is in effect, the policyholder possesses an asset in the 
form of the policy, which can be priced in the LS market. However, the 
probabilities and interest rate used to price the life insurance policy at 
this stage differ from those at the initial stage. The probabilities are 
adjusted to account not only for the insured’s age but also for their in
dividual circumstances, including health conditions and lifestyle, as 
assessed by the MUs. The interest rate employed to evaluate the con
tract, i.e., the expected IRR of the LS, encompasses various risks specific 
to this type of transaction. These risks include longevity risk, biases in LE 
evaluation, the credit risk associated with the insurer, the potential for 
policy rescission due to fraudulent claims, and liquidity risk, as identi
fied by Braun and Xu [27]. Consequently, the interest rate used in LS 
pricing is typically significantly higher than the insurer’s technical 
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interest rate. Once the adjusted probabilities and the IRR have been 
determined by the involved parties, they can proceed to estimate the 
economic value of the LS. 

As indicated in Section 1, there are several approaches to assess LS: 
deterministic, probabilistic, stochastic, and fuzzy methods ([30,57,72, 
89]; Aalaei, [1]). The probabilistic method, which is the most wide
spread method [2], values all premiums and benefits using conventional 
actuarial mathematics as a basis, e.g., (7a) and (7c). Therefore, the 
probabilistic price of the LS, PLSx ≥ 0, is: 

PLSx =
∑ω− x

t=1
Cx+t⋅(1 + i)− t

t− 1/q
∗
x −

∑ω− x

t=1
Px+t⋅(1 + i)− t

tp
∗
x (10a) 

To simplify our analysis, we will suppose that pending cash flows are 
constant, as in Brockett et al. [30]. Therefore, from (7a) and (7c), and 
symbolizing by A∗

x and a∗
x these expressions in the case of nonstandard 

probabilities, we can write: 

PLSx = C⋅A∗
x − P⋅a∗

x (10b) 

From (7b) and (9b), (10b) turns into: 

PLSx = C
∑ω− x

t=1
(1 + i)− t

∏t− 2

j=0

(
1 − q∗

x+j− 1

)
⋅q∗

x+t− 1 − P

×
∑ω− x

t=1
(1 + i)− t

∏t− 1

j=0

(
1 − q∗

x+j− 1

)
(10c) 

The duration [59] is a concept widely used by practitioners to measure 
the sensitivity of assets and liabilities with respect to the interest rate. This 
measure was extended to life insurance pricing by Li and Panjer [55] (see 
Remarks 1 and 2 in Appendix A). Furthermore, Andrés-Sánchez and 
González-Vila [12] derive measures similar to interest rate duration for 
longevity risk, i.e., linked to the mortality multiplier β. To do so, they 
consider the probabilistic method (see Remark 4). 

Let us build up similar measures of interest rate and mortality 
multiplier durations exposed in Remarks 1 and 4 for the price of the LS 
(10a). We can define the interest rate duration of PLSx with respect to 
fluctuations of IRR, D(PLSx) in a similar way to the duration GAP in an 
asset liability setting in Bierwag and Kaufman [26]: 

D(PLSx) =
− D
(
A∗

x

)
CA∗

x + D
(
a∗

x

)
Pa∗

x

PLSx
(11a) 

Similarly, we define a mortality multiplier duration of the LS price as 
DM(PLSx) [12]: 

DM(PLSx) =
DM

(
A∗

x

)
CAx − DM

(
a∗

x

)
Pa∗

x

PLSx
(11b) 

Consequently: 

ΔPLSx ≈

[
1

1 + i
D(PLSx)Δi+DM(PLSx)Δβ

]

PLSx (11c)  

Example 1. Table 1 shows the values PLSx,D(PLSx) and DM(PLSx) of a 
life insurance that is priced in the LS market at age x = 35,45,55,65,75,
85 with IRR i = 12% and β = 8. That policy was initially traded for x0 =

35 years, i0 = 2.836% and C = 100000 monetary units (m.u.) and 
standard probabilities from the mortality table of the Spanish female 
population in HMD [44]. Therefore, P = 1070.02 m.u. 

4. A fuzzy framework for life settlement pricing 

4.1. Pricing life contingencies with nonstandard probabilities 

In the study by Aalaei [1], the author explores the deterministic, 
probabilistic, and stochastic approaches to LS pricing and extends them 
to incorporate fuzzy IRR. We acknowledge the inherent challenges in 

accurately estimating the IRR and recognize the suitability of FNs for 
modelling the imprecision associated with this variable. However, in 
contrast to Aalaei [1], our study goes a step further by also representing 
the insured’s mortality multiplier using TFNs, treating it as an imprecise 
value. By incorporating TFNs for both the mortality multiplier and the 
IRR, our approach captures and accounts for the inherent imprecision 
and uncertainty in these variables within the LS pricing framework. 

Let us suppose we have a triangular mortality multiplier β
∼

=
(
β, lβ,

rβ
)

and a fuzzy IRR ̃ i = (i, li, ri), whose α-cuts, ∀α ∈ [0,1], are, respec
tively: 

βα =

[

β(α), β(α)
]

=
[
β − lβ(1 − α), β+ rβ(1 − α)

]

iα =

[

i(α), i(α)
]

= [i − li(1 − α), i+ ri(1 − α) ]

By using β
∼

, we first induce fuzzy one-year mortality probabilities q̃
∗

x, 
whose α-cuts, q∗

xα, from (3b), (3c) and (9a) are: 

q∗
xα =

[

q∗
x(α), q∗

x(α)
]

=
[
min
{

1,
[
β − lβ(1 − α)

]
⋅qx
}
,min

{
1,
[
β + rβ(1 − α)

]
⋅qx
} ]

Therefore, β
∼

and ̃i induce a fuzzy price of the LS, P̃LSx, whose α-cuts, 

PLSxα =

[

PLSx(α),PLSx(α)
]

are obtained by using (3b)-(3c) and bearing 

in mind (see Remarks 7 and 8) that the price is decreasing (increasing) 
with respect to the IRR (mortality multiplier): 

PLSx(α) = C
∑ω− x

t=1
(1 + i + ri(1 − α) )− t

∏t− 2

k=0

(

1 − q∗
x+k− 1(α)

)

⋅q∗
x+t− 1(α) − P

×
∑ω− x

t=1
(1 + i + ri(1 − α) )− t

∏t− 1

k=0

(

1 − q∗
x+k− 1(α)

)

(12a)  

PLSx(α) = C
∑ω− x

t=1
(1 + i − li(1 − α) )− t

∏t− 2

k=0

(
1 − q∗

x+k− 1(α)
)
⋅q∗

x+t− 1(α) − P

×
∑ω− x

t=1
(1 + i − li(1 − α) )− t

∏t− 1

k=0

(
1 − q∗

x+k− 1(α)
)

(12b)  

4.2. Steps of the proposed fuzzy framework 

The proposed novel framework in this paper is structured around four 
distinct steps, as illustrated in Fig. 2. The first step involves fitting the TFNs 
for the mortality multiplier and the IRR, aligning them with the available 
information on LS prospects for a potential investor. The second step entails 
calculating the fuzzy price of the LS using Eqs. (12a)-(12b). Moving to the 
third step, we propose simplifying information by fitting a triangular price 
to the LS, which offers ease of interpretation and facilitates subsequent 
calculations. Finally, in the fourth step, we present six criteria that assist 
decision-makers in selecting their preferred approximation method to 

Table 1 
Price, interest rate duration and mortality multiplier duration of an LS.  

x PLSx D(PLSx) DM(PLSx)

35  613.64  -100.335  1.491 
45  9391.86  -14.129  0.169 
55  21069.30  -9.528  0.103 
65  37975.05  -6.732  0.063 
75  67715.03  -2.988  0.034 
85  88615.86  -1.057  0.014 

Note: x0 = 35, i0 = 2.836%,C = 100000,P = 1070.02, IRR i = 12% and β = 8.  
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serve as a reference for the LS price. These criteria aim to guide the 
decision-making process and consider factors such as approximation 
quality, usability, and comprehensibility for individuals without prior 
knowledge of fuzzy numbers. In addition to Fig. 2, we have included 
pseudocode in Appendix B, which can serve as a useful reference for further 
development of the proposed framework into a formal programming lan
guage. However, it is worth noting that the calculations can also be run 
using conventional spreadsheet software such as Excel®. 

Step 1: Fit the triangular fuzzy parameters from a set of crisp 
quantifications. 

In practical scenarios, the insured’s mortality multiplier and the IRR 
used for pricing LSs are often observed as a set of crisp values. The value 
of β (and the corresponding LE), is typically documented in LE certifi
cates provided by at least two independent MUs. Xu [85] analyses the 
biases present in LE estimates from the four prominent American MUs, 
namely ITM 21st, AVS underwriting LLC, Fasano Associates Inc., and 
Longevity Services Inc. The study reveals that 67% of the LSs in the 
sample were evaluated by multiple MUs. Furthermore, the research also 
demonstrates statistically significant differences in valuations between 
two MUs. 

As far as the IRR is concerned, AA Partners Ltd. [2] suggests 
adjusting it based on the IRR of recent comparable trades. This 
approach, known as the neighbourhood method, operates on the prin
ciple that investors tend to price similar assets similarly. In the context of 
LSs, this implies considering factors such as close face value, insured’s 
LE and age, type of policy, among others. Fig. 3, taken from AA Partners 
Ltd. [2], presents a case study illustrating the process of determining an 
appropriate IRR for an 80-year-old individual. 

The aggregation of crisp evaluations of the mortality multiplier and 
the IRR can be done using the method by Cheng [34], which proposes 
structuring the information of a variable that is observed as a set of real 
numbers, {a1, a2,…, an}, by adjusting a TFN Ã = (A, lA, rA). In our 
problem, this set may be several mortality multipliers (or LEs) from 
different MUs or different IRRs registered for a group of LSs with ho
mogeneous characteristics, as Fig. 3 displays. That method is developed 
sequentially as follows: 

Step 1.1. Calculate the distance matrix D =
[
dij
]

n×n, where the dis
tance between the ith and the jth is dij =

⃒
⃒ai − aj

⃒
⃒. Of course, dii = 0,dij 

= dji. 
Step 1.2. Calculate the mean distance of the ith observation to the 

other n − 1 ones as di =

∑n
i=1

dij

n− 1 . Therefore, di measures the distance of the 
ith opinion to the center of gravity of the pool. Of course, the weight of 
the value ai to determine A is decreasing with respect to di. 

Step 1.3. Construct a matrix P =
[
pij

]

n×n 
to measure the importance 

of the ith observation over the jth one by doing pij =
dj

di
. Therefore, pii =

1 and pij = 1
pji

. 
Step 1.4. Fit the coefficients wi, i = 1, 2,…, n to measure the impor

tance degree of the ith observation in the group in such a way that 0 ≤

wi ≤ 1, ∀i.These coefficients must satisfy pij =
wi
wj 

and 
∑n

i=1wi = 1. 

Therefore, wi = 1∑n
i=1

pij
. 

Step 1.5. The centre of A
∼

is A =
∑n

i=1wiai. 
Step 1.6. Fit the parameters σ and η that are needed to adjust the 

spreads lA and rA: 

σ =
∑n

i=1
wi|A − ai|

η =
A − al

ar − A  

where al =

∑

i=1 ai<A
nwiai

∑

i=1 ai<A
nwi 

and ar =

∑

i=1 ai>A
nwiai

∑

i=1 ai>A
nwi

. 

Step 1.7. Calculate lA and rA by doing lA =
3(1+η)ησ

1+η2 and rA =
3(1+η)σ

1+η2 . 
It is easy to check that in the particular case of a set of two obser

vations {a1, a2}, the TFN Ã = (A, lA, rA) is obtained as A = a1+a2
2 and lA =

rA = 3
2 |a2 − a1|. In this regard, note that approximately 70% of LS 

transactions are evaluated by only two different LS providers [85]. 

Example 2. Let us show how to adapt this procedure to adjust a fuzzy 
IRR ̃i = (i, li, ri) to price the LS in Fig. 3, which is a real situation exposed 
in AA Partners Ltd. [2]. In this case, the set of observations on the IRR is 
{18.2%, 17.5%, 18.3%}. Therefore, the distance matrix of the IRR for 
the reference trades number 1, 2 and 3 are: 

D =

⎡

⎣
0 0.7 0.8

0.7 0 0.1
0.8 0.1 0

⎤

⎦

Then, the matrix P, which shows the relative importance of each IRR 
in the pool, is: 

P =

⎡

⎣
1 0.53 0.6

0.53 1 0.1
0.6 1.125 1

⎤

⎦

Fig. 2. Steps of the fuzzy framework to price LSs. 
Source: Own elaboration. 

Fig. 3. Adjusting an IRR for an LS from a set of three reference trades. 
Source: Own elaboration adapted from AA Partners Ltd. [2]. 
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Furthermore, the weight matrix is w = (0.2202,0.4128,0.3670) and, 
therefore, i = 18.08%. To fit the spreads, lR and rR, we find that σ =
0.2565, al = 17.5 and ar = 18.25. Therefore, η = 18.08− 17.5

18.25− 18.08 = 3.54, lA =

3(1+3.54)⋅3.54⋅0.2565
1+3.542 = 0.914 and rA =

3(1+3.54)⋅0.2565
1+3.542 = 0.258. As a result, the 

fuzzy IRR adjusted with the method in Cheng [34] is ĩ = (18.08%,

0.914%,0.258%) and not an average crisp number, as it is proposed in 
AA Partners Ltd. [2]. 

In regards to the mortality multiplier, when having two different LE 
certificates (which is the common practice in the LS market as stated by 
[85]), a fuzzy triangular mortality multiplier can be obtained following 
the same process. 

Step 2. Price the LS with triangular fuzzy parameters. 
After performing Step 1, we have a triangular mortality multiplier 

β
∼

=
(
β, lβ, rβ

)
and a fuzzy IRR ̃ i = (i, li, ri). To obtain the α-cuts of the 

fuzzy price of the LS, P̃LSx, Eqs. (12a) and (12b) have to be used. The 
resulting price is an FN that no longer retains the triangular shape. 

Step 3: Fit triangular approximations to the fuzzy price of the LS. 
By following the methods developed in Subsection 2.2, three alter

native triangular approximations to P̃LSx are obtained.  

• Secant approach 
This approach preserves the core and support of P̃LSx. Therefore, 

P̃LS
T
x = (PLST

x , lPLST
x
, rPLST

x
) is fitted by using (4a)-(4c) and (12a)-(12b): 

PLST
x =PLSx1 =C

∑ω− x

t=1
(1+ i)− t

∏t− 2

k=0
(1 − min{1,β⋅qx+k− 1})⋅min{1,β⋅qx+t− 1}

− P
∑ω− x

t=1
(1+ i)− t

∏t− 1

k=0
(1 − min{1,β⋅qx+k− 1})

(13a)  

lPLST
x
= PLST

x − PLSx(0)

= PLST
x − C

∑ω− x

t=1
(1 + i + ri)

− t
∏t− 2

k=0

[
1 − min

{
1,
(
β

− lβ
)
⋅qx+k− 1

} ]
⋅min

{
1,
(
β − lβ

)
⋅qx+t− 1

}
+ P

×
∑ω− x

t=1
(1 + i + ri)

− t
∏t− 1

k=0

[
1 − min

{
1,
(
β − lβ

)
⋅qx+k− 1

} ]
(13b)  

rPLST
x
= PLSx(0) − PLST

x

= C
∑ω− x

t=1
(1 + i − li)

− t
∏t− 2

k=0

[
1 − min

{
1,
(
β + rβ

)
⋅qx+k− 1

} ]
⋅min

{
1,
(
β

+ rβ
)
⋅qx+t− 1

}
− P

∑ω− x

t=1
(1 + i − li)

− t
∏t− 1

k=0

[
1 − min

{
1,
(
β

+ rβ
)
⋅qx+k− 1

} ]
− PLST

x

(13c)    

• Gradient approach 
To find PLST

x , the α-levels PLSxα are approximated following (5a)- 
(5c) and using the durations for the price of the LS in (11a) and (11b). 

Therefore, P̃LS
T
x =

(
PLST

x , lPLST
x
, rPLST

x

)
conserves the centre: 

PLST
x = PLSx1

= C
∑ω− x

t=1
(1 + i)− t

∏t− 2

k=0
(1 − min{1, β⋅qx+k− 1} )⋅min{1, β⋅qx+t− 1} − P

×
∑ω− x

t=1
(1 + i)− t

∏t− 1

k=0
(1 − min{1, β⋅qx+k− 1} )

(13d)  

The spreads are built up by evaluating (11a) and (11b) in the 
centres of the fuzzy IRR (i) and the fuzzy mortality multiplier (β). 
Therefore, by following (11c), we obtain: 

lPLST
x
=

[
1

1 + i
D(PLSx)ri +DM(PLSx)lβ

]

PLSx (13e)  

lPLST
x
=

[
1

1 + i
D(PLSx)ri +DM(PLSx)lβ

]

PLSx (13 f)    

• Expected interval approach 

In this case, P̃LS
T
x is the closest TFN to P̃LSx that maintains its ex

pected interval. To obtain it, we implement definite integrals in (6a)- 
(6i) by using Simpson’s rule. As in Kaufmann [49], Jiménez and 
Rivas [48], Terceño et al. [74] and Andrés-Sánchez [7], we evaluate 
P̃LSx on an eleven-membership level scale, i.e., for α = 0,0.1,0.2,…,

1, Δα = 0.1. Therefore, to implement Simpson’s rule, Δα = 0.1 is 
taken: 

∫1

0

PLSx(α)dα ≈
1
30

[

PLSx(0)+ 2
∑4

j=1
PLSx

(
2j
10

)

+ 4

×
∑5

j=1
PLSx

(
2j − 1

10

)

+PLSx(1)

]

(13 g)  

∫1

0

α⋅PLSx(α)dα ≈
1
30

[

2
∑4

j=1

2j
10

⋅PLSx

(
2j
10

)

+ 4

×
∑5

j=1

2j − 1
10

PLSx

(
2j − 1

10

)

+PLSx(1)

]

(13 h)  

We proceed analogously to calculate 
∫1

0

PLSx(α)dα and 
∫1

0

α⋅PLSx(α)dα. 

Step 4: Evaluate the triangular approximations to the price of 
the LS 

According to Grzegorzewski and Mrówka [39], when assessing the 
quality of an approximation, it is important to recognize that in an 
uncertain environment, allowing for some degree of deviation is 
reasonable. This is because the issues associated with vagueness are 
more qualitative in nature and less concerned with precision. Rather 
than searching for the best and universal approximation, the focus 
should be on evaluating the properties that are important for specific 
applications. The approximation should retain certain parameters of 
the original FN, be easy to implement, computationally efficient, and 
have a convincing interpretation [22,23,41,48]. The importance of 
these properties depends on the particular situation and the 
decision-maker involved. Building on these ideas, the criteria we 
introduce are not solely based on the quality of the approximation to 
the FN, but also on usability and ease of understanding for financial 
analysts and practitioners without prior knowledge of FNs. We 
consider this aspect to be crucial since, as described in Section 1, the 
LS-related insurance industry requires new approaches to improve 
pricing techniques and foster further development. 

We propose 6 criteria to evaluate the quality of triangular ap
proximations to P̃LSx. Some of them serve as guidelines for revised 
approximating methods, either explicitly or implicitly, and others 
are commonly accepted in computational mathematics. Whereas 
three of them are related to the errors by the triangular approxi
mation, the last three take other issues into account. The error in the 
bounds of PLSxα by the approximation PLST

x α is measured by means 
of the relative deviations in the bounds as: 
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e (α) =

⃒
⃒
⃒
⃒PLSx(α) − PLST

x (α)
⃒
⃒
⃒
⃒

PLSx(α)
and e(α) =

⃒
⃒PLSx(α) − PLST

x (α)
⃒
⃒

PLSx(α)

• Criterion 1: Closeness of the approximation 
This principle guides numerous methodologies for approximating 

FNs with TFNs, in which the parameters defining the approximation 
are adjusted by minimizing the distance between that approximation 
and the FN being approximated (e.g., [22,23,39,40]). Following 
Andrés-Sánchez [7], the average error is evaluated in α∈[α * ,1] at 
α * =0 and α * =0.9. If we consider α * =0, we are assessing the 

closeness of P̃LS
T
x to P̃LSx for the whole shape of the fuzzy variable, 

whereas by assessing α * = 0.9, we are interested only in the quality 
of the triangular approximation around the most reliable values. This 
last assessment is justified by the fact that in fuzzy financial pricing, 
prices whose membership levels are close to 1 could be of special 
interest ([42,62,63,81,83,84]). To measure average relative de
viations, we use a weighted average measure of errors in lower and 
upper bounds since it is logical to consider more relevant those de
viations in higher α-levels ([7]). Thus: 

wae (α∗) =

∫1

α∗

α⋅e (α)dα

∫1

α∗

e (α)dα

and wae(α∗) =

∫1

α∗

α⋅e(α)dα

∫1

α∗

e(α)dα  

and we also evaluate the mean of weighted average errors in the 
bounds of the α-levels by doing the following: 

wae(α∗) =
wae(α∗) + wae(α∗)

2    

• Criterion 2: Better adherence to the most reliable values 
This criterion is related to the approximation of a parameterised 

FN through a function of the same nature by using the gradient of 
that function at the level α = 1 [37]. It is also linked with the 
approximation of any FN through a trapezoidal FN that conserves the 
value and ambiguity of the original one, which is constructed by 
weighting the possible values the FN can take with its membership 
level [23]. It considers the sign of the relation between the errors e(α)
and e(α) and the membership level α. A negative relation is prefer
able in such a way that the approximation capability decreases in 
values with lower α (and therefore with less reliability) than the 
opposite relation, that is, worse adherence to values with greater 
reliability. That relation is measured by means of the Spearman 

correlation of α with e(α) and e(α), ρ
(

α, e(α)
)

and ρ(α, e(α) ).  

• Criterion 3. Unbiasedness 
This criterion considers the existence of a systematic bias in the 

approximation P̃LS
T
x . It is preferable that the approximation P̃LS

T
x 

does not underestimate or overestimate P̃LSx systematically in all 
α-levels. Although this criterion is not commonly considered 
explicitly in the literature on FNs approximation, it is a widely 
accepted principle in fields that deal with uncertain values, such as 
Statistics. Overestimated values are offset by the underestimated 
ones, minimizing the impact that approximation errors may have on 
subsequent calculations.  

• Criterion 4. Preservation 
It is desirable that the triangular approximation preserves some of 

the representative features of the original FN, P̃LSx. This criterion is 
inherent in most approximation methods. The distinction among 

many of these methods lies in the characteristics that are retained. 
For instance, in Jiménez and Rivas [48], the approximated FN pre
serves the core and support of the original FN. In contrast, in Grze
gorzewski and Mrówka [39] it maintains the expected interval and in 
Ban et al. [23] the value and ambiguity indicators are preserved.  

• Criterion 5. Interpretability 
It embeds, of course, the fact that using a triangular shape allows 

an easy interpretation of the results (e.g., Grzegorzewski and 
Pasternak-Winiarska, [41]), but also an easy understanding of how 
the approximation method works. The interpretability of algorithms 
and their outcomes holds great significance in computational 
methods such as fuzzy systems [58] since it enhances the usability of 
the results. Hence, achieving an intuitively understandable inter
pretation of the approximation methodology is desirable for any 
financial analyst, irrespective of their proficiency in FST and FNs, as 
it enables its practical application within the industry.  

• Criterion 6. Ease of calculation 
The desirability of closed-form solutions with respect to numerical 

solutions is an extensively acknowledged principle within the field of 
computational methods. 

5. Results and discussion 

To illustrate the steps depicted in Section 4, we consider a numerical 
application, which is the continuation of Example 1. 

Example 1. (continuation). Table 2 develops an empirical analysis of 
the same policy priced in Table 1. To implement the calculations, we use 
a fuzzy version1 of the mortality multiplier and the IRR in that example, 
in such a way that ̃β = 8̃ = (8, 1,1) and ̃i = 1̃2% = (0.12,0.01,0.01), but 
we restrict the ages at which the policy is sold via an LS to x = 55, 65, 75. 
The results of this Table correspond to Step 2. 

Note that although the mortality multiplier and the IRR are TFNs, the 
price of the LS does not maintain the triangular shape. In this regard, 
Table 2 shows that the first differences of the bounds of PLSxα are not 
constant. 

Before performing Step 3, it is interesting to compare the results in 
Table 2 with those obtained in the case of crisp values of mortality 
multiplier and IRR (Table 1). As can be seen, the crisp price of the LS is a 
particular case of the fuzzy one when α = 1. That is, by using a fuzzy 
version of these two key parameters, it is possible to obtain not only a 
crisp value of the LS price but a wide range of the values this price can 
take with their associate level of membership. This result can be very 
useful in LS markets where, due to its nature, there is no precise infor
mation on the mortality multiplier and the IRR. Therefore, when faced 
with uncertainty, working with FNs instead of crisp ones offers several 
advantages. FNs explicitly capture uncertainty and imprecision, 
providing a more nuanced understanding of the range of possible values. 
Unlike crisp numbers that provide only a single precise value, FNs offer 
flexibility in representing uncertain information. They accommodate 
subjective assessments, expert opinions, and varying levels of confi
dence, allowing for more precise and nuanced modelling of uncertainty. 
Furthermore, FNs facilitate robust decision-making by enabling a 
comprehensive evaluation of potential scenarios (those associated with 
values of α). This broader perspective allows for more informed choices 
than that one in which only a crisp value is considered. 

In Step 3, triangular approximations are obtained. Table 3 shows the 
triangular approximations of the prices displayed in Table 2. To 
implement the SA, it is sufficient to use the 1-cut and the 0-cut from 
Table 2. The GA can be obtained by using prices and duration measures 

1 For the sake of simplicity, we do not perform Step 1 in this example. 
However, fitting the fuzzy mortality multiplier and IRR could be done by 
following Steps 1.1–1.7. 
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in Table 1 and the spreads of the IRR and the mortality multiplier. To 
obtain the EIA, it is necessary to use all the data in Table 2. 

Step 4 needs some calculations that are collected in Table 4, C1, C2 
(these last two in Appendix C) and Table 5, C3, C4, where C3 and C4 are 
also in Appendix C. These tables show the patterns described below.  

• Criterion 1. Table 4, C1, C2 report that if the errors are evaluated at 
α∗ = 0, the EIA provides the closest approximation. Likewise, the SA 
and the GA generate similar errors. On the other hand, Table 5, C3, 
C4 display that at α∗ = 0.9, the lowest errors come from the GA and 
the largest from the EIA.  

• Criterion 2. When the quality of the approximation for all possible 
values of α is assessed, the Spearman correlation in Table 4, C1, C2 
shows a perfect negative relation between the errors and α for the 
GA. On the other hand, that correlation is small in the other methods, 
and its sign depends on the bound of the α-cut under assessment. If 
that analysis is done for α∗ = 0.9 (Table 5, C3, C4), it can be verified 
that the SA and the GA (EIA) provide a perfect negative (positive) 
Spearman correlation between α and the errors.  

• Criterion 3. In Table 4, C1, C2, it is possible to check that the SA and 
the GA produce systematic biases. Thus, SA underestimates (over
estimates) the prices for ages x = 65,75 (x = 55) ∀α. In contrast, GA 
overestimates (underestimates) the price of the LSs for x = 65,75 
(x = 55). The EIA does not provide a systematic bias since the sign of 
the difference between the actual price and its approximation varies 
with α.  

• Criterion 4. Whereas the SA preserves the core and the support of the 
original price, the GA preserves only the core. The EIA preserves the 
expected interval of the price and, consequently, any expected value 
but no visual features of the original shape.  

• Criterion 5. The SA is based on the assessment of three scenarios: the 
most reliable and optimistic and pessimistic situations. In many 
fields, such as actuarial science, making assessments by evaluating 
several scenarios is very common. Therefore, this approximating 
method can be considered intuitive for a financial analyst. The GA is 
also understandable for any practitioner without knowledge of FNs. 
Its implementation requires only calculating the most reliable price 
and the maximum deviations from this price by using duration 
measures in the same manner that in conventional financial and 
actuarial analyses. EIA has deep roots in FST and, consequently, is 
more difficult to understand without knowledge of this theory.  

• Criterion 6. While both the SA and the GA can be obtained with 
closed formulas and a low number of calculations, this does not 
follow for the EIA. 

It is worth highlighting that the final choice of the triangular 
approximation to the value of the LS will depend on factors such as the 
intended use of the approximation (e.g., for interpretation purposes or 
for further calculations) or the relevance that the decision-maker deems 
each criterion should have. The application of multicriteria decision- 
making methods, as proposed by Irvanizam et al. [46], Irvanizam 
et al. [47], or Zhao [88], can be highly useful tools in this regard. 

6. Conclusions and further research 

In this study, we have introduced a novel framework for pricing LSs 
by employing FNs to account for the inherent uncertainty associated 
with two crucial parameters. Our approach builds upon the probabilistic 
pricing method, as established by previous works such as Zollars et al. 
[89], Lubovich et al. [57], and Brockett et al. [30]. However, we extend 
this method by utilizing TFNs to represent the IRR and the mortality 
multiplier. The adoption of TFNs is motivated by the inherent impreci
sion in the available information for determining these two variables, as 
highlighted in studies by Xu and Hoesch [86], Lim and Shyamalkumar 
[56], Xu [85], and Braun and Xu [27]. By incorporating FNs into the 
pricing framework, we are able to capture and model the inherent un
certainty more accurately, enhancing the reliability and robustness of LS 
pricing. 

The pricing methodology presented in this study encompasses all the 
essential steps involved in pricing LSs using fuzzy parameters. Firstly, 
we focus on determining the fuzzy parameters by utilizing a fitting 
process that incorporates available information and expert knowledge. 
Next, the LS pricing formula is implemented, incorporating the fuzzy 
parameters into the calculation. Furthermore, to facilitate subsequent 
calculations and improve the interpretability of the results, we introduce 
triangular approximations to the fuzzy value of the LS. These approxi
mations simplify the representation of the fuzzy value while preserving 
important characteristics, making it easier to handle and comprehend in 
practical applications. In addition to the triangular approximations, the 
last step incorporates their assessment using six different criteria. These 
criteria serve as guidelines for decision-makers in selecting their 
preferred approximation method and consider various factors such as 
the quality of the approximation, usability, and comprehensibility for 
individuals who may not have prior knowledge of FNs. 

There is no optimal approximation method for the price of LSs. Each 

Table 2 
α-cuts of the price of the LS in Example 1 for ĩ = (0.12,0.01, 0.01) and β̃ =
(8,1, 1).  

x = 55 

α PLS55(α) PLS55(α) ΔPLS55(α) ΔPLS55(α)

1  21069.30  21069.30     
0.9  20675.01  21465.83  394.29  -396.53 
0.8  20282.94  21864.62  392.07  -398.79 
0.7  19893.08  22265.69  389.87  -401.07 
0.6  19505.40  22669.07  387.68  -403.37 
0.5  19119.88  23074.76  385.52  -405.69 
0.4  18736.51  23482.79  383.37  -408.03 
0.3  18355.26  23893.18  381.25  -410.39 
0.2  17976.12  24305.95  379.14  -412.77 
0.1  17599.07  24721.12  377.05  -415.17 
0  17224.08  25138.71  374.98  -417.59 
x = 65 
α  PLS65(α) PLS65(α) ΔPLS65(α) ΔPLS65(α)
1  37975.05  37975.05     
0.9  37507.89  38441.96  467.16  -466.91 
0.8  37040.45  38908.64  467.44  -466.68 
0.7  36572.72  39375.10  467.73  -466.46 
0.6  36104.68  39841.36  468.04  -466.26 
0.5  35636.31  40307.45  468.37  -466.08 
0.4  35167.58  40773.37  468.73  -465.92 
0.3  34698.48  41239.14  469.10  -465.77 
0.2  34228.98  41704.78  469.50  -465.64 
0.1  33759.05  42170.30  469.92  -465.53 
0  33288.68  42635.73  470.37  -465.43 
x = 75 
α  PLS75(α) PLS75(α) ΔPLS75(α) ΔPLS75(α)
1  67715.03  67715.03     
0.9  67305.01  68120.85  410.02  -405.82 
0.8  66890.72  68522.57  414.29  -401.71 
0.7  66472.07  68920.25  418.65  -397.68 
0.6  66048.97  69313.98  423.10  -393.73 
0.5  65621.32  69703.82  427.64  -389.85 
0.4  65189.04  70089.85  432.28  -386.03 
0.3  64752.01  70472.15  437.03  -382.29 
0.2  64310.14  70850.77  441.87  -378.63 
0.1  63863.32  71225.80  446.82  -375.03 
0  63411.45  71597.29  451.87  -371.49  

Table 3 
Triangular approximations to P̃LSx in Table 2.  

x SA GA EIA 

55 (21069.30, 3845.22, 
4069.41) 

(21069.30, 3953.99, 
3953.99) 

(21050.62, 3843.60, 
4067.78) 

65 (37975.05, 4686.37, 
4660.68) 

(37975.05, 4670.22, 
4670.22) 

(37977.20, 4684.73, 
4659.13) 

75 (67715.03, 4303.58, 
3882.26) 

(67715.03, 4078.89, 
4078.89) 

(67750.18, 4296.41, 
3875.52)  
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alternative has its own strengths and weaknesses. One of the advantages 
of the SA method is its intuitive interpretation and that it retains the core 
and support of the fuzzy actual price. SA is also straightforward to 
implement by applying the crisp pricing formula in three representative 
scenarios: the most feasible, optimistic, and pessimistic. On the other 
hand, the GA method excels in adhering closely to the original price at 
the values with the highest reliability (α∗ ≥ 0.9). It also offers an intu
itive interpretation without requiring prior knowledge of FNs and in
volves few computational calculations as well. The EIA also exhibits 
superiority in several criteria. This triangular approximation closely 
adheres to the entire shape of the original price, preserves its expected 
interval, and does not exhibit systematic biases in its α-cuts. 

The present research has a specific focus on employing TFNs as a 
foundational element in the proposed framework, aiming to offer a 

comprehensive and detailed description of its implications in LS pricing. 
Despite potential limitations, TFNs strike a suitable balance by 
providing a parsimonious representation of vague data without over
simplifying its inherent structure, as highlighted in previous studies [39, 
48]. Additionally, the suggested approach for adjusting TFNs to the key 
parameters draws inspiration from the methodology presented by Cheng 
[34]. Moreover, considering the feasibility of real-world applications in 
the industry, we believe that the proposed methodology utilizing FNs 
can be more easily implemented by professionals such as actuaries, in
surance specialized lawyers, traders, and others, compared to more 
complex representations of uncertainty. The information provided by 
FNs is readily understandable by individuals without specialized 
knowledge of FST, which is not always the case for more intricate rep
resentations of uncertainty, as previously mentioned. This characteristic 

Table 4 
Evaluation of the triangular approximations to P̃LS55, α∗ ≥ 0.  

SA toP̃LS55  

(a) (b) (c) (d)     

α PLS55(α) PLS55(α) PLST
55(α) PLST

55(α) (a) − (b) (c) − (d) e(α) e(α)

1 21069.30 21069.30 21069.30 21069.30 0.00 0.00 0.000% 0.000% 
0.9 20675.01 21465.83 20684.78 21476.24 9.77 10.41 0.047% 0.048% 
0.8 20282.94 21864.62 20300.26 21883.18 17.31 18.56 0.085% 0.085% 
0.7 19893.08 22265.69 19915.74 22290.13 22.66 24.43 0.114% 0.110% 
0.6 19505.40 22669.07 19531.21 22697.07 25.82 28.00 0.132% 0.124% 
0.5 19119.88 23074.76 19146.69 23104.01 26.81 29.25 0.140% 0.127% 
0.4 18736.51 23482.79 18762.17 23510.95 25.66 28.16 0.137% 0.120% 
0.3 18355.26 23893.18 18377.65 23917.89 22.39 24.71 0.122% 0.103% 
0.2 17976.12 24305.95 17993.13 24324.83 17.01 18.88 0.095% 0.078% 
0.1 17599.07 24721.12 17608.60 24731.77 9.54 10.65 0.054% 0.043% 
0 17224.08 25138.71 17224.08 25138.71 0.00 0.00 0.000% 0.000%  

EI
(

P̃LS55

)
= [19128.82, 23084.51] wae(0) = 0.083%  

EI
(

P̃LS
T
55

)
= [19146.69, 23104.01] wae(0) = 0.077%  

ρ
(

α, e(α)
)

= − 0.09,ρ(α, e(α) ) = 0.09 
wae(0) = 0.080% 

GA toP̃LS55  

(a) (b) (c) (d)     
α PLS55(α) PLS55(α) PLST

55(α) PLST
55(α) (a) − (b) (c) − (d) e(α) e(α)

1 21069.30 21069.30 21069.30 21069.30 0.00 0.00 0 0 
0.9 20675.01 21465.83 20673.90 21464.70 -1.11 -1.13 0.005% 0.005% 
0.8 20282.94 21864.62 20278.50 21860.10 -4.44 -4.52 0.022% 0.021% 
0.7 19893.08 22265.69 19883.10 22255.50 -9.97 -10.20 0.050% 0.046% 
0.6 19505.40 22669.07 19487.71 22650.90 -17.69 -18.17 0.091% 0.080% 
0.5 19119.88 23074.76 19092.31 23046.30 -27.57 -28.46 0.144% 0.123% 
0.4 18736.51 23482.79 18696.91 23441.69 -39.60 -41.09 0.211% 0.175% 
0.3 18355.26 23893.18 18301.51 23837.09 -53.75 -56.09 0.293% 0.235% 
0.2 17976.12 24305.95 17906.11 24232.49 -70.01 -73.46 0.389% 0.302% 
0.1 17599.07 24721.12 17510.71 24627.89 -88.35 -93.23 0.502% 0.377% 
0 17224.08 25138.71 17115.31 25023.29 -108.77 -115.42 0.631% 0.459%  

EI
(

P̃LS55

)
= [19128.82, 23084.51] wae(0) = 0.088%  

EI
(

P̃LS
T
55

)
= [19092.31, 23046.30] wae(0) = 0.073%  

ρ
(

α, e(α)
)

= − 1,ρ(α, e(α) ) = 1 
wae(0) = 0.081% 

EIA toP̃LS55  

(a) (b) (c) (d)     
α PLS55(α) PLS55(α) PLST

55(α) PLST
55(α) (a) − (b) (c) − (d) e(α) e(α)

1 21069.30 21069.30 21050.62 21050.62 18.68 18.68 0.089% 0.089% 
0.9 20675.01 21465.83 20666.26 21457.40 8.75 8.44 0.042% 0.039% 
0.8 20282.94 21864.62 20281.90 21864.17 1.05 0.45 0.005% 0.002% 
0.7 19893.08 22265.69 19897.54 22270.95 -4.46 -5.26 0.022% 0.024% 
0.6 19505.40 22669.07 19513.18 22677.73 -7.78 -8.66 0.040% 0.038% 
0.5 19119.88 23074.76 19128.82 23084.51 -8.94 -9.75 0.047% 0.042% 
0.4 18736.51 23482.79 18744.46 23491.29 -7.95 -8.50 0.042% 0.036% 
0.3 18355.26 23893.18 18360.10 23898.06 -4.84 -4.88 0.026% 0.020% 
0.2 17976.12 24305.95 17975.74 24304.84 0.38 1.11 0.002% 0.005% 
0.1 17599.07 24721.12 17591.38 24711.62 7.69 9.50 0.044% 0.038% 
0 17224.08 25138.71 17207.02 25118.40 17.07 20.32 0.099% 0.081%  

EI
(

P̃LS55

)
= [19128.82, 23084.51] wae(0) = 0.041%  

EI
(

P̃LS55

)
= [19128.82, 23084.51] wae(0) = 0.038%  

ρ
(

α, e(α)
)

= − 0.13ρ, (α, (α) ) = 0.08 
wae(0) = 0.040%  
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is why FNs are commonly employed in multicriteria decision-making 
contexts [46,47,88]. Consequently, we emphasize the importance of 
obtaining triangular approximations to LSs prices and assuming initial 
parameters quantified with TFNs. 

We believe that more research is needed on how to adjust the mor
tality multiplier and the IRR. This paper has proposed a method that 
takes the perspective of an external investor who only has LE certificates 
from MUs and IRRs of similar operations. However, other approaches 
can be taken and we reflect on how to approach such research below in 
this section. 

The precise assessment of the mortality multiplier is challenging due 
to various circumstances. Firstly, the utilization of base mortality tables 
derived from the life insurance market introduces inaccuracies in mor
tality rates among the elderly population. This discrepancy arises from 
the scarcity of data for older individuals compared to those in younger or 
central age groups. Moreover, several other factors contribute to the 
biased and imprecise nature of the mortality multiplier estimation. These 
factors encompass potential misinformation provided by the insured 
parties, the absence of crucial data, and the inclusion of irrelevant or 
imprecise information [86]. Furthermore, MUs, as third-party entities 
involved in LS transactions, rely on publicly available sources to compile 
mortality data on the insureds. However, it is important to note that these 
acquired data often contain a significant proportion of unreported deaths. 
Accounting for the presence of unreported deaths is pivotal for ensuring a 
fair evaluation of the MUs methodology. Nonetheless, existing methods 
for addressing this issue either heavily rely on actuarial opinion or are 
based on certain assumptions [56]. Considering these factors, it is 
advisable to evaluate LS prices by introducing variability bands in the 
estimation of the mortality multiplier [86]. One effective approach for 
introducing such bands is by employing TFNs. In the empirical applica
tion conducted by Xu and Hoesch [86], the most reliable scenario for the 
mortality multiplier, denoted as β= 3, was used. Additionally, stress tests 
were performed by considering two other scenarios, one pessimistic and 
one optimistic, with deviations of 20%. This crisp mortality multiplier 
value can be quantified using a TFN as ̃β = (3,0.6, 0.6). 

In the context of LS pricing, the IRR comprises a risk-free rate, similar 
to the technical interest rate, and a risk premium associated with various 
sources of risk. These risk sources include longevity risk, the volume of 
pending premiums at the agreement date, insurer default risks, rescis
sion risk, and liquidity risk [24,27]. Estimating the IRR requires 
addressing the primary question of accurately determining the risk 
premium. To tackle this issue, Braun and Xu [27] propose adjusting the 
risk premium based on proxy variables representing each source of 
uncertainty using conventional regression methods. Thus, these authors 
consider several quantifiers as proxies for longevity risk, including LE, 

insured amount, differences between LEs from different sources, the 
number of available LEs for the policy, whether the policy is traded on 
the secondary or tertiary market, and the insured’s age. The volume of 
outstanding premiums at the agreement date is captured by considering 
the sum of projected premiums as a rate of the death benefit. Default risk 
is evaluated based on the insurer’s credit rating, while rescission risk is 
modelled over the policy tenure, representing the time elapsed from 
policy acquisition to the LS date. Furthermore, liquidity risk is assumed 
to be quantifiable through the intercept of the regression model. To 
make predictions expressed as FNs using the crisp output of conven
tional regression methods, two frameworks proposed by Buckley [32] 
and Al-Kandari et al. [4] can be employed. Buckley [32] suggests 
interpreting the statistical confidence intervals of the coefficients as 
TFNs. On the other hand, the approach presented by Al-Kandari et al. [4] 
differs slightly. Their method involves constructing fuzzy predictions 
based on estimating the residuals’ confidence intervals, instead of using 
interval estimates of the coefficients. 

In addition to conventional regression methods, Fuzzy Regression 
(FR) can be employed to establish the relationship between the risk 
premium and the input variables suggested by Braun and Xu [27]. 
However, it is important to note that FR accounts for errors stemming 
from the fuzziness inherent in the system, whereas conventional 
regression methods assume errors arise from random disturbances. FR 
has found applications in various actuarial analyses. For instance, 
Andrés-Sánchez and Terceño [16] and Shapiro and Koissi [70] use FR to 
fit the term structure of interest rates. Koissi and Shapiro [50], 
Andrés-Sánchez and González-Vila Puchades [11], and Szymański and 
Rossa [73] propose fuzzy versions of the Lee-Carter model. Additionally, 
Apaydin and Baser [20] and Woundjiagué et al. [82] apply FR to esti
mate claiming reserves. It is worth noting that FR allows for the 
consideration of input variables, such as the insured’s LE or the relative 
sum of outstanding premiums, as fuzzy rather than crisp values. 

We acknowledge that our proposed LS pricing approach utilizing tools 
from FST has certain limitations that warrant further research. To simplify 
the analysis, we have focused on scenarios involving constant premiums 
and death benefits. However, it is straightforward to extend the findings to 
encompass crisp variable cash flows. Additionally, we believe that 
applying fuzzy tools to model uncertainty regarding outstanding premiums 
and benefits could prove fruitful in certain types of life insurance. In any 
case, our approach could be a starting point for applying more complex 
representations of vagueness and uncertainty in life insurance pricing, such 
as intuitionistic, neutrosophic FNs or spherical fuzzy sets. These extensions 
of fuzzy sets offer valuable approaches for handling different aspects of 
imprecision (see, e.g., [3,45,52,71]) and could be a promising direction for 
future investigations on LSs pricing. Undoubtedly, such representations 
allow for more nuanced information modelling compared to what TFNs 
allow. However, it is important to point out that these instruments require 
the estimation of a larger number of parameters compared to FNs. This 
aspect is crucial given our problem setting, where operations are con
ducted in over-the-counter financial markets, each transaction can be 
considered a "tailored suit," and the reference information for setting the 
parameters of a specific transaction is very limited. In this regard, as 
indicated by Jiménez and Rivas [48], when the information on a variable is 
relatively scarce and vague, parsimonious and simple representations, 
such as linear forms, are desirable. 
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Table 5 
Analysis of errors by triangular approximations to P̃LS55 for α∗ ≥ 0.9.   

SA GA EIA 

α e(α) e(α) e(α) e(α) e(α) e(α)

1 0.000% 0.000% 0.000% 0.000% 0.089% 0.089% 
0.99 0.005% 0.005% 0.000% 0.000% 0.084% 0.083% 
0.98 0.010% 0.011% 0.000% 0.000% 0.079% 0.078% 
0.97 0.015% 0.016% 0.000% 0.000% 0.074% 0.073% 
0.96 0.020% 0.021% 0.001% 0.001% 0.069% 0.067% 
0.95 0.025% 0.026% 0.001% 0.001% 0.064% 0.062% 
0.94 0.029% 0.031% 0.002% 0.002% 0.060% 0.058% 
0.93 0.034% 0.035% 0.003% 0.003% 0.055% 0.053% 
0.92 0.039% 0.040% 0.003% 0.003% 0.051% 0.048% 
0.91 0.043% 0.044% 0.004% 0.004% 0.047% 0.044% 
0.9 0.047% 0.049% 0.005% 0.005% 0.042% 0.039% 
wae(0.9) 0.024% 0.002% 0.065% 
wae(0.9) 0.025% 0.002% 0.064% 
wae(0.9) 0.024% 0.002% 0.065% 

ρ
(

α, e(α)
)

-1  -1  1  

ρ(α, e(α) ) -1  -1  1   
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Appendix A 

This appendix collects some important remarks related to Subsections 3.2 and 4.1. 

Remark 1. The interest rate duration of an asset or liability is the weighted average of the maturity of its cash flows by their present value. We denote 
the duration of life insurance in (7a) as D(Ax) being: 

D(Ax) =

∑ω− x

t=1
t⋅(1 + i)− t

t− 1/qx

Ax  

and, similarly, for the annuity in (7c), the duration D(ax) is: 

D(ax) =

∑ω− x

t=1
t⋅(1 + i)− t

tpx

ax 

Note that whereas the price of the unitary whole life annuity is greater than that of whole life insurance, the duration of whole life insurance is 
above the duration of the annuity. 

Remark 2. The duration is linked with elastic derivatives of present values: 

D(Ax) = −
1

1 + i
.

∂Ax
∂i

Ax
and D(ax) = −

1
1 + i

.

∂ax
∂i

ax 

When analysing the sensitivity of values with respect to the interest rate, it is very common to use the linear approximation of the present value that 
comes from the first-order Taylor polynomial expansion: 

ΔAx ≈ −
1

1 + i
D(Ax)⋅Ax⋅Δi and Δax ≈ −

1
1 + i

D(ax)⋅ax⋅Δi 

We symbolize by D
(
A∗

x
)

the interest rate duration obtained with nonstandard probabilities in the case of the life insurance A∗
x. Similarly, for the life 

annuity a∗
x we use D

(
a∗

x

)
. 

Remark 3. The first derivatives of p∗x and t− 1/q
∗
xwith respect to β are [12]: 

∂tp∗
x

∂β
= tp

∗′
x ≈ − tp

∗
x

∑t− 1

k=0

qx+k

p∗
x+k

and
∂t− 1/q∗

x

∂β
= t− 1/q

∗′
x ≈ t− 1/q

∗
x

[
1
β
−
∑t− 2

k=0

qx+k

p∗
x+k

]

Remark 4. By considering the probabilistic method, measures similar to the interest rate duration for the longevity risk can be defined [12]. These 
measures of sensitivity are denoted by DM

(
A∗

x
)

and DM
(
a∗

x
)

for the life insurance and the annuity, respectively: 

DM
(
A∗

x
)
=

∂A∗x
dβ
A∗

x 
and DM

(
a∗

x
)
=

∂a∗x
dβ
a∗x

. 
By using (7a), (7c) and expressions in Remark 3, it can be demonstrated that: 
∂A∗

x
dβ =

∑ω− x
t=1 (1 + i)− t

t− 1/q
∗′
x and ∂a∗

x
dβ =

∑ω− x
t=1 (1 + i)− t

tp∗′x . 
Therefore, mortality multiplier durations for the life insurance and annuity are, respectively: 

DM
(
A∗

x

)
=

∑ω− x

t=1
(1 + i)− t

t− 1/q∗′
x

A∗
x

≥ 0 and DM
(
a∗

x

)
=

∑ω− x

t=1
(1 + i)− t

tp∗′
x

a∗
x

≤ 0  

Remark 5. The fluctuations of life contingency prices when the mortality multiplier varies can be approximated linearly by using a first-order Taylor 
polynomial expansion as follows: 

ΔA∗
x ≈ DM

(
A∗

x

)
⋅A∗

x ⋅Δβ and Δa∗
x ≈ DM

(
a∗

x

)
⋅a∗

x ⋅Δβ 

Notice that whereas A∗
x is increasing with respect to β, since growth in β implies an earlier payment of the death benefit, a∗

x is decreasing with 
respect to the mortality multiplier because when the mortality multiplier increases, the expected number of annuity payments decreases. 
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Remark 6. Let Δi be a variation in the IRR and Δβ in the mortality multiplier. By using the results in Remarks 2 and 5, we can write ΔPLSx as: 

ΔPLSx ≈

[

−
1

1 + i
D
(
A∗

x

)
Δi + DM

(
A∗

x

)
Δβ
]

CA∗
x +

[
1

1 + i
D
(
a∗

x

)
Δi − DM

(
a∗

x

)
Δβ
]

Pa∗
x =

1
1 + i

[
− D

(
A∗

x

)
CA∗

x + D
(
a∗

x

)
Pa∗

x

]
Δi +

[
DM

(
A∗

x

)
CAx − DM

(
a∗

x

)
Pa∗

x

]
Δβ  

Remark 7. The price of an LS is a decreasing function with respect to the interest rate. Let us suppose that Δβ = 0 in expression in Remark 6. Then, 
for Δi ≥ 0, ΔPLSx ≤ 0 and if Δi ≤ 0, ΔPLSx ≥ 0 because D

(
A∗

x
)
> D

(
a∗

x
)

(see Remark 1) and C A∗
x ≥ P a∗

x since PLSx ≥ 0. 

Remark 8. . The price of an LS is an increasing function with respect to the mortality multiplier. Let us suppose that Δi = 0 in expression in Remark 
6. Then, for Δβ ≥ 0, ΔPLSx ≥ 0 and for Δβ ≤ 0, ΔPLSx ≤ 0 because DM

(
A∗

x
)
≥ 0and DM

(
a∗

x
)
≤ 0 (see Remark 5). 

Appendix B 

Although the proposed framework can be implemented using spreadsheet software such as Excel®, we provide pseudocode. It serves as a schematic 
representation and as a basis for programming that framework in languages such as R or Python.
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Appendix C  

Table C1 
Evaluation of the triangular approximations to P̃LS65, α∗ ≥ 0.  

SA to P̃LS65  

(a) (b) (c) (d)     

α PLS65(α) PLS65(α) PLST
65(α) PLST

65(α) (a) − (b) (c) − (d) e(α) e(α)

1 37975.05 37975.05 37975.05 37975.05 0.00 0.00 0.000% 0.000% 
0.9 37507.89 38441.96 37506.41 38441.12 -1.47 -0.84 0.004% 0.002% 
0.8 37040.45 38908.64 37037.78 38907.19 -2.67 -1.45 0.007% 0.004% 
0.7 36572.72 39375.10 36569.14 39373.26 -3.58 -1.85 0.010% 0.005% 
0.6 36104.68 39841.36 36100.50 39839.32 -4.18 -2.04 0.012% 0.005% 
0.5 35636.31 40307.45 35631.87 40305.39 -4.44 -2.05 0.012% 0.005% 
0.4 35167.58 40773.37 35163.23 40771.46 -4.35 -1.91 0.012% 0.005% 
0.3 34698.48 41239.14 34694.59 41237.53 -3.89 -1.61 0.011% 0.004% 
0.2 34228.98 41704.78 34225.96 41703.60 -3.02 -1.18 0.009% 0.003% 
0.1 33759.05 42170.30 33757.32 42169.66 -1.73 -0.64 0.005% 0.002% 
0 33288.68 42635.73 33288.68 42635.73 0.00 0.00 0.000% 0.000%  

EI
(

P̃LS65

)
= [35634.83,40306.76] wae(0) = 0.0073%  

EI
(

P̃LS
T
65

)
= [35631.87, 40305.39] wae(0) = 0.0032%  

ρ
(

α, e(α)
)

= − 0.09,ρ(α, e(α) ) = 0.13 
wae(0) = 0.0052% 

GA to P̃LS65  

(a) (b) (c) (d)     
α PLS65(α) PLS65(α) PLST

65(α) PLST
65(α) (a) − (b) (c) − (d) e(α) e(α)

1 37975.05 37975.05 37975.05 37975.05 0.00 0.00 0.000% 0.000% 
0.9 37507.89 38441.96 37508.03 38442.07 0.14 0.11 0.000% 0.000% 
0.8 37040.45 38908.64 37041.01 38909.10 0.56 0.46 0.002% 0.001% 
0.7 36572.72 39375.10 36573.98 39376.12 1.26 1.02 0.003% 0.003% 
0.6 36104.68 39841.36 36106.96 39843.14 2.28 1.78 0.006% 0.004% 
0.5 35636.31 40307.45 35639.94 40310.16 3.63 2.72 0.010% 0.007% 
0.4 35167.58 40773.37 35172.92 40777.18 5.33 3.82 0.015% 0.009% 
0.3 34698.48 41239.14 34705.90 41244.21 7.41 5.07 0.021% 0.012% 
0.2 34228.98 41704.78 34238.87 41711.23 9.90 6.45 0.029% 0.015% 
0.1 33759.05 42170.30 33771.85 42178.25 12.80 7.95 0.038% 0.019% 
0 33288.68 42635.73 33304.83 42645.27 16.15 9.54 0.049% 0.022%  

EI
(

P̃LS65

)
= [35634.83, 40306.76] wae(0) = 0.006%  

EI
(

P̃LS
T
65

)
= [35639.94, 40310.16] wae(0) = 0.004%  

ρ
(

α, e(α)
)

= − 1,ρ(α, e(α) ) = 1 
wae(0) = 0.005% 

EIA to P̃LS65  

(a) (b) (c) (d)     
α PLS65(α) PLS65(α) PLST

65(α) PLST
65(α) (a) − (b) (c) − (d) e(α) e(α)

1 37975.05 37975.05 37977.20 37977.20 -2.15 -2.15 0.006% 0.006% 
0.9 37507.89 38441.96 37508.72 38443.11 -0.84 -1.15 0.002% 0.003% 
0.8 37040.45 38908.64 37040.25 38909.02 0.20 -0.38 0.001% 0.001% 
0.7 36572.72 39375.10 36571.78 39374.94 0.94 0.16 0.003% 0.000% 
0.6 36104.68 39841.36 36103.30 39840.85 1.38 0.51 0.004% 0.001% 
0.5 35636.31 40307.45 35634.83 40306.76 1.48 0.68 0.004% 0.002% 
0.4 35167.58 40773.37 35166.36 40772.68 1.23 0.69 0.003% 0.002% 
0.3 34698.48 41239.14 34697.88 41238.59 0.60 0.55 0.002% 0.001% 
0.2 34228.98 41704.78 34229.41 41704.50 -0.43 0.28 0.001% 0.001% 
0.1 33759.05 42170.30 33760.94 42170.41 -1.88 -0.11 0.006% 0.000% 
0 33288.68 42635.73 33292.46 42636.33 -3.78 -0.59 0.011% 0.001%  

EI
(

P̃LS65

)
= [35634.83, 40306.76] wae(0) = 0.003%  

EI
(

P̃LS
T
65

)
= [35634.83, 40306.76] wae(0) = 0.002%  

ρ
(

α, e(α)
)

= − 0.21,ρ(α, e(α) ) = 0.44 
wae(0) = 0.003%   

Table C2 
Evaluation of the triangular approximations to P̃LS75, α∗ ≥ 0.  

SA to P̃LS75  

(a) (b) (c) (d)     
α PLS75(α) PLS75(α) PLST

75(α) PLST
75(α) (a) − (b) (c) − (d) e(α) e(α)

1 67715.03 67715.03 67715.03 67715.03 0.00 0.00 0.000% 0.000% 
0.9 67305.01 68120.85 67284.67 68103.25 -20.34 -17.60 0.030% 0.026% 
0.8 66890.72 68522.57 66854.31 68491.48 -36.41 -31.09 0.054% 0.045% 
0.7 66472.07 68920.25 66423.95 68879.71 -48.11 -40.54 0.072% 0.059% 

(continued on next page) 
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Table C2 (continued ) 

SA to P̃LS75  

(a) (b) (c) (d)     
α PLS75(α) PLS75(α) PLST

75(α) PLST
75(α) (a) − (b) (c) − (d) e(α) e(α)

0.6 66048.97 69313.98 65993.60 69267.93 -55.37 -46.04 0.084% 0.066% 
0.5 65621.32 69703.82 65563.24 69656.16 -58.08 -47.66 0.089% 0.068% 
0.4 65189.04 70089.85 65132.88 70044.39 -56.16 -45.47 0.086% 0.065% 
0.3 64752.01 70472.15 64702.52 70432.61 -49.48 -39.53 0.076% 0.056% 
0.2 64310.14 70850.77 64272.17 70820.84 -37.97 -29.93 0.059% 0.042% 
0.1 63863.32 71225.80 63841.81 71209.07 -21.51 -16.73 0.034% 0.023% 
0 63411.45 71597.29 63411.45 71597.29 0.00 0.00 0.000% 0.000%  

EI
(

P̃LS75

)
= [65601.97, 69687.94] wae(0) = 0.0525%  

EI
(

P̃LS
T
75

)
= [65563.24, 69656.16] wae(0) = 0.0415%  

ρ
(

α, e(α)
)

= − 0.09,ρ(α, e(α) ) = 0.09 
wae(0) = 0.0470% 

GA to P̃LS75  

(a) (b) (c) (d)     
α PLS75(α) PLS75(α) PLST

75(α) PLST
75(α) (a) − (b) (c) − (d) e(α) e(α)

1 67715.03 67715.03 67715.03 67715.03 0.00 0.00 0 0 
0.9 67305.01 68120.85 67307.14 68122.92 2.13 2.06 0.003% 0.003% 
0.8 66890.72 68522.57 66899.25 68530.81 8.53 8.24 0.013% 0.012% 
0.7 66472.07 68920.25 66491.36 68938.69 19.29 18.45 0.029% 0.027% 
0.6 66048.97 69313.98 66083.47 69346.58 34.51 32.61 0.052% 0.047% 
0.5 65621.32 69703.82 65675.58 69754.47 54.26 50.65 0.083% 0.073% 
0.4 65189.04 70089.85 65267.70 70162.36 78.66 72.51 0.121% 0.103% 
0.3 64752.01 70472.15 64859.81 70570.25 107.80 98.10 0.166% 0.139% 
0.2 64310.14 70850.77 64451.92 70978.14 141.78 127.37 0.220% 0.180% 
0.1 63863.32 71225.80 64044.03 71386.03 180.71 160.23 0.283% 0.225% 
0 63411.45 71597.29 63636.14 71793.92 224.69 196.62 0.354% 0.275%  

EI
(

P̃LS75

)
= [65601.97, 69687.94] wae(0) = 0.050%  

EI
(

P̃LS
T
75

)
= [65675.58, 69754.47] wae(0) = 0.043%  

ρ
(

α, e(α)
)

= − 1,ρ(α, e(α) ) = 1 
wae(0) = 0.047% 

EIA to P̃LS75  

(a) (b) (c) (d)     
α PLS75(α) PLS75(α) PLST

75(α) PLST
75(α) (a) − (b) (c) − (d) e(α) e(α)

1 67715.03 67715.03 67750.18 67750.18 -35.15 -35.15 0.052% 0.052% 
0.9 67305.01 68120.85 67320.54 68137.73 -15.52 -16.88 0.023% 0.025% 
0.8 66890.72 68522.57 66890.89 68525.28 -0.17 -2.71 0.000% 0.004% 
0.7 66472.07 68920.25 66461.25 68912.83 10.82 7.42 0.016% 0.011% 
0.6 66048.97 69313.98 66031.61 69300.39 17.35 13.59 0.026% 0.020% 
0.5 65621.32 69703.82 65601.97 69687.94 19.35 15.89 0.029% 0.023% 
0.4 65189.04 70089.85 65172.33 70075.49 16.71 14.36 0.026% 0.020% 
0.3 64752.01 70472.15 64742.69 70463.04 9.32 9.10 0.014% 0.013% 
0.2 64310.14 70850.77 64313.05 70850.59 -2.91 0.18 0.005% 0.000% 
0.1 63863.32 71225.80 63883.41 71238.15 -20.09 -12.35 0.031% 0.017% 
0 63411.45 71597.29 63453.77 71625.70 -42.32 -28.41 0.067% 0.040%  

EI
(

P̃LS75

)
= [65601.97, 69687.94] wae(0) = 0.024%  

EI
(

P̃LS
T
75

)
= [65601.97, 69687.94] wae(0) = 0.022%  

ρ
(

α, e(α)
)

= − 0.19,ρ(α, e(α) ) = 0.19 
wae(0) = 0.023%   

Table C3 
Analysis of errors by triangular approximations to P̃LS65 for α∗ ≥ 0.9.   

SA GA EIA  

e(α) e(α) e(α) e(α) e(α) e(α)

1 0.000% 0.000% 0.000% 0.000% 0.006% 0.006% 
0.99 0.000% 0.000% 0.000% 0.000% 0.005% 0.005% 
0.98 0.001% 0.000% 0.000% 0.000% 0.005% 0.005% 
0.97 0.001% 0.001% 0.000% 0.000% 0.005% 0.005% 
0.96 0.002% 0.001% 0.000% 0.000% 0.004% 0.005% 
0.95 0.002% 0.001% 0.000% 0.000% 0.004% 0.004% 
0.94 0.002% 0.001% 0.000% 0.000% 0.004% 0.004% 
0.93 0.003% 0.002% 0.000% 0.000% 0.003% 0.004% 
0.92 0.003% 0.002% 0.000% 0.000% 0.003% 0.003% 
0.91 0.004% 0.002% 0.000% 0.000% 0.003% 0.003% 
0.9 0.004% 0.002% 0.000% 0.000% 0.002% 0.003% 
wae(0.9) 0.002% 0.000% 0.004% 
wae(0.9) 0.001% 0.000% 0.004% 

(continued on next page) 

J. de Andrés-Sánchez and L. González-Vila Puchades                                                                                                                                                                                  



Applied Soft Computing 148 (2023) 110924

19

Table C3 (continued )  

SA GA EIA  

e(α) e(α) e(α) e(α) e(α) e(α)

wae(0.9) 0.002% 0.000% 0.004% 

ρ
(

α, e(α)
)

-1  -1  1  

ρ(α, e(α) ) -1  -1  1    

Table C4 
Analysis of errors by triangular approximations to P̃LS75 for α∗ ≥ 0.9.   

SA GA EIA 

α e(α) e(α) e(α) e(α) e(α) e(α)

1 0.000% 0.000% 0.000% 0.000% 0.052% 0.052% 
0.99 0.003% 0.003% 0.000% 0.000% 0.049% 0.049% 
0.98 0.007% 0.006% 0.000% 0.000% 0.046% 0.046% 
0.97 0.010% 0.008% 0.000% 0.000% 0.043% 0.043% 
0.96 0.013% 0.011% 0.001% 0.000% 0.040% 0.040% 
0.95 0.016% 0.014% 0.001% 0.001% 0.037% 0.038% 
0.94 0.019% 0.016% 0.001% 0.001% 0.034% 0.035% 
0.93 0.022% 0.019% 0.002% 0.001% 0.031% 0.032% 
0.92 0.025% 0.021% 0.002% 0.002% 0.028% 0.030% 
0.91 0.027% 0.024% 0.003% 0.002% 0.026% 0.027% 
0.9 0.030% 0.026% 0.003% 0.003% 0.023% 0.025% 
wae(0.9) 0.015% 0.001% 0.037% 
wae(0.9) 0.013% 0.001% 0.038% 
wae(0.9) 0.014% 0.001% 0.038% 

ρ
(

α, e(α)
)

-1  -1  1  

ρ(α, e(α) ) -1  -1  1   
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J. de Andrés-Sánchez and L. González-Vila Puchades                                                                                                                                                                                  

https://doi.org/10.22054/jmmf.2023.15186
https://doi.org/10.22054/jmmf.2023.15186
https://www.aa-partners.ch/fileadmin/files/Valuation/AAP_Life_Settlement_Valuation_-_Manual_V6.0.pdf
https://www.aa-partners.ch/fileadmin/files/Valuation/AAP_Life_Settlement_Valuation_-_Manual_V6.0.pdf
https://doi.org/10.1016/j.knosys.2021.106793
https://doi.org/10.1016/j.knosys.2021.106793
https://doi.org/10.3390/math8091422
https://doi.org/10.3390/math11010198
https://doi.org/10.2298/CSIS121225045A
https://doi.org/10.1007/s40815-018-0468-5
https://doi.org/10.1007/s40815-018-0468-5
https://doi.org/10.1016/j.fss.2011.05.024
https://doi.org/10.1016/j.fss.2011.05.024
https://doi.org/10.22111/IJFS.2017.3323
https://doi.org/10.1016/j.insmatheco.2016.11.002
https://doi.org/10.2991/ijcis.d.190626.001
https://doi.org/10.5295/cdg.191209lg
https://doi.org/10.1016/j.iedeen.2023.100220
https://doi.org/10.1057/s41288-021-00261-3
https://doi.org/10.1057/s41288-021-00261-3
https://doi.org/10.1016/j.cie.2020.106475
https://doi.org/10.1046/j.0022-4367.2003.00070.x
https://doi.org/10.1046/j.0022-4367.2003.00070.x
https://doi.org/10.1007/978-3-642-31724-8_6
https://doi.org/10.1016/j.ijar.2017.09.001
https://doi.org/10.1016/j.ijar.2017.09.001
https://doi.org/10.1016/j.ins.2017.10.001
https://doi.org/10.1016/j.insmatheco.2010.07.001
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/j.fss.2007.09.008
https://doi.org/10.1016/j.fss.2007.09.008
https://doi.org/10.1016/j.camwa.2011.01.005
https://doi.org/10.1016/j.camwa.2011.01.005
https://doi.org/10.1080/10920277.2017.1381031
https://doi.org/10.1080/10920277.2017.1381031
https://doi.org/10.25102/fer.1997.02.04
http://www.jstor.org/stable/4478824
https://doi.org/10.3905/jfi.2020.1.084
https://doi.org/10.1111/rmir.12042
https://doi.org/10.1016/0304-405X(76)90003-9
https://doi.org/10.1016/0304-405X(76)90003-9


Applied Soft Computing 148 (2023) 110924

20

[30] P.L. Brockett, S.-L. Chuang, Y. Deng, R.D. MacMinn, Incorporating longevity risk 
and medical information into life settlement pricing, J. Risk Insur. 80 (3) (2013) 
799–826, https://doi.org/10.1111/j.1539-6975.2013.01522.x. 

[31] J.J. Buckley, The fuzzy mathematics of finance, Fuzzy Sets Syst. 21 (3) (1987) 
257–273, https://doi.org/10.1016/0165-0114(87)90128-X. 

[32] J.J. Buckley, Fuzzy statistics: Regression and prediction, Soft Comput. 9 (2005) 
769–775, https://doi.org/10.1007/s00500-004-0453-9. 

[33] J.J. Buckley, Y. Qu, On using α-cuts to evaluate fuzzy equations, Fuzzy Sets Syst. 38 
(3) (1990) 309–312, https://doi.org/10.1016/0165-0114(90)90204-J. 

[34] C.B. Cheng, Group opinion aggregation based on a grading process: A method for 
constructing triangular fuzzy numbers, Comput. Math. Appl. 48 (10–11) (2004) 
1619–1632, https://doi.org/10.1016/j.camwa.2004.03.008. 

[35] J.D. Cummins, R.A. Derrig, Fuzzy financial pricing of property-liability insurance, 
North Am. Actuar. J. 1 (4) (1997) 21–40, https://doi.org/10.1080/ 
10920277.1997.10595640. 

[36] R.A. Derrig, K. Ostaszewski, Managing the tax liability of a property liability 
insurance company, J. Risk Insur. 64 (4) (1997) 695–711, https://doi.org/ 
10.2307/253892. 

[37] D. Dubois, H. Prade, Fuzzy numbers: an overview, in: D. Dubois, H. Prade, R. 
R. Yager (Eds.), Readings on Fuzzy Sets for Intelligent Systems, Morgan Kaufmann 
Publishers, San Mateo, 1993, pp. 112–148, https://doi.org/10.1016/B978-1-4832- 
1450-4.50015-8. 

[38] C. Giaccotto, J. Golec, B.P. Schmutz, Measuring the performance of the secondary 
market for life insurance policies, J. Risk Insur. 84 (1) (2017) 127–151, https://doi. 
org/10.1111/jori.12078. 

[39] P. Grzegorzewski, E. Mrówka, Trapezoidal approximations of fuzzy numbers, 
Fuzzy Sets Syst. 153 (1) (2005) 115–135, https://doi.org/10.1016/j. 
fss.2004.02.015. 

[40] P. Grzegorzewski, E. Mrówka, Trapezoidal approximations of fuzzy 
numbers—revisited, Fuzzy Sets Syst. 158 (7) (2007) 757–768, https://doi.org/ 
10.1016/j.fss.2006.11.015. 

[41] P. Grzegorzewski, K. Pasternak-Winiarska, Natural trapezoidal approximations of 
fuzzy numbers, Fuzzy Sets Syst. 250 (2014) 90–109, https://doi.org/10.1016/j. 
fss.2014.03.003. 

[42] M.L. Guerra, L. Sorini, L. Stefanini, Option price sensitivities through fuzzy 
numbers, Comput. Math. Appl. 61 (3) (2011) 515–526, https://doi.org/10.1016/j. 
camwa.2010.11.024. 

[43] J. Heberle, A. Thomas, Combining chain-ladder reserving with fuzzy numbers, 
Insur.: Math. Econ. 55 (2014) 96–104, https://doi.org/10.1016/j. 
insmatheco.2014.01.002. 

[44] HMD (Human Mortality Database), Max Planck Institute for Demographic 
Research (Germany), University of California,, Berkeley (USA), 2022. 〈www.mort 
ality.org〉. 

[45] I. Irvanizam, N.N. Zi, R. Zuhra, A. Amrusi, H. Sofyan, An Extended MABAC Method 
Based on Triangular Fuzzy Neutrosophic Numbers for Multiple-Criteria Group 
Decision Making Problems, Axioms 9 (3) (2020) 104, https://doi.org/10.3390/ 
axioms9030104. 

[46] Irvanizam, I., Nazaruddin, N., Syahrini, I. (2018a). Solving decent home 
distribution problem using ELECTRE method with triangular fuzzy number. In 
2018 international conference on applied information technology and innovation 
(ICAITI), 139–144). IEEE. 〈https://doi.org/10.1109/ICAITI.2018.8686768〉. 

[47] I. Irvanizam, S. Rusdiana, A. Amrusi, P. Arifah, T. Usman, An application of fuzzy 
multiple-attribute decision making model based on simple additive weighting with 
triangular fuzzy numbers to distribute the decent homes for impoverished families, 
J. Phys.: Conf. Ser. 1116 (2) (2018), 022016, https://doi.org/10.1088/1742-6596/ 
1116/2/022016. 
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Architecture and Technology: Proceedings of 37th International Conference on 
Information Systems Architecture and Technology – ISAT 2016 – Part IV. Advances 
in Intelligent Systems and Computing, vol 524, 33–43. Springer, Cham. https:// 
doi.org/10.1007/978–3-319–46592-0_3. 

[69] A.F. Shapiro, Fuzzy logic in insurance, Insur.: Math. Econ. 35 (2) (2004) 399–424, 
https://doi.org/10.1016/j.insmatheco.2004.07.010. 

[70] A.F. Shapiro, M.C. Koissi, Fuzzy regression and the term structure of interest rates– 
a least squares approach, Actuar. Res. Clear. House (2008) 1–28. 

[71] F. Smarandache Neutrosophic set - a generalization of the intuitionistic fuzzy set 
2006 IEEE Int. Conf. Granul. Comput., Atlanta, GA, USA 2016 38 42 doi: 10.1109/ 
GRC.2006.1635754. 

[72] C.A. Stone, A. Zissu, Using life extension-duration and life extension-convexity to 
value senior life settlement contracts, J. Altern. Invest. 11 (2) (2008) 94–108, 
https://doi.org/10.3905/jai.2008.712600. 
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