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phenotype in lung adenocarcinoma cell lines
Jordi Canals1  , Alfons Navarro1,2  , Cristina Vila3,4,5  , Josep M. Canals3,4,5  , Tania Díaz1  , 
Melissa Acosta‑Plasencia1  , Coralí Cros‑Font1  , Bing Han1  , Yangyi He1,6   and Mariano Monzó1,2*   

Abstract 

Background:  When genes responsible for normal embryonic development are abnormally expressed in adults, it can 
lead to tumor development. This can suggest that the same mechanism that controls embryonic differentiation can 
also control tumor differentiation. We hypothesize that the malignant phenotype of lung cancer cells could acquire 
benign characteristics when in contact with an embryonic lung microenvironment. We cultured two lung cancer cell 
lines in embryonic lung mesenchyme-conditioned medium and evaluated morphological, functional and molecular 
changes.

Methods:  The human embryonic mesenchymal lung-conditioned medium (hEML-CM) was obtained by culturing 
lung cells from embryos in the pseudoglandular stage of development. The NSCLC cell lines A549 and H1299 we 
cultured in the hEML-CM and in a tumor-conditioned medium. Morphological changes were analyzed with optical 
and transmission electron microscopy. To evaluate the functional effect of conditioned medium in tumor cells, we 
analyzed cell proliferation, migration, colony formation capacity in 2D and 3D and in vivo tumor growth capacity. The 
expression of the pluripotency genes OSKM, the adenocarcinoma marker NKX2-1, the lung surfactant proteins SFTP, 
the myofibroblast marker MYH and DNMT3A/3B was analyzed with qRT-PCR and the presence of the myofibroblast 
markers vimentin and α-SMA with immunofluorescence. Transcriptomic analysis was performed using Affymetrix 
arrays.

Results:  The A549 and H1299 cells cultured in hEML-CM lost their epithelial morphology, acquired mesodermal char‑
acteristics, and decreased proliferation, migration, and colony formation capacity in 2D and 3D, as well as reduced its 
capacity to growth in vivo. The expression of OSKM, NKX2-1 and SFTP decreased, while that of DNMT3A/3B, vimentin, 
α-SMA and MYH increased. Distant matrix analysis based on transcriptomic profile showed that conditioned cells 
were closer to myoblast and human lung fibroblast than to normal epithelial immortalized lung cells. A total of 1631 
for A549 and 866 for H1299 differentially expressed genes between control and conditioned cells were identified.

Conclusions:  To the best of our knowledge, this is the first study to report that stimuli from the embryonic lung can 
modulate the malignant phenotype of lung cancer cells, control their growth capacity and activate their differentia‑
tion into myofibroblasts. These findings could lead to new strategies for lung cancer management.
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Background
The relationship between embryonic and tumor cells has 
long been of interest to investigators. The earliest study, 
by Durante and Cohnheim in the nineteenth century [1, 
2], proposed the Embryonic Rest Hypothesis, which sug-
gested that the remains of embryonic cells in adult tis-
sues could cause the formation of malignant tumors. This 
theory gave rise to subsequent studies exploring whether 
the embryonic environment could control tumor growth, 
reprogramming and differentiation. In the first known 
experimental study, the Rous sarcoma virus was injected 
into chicken embryos and into adult chickens. The 
embryos did not develop sarcoma, while the adults did 
[3–5]. Later studies in chimeric mice found that inject-
ing embryonic carcinoma cells into the blastocyst [6, 7] 
or the uterus of pregnant mice [8, 9] caused the cells to 
lose their malignant capacity – known as “stemness” – 
and become differentiated tissue. More recently, similar 
results were found when human malignant melanoma 
cells were injected into the neural crest of chickens [10] 
or transplanted into zebrafish embryos [11, 12]. The four 
master embryonic transcription factors are octamer-
binding transcription factor-3/4 (OCT-3/4), SRY-box 
transcription factor 2 (SOX2), Kruppel-like factor 4 
(KLF4) and c-MYC. In the early phases of embryonic 
development, these master transcription factors, known 
collectively as OSKM, play a fundamental role in the reg-
ulation of embryonic cell self-renewal and in the capacity 
to turn back the biological clock and reprogram somatic 
cells to pluripotency [13, 14]. In  vitro studies have 
shown that melanoma and breast cancer cells lose their 
aggressive capacity when cultured in human embryonic 
stem cell (hESC)-conditioned medium [10–15]. Taken 
together, these findings indicate that the embryonic envi-
ronment is capable of reprogramming the phenotype of 
both somatic and tumor cells and that our DNA is not 
hermetic, immovable and unidirectional but rather has a 
high degree of plasticity, making it receptive to the stim-
uli it receives.

Cellular crosstalk between tissues is essential to the 
development of the embryonic lung. During the pseu-
doglandular stage of development (at weeks E9, E10 and 
E11), crosstalk between the mesodermal cells surround-
ing the endoderm promotes bronchial branching and 
the organization of the lung mesenchyme [16, 17]. The 
OSKM transcription factors play a crucial role in this 
process: OCT-3/4 acts to maintain the totipotency of 
the endodermal cells [18]; SOX2 and NK2 homeobox  1 

(NKX2-1; also known as thyroid transcription factor 1 
[TTF-1]), promote the differentiation of the proximal and 
ventral endoderm [19, 20]; and KLF4 promotes meso-
dermal differentiation [21, 22]. In contrast, the abnor-
mal expression of these same transcription factors in the 
adult lung is related to tumorigenesis. Overexpression of 
OCT-3/4, SOX2 and c-MYC in patients with non-small-
cell lung cancer (NSCLC) is associated with a decrease 
in cellular differentiation, an increase in metastases and 
poor prognosis [23–25]. NKX2-1 and KLF4 can act as 
oncogenes [26, 27] or tumor suppressors [28, 29] depend-
ing on the type of tissue and the microenvironment.

Based on the fact that the embryonic development of 
the lung generates the correct signals for the formation 
and correct differentiation of the adult lung, we hypoth-
esized that the malignant phenotype of lung cancer cells 
could acquire benign characteristics when in contact 
with an embryonic lung microenvironment. To explore 
this hypothesis, we analyzed two NSCLC cell lines: A549 
and H1299. These cell lines express OSKM, the hESC 
markers of pluripotency [30, 31], as well as high levels 
of NKX2-1 and lung surfactant proteins (SFTPs) [31, 
32]. The cell lines were cultured in pseudoglandular lung 
mesenchyme-conditioned medium and the expression 
levels of OSKM, NKX2-1 and lung SFTPs were analyzed. 
Changes in expression level were correlated with changes 
in cell morphology, growth and differentiation.

Methods
Isolation and characterization of human embryonic 
mesenchymal lung (hEML) cells
Human embryonic lungs were obtained from termina-
tions of pregnancy donated to the Body Donation Service 
of the Department of Human Anatomy and Embryology 
of the School of Medicine of the University of Barcelona 
for morphological and molecular studies. Lungs were 
dissected from embryos in the pseudoglandular stage of 
development (weeks E9, E10 and E11). The lungs were 
treated with dispase II (Sigma-Aldrich, St. Louis, MO, 
USA) and the lung mesenchyme was separated from the 
bronchial tree. Cell images were taken by IX53 inverted 
microscope using cellSense Entry 1.7 software (Olym-
pus, Center Valley, PA, USA). Mesenchymal cells were 
fixed in 4% paraformaldehyde (Electron Microscopy 
Sciences, Hatfield, PA, USA) in Dulbecco’s Phosphate 
Buffered Saline (DPBS 1x) (Invitrogen, Carlsbad, CA, 
USA) and immunostained using monoclonal mouse 
anti-vimentin clone V9 ready-to-use and monoclonal 
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mouse anti-human e-cadherin clone NCH-38 ready-to-
use (Dako Denmark A/S, Glostrup, Denmark) in order to 
confirm the mesenchymal characteristics of the cells.

Preparation of the human embryonic mesenchymal 
lung‑conditioned medium (hEML‑CM) 
and tumor‑conditioned medium (T‑CM)
Figure 1a depicts the methodology used in the prepara-
tion of the CM. The hEML cells were cultured for 10 days 
in Dulbecco’s Modified Eagle Medium (DMEM) supple-
mented with 10% Fetal Bovine Serum (FBS) (Invitrogen) 
and 1% Penicillin/Streptomycin (PS) (Sigma-Aldrich), 
and grown under the recommended conditions of 37 °C 
in 5% CO2 and 95% relative humidity. The resulting 
hEML-CM was used in further analyses.

The human lung adenocarcinoma cell lines A549 and 
H1299 (American Type Culture Collection, Manassas, 
VA, USA) were cultured for 10 days: A549 in DMEM and 
H1299 in Roswell Park Memorial Institute 1640 medium 
(RPMI 1640) (Invitrogen), both supplemented with 10% 

FBS and 1% PS and grown at 37 °C in 5% CO2 and 95% 
relative humidity. The resulting T-CM was used as con-
trol medium in further analyses.

Exosome depletion was performed on day 10 in both 
hEML-CM and T-CM, as previously described [33, 34], 
by sequential centrifugation at 4 °C (300G 5′, 2500G 20′, 
10,000G 30′) followed by ultracentrifugation 100,000G 
2h. The hEML-CM and T-CM, with and without 
exosomes, were used in further analyses.

Analysis of hEML‑CM and T‑CM
The hEML-CM and T-CM were analyzed with Human 
TGF-β1 Quantikine ELISA Kit (R&D Systems, Minne-
apolis, MN, USA) according to the manufacturer’s proto-
col for the analysis of TGF-β1 levels. Briefly, all reagents, 
standard dilutions and activated samples were prepared 
and 50 μL of assay diluent RD1-21 and 50 μL of con-
trol and activated samples were added to each well and 
incubated 2 h at room temperature (RT). Samples were 
then removed and washed three times. Next, 100 μL 

Fig. 1  Conditioned media. a Preparation of the human embryonic mesenchymal lung conditioned medium (hEML-CM) and the control 
tumor-conditioned medium (T-CM). b Phase-contrast images of culture containing mesenchymal lung cells at 9 weeks (E9) of embryonic 
development. c Positive vimentin staining of E9 mesenchymal lung cells. d TGF-β1 levels in hEML-CM and T-CM as measured in the cell culture 
supernatants by ELISA. Data represent the mean ± SEM from at least three separate experiments. *p < 0.05
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of TGF-β1 conjugate was added to each well and incu-
bated 2 h at RT, after which the reagent was removed and 
washed three times again. Then 100 μL of substrate solu-
tion was added to each well and incubated 30 min at RT 
protected from light; 100 μL of stop solution was added 
to each well. Finally, after 30 min, the optical density was 
determined using VersaMax Tunable Microplate Reader 
(Molecular Devices, San Jose, CA, USA) to 450 nm.

Transmission electron microscopy
Cells were fixed in 4% paraformaldehyde in DPBS 1x, 
post-fixed in 1% osmium tetroxide and 0.8% potassium 
ferrocyanide, dehydrated with acetone, and flat-embed-
ded in epoxy resin. Ultrathin sections for transmission 
electron microscopy were cut and stained with 2% ura-
nyl acetate for 10 min and with a lead-staining solution 
for 2 min. Images from stained ultrathin sections were 
acquired using a JEOL JEM-1010 transmission electron 
microscope coupled with a Gatan Orius SC1000 (model 
832) digital camera.

Neutralization of TGF‑β1
TGF-β1 levels in the medium were neutralized using 
3.75 μg/mL of TGF beta-1,2,3 Monoclonal Antibody 
(1D11) (Invitrogen). 5 × 104 cells were cultured in a 
12-well plate with or without the neutralizing antibody 
and the morphological study was performed at 48 h.

Scratch wound healing assay
Proliferation was evaluated by a scratch wound healing 
assay using culture-insert 2 well in μ-Dish 35 mm (Ibidi, 
Gräfelfing, Germany) according to the manufacturer’s 
protocol. Briefly, 70 μL of 3 × 105 cells/mL cell suspen-
sions was applied in each well and incubated 24 h under 
the recommended conditions. Differences between cells 
growing in hEML-CM and T-CM were assessed with 
images taken at 6, 24 and 48 h using IX53 inverted micro-
scope and analyzed using cellSense Entry 1.7 software.

Clonogenic assays (2D and 3D)
In colony formation assay (2D) one hundred cells were 
cultured for each condition in 6-well plates during 12 and 
15 days for A549 and H1299, respectively. At the end of 
the experiment colonies were stained with 0.5% crystal 
violet (Sigma-Aldrich) and cell colonies were counted 
under the stereoscopic microscope.

For Soft-agar assay (3D) Cell Transformation Assay 
Kit (Colorimetric) (ab235698, Abcam, Cambridge, MA, 
USA) was used following manufacturing recommenda-
tions. Briefly, 2 × 104 cells were cultured in soft-agar dur-
ing 8 days. At the end of the experiment cell number was 
quantified by spectrophotometry at 450 nm after addition 
of the WST Working Solution provided. Representative 

images were obtained under the microscope after addi-
tion of the Staining Solution provided in the kit.

In vivo xenograft study
A xenograft tumor model was generated to evaluate dif-
ferences in tumor formation and growth of control and 
conditioned A549 cells. 5-week-old male athymic nude 
mice (Rj:ATHYM-Foxn1nu/nu) were purchased (Jan-
vier), and housed in sterile cages under laminar airflow 
hoods in a local SPF experimental animal facility with a 
12 h light/dark cycle and constant temperature (to about 
25 °C) and relative humidity (to about 50%). All animals 
were allowed to have free access to normal mouse chow 
and water.

A549 T-CM cells resuspended in PBS and A549 hEML-
TM cells resuspended in hEML-CM were subcutane-
ously inoculated (1 × 106 cells/100 μl) into both flanks. 
Three biological replicates (with 2 technical replicates per 
sample) were used for each genotype. Tumor volume was 
measured by a caliper every 4 days, and their volumes 
were calculated using the following equation: tumor 
volume (mm3) = 0.5 × length × width2. Mice were anes-
thetized and intracardially perfused with 4%PFA 35 days 
after inoculation. Tumors were dissected and measured 
at the end of the study.

RNA extraction and gene expression analysis
Total RNA was isolated from cell lines using TRIzol 
Reagent (Life Technologies, Grand Island, NY, USA) 
according to the manufacturer’s protocol. The High 
Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Foster City, CA, USA) was used to obtain 
cDNA using 500 ng of total RNA. Relative expression 
was determined by real-time polymerase chain reaction 
(qRT-PCR) using the StepOne Real-Time PCR System 
(Applied Biosystems). Taqman Gene Expression Assays 
(Life Technologies) were used to quantify the expression 
of OCT-3/4 (Hs04260367_gH), SOX2 (Hs01053049_s1), 
KLF4 (Hs00358836_m1), c-MYC (Hs00153408_m1), 
NKX2-1 (Hs00968940_m1), SFTPA (Hs01652580_g1), 
SFTPB (Hs00167036_m1), SFTPC (Hs00951326_g1) and 
SFTPD (Hs01108490_m1), DNMT3A (Hs01027166_m1), 
DNMT3B (Hs00171876_m1), MYH1 (Hs00428500_m1), 
MYH2 (Hs00430042_m1), MYH4 (Hs00757977_m1), 
MYH7 (Hs00165276_m1), MYH16 (Hs01385213_m1). 
Relative quantification was calculated using 2-ΔΔCt. 
CDKN1β (Hs01597588_m1) was used as endogenous 
control.

Oil red O solution staining
In order to assess the presence or absence of lung SFTPs, 
the A549 and H1299 cells were stained with Oil Red O 
Solution (Sigma-Aldrich). On day 0, 5 × 104 cells were 
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seeded in 12-well plates. Cells were fixed with 4% para-
formaldehyde in DPBS 1x and stained with Oil Red O 
Solution after 48 h of culture in hEML-CM or T-CM. Cell 
images were taken by IX53 Inverted Microscope using 
cellSense Entry 1.7 software.

Immunofluorescence
Cells seeded on coverslips were fixed in 4% paraform-
aldehyde in DPBS at RT followed by permeabilization 
with 0.5% of Triton X-100 (Santa Cruz Biotechnology, 
Dallas, TX, USA) in DPBS 1x (PBTx) at RT for 5 min. 
Fixed cells were then blocked with 1% Bovine Serum 
Albumin (BSA) (Sigma-Aldrich) and 5% Normal Don-
key Serum (NDS) (Sigma-Aldrich) in PBTx for 30 min at 
RT in darkness and incubated with primary antibodies 
diluted in blocking solution overnight at 4 °C in darkness. 
After primary antibody washing, secondary antibodies 
diluted in blocking solution were incubated for an hour 
at RT in darkness. Cells were stained and mounted on 
microscope slides using Fluoroshield with DAPI (Sigma-
Aldrich). Immunostaining was performed using the fol-
lowing primary antibodies: rabbit anti-vimentin (1:500; 
Proteintech, Manchester, UK), mouse anti-alpha smooth 
muscle actin (α-SMA) (1:1000; Abcam) and mouse anti-
myosin 4 (1:500; Invitrogen). Secondary antibodies were 
conjugated to Alexa Fluor 488 or Alexa Fluor 594 (Ther-
moFisher Scientific, Waltham, MA, USA). Immunofluo-
rescence analysis was performed using Olympus BX51 
Fluorescence Microscope (Olympus) and cell images 
were acquired by DPController and DPManager software 
(Olympus).

Statistical analyses
Paired t-tests were used for comparisons between cells 
cultured in hEML-CM and those cultured in T-CM. 
ANOVA test for repetitive measures was used for com-
parisons between A549 T-CM and A549 hEML-TM 
tumor xenografts. All statistical analyses were performed 
using GraphPad Prism 8.

Transcriptomic analysis
Affymetrix Clariom S Human arrays have been per-
formed in the IDIBAPS Functional genomics core facil-
ity using three samples per group of each conditioned 
experiment. Raw .cel files were provided which were 
used for further analysis. Moreover, public available data 
from GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
and ArrayExpress (https://​www.​ebi.​ac.​uk/​array​expre​
ss/) were used for the following samples: HBEC6-KT (a 
normal immortalized cell line derived from lung bron-
quial epithelial cells) (GSE150541); primary human pul-
monary artery endothelial cells (HPAECs) (GSE125508); 
Myoblast (GSE121023); and human lung fibroblasts 

(HLF) (E-MTAB-8488); A549 (GSE181088) and H1299 
(GSE99993). Raw .cel files were downloaded for further 
analysis.

Bioiformatic analysis was peformed using R version 
4.1.1 and Bioconductor 4.1.0. Package oligo was used 
for raw data processing and normalization with rma 
method. removeBatchEffect function from limma pack-
age was used to remove batch effects. Multidimensional 
scaling plot was performed using plotMDS function from 
limma. Distance matrix computation was done using dist 
function from stats package and graphically represented 
using pheatmap package. Differential expression analysis 
was performed using limma package and considering all 
genes with an adjusted p-value < 0.001. Venn diagrams 
were ploted using VennDiagram package. Hierarchical 
cluster analysis (Euclidean distance) of top 100 differen-
tially expressed genes (DEG) were ploted using pheat-
map package. Enrichment analysis for Gene Ontology 
(GO) terms was performed using topGO package from 
Bioconductor.

Results
E‑cadherin and vimentin in embryonic cells 
and in hEML‑CM
We analyzed the presence of E-cadherin and vimentin in 
human embryos in the pseudoglandular stage of develop-
ment prior to obtaining embryonic mesenchymal cells. 
Confocal microscopy revealed that the mesodermal cells 
surrounding the endodermal cells were vimentin-posi-
tive while the endodermal cells themselves were E-cad-
herin-positive (Fig. S1). Once the mesenchymal cells had 
been separated from the epithelial cells, we analyzed the 
expression of vimentin in the mesenchymal cells and the 
presence of TGF-β1 in the culture. The mesenchymal 
cells displayed the morphological characteristics of mes-
odermal cells (Fig. 1b), with a high expression of vimen-
tin (Fig. 1c). In addition, TGF-β1 expression was higher 
in the hEML-CM than in the T-CM (p = 0.013) (Fig. 1d).

Morphological changes in NSCLC cells cultured 
in hEML‑CM
Morphological changes were observed in the A549 
and H1299 cells after 24 h in the hEML-CM but not in 
the T-CM (Fig.  2). No significant changes in results 
were observed between the hEML-CM with and with-
out exosomes or between the T-CM with and with-
out exosomes, indicating that the differences in results 
between the hEML-CM and the T-CM were not due to 
the presence or absence of exosomes.

While the A549 cells cultured in T-CM showed no 
morphological changes (Fig.  2a), those cultured in 
hEML-CM lost their intercellular junctions and acquired 
spindle-cell or stellate-cell morphology (Fig.  2b). The 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
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A549 cells cultured in T-CM were round and displayed 
multilamellar bodies (MLBs) in their cytoplasm (Fig. 2c), 
while those cultured in hEML-CM did not have MLBs 
and displayed microfilaments similar to track-like 
fibronexus structures (Fig. 2d).

The H1299 cells cultured in T-CM grew in a single layer 
and displayed no morphological changes (Fig. 2e), while 
those cultured in hEML-CM lost their round morphol-
ogy and formed long interconnected extensions (Fig. 2f ). 
Those cultured in T-CM showed abundant lipid struc-
tures (Fig. 2g), which were not observed in those cultured 
in hEML-CM (Fig. 2h).

Finally, we performed a TGF-β1 neutralizing experi-
ment and evaluated the morphology changes in both 
cell lines (Fig.  S2). After neutralization of TGF-β1 in 
the hEML-CM no relevant morphological changes were 
observed in any of the cell lines.

Inhibited cell proliferation and migration in NSCLC cells 
cultured in hEML‑CM
At 48 h, the A549 cells cultured in hEML-CM showed a 
slightly decreased proliferation compared to those cul-
tured in T-CM. This difference in cell proliferation was 
significant at 72 h (p = 0.04) and 96 h (p < 0.001) (Fig. 3a). 

At 48 h, the H1299 cells cultured in hEML-CM showed 
no difference in proliferation compared to those cultured 
in T-CM. However, at 72 h, there was a slight difference 
in proliferation, which was significant at 96 h (p = 0.001) 
(Fig. 3b).

The scratch wound healing assay showed that the 
A549 cells cultured in hEML-CM maintained their 
mesenchymal morphology and were not confluent at 
48 h (Fig.  3c and d). Mesenchymal cells migrate but 
proliferate very slowly, and these A549 cells migrated 
towards the center of the scratch wound as in the 
healing process (Fig.  S3). In contrast, the A549 cells 
cultured in T-CM were completely confluent at 48 h 
(Fig.  3c). At 24 h, the H1299 cells cultured in hEML-
CM were not confluent but those cultured in T-CM 
were (p < 0.001). At 48 h, the H1299 cells were conflu-
ent in both in hEML-CM and T-CM, indicating that 
the H1299 cell line has a higher cell proliferation rate 
than the A549 cell line (Fig. 3c and e).

Inhibited clonogenic capacity in NSCLC cells cultured 
in hEML‑CM
Clonogenic capacity in 2D and 3D was evaluated 
using colony formation assay and soft agar assay 

Fig. 2  Comparison of morphological changes in A549 and H1299 cells cultured in hEML-CM and T-CM. a Morphology of A549 cultured in T-CM. 
b Morphology of A549 cultured in hEML-CM. Images were obtained with a phase-contrast microscope. c Ultrastructure of A549 cultured in 
T-CM, the cytoplasm contains densely stained lamellar bodies (arrows) inset shows detail of lamellar bodies. d Ultrastructure of A549 cultured in 
hEML-CM, shows spindled cell with cytoplasmatic filaments (arrows) and dilated rough endoplasmic reticulum (dotted arrow) inset shows detail of 
like fibronexus structure (asterisk). e Morphology of H1299 cultured in T-CM. f Morphology of H1299 cultured in hEML-CM. Images were obtained 
with a phase-contrast microscope. g Ultrastructure of H1299 cultured in T-CM, showing cytoplasmatic electron-dense lipid structures (arrows). h 
Ultrastructure of H1299 cultured in hEML-CM
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respectively. Colony formation assay at 12 days, the 
A549 cells cultured in hEML-CM showed a mean 
decrease of 18.5% in the number of colonies com-
pared to those cultured in T-CM (p = 0.002; Fig. 3f ). 
At 15 days, the H1299 cells cultured in hEML-CM 
showed a mean decrease of 83.7% in the number 
of colonies compared to those cultured in T-CM 
(p < 0.001; Fig. 3f ).

In Soft agar-assay at 8 days, the cells cultured in 
hEML-CM showed a mean decrease of 40.9% for 
A549 (p < 0.001) and 20% for H1299 (p < 0.001) in the 
number of cells compared to those cultured in T-CM 
(Fig. 3g).

Inhibited in vivo tumor growth of NSCLC cells cultured 
in hEML‑CM
To evaluate the capacity of conditioned cell to growth 
in  vivo, we injected control and conditioned A549 
cells subcutaneously in the flank of athymic nude mice 
and measure the volume each 4 days until day 35. We 
observed that conditioned medium exerted a significant 
inhibitory effect on tumor volume in vivo compared with 
the control group that can be observed from day 16 to 35 
(p  < 0.05 for all measured points; Fig.  3i). Tumors were 
resected at day 35 from tumor-bearing mice, and a rep-
resentative image of the flank and of the resected tumor 
in control and conditioned group can be observed in 

Fig. 3  Functional in vitro and in vivo analysis of lung cancer cells cultured in T-CM and in hEML-CM. a, b Proliferation of A549 and H1299 cells after 
96 h in T-CM and hEML-CM. Error bars represent the standard deviation of three replicates. c Wound healing assay in the A549 and H1299 cell lines. 
Cells were grown to confluence, wounded and grown in T-CM and hEML-CM, and photographed at 0, 6, 24 and 48 h. d, e Calculated wound healing 
areas in A549 and H1299 cells cultured in T-CM and hEML-CM. Data represent the mean ± SEM from at least three separate experiments at 0 h, 6 h, 
24 h and 48 h. f Colony formation assay (2D) in the A549 and H1299 cell line. A representative image is shown in the left and the quantification of 
the colony number for each condition is shown in the right. Data represent the mean ± SEM from six separate experiments. g Soft-agar assay (3D) 
in the A549 and H1299 cell lines. A representative image is shown in the left and the quantification of cell number for each condition is shown in 
the right. h Representative image of 5-week-old male athymic nude mice (Rj:ATHYM-Foxn1nu/nu) with control or conditioned A549 cells injected 
in the flank at day 35 and resected tumors from each animal. i Graph showing the mean tumor volume of 3 biological replicates measured by a 
caliper every 4 days in both conditions. j Mean tumor weights in each condition at day 35. All data represent the mean ± SEM. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001
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Fig. 3h. The weight measure of resected tumors revealed 
to be significantly lower in the hEML-CM treated group 
compared with the control group (p = 0.0033; Fig. 3j).

Downregulation of OSKM, NKX2‑1 and SFTPs, 
and upregulation of DNMT3A/3B in NSCLC cells cultured 
in hEML‑CM
In the A549 cells cultured in hEML-CM, we observed 
a significant downregulation of OCT-3/4 (p  = 0.02), 
KLF4 (p = 0.003) and c-MYC (p = 0.014), compared to 
the cells cultured in T-CM, while the downregulation of 
SOX2 was not significant (Fig. 4a). In the H1299 cells cul-
tured in hEML-CM, only SOX2 (p = 0.045) and c-MYC 
(p = 0.009) were significantly downregulated compared 
to the cells cultured in T-CM, while the downregulation 
of OCT-3/4 and KLF4 was not significant (Fig. 4b).

In order to explore the potential relationship between 
NKX2-1 levels and the synthesis of lung SFTPs, we ana-
lyzed the mRNA expression levels of NKX2-1, SFTPA, 
SFTPB, SFTPC and SFTPD. NKX2-1 was downregu-
lated in both A549 (p  = 0.029) and H1299 (p  = 0.041) 

cells cultured in hEML-CM but upregulated in those 
cultured in T-CM (Fig. 4c and d). SFTPB was downregu-
lated in A549 (p = 0.022) cells cultured in hEML-CM and 
upregulated in those cultured in T-CM (Fig. 4c). SFTPD 
was downregulated in H1299 cells cultured in hEML-CM 
compared to those cultured in T-CM but the difference 
was not significant (Fig. 4d). SFTPA and SFTPC were not 
expressed in either of the cell lines.

We then analyzed the expression levels of DNA meth-
yltransferase 3A (DNMT3A) and DNA methyltransferase 
3B (DNMT3B) to explore changes in genes controlling 
methylation. Both DNMT3A and DNMT3B were upreg-
ulated in the A549 cells (p = 0.036 and p = 0.042, respec-
tively) and in the H1299 cells (p = 0.003 and p = 0.007, 
respectively) cultured in hEML-CM compared to those 
cultured in T-CM (Fig. 4e and f ).

In order to detect the surfactant lipid, the A549 and 
H1299 cells were stained with Oil Red O Solution. Both 
cell lines cultured in T-CM had a high degree of cytoplas-
mic staining, while those cultured in hEML-CM showed 
no staining (Fig. 4g and h).

Fig. 4  Expression of OSKM, NKX2-1, SFTPs and DNMT3A/B in A549 and H1299 cells cultured in T-CM and hEML-CM. a mRNA expression levels of 
OSKM transcription factors in A549 cells cultured in T-CM or hEML-CM. Differences were observed between the cultures for OCT-3/4, KLF4 and 
c-MYC but not for SOX2. b mRNA expression levels of OSKM transcription factors in H1299 cells cultured in T-CM or hEML-CM. Differences were 
observed between the cultures for SOX2 and c-MYC. c A549, mRNA expression levels of NKX2-1 and SFTPB. d H1299; mRNA expression levels of 
NKX2-1 and SFTPD. e A549, mRNA expression levels of DNMT3A and DNMT3B. f H1299, mRNA expression levels of DNMT3A and DNMT3B. Data 
represent the mean ± SEM from three separate experiments. g, h Phase contrast images of Oil Red O Solution staining of lipid droplets in A549 and 
H1299 cells lines, respectively, showing positive staining in T-CM and negative staining in hEML-CM. *p < 0.05; **p < 0.01
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Expression of myofibroblast markers and myosin 4 (MYH4) 
in NSCLC cells cultured in hEML‑CM
The morphology of the A549 and H1299 cells cultured 
in hEML-CM was similar to that of myofibroblasts. In 
order to assess the presence or absence of myofibro-
blast markers in these cells, we analyzed vimentin and 
α-SMA. The A549 and H1299 cells cultured in hEML-
CM showed a higher degree of staining of both mark-
ers than those cultured in T-CM (Fig.  5). Vimentin in 
A549 and H1299 cells, showing positive staining in cells 
cultured in hEML-CM (Fig.  5b and d), but not in cells 
cultured in T-CM (Fig.  5a and c). α-SMA in A549 and 
H1299 cells, showing positive staining in cells cultured 
in hEML-CM (Fig. 5f and h), but not in cells cultured in 
T-CM (Fig. 5e and g).

Since myofibroblasts also express myosin heavy chain 
(MHC) isoforms, we then analyzed the mRNA expression 
of MYH1, MYH2, MYH3, MYH4, MYH7 and MYH16 in 
these cells. MYH4 was upregulated in the A549 (p = 0.033) 
and the H1299 (p  = 0.032) cells cultured in hEML-CM 
compared to those cultured in T-CM (Fig.  6a). MYH1, 
MYH2, MYH3, MYH7 and MYH16 were not expressed in 
either of the cell lines. The A549 cells cultured in hEML-
CM showed highly positive staining for MYH4, while the 
staining in H1299 cells cultured in hEML-CM was less 
intense. Neither the A549 nor the H1299 cells cultured in 
T-CM showed staining for MYH4 (Fig. 6b).

Transcriptomic analysis showed that hEML‑CM cells 
approach to myoblasts and lung fibroblasts
In Fig.  6c are showed the results of the Multidimen-
sional cluster analysis performed using the transcrip-
tomic data. Not including hEML-CM cells, we can 
observe five basic groups from left to right in the 
graph (Dimension 1): mesenchymal group (HLF and 
myoblasts); endothelial group (HPAEC); normal epi-
thelial group (HBEC6-KT); A549; and H1299. The 
closest group to both cancer cell lines was the normal 
epithelial group. However, the hEML-CM cells (A549 
and H1299) moved away from their own control group 
and from normal epithelial cells, and approaches to 
the endothelial and mesenchymal groups. The dis-
tance matrix analysis revealed that the closest group 
to hEML-CM cell was the mesenchymal group (Fig. 6d 
and Fig. S4).

Identification of DEGs between control and hEML‑CM 
treated cells
Differential expression analysis showed that 1631 and 
866 genes were differentially expressed (p  < 0.001; 
Table S1) in A549 and H1299 cells after treatment with 
hEML-CM, respectively (Fig.  7a). The top significant 
100 DEG for each cell line are showed in Fig. 7b and c. 
The enrichment analysis for GO terms (Fig.  7d, e and 
Table  S2) showed that the most significantly enriched 

Fig. 5  Immunofluorescence detection of vimentin and α-SMA in A549 and H1299 cells cultured in T-CM and hEML-CM. a-d Vimentin in A549 and 
H1299 cells, a, c showing negative staining in cells cultured in T-CM and b, d showing positive staining in cells cultured in hEML-CM. e-h α-SMA 
in A549 and H1299 cells, e, g showing negative staining in cells cultured in T-CM and f, h showing positive staining in cells cultured in hEML-CM. 
Nuclei were counterstained with DAPI
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GO terms for A549 were related to cell cycle regula-
tion (GO terms: GO:0045786, GO:0051726) and for 
H1299 with proliferation regulation (GO:0008284, 
GO:0042127).

Discussion
In his 1983 Rous-Whipple Award Lecture [35], the 
pathologist GB Pierce proposed for the first time that 
malignant tumors originated in the stem cells of healthy 

tissue. He further suggested that the same mechanisms 
that control tissue development during embryogenesis 
also controlled growth and differentiation of tumor stem 
cells. Following this line of research, in the present study, 
we have cultured two NSCLC cell lines (A549 and H1299) 
in hEML-CM and T-CM and explored whether hEML-
CM could alter the malignant phenotype of the tumor 
cells. We observed that both the A549 and H1299 cells 
cultured in hEML-CM lost their malignant phenotype 

Fig. 6  Evaluation of myofibroblastic differentiation of hEML-CM cells. a Upregulation of MYH4 mRNA in A549 and H1299 cells cultured in hEML-CM 
compared to those cultured in T-CM. Data represent the mean ± SEM from three separate experiments. b Immunofluorescence detection of MYH4 
in A549 and H1299 cells cultured in T-CM and hEML-CM. In hEML-CM, the A549 cells showed highly positive staining, while the staining in H1299 
cells was less intense. No staining was detected in cells cultured in T-CM. Nuclei were counterstained with DAPI. c Multidimensional Scaling plot 
of distances between gene expression profiles for A549_hEML-CM, A549_Ctrl, H1299_hEML-CM, H1299_Ctrl, HBEC6-KT, HPAEC, Myoblast and HLF 
samples. Three samples of each group have been included in the analysis. d Simplified distance matrix heat map showing the mean of the three 
replicates for each group. *p < 0.05

Fig. 7  Transcriptomic analysis to evaluate the effect of hEML-CM. a Venn diagram showing the number of common differential expressed 
genes between control and hEML-CM treated cells in both cell lines. b, c Heat map of top 100 differentially expressed genes in A549 and H1299, 
respectively. d, e Enrichment analysis for Gene Ontology (GO) terms using the top 100 differentially expressed genes in A549 and H1299 cell lines. 
The numbers indicated in the bars indicate the number of genes included in each GO term

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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and acquired morphological and molecular character-
istics similar to those of mesenchymal cells. Moreover, 
up to 1182 genes in A549 and 866 genes in H1299 were 
observed differentially expressed after treatment with 
hEML-CM. Previous studies had reported that cultures 
with or without fetal serum had a substantial differential 
impact on the phenotypes of A549 cells and of murine 
embryonic stem cells [36], where those cultured in a 
medium without fetal serum acquired characteristics of 
alveolar epithelial type II (ATII) cells, including the pres-
ence of MLBs in the cytoplasm [37–40]. In the present 
study, the A549 and H1299 cells cultured in hEML-CM 
lost their epithelial morphology, did not contain MLBs in 
the cytoplasm, and acquired characteristics of mesoder-
mal cells, including the presence of vimentin and α-SMA, 
which are hallmarks of myofibroblasts [41, 42]. In con-
trast, the A549 and H1299 cells cultured in T-CM main-
tained their epithelial morphology. Moreover, since these 
morphological changes occurred regardless of whether 
the hEML-CM contained exosomes, we can speculate 
that soluble factors - not exosomes - are responsible for 
the changes.

In the pseudoglandular stage of development of the 
embryonic lung, the release of TGF-β1 by mesenchymal 
cells is essential to lung branching and alveolarization 
[43]. In our study, the hEML-CM contained high con-
centrations of TGF-β1, which could explain why the cells 
acquired the mesodermal characteristics and increased 
vimentin and α-SMA expression. In this line, our TGF- 
β1 neutralizing experiment (Fig.  S2) showing that after 
inhibition of TGF-β1 in the hEML-CM no morphological 
changes were observed, reinforced the potential role of 
TGF-β1 in the acquisition of the mesodermal phenotype.

Previous studies showed that TGF-β1 induces the 
expression of both vimentin and α-SMA in myofibro-
blasts [41, 42]. During embryonic development, TGF-
β1 expression is necessary for epithelial-mesenchymal 
transition (EMT), which is crucial to normal embryonic 
development [44]. In adult tissues, however, abnormal 
TGF-β1-induced EMT leads to tumor development and 
progression [43, 45]. In  vitro studies have shown that 
when TGF-β1 is added to a culture medium, subpopula-
tions of A549 cells begin EMT and cells with a malignant 
phenotype (stemness) undergo morphological changes, 
increase their growth, and overexpress pluripotent mark-
ers such as OCT-3/4 [38].

In our study, the A549 and H1299 cells cultured in 
hEML-CM decreased their growth and clonogenic 
capacity. In this line the results of the transcriptomic 
profile showed an enrichment of GO terms related 
with cell cycle and proliferation regulation. Moreover, 
the treated cells also underexpressed OCT-3/4, SOX2, 
KLF4 and c-MYC, leading to loss of pluripotency. 

These findings lead us to suggest that in addition to 
TGF-β1, other factors in hEML-CM must be involved 
in controlling the phenotype of the different clones pre-
sent in the A549 and H1299 cell lines. In addition to 
the downregulation of the OSKM genes, we observed 
an upregulation of DNMT3A and DNMT3B in the cells 
cultured in hEML-CM, suggesting that the embryonic 
medium may contain an epigenetic control mechanism 
whereby DNMT3A/3B upregulation could silence the 
genes responsible for pluripotency and activate cell dif-
ferentiation. This hypothesis is borne out by previous 
studies demonstrating that DNMT3A/3B cooperate in 
OCT-3/4 and NANOG promotor methylation during 
the differentiation of embryonic stem cells and carci-
noma cells [46].

The transcription factor NKX2-1, which is essential 
for the correct development of the embryonic lung, is 
located in the terminal respiratory units of the epithe-
lial cells [26], where it activates several genes involved in 
lung physiology, including the lung surfactants SFTPA, 
SFTPB, SFTPC and SFTPD [47]. NKX2-1 is expressed 
in 70% of lung adenocarcinomas and can act either as an 
oncogene or tumor suppressor [27, 48]. The A549 cells 
have characteristics similar to those of ATII cells, includ-
ing the NKX2-1 mediated expression of lung surfactants. 
However, the presence of NKX2-1 in A549 cells is still 
not clear. Some studies have not detected NKX2-1 in 
A549 cells [49, 50], while others have detected the TTF-1 
protein by immunohistochemistry [51] and high NKX2-1 
mRNA expression by qRT-PCR [39, 52]. These contra-
dictory findings may be due to the presence of various 
clones in the A549 cell line, each having different degrees 
of differentiation and different responses to external 
stimuli [38, 39]. Along these lines, we have observed a 
high level of NKX2-1 expression in the A549 and H1299 
cells cultured in T-CM, while NKX2-1 expression was 
downregulated in the majority of cells cultured in hEML-
CM. In addition, the assay with Oil Red O Solution 
showed lung SFTP staining in the cytoplasm of the A549 
and H1299 cells that did not undergo morphological 
changes. In normal and tumor lung tissue, high NKX2-1 
levels activate SFTP synthesis [47], but high TGF-β1 lev-
els inhibit NKX2-1, leading to low SFTP expression [53]. 
In our study, low levels of NKX2-1 in the cells cultured 
in hEML-CM were associated with corresponding low 
staining of SFTPB in the A549 cells and of SFTPD in the 
H1299 cells. We can speculate that the presence of TGF-
β1 in the hEML-CM is a determining factor in the inhi-
bition of SFTPB and SFTPD and in the morphological 
transformation of the cells. Previous studies in this line 
have shown that TGF-β1 inhibits the synthesis of SFTPs 
through the interaction of SMAD3 with NKX2-1 [53, 54] 
and that TGF-β1 activates genes that are involved in the 
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differentiation of lung fibroblasts into myofibroblasts [43, 
55, 56].

In addition to vimentin and α-SMA, myofibroblasts 
express several MHC proteins [41, 57, 58]. For this 
reason, having observed that the A549 and H1299 
cells cultured in hEML-CM had positive staining for 
vimentin and α-SMA, we then analyzed MHC iso-
form expression by immunofluorescence and qRT-
PCR and found that the cells expressed only MYH4, 
which is expressed in humans after birth but not in 
embryos. However, we may well have detected MYH8 
rather than MYH4, since 90% of the genetic sequence 
of MYH4 is the same as that of MYH8, which is only 
expressed in embryonic muscles [58, 59]. In line with 
these results, we observed that the transcriptomic 
profile of the hEML-CM cells approaches to myo-
blasts and to lung fibroblasts. All these results seem 
to indicate that the lung adenocarcinoma A549 and 
H1299 cells cultured in an embryonic lung medium 
begin to differentiate into myofibroblasts. The func-
tion of myofibroblasts depends on the microenviron-
mental stimuli they receive. In the adult lung, they 

are associated with several pathologies [60] and have 
been proposed as markers of good [61] or poor [62] 
prognosis in lung cancer. Along these lines, a recent 
study in human pancreatic ductal adenocarcinoma has 
shown that expression of α-SMA in myofibroblasts is 
associated with good prognosis, while low expression 
of α-SMA is linked to worse prognosis [63]. Addition-
ally, in the pseudoglandular and canalicular stages of 
embryonic lung development, myofibroblasts express-
ing α-SMA [64, 65] and various MHC isoforms are 
essential for normal development of the alveolar sys-
tem [66].

The current therapies in lung cancer and solid 
tumors in general are mostly focused in inducing 
apoptosis of highly proliferating tumor cells with 
the associated handicaps of acquisition of treat-
ment resistance and normal cell-related toxicity. 
The present results could lead to think new strate-
gies in terms of lung cancer treatment based on the 
idea of reducing self-replication of lung cancer cells 
by differentiating them using embryonic factors 
secreted during lung development. The paradigm of 

Fig. 8  a Schema summarizing the main findings of the work and b String analysis (https://​string-​db.​org) showing the relation between the 
analyzed genes. Color nodes are based on the results of the k-means clustering analysis. The arrows indicate the expression level in the hEML-CM 
cells

https://string-db.org
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differentiation therapies is the use of retinoic acid in 
promyelocytic leukemia [67], which is an important 
gene during embryonic development. Although, dif-
ferentiation therapies have been also attempted in 
other tumors with no relevant clinical results [68], 
here we are using a different analytical approach: the 
analysis of embryonic factors from the same organ to 
identify new molecules with potential treatment use. 
We have observed that transdifferentiating lung can-
cer cell lines using embryonic media from embryonic 
mesenchymal lung cells, significantly reduced their 
malignant capacities both in  vitro and in  vivo (sum-
marized in Fig.  8). Our data serves as a foundation 
for future studies that will include the identification 
of the whole set of molecules responsible for the effi-
ciency of this potential therapy and the evaluation of 
the potential clinical use.

Conclusions
In summary, lung adenocarcinoma cells cultured in 
an embryonic lung medium lose their epithelial mor-
phology, reduce the expression of the adenocarcinoma 
markers NKX2-1 and SFTPs, decrease proliferation, 
downregulate the expression of the OSKM transcription 
factors, upregulate the expression of DNMT3A/3B and 
develop mesodermal features that are characteristic of 
myofibroblasts. Taken together, these findings lead us 
to conclude that stimuli from the embryonic lung can 
modulate the malignant phenotype of lung cancer cells. 
Further studies are warranted to identify the specific 
embryonic stimuli influencing this process and to deter-
mine if there is an embryonic organotropic mechanism 
that controls tumorigenesis and growth. These find-
ings could lead to new strategies for early detection and 
treatment of lung cancer tumors.
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