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Abstract: Non-ischemic dilated cardiomyopathy (DCM) is a disease characterized by left ventricular
dilation and systolic dysfunction. Patients with DCM are at higher risk for ventricular arrhythmias
and sudden cardiac death (SCD). According to current international guidelines, left ventricular ejec-
tion fraction (LVEF) ≤ 35% represents the main indication for prophylactic implantable cardioverter
defibrillator (ICD) implantation in patients with DCM. However, LVEF lacks sensitivity and speci-
ficity as a risk marker for SCD. It has been seen that the majority of patients with DCM do not actually
benefit from the ICD implantation and, on the contrary, that many patients at risk of SCD are not
identified as they have preserved or mildly depressed LVEF. Therefore, the use of LVEF as unique
decision parameter does not maximize the benefit of ICD therapy. Multiple risk factors used in
combination could likely predict SCD risk better than any single risk parameter. Several predictors
have been proposed including genetic variants, electric indexes, and volumetric parameters of LV.
Cardiac magnetic resonance (CMR) can improve risk stratification thanks to tissue characterization
sequences such as LGE sequence, parametric mapping, and feature tracking. This review evaluates
the role of CMR as a risk stratification tool in DCM patients referred for ICD.

Keywords: dilated cardiomyopathy; sudden cardiac death; primary prevention; implantable cardioverter
defibrillator; cardiac magnetic resonance

1. Introduction

The indications for primary prevention implantable cardioverter defibrillator (ICD)
among patients with non-ischemic dilated cardiomyopathy (DCM) are a matter of con-

J. Clin. Med. 2023, 12, 7752. https://doi.org/10.3390/jcm12247752 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm12247752
https://doi.org/10.3390/jcm12247752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-5842-7440
https://orcid.org/0000-0002-3329-8259
https://orcid.org/0000-0002-8261-4529
https://orcid.org/0000-0003-0309-6231
https://orcid.org/0000-0002-2327-7585
https://orcid.org/0000-0001-9693-9837
https://orcid.org/0000-0002-8746-729X
https://orcid.org/0000-0002-9452-4037
https://orcid.org/0000-0001-8322-8112
https://orcid.org/0000-0001-7133-4401
https://doi.org/10.3390/jcm12247752
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm12247752?type=check_update&version=1


J. Clin. Med. 2023, 12, 7752 2 of 18

troversy in light of the negative results of all randomized controlled trials [1–3]. There
is a wide consensus concerning the lack of appropriate risk-stratification for ventricular
arrhythmias (VA) and sudden cardiac death (SCD) as the main reason for the failure of the
aforementioned trials.

In recent years, the improvement of risk stratification for VA and SCD has been the
focus of intense research [4–6]. Cardiac magnetic resonance (CMR) will likely play a key role
in the reassessment of risk-stratification in DCM, since late gadolinium enhancement (LGE)
has consistently demonstrated a strong and independent association with VA and SCD in
DCM [7–11]. In addition to LGE, other CMR techniques such as T1 mapping, extracellular
volume fraction (ECV) quantification, left ventricular (LV) strain, or LV entropy may
be useful to further characterize the arrhythmic risk in DCM. Finally, the application of
artificial intelligence to CMR could enhance its pivotal role in the risk-stratification of
patients with DCM.

2. Sudden Cardiac Death in Non-Ischaemic Dilated Cardiomyopathy

DCM is currently defined by the presence of LV or biventricular dilatation and systolic
dysfunction in the absence of abnormal loading conditions (hypertension, valve disease)
or coronary artery disease (CAD) sufficient to cause global systolic impairment [12–15].
The prevalence of DCM is estimated to be 1:2500 in the United States and around 30–40%
of heart failure patients have a non-ischemic etiology [16]. DCM can be due to multiple
etiologies, including genetic variants (30% of cases), drugs, toxics, hormonal abnormalities,
and both infectious and non-infectious myocarditis [13].

It is estimated that SCD represents one third of cardiac deaths in DCM, however
the risk of SCD is not uniform across the different etiologies of DCM [16]. In cases of
DCM associated with pathogenic or likely pathogenic genetic variants in specific genes,
such as lamin A/C (LMNA), filamin C (FLNC), transmembrane protein 43 (TMEM 43),
phospholamban (PLN), desmoplakin (DSP), and RNA binding motif protein 20 (RBM20),
the arrhythmic risk is higher [13,17–21].

It is also possible that risk factors for VA and SCD vary according to the etiology
of DCM: in patients with LMNA, for example, non-sustained ventricular tachycardia
(VT), male sex, left ventricular ejection fraction (LVEF) < 45%, non-missense variants,
and atrioventricular (AV) block were associated with the arrhythmic risk and a specific
risk calculator for LMNA variants carriers has been developed [22–24]. Similarly, in 2021
Verstraelen et al. proposed a new mutation-specific prediction model for individual VA
risk in PLN p.Arg14del mutation [21].

3. The Controversy of Primary Prevention ICD in DCM

Although ICDs are effective in the prevention of SCD, randomized trials have shown
a significant survival benefit with primary prevention ICD in DCM (Table 1). Current
recommendations for primary prevention ICD indications are based on the results of a
meta-analysis, which found a significant reduction in mortality with primary prevention
ICD in DCM by combining the results of all randomized trials [25]. It should be noted that
all randomized trials of primary prevention ICD in DCM used LVEF ≤ 35% as the main
inclusion criterion. However, if used alone, LVEF is neither specific nor sensitive for SCD.
On the one hand, as shown, for example, in the Maastricht registry, severe LV dysfunction
is not present in the majority of patients who die from SCD [26]. On the other hand,
only a minority of patients with DCM implanted with a primary prevention ICD due to
severe LV dysfunction will actually receive appropriate ICD therapies. For example, in the
DANISH trial, during a median follow-up of 68 months, only 11.5% of patients randomized
to ICD received an appropriate shock to treat fast ventricular tachycardia or ventricular
fibrillation [3]. Therefore, a major reason for the failure of the aforementioned trials has
been the inability to select patients at high risk for SCD. Another factor that influences the
potential benefit of primary prevention ICD is the competing risk of non-sudden death;
for example, the DANISH trial showed a significant reduction in mortality with ICD only
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among those ≤70 yo, clearly because those >70 yo have a greater risk of competing lethal
events [27].

Table 1. Clinical Trials on ICD use in primary prevention.

SCD-HeFT DEFINITE DANISH AMIOVIRT CAT

Year 2005 2004 2016 2003 2002

Design ICD versus amiodarone
versus OMT ICD versus OMT ICD versus OMT ICD versus

amiodarone
ICD versus
OMT

Inclusion criteria LVEF < 35%
NYHA II–III

LVEF < 36%
NYHA I–III
NSVT or PVCs

LVEF < 35%
NYHA II–III (IV
if CRT)
NT-proBNP >
200 pg/mL

LVEF ≤ 35%
NYHA I–III NSVT

LVEF < 30%
NYHA II–III

% DCM 47 100 100 100 100

Mean EF% 25 ± 5 21 ± 14 25 23 ± 9 24 ± 7

All-cause
mortality (only
in DCM group)

ICD 21.4%; OMT 27.9%
(5 years) HR 0.73; 95%
CI 0.50 to 1.07; p = 0.06

ICD 12.2%; OMT
17.4% HR 0.65;
95%CI 0.40 to 1.06;
p = 0.08

ICD 21.6%; OMT
23.4% HR 0.87;
95% CI 0.68 to 1.12;
p = 0.28

Terminated early Terminated
early

SCD Not applicable

ICD 1.3%; OMT
6.1% HR 0.20;
95%CI 0.06 to 0.71;
p = 0.006

ICD 4.3%; OMT
8.2% HR 0.50; 95%
CI 0.31 to 0.82;
p = 0.005

Not applicable

DCM: dilated cardiomyopathy. SCD: sudden cardiac death. ICD: implantable cardioverter defibrillator. OMT:
optimal medical therapy. LVEF: left ventricular ejection fraction. NYHA: New York Heart Association. PVC:
premature ventricular contraction. CRT: cardiac resynchronization therapy. NT-proBNP: N-terminal pro-brain
natriuretic peptide. NSVT: non-sustained ventricular tachycardia. HR: hazard ratio. CI: confidence interval.

Despite the improvements in materials and techniques, the implantation of ICD/cardiac
resynchronization therapy (CRT) is associated with the risk of potential complications such
as lead dislocation, infections, and inappropriate shocks; this risk increases in parallel with
the complexity of the procedure [28–30].

4. Ventricular Arrhythmias and Sudden Death Risk Stratification in DCM

An effective risk stratification for SCD in DCM is essential but, at the same time,
extremely difficult. In the past, several studies focused on electrocardiographic (including
signal averaged electrocardiogram-ECG) and echocardiographic parameters; these results
have been summarized in the meta-analysis performed by Goldberger et al. in 2014. This
comprehensive analysis revealed that a depolarization parameter, fragmented QRS, and
a repolarization parameter, T wave alternans, showed the highest odds ratio (OR) for
identifying the arrhythmic events (OR: 6.73 and 4.66, respectively) and that LVEF showed
a lower odds ratio when compared with the other analyzed functional parameter, the
LVED dimension (OR: 2.87 vs. 3.47). Additionally, LVEF showed 71% sensitivity and 51%
specificity for SCD, suggesting that LVEF, if used alone, is a relatively weak event predictor.

In the absence of a single very powerful predictor, the meta-analysis concluded that
the risk stratification of SCD might improve with the use of multiple marker models. In
fact, it has been shown that a high level of discrimination (OR ranging 15 to 20) would be
warranted in order to correctly stratify for clinical purposes, and, thus, only a combination
of different parameters may provide such high prediction levels. In this regard, the modest
prediction ability of each marker included in the meta-analysis may reflect the prerequisite
that a pathophysiological interplay among different factors may be required to get to the
fatal epilogue of the SCD [31].

More recently, new predictors of VA and SCD have been studied. Among them, we
highlight genetic variants in high-risk genes (e.g., LMNA, FLNC, TMEM43, PLB, DSP,
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RBM20), inflammatory mediators (e.g., high-sensitivity C-reactive protein-hsCPR), and
tissue characterization markers (e.g., LGE, grey zone) (Table 2).

Table 2. CMR parameter for risk stratification of SCD and their limitations.

Characteristics Limitations

LGE
Evidence of myocardial scar extension,
pattern and localization as risk predictor
for VA/SCD

Contraindication of the use of contrast in renal insufficiency
Heterogenicity of the methods for evaluating and
quantifying LGE
Limited predictive power for VF/polymorphic VT

T1 mapping/ECV

Quantification of myocardial fibrosis,
oedema and fat accumulation
Use regardless renal function
Higher native T1 values are associated
with arrhythmic events

Measurement variability due to heart rate, magnetic field
strength and specific CMR protocol
Data acquisition susceptibility to motion artefact, inadequate
breath holding, amount and speed of contrast injection
T1/ECV values influenced by oedema, infiltrative disease
and inflammation

Strain imaging Evaluation of regional myocardial
dysfunction and deformation

Underestimation due to low temporal resolution
Cut-off values variability
Lack reliability of the radial and segmental strain values

LGE: Late gadolinium enhancement. ECV: extracellular volume. VA: ventricular arrhythmias. SCD: sudden
cardiac death. VF: ventricular fibrillation. VT: ventricular tachycardia. CMR: cardiac magnetic resonance.

5. LGE and the Risk of Ventricular Arrhythmias and Sudden Cardiac Death

Late gadolinium enhancement (LGE) is a technique used with the purpose of my-
ocardial tissue characterization and, in particular, to identify localized myocardial fibrosis
through the employment of gadolinium, a paramagnetic contrast agent. Gadolinium is
injected intravenously, spreads outside the intravascular space, and can (hyper)enhance
the tissue by shortening T1 (Figure 1). In this process, some variables, such as the regional
distribution pattern within the extracellular space, wash-in and wash-out velocity, and
the membrane cells’ integrity, become relevant [32,33]. Therefore, LGE derives from differ-
ent concentration of gadolinium depending on local kinetic variability correlated to the
different tissue representations (e.g., myocardial edema, necrosis, collagen deposition, or
exogenous material accumulation) [34].

The prevalence of LGE in DCM ranges from 26% to 56% [35,36]. Only one study
demonstrated a very high prevalence of LGE (71%) with a midwall distribution and less
commonly epicardial pattern [37].

Myocardial scarring is recognized as the main substrate for sustained monomorphic
ventricular tachycardia, since it provides all the elements that allow the maintenance of a
reentry circuit. This has been demonstrated in cases of ischemic cardiomyopathy with prior
myocardial infarction, but it has also been confirmed in patients with DCM who, during
electroanatomic mapping, often display scars harboring VT circuits [38,39].

The role of LGE as a predictor of VA and SCD was investigated in several observational
studies [40,41]. From the outset, LGE has been shown to be an independent predictor of
SCD and VA [42]. Subsequently, larger studies confirmed the association between LGE
and major arrhythmic events, including after adjustment, for other clinical and functional
parameters [37] (Figure 2). Gulati et al. showed that in 142 patients with DCM the arrhyth-
mic endpoint (SCD, appropriate shocks ICD, non-fatal VT/VF) was achieved in 29.6% of
patients with midwall LGE compared to 7% of those without LGE at a median follow up of
5.3 years and that the combination of LGE with LVEF allowed a better reclassification of
patients at high and low arrhythmic risk [43]. Another study on 175 patients followed up
for a median of 5 years detected LGE in 70% of them and showed that the presence of septal
and lateral midwall LGE was strongly associated with life-threatening VA (HR 23.1) [44].
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Figure 1. (A,B) show short axis views of the basal and mid segments in late gadolinium enhancement
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underwent successful epicardial VT ablation. (C,D) show short axis views of the basal and mid
segments in LGE sequences in a patient with non-ischemic cardiomyopathy and LVEF 27%. No LGE
is observed. This patient has never experienced ventricular arrhythmias during follow-up.
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CMR images are reconstructed with the ADAS 3D software (ADAS 3D Medical, Barcelona, Spain,
https://www.adas3d.com) to identify border zone corridors. In this case one corridor is identified
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in the subepicardium of the mid-lateral left ventricular wall. This corridor nicely matches with the
critical isthmus of the sustained monomorphic tachycardia induced during the ablation procedure,
shown in (B). Ablation inside the isthmus determined the interruption of the ventricular tachycardia
after 6 s (B).

Following updated international recommendation of ICD implantation in primary
prevention in 2015, more studies appeared in the literature, some of those enrolling patients
with no indication to the prophylactic therapy. Halliday et al. first demonstrated an
association between LGE and arrhythmic events in patients with LVEF > 40%. They
showed that their population with non-ischemic DCM, moderate-to-mild reduction of
LVEF, and presence of midwall LGE had a risk of major arrhythmic events, similar to that
of other published cohorts of DCM patients with severely depressed LVEF and without
evidence of LGE (approximately 3.6%/year) [45].

Recently, Di Marco et al. considered patients with non-ischemic DCM and a wide
spectrum of LVEF. LGE was an independent and very strong predictor of VA and SCD
across all LVEF strata and high-risk LGE distributions were identified, such as epicardial or
transmural LGE or combined septal and free wall LGE. The authors generated a new risk
stratification model that identified a very low risk group (0.2% events/year), LGE negative
and LVEF ≥ 20%, a high risk group (7.2% events/year), LGE positive and LVEF ≤ 35%,
and intermediate-high risk group (2.8% events/year) in case of presence of high risk LGE
distribution and LFEF > 35% [10]. Therefore, the presence of specific patterns of LGE may
confer a higher risk of events irrespective of LVEF.

The significant and strong association between LGE and VA or SCD has also been
confirmed in metanalysis. [46].

Further consideration is required for patients undergoing CRT where LGE was demon-
strated to be able to predict arrhythmic events. In an observational study enrolling 252 pa-
tients with DCM and CRT, of whom 68 had LGE, it was observed that CRT-D was associated
with significantly higher survival than CRT-P only in patients with LGE. In patients without
LGE, with their low arrhythmic risk, CRT-D offered no benefit compared with CRT-P [47].

6. Extension of Late Gadolinium Enhancement and Association with
Ventricular Arrhythmias

The literature presents diverging results regarding the relationship between LGE
extension and arrhythmic risk [46,48]. Some studies have shown a relationship between the
extent of LGE and the risk of SCD, VA, and cardiovascular death [43,49–51]. Furthermore,
some have shown that the extent of LGE was more predictive than the presence of LGE
alone [9,42,52].

Recently, Li et al. showed that a myocardial scar greater than or equal to 7.1% of the LV
mass is associated with SCD or aborted SCD [53]. Klem et al. demonstrated a curvilinear
relationship between risk of arrhythmic events and scar size on LGE, reaching a plateau at
20% to 25%, regardless of LVEF. Moreover, in that cohort, a relatively small scar extent of
2.0% provided the optimal threshold for prediction of SCD in patients with LVEF ≤ 35%
and >35% [54]. Furthermore, there is evidence of a nonlinear relationship between adverse
outcomes and LGE extension. Both in 2017 and 2019, Halliday et al. highlighted that
the percentage extent of LV LGE predicting the arrhythmic endpoint (SCD and aborted
SCD) was 0% and 0.71%, respectively, with small amounts of LGE predicting a substantial
increase in risk [45,55]. Similarly, Perazzolo Marra et al. revealed a significant correlation
between the LV-LGE presence and major arrhythmic events, not affected by the amount and
distribution [36]. Therefore, not all authors support the predictive value of LGE extension
for SCD and VA as a linear relationship, and specific cut-off values are still lacking [56].

7. Location/Pattern of Late Gadolinium Enhancement and Association with
Ventricular Arrhythmias

In addition to the presence and extension of LGE, the localization and pattern were
studied. The most frequent patterns in DCM are subepicardial, linear midwall, patchy,
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or transmural that do not follow a coronary territory and the concomitant evidence of
multiple LGE pattern types (mid-wall striae or patches, sub-endocardial, or sub-epicardial
enhancement) increases the risk of all-cause mortality [7,57]. Some studies have shown that
patients with midwall LGE had an increased risk of SCD and appropriate shocks of the
ICD; in others, this correlation was seen with subepicardial LGE [35,42–44,51,58–63]. In the
study of Halliday et al. LGE distribution proved to be superior to its presence, extension,
or pattern and combined presence of septal and free-wall LGE was associated with a high
arrhythmic risk. Additionally, sub-epicardial or multiple patterns of LGE were associated
with a high-risk of SCD events [55].

In line with these findings, Di Marco et al. observed that the presence of epicardial
LGE, transmural LGE, or combined free-wall and septal LGE were associated with higher
arrhythmic risk compared with other LGE distributions or LGE absence, improving the
risk stratification for VA and SCD, especially for patients with LVEF > 35% [10].

Interestingly, LGE is rare in patients with low-risk genetic variants, while patients
with variants at greater arrhythmic risks present more typical patterns: DSP, FLNC, and
PLN with a predominance of LGE subepicardial ring-like scar pattern, LMNA with a mid-
wall basal, or septal LGE distribution, whereas titin (TTN), BAG cochaperone-3 (BAG3),
duchenne muscular dystrophy (DMD), RBM20, and some form of LMNA genotypes show
unspecific or heterogeneous LGE patterns [13,64–66].

However, not all studies agree on the correlation between the septal/free wall local-
ization or the subepicardial/mid-wall distribution of the LGE and increased arrhythmic
risk [36,44,49,51,57,59,62,67].

Although there are conflicting data, the most recent evidence suggests that imaging
quantification and localization of myocardial fibrosis via CMR LGE represents a strong
predictor of major malignant arrhythmic events in patients with DCM. Large cohort studies,
preferably combining CMR information with other clinical data (genetic testing in the first
instance) are required to create a more individualized DCM management approach.

8. Insertion Points

LGE can be also localized to the anterior and posterior right ventricular insertion points
(RVIP). Limited studies that did not specifically focus on this type of LGE localization
showed conflicting results on the outcome of these patients [49,68]. In the study of Yi
et al., isolated localization on RVIP was associated with a lower LGE extension and did
not significantly increase adverse arrhythmic events compared to the patients without
LGE [69]. These findings have been confirmed by Claver et al. in a large cohort study
that showed how patients with DCM and LGE at RVIP have a low arrhythmic and SCD
risk compared to patients with other LGE distribution. Interestingly, patients with LGE
at RVIP had significantly lower RVEF and both higher indexed RV end-diastolic and end-
systolic volumes, suggesting that this peculiar LGE localization may be a consequence of
RV pressure overload [70].

9. Limitations of Late Gadolinium Enhancement

One of the main limitations of LGE is linked to the magnetic resonance technique,
specifically in that there are long acquisition times, high costs, and the contraindication of
the use of contrast in subjects with renal insufficiency, which is often present in patients
with DCM [71].

The second limit is that quantitative LGE evaluation is not a standardized tech-
nique. It results in heterogenicity of the methods for evaluating and quantifying LGE,
such as number of segments, percentage, or absolute weight with no defined cut-off val-
ues [37,43,49,52,72–76].

Some studies used semi-quantitative evaluations. Guaricci et al., in a registry to evalu-
ate the additional prognostic value of a composite CMR-based risk score over standard-of-
care in a large cohort of consecutive unselected non-ischaemic DCM patients, performed a
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semi-quantitative analysis evaluating the presence of LGE in a segment of the 17-segment
model [8].

Another limit of LGE is that although the presence and extent of LGE on CMR is a
good predictor for monomorphic VT, it is less specific for potentially fatal polymorphic
VT/VF [52].

Lastly, LGE reflects only focal fibrosis, but also some patients with diffuse interstitial
fibrosis experienced VA events and SCD [77]. Therefore, additional CMR parameters could
be necessary, such as T1 mapping technique.

10. T1 Mapping and Extracellular Volume Quantification

T1 mapping and ECV are both important techniques used in CMR to assess the
structure and function of the heart in detail [78]. T1 mapping is a technique that measures
the longitudinal relaxation time (T1) of tissue [78]. T1 is the time it takes for a tissue to
return to its state of magnetic equilibrium after being perturbed by radiofrequency [78].
Different types of tissue have different T1 values, making it possible to distinguish and
characterize tissues according to their magnetic properties [78]. In the cardiac context, T1
mapping is useful for assessing changes in cardiac tissue composition; it can identify and
quantify various conditions such as myocardial fibrosis, inflammation, oedema, and fat
accumulation in the myocardium [78]. ECV is a measure of the volume fraction of the
extracellular space relative to the total tissue volume [78]. ECV and T1 mapping allow for
quantification of diffuse fibrosis, providing complementary information to that of LGE [78].

Tissue inhomogeneity caused by diffuse fibrosis and cellular disarray is a potential
substrate for the initiation of life-threatening ventricular arrhythmias. However, the patho-
physiological mechanisms underlying arrhythmogenicity resulting from diffuse or focal
fibrosis are still poorly understood and further studies are needed [79].

CMR parametric mapping techniques allow us to evaluate diffuse fibrosis even in
the absence of LGE; changes in T1 values may occur in the early stages of DCM when the
LVEF is only slightly reduced [48,80,81]. The importance of T1 mapping is emphasized in
diseases such as Anderson Fabry disease and Cardiac Amyloidosis, where these values
are reduced or increased. T1 mapping can therefore be a red flag, pointing the clinician
towards a specific etiological diagnosis prior to the development of LGE [82–85].

Puntmann et al. showed that the native T1 had a sensitivity of 100% and specificity of
97% to discriminate a healthy myocardium from a diseased one. Both T1 mapping and ECV
are associated with all-cause mortality and HF in patients with DCM [86]. In a recent study,
the potential predictive value of quantitative CMR features for Major Adverse Cardiac
Events (MACEs) was explored in patients diagnosed with DCM. It was observed that DCM
patients who experienced heart failure or arrhythmia-related events exhibited significantly
higher levels of both native T1 and ECV compared to patients who did not experience
MACEs [87].

In a study by Chen et al., native T1 mapping was independently associated with
sustained VT and appropriate ICD shocks, and this association persisted even after LGE
correction [88]. In another study, subjects with DCM and a history of complex VA had a
higher native T1 than those without a history of VA and this association persisted even after
adjustment with LVEF and LGE [79]. As for the ECV, it has been shown to be significantly
associated with a combined endpoint of cardiovascular mortality, hospitalization for HF,
and appropriate ICD shocks in a cohort of 89 DCM patients, even after adjustment for
LVEF [89]. However, such combined endpoints, including heart failure (HF) and arrhyth-
mic events at the same time, does not allow us assess the specific association between LGE
and VA or SD. Finally, in a study of 240 patients with DCM, it was found that ECV was,
together with LVEF, the only CMR parameter independently associated with a combined
endpoint of death from any cause or hospitalizations for heart failure [90]. The association
of ECV with heart failure events in this study is a warning with respect to the potential
specific association between ECV and VA or SD. A subsequent analysis of data from a
single-center prospective registry of 618 nonischemic cardiomyopathy (NICM) patients
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with available ECV data showed that mean ECV was significantly associated with the com-
bined primary endpoint (which included appropriate implantable cardioverter defibrillator
therapy, sustained ventricular tachycardia, resuscitated cardiac arrest, and SD) while native
T1 was not an independent predictor of the arrhythmic endpoint. A cut-off of ECV ≥ 30%
was the strongest independent predictor of the primary endpoint (HR 14.1, p = 0.01) after
adjustment for LGE and LVEF. ECV ≥ 30% discriminated arrhythmic risk between LGE+
cases and those with LVEF ≤ 35%. A simple clinical risk stratification model based on LGE,
LVEF ≤ 5%, and ECV ≥ 30% achieved excellent predictive power (Harrell’s C 0.82) and
reclassified 32% of the study population from LVEF ≤ 35% alone [91]. Based on the previ-
ously cited studies, the use of T1 mapping and, above all, ECV calculation are promising
tools to further improve the risk stratification for VA and SD in DCM on top of LGE [79].
However, more studies are needed to understand the exact role of these parameters in the
risk stratification for VA and SD and to find the optimal cut-offs to discriminate patients at
high vs. low risk.

11. Limitations of ECV and T1 Mapping Quantification

While T1 mapping and ECV quantification are powerful techniques in CMR imaging,
they have certain limitations. The limitations concern the data acquisition, post-processing,
and interpretation phases. One notable challenge is the potential for measurement vari-
ability due to factors such as heart rate, magnetic field strength, and the specific CMR
protocol used. In addition, the presence of motion artefacts or inadequate breath holding
during image acquisition can lead to inaccuracies in T1 mapping and ECV calculations.
For acquisition, the mapping technique can vary depending on the amount and speed of
contrast injection and the time between contrast injection and T1 mapping acquisition. For
post-processing, the most commonly used technique is the single slice over the middle
ventricle, which may not adequately represent inhomogeneous fibrosis [60]. It is also
important to note that T1 mapping and ECV values can be influenced by factors other than
myocardial fibrosis, such as oedema, inflammation, and infiltrative disease. Furthermore,
standardization of techniques and reference ranges for T1 mapping across different CMR
platforms and centers is an ongoing area of research. Finally, it is not always easy to distin-
guish subjects with DCM from normal subjects on the basis of T1 values due to the presence
of borderline data [81]. ECV has the advantage over T1 of being more reproducible and
suitable for providing cut-offs that can be universally validated and used [92]. Despite these
limitations, when used judiciously and interpreted in conjunction with the clinical context,
T1 mapping and ECV quantification remain invaluable tools for assessing myocardial tissue
characteristics in various cardiac pathologies.

12. Assessment of Strain via CMR

Ejection fraction describes the overall myocardial function of the left ventricle, while
strain imaging allows evaluation of regional myocardial deformation and can detect my-
ocardial dysfunction before ejection fraction decreases. The most used magnetic resonance
imaging technique to evaluate strain is MR feature tracking (MR-FT) and the cut-off values
vary depending on the software, modality, and methods [93,94]. With MR-FT, it is possible
to quantitatively assess the contractility and deformation of the heart walls before the
ejection fraction decreases. A retrospective observational study involving 161 patients with
DCM demonstrated that CMR-FT measurements of three-dimensional myocardial strain
parameters, specifically Global Longitudinal Strain (GLS) and Global circumferential Strain
(GCS), held certain diagnostic value and were capable of reflecting the underlying abnor-
mality of ventricular mechanics in DCM with microvascular angina (MVA) [95]. Altogether,
GLS is associated with total mortality and cardiac events in heart failure with preserved
ejection fraction (HFpEF).

Buss et al. evaluated 210 patients with DCM and observed that GLS and LGE mass
were the only independent predictors of a combined endpoint including cardiac death, heart
transplant, and appropriate ICD shock. The best cut-off of GLS to predict the combined
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outcome was −12.5%: this cut-off significantly discriminated the prognosis in all subgroups
analyzed (those with LVEF < 35%, those with LVEF > 35%, those with LGE, and those
without LGE) [96]. Another study, which included 507 DCM patients, showed that GLS
was an independent predictor for death from any cause, after adjustment for LGE and
LVEF [97].

However, in the previously mentioned cohort of 618 patients with NICM and compre-
hensive CMR evaluation, GLS showed high collinearity with LVEF and lost its association
with the arrhythmic outcome after adjustment for LVEF [91].

In summary, strain analysis with CMR may provide relevant prognostic contribution
with respect to the overall prognosis. However, it is not clear whether CMR-based strain
parameters can improve the risk stratification for VA and SCD on top of LVEF and LGE.
Technically, MR-FT’s advantage over LGE and T1 mapping lies in its ability to evaluate
MVA without the need for contrast media, making it especially pertinent for patients with
contraindications to gadolinium-based agents. Additional studies are needed to see if GLS
can add prognostic value for VA and SD on top of LGE and of markers of diffuse fibrosis.

13. Limitations of Strain

Despite its undoubted usefulness, feature tracking in CMR has certain limitations.
The first limitation of the MR-FT is related to the low temporal resolution, which can
underestimate the strain values. Furthermore, the cut-off values vary by software and
method and this makes comparison between studies difficult [98]. Finally, the radial and
segmental strain values still lack reliability [93].

14. Assessment of Myocardial Heterogeneity Derived from CMR

Entropy evaluates the probability of distribution of myocardial pixel signal inten-
sity and is therefore an MRI-derived measure of myocardial heterogenicity. Rahul et al.
evaluated 130 patients with DCM who received a primary prevention ICD and observed
that LV entropy was an independent predictor of VA and SCD but had no significant
independent association with a combined heart failure endpoint including cardiac death,
heart transplantation, and left ventricular assist device implant [99]. This is an interesting
technique and further studies are necessary to clarify its role in risk prediction in DCM.

15. Artificial Intelligence Applied to CMR

Artificial intelligence (AI) aims to develop computers with human intelligence, which
include machine learning (ML) and deep learning (DL), and has emerged as one of the
main innovations in the field of cardiovascular diagnostic imaging [100–102] (Figure 3).
ML and DL techniques could achieve a more standardized quantification of LGE by over-
coming the limits related to its irregular and multifocal appearance, and to the variability
between centers in accuracy and reproducibility [103–107]. ML can also be applied for T1
mapping and ECV, allowing for the assessment of adverse events in patients with mildly
or moderately depressed LVEF [100,108,109]. Chen et al. evaluated a model for predicting
cardiovascular events in patients with DCM based on ML obtained from patient baseline
characteristics, blood tests, ECG, echocardiography and CMR [110]. Artificial intelligence
techniques therefore could offer a better appreciation of the phenotypic heterogenicity of
DCM patients with implications in risk stratification, early detection, and personalized
therapies [111].
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Figure 3. Schematic representation of a potential risk-stratification and ICD selection strategy based
on LGE. Additional factors may have variable prognostic weight in different sub-population of
LGE + DCM patients. Risk factors for non-sudden death, such as Age, NYHA class and comorbidities
will also influence ICD benefit. LGE: late gadolinium enhancement. VA: ventricular arrhythmias. SD:
sudden death. ICD: Implantable cardioverter defibrillator. LVEF: left ventricular ejection fraction.
ECV: extracellular volume fraction. NSVT: non sustained ventricular tachycardia. * LGE− patients
with very severe LV dysfunction (LVEF ≤ 20%) have been suggested to have higher risk of VA/SD;
however, these patients might have a not negligible competing risk of non-sudden death with a direct
impact on the potential benefit of primary prevention ICD.

16. Future Direction

Additional studies are needed to evaluate the role of CMR parameters other than LGE,
with a special focus towards those related with the evaluation of diffuse fibrosis. Further
studies should focus on LGE+ patients, to distinguish those with the highest arrhythmic
risk by combining LGE characteristics, ECV, genetics and other potential predictors [112].
The large body of evidence supporting the association between LGE and VA and SCD
would already justify the realization of randomized controlled trials to evaluate the non-
inferiority of medical treatment vs. primary prevention ICD among patients considered to
be at low arrhythmic risk, such as patients with LVEF ≤ 35% without LGE. Actually, two
LGE-based randomized trials are already recruiting: the CMR-ICD study (NCT04558723)
will randomize to ICD or medical therapy 760 patients with DCM, LVEF ≤ 35% and LGE
and the CMR-GUIDE trial is randomizing to ICD or medical therapy 428 patients with LGE
and LVEF > 35% of both ischemic and non-ischemic etiology [113].
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Larger, prospective studies evaluating other CMR parameters in SCD risk stratification
among patients with DCM are lacking [114]. To address gaps in prognostic stratification,
we should take into account all DCM spectrum, irrespective of LVEF.

Finally, the development and use of artificial intelligence and machine learning tech-
niques applied in the prognostic stratification of patients undergoing CMR will become
increasingly important, providing the clinician with a crucial tool to use in the clinical
practice decision-making.

17. Conclusions

Predicting the risk of SCD is one of the most difficult challenges in the cardiovascular
field despite numerous efforts to identify patients who can benefit from prophylactic
ICD therapy. This is because arrhythmic risk is multifactorial and related to genetic,
acquired, anatomical and pathophysiological factors. The scientific literature supporting the
possibility of improving the prediction of an individual patient’s arrhythmic risk by means
of cardiac magnetic resonance imaging is growing in number. Currently, cardiac MRI can
improve risk stratification by exploiting cine sequences, tissue characterization including
LGE, T1 and T2 mapping, ECV calculation and feature tracking. A reasonable hope of
further prognostically useful information could come from opening up new frontiers of
development and in particular from artificial intelligence.
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5. Neglia, D.; Liga, R.; Gimelli, A.; Podlesnikar, T.; Cvijić, M.; Pontone, G.; Miglioranza, M.H.; Guaricci, A.I.; Seitun, S.; Clemente,
A.; et al. Use of cardiac imaging in chronic coronary syndromes: The EURECA Imaging registry. Eur. Heart J. 2022, 44, 142–158.
[CrossRef] [PubMed]

6. Pontone, G.; Guaricci, A.I.; Fusini, L.; Baggiano, A.; Guglielmo, M.; Muscogiuri, G.; Volpe, A.; Abete, R.; Aquaro, G.; Barison, A.;
et al. Cardiac Magnetic Resonance for Prophylactic Implantable-Cardioverter Defibrillator Therapy in Ischemic Cardiomyopathy:
The DERIVATE-ICM International Registry. JACC Cardiovasc. Imaging 2023, 16, 1387–1400. [CrossRef] [PubMed]

7. Alba, A.C.; Gaztañaga, J.; Foroutan, F.; Thavendiranathan, P.; Merlo, M.; Alonso-Rodriguez, D.; Vallejo-García, V.; Vidal-Perez,
R.; Corros-Vicente, C.; Barreiro-Pérez, M.; et al. Prognostic Value of Late Gadolinium Enhancement for the Prediction of
Cardiovascular Outcomes in Dilated Cardiomyopathy: An International, Multi-Institutional Study of the MINICOR Group. Circ.
Cardiovasc. Imaging 2020, 13, e010105. [CrossRef]

https://doi.org/10.1056/NEJMoa043399
https://www.ncbi.nlm.nih.gov/pubmed/15659722
https://doi.org/10.1056/NEJMoa033088
https://www.ncbi.nlm.nih.gov/pubmed/15152060
https://doi.org/10.1056/NEJMoa1608029
https://www.ncbi.nlm.nih.gov/pubmed/27571011
https://doi.org/10.1002/ehf2.14416
https://www.ncbi.nlm.nih.gov/pubmed/37278122
https://doi.org/10.1093/eurheartj/ehac640
https://www.ncbi.nlm.nih.gov/pubmed/36452988
https://doi.org/10.1016/j.jcmg.2023.03.015
https://www.ncbi.nlm.nih.gov/pubmed/37227329
https://doi.org/10.1161/CIRCIMAGING.119.010105


J. Clin. Med. 2023, 12, 7752 13 of 18

8. Guaricci, A.I.; Masci, P.G.; Muscogiuri, G.; Guglielmo, M.; Baggiano, A.; Fusini, L.; Lorenzoni, V.; Martini, C.; Andreini, D.; Pavon,
A.G.; et al. CarDiac magnEtic Resonance for prophylactic Implantable-cardioVerter defibrillAtor ThErapy in Non-Ischaemic
dilated CardioMyopathy: An international Registry. Europace 2021, 23, 1072–1083. [CrossRef]

9. Klem, I.; Weinsaft, J.W.; Bahnson, T.D.; Hegland, D.; Kim, H.W.; Hayes, B.; Parker, M.A.; Judd, R.M.; Kim, R.J. Assessment of
myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J. Am. Coll. Cardiol.
2012, 60, 408–420. [CrossRef]

10. Di Marco, A.; Brown, P.F.; Bradley, J.; Nucifora, G.; Claver, E.; de Frutos, F.; Dallaglio, P.D.; Comin-Colet, J.; Anguera, I.; Miller,
C.A.; et al. Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients With Nonischemic Dilated
Cardiomyopathy. J. Am. Coll. Cardiol. 2021, 77, 2890–2905. [CrossRef]

11. Al’Aref, S.J.; Altibi, A.M.; Malkawi, A.; Mansour, M.; Baskaran, L.; Masri, A.; Rahmouni, H.; Abete, R.; Andreini, D.; Aquaro, G.;
et al. Cardiac magnetic resonance for prophylactic implantable-cardioverter defibrillator therapy international study: Prognostic
value of cardiac magnetic resonance-derived right ventricular parameters substudy. Eur. Heart J. Cardiovasc. Imaging 2023, 24,
472–482. [CrossRef] [PubMed]

12. Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al.
Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for
clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37,
1850–1858. [CrossRef] [PubMed]

13. Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de
Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management
of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [CrossRef] [PubMed]

14. Pontone, G.; Andreini, D.; Baggiano, A.; Bertella, E.; Mushtaq, S.; Conte, E.; Beltrama, V.; Guaricci, A.I.; Pepi, M. Functional
relevance of coronary artery disease by cardiac magnetic resonance and cardiac computed tomography: Myocardial perfusion
and fractional flow reserve. Biomed. Res. Int. 2015, 2015, 297696. [CrossRef] [PubMed]

15. Merlo, M.; Porcari, A.; Pagura, L.; Cameli, M.; Vergaro, G.; Musumeci, B.; Biagini, E.; Canepa, M.; Crotti, L.; Imazio, M.; et al.
A national survey on prevalence of possible echocardiographic red flags of amyloid cardiomyopathy in consecutive patients
undergoing routine echocardiography: Study design and patients characterization-the first insight from the AC-TIVE Study. Eur.
J. Prev. Cardiol. 2021, 29, e173–e177. [CrossRef]

16. Bozkurt, B.; Colvin, M.; Cook, J.; Cooper, L.T.; Deswal, A.; Fonarow, G.C.; Francis, G.S.; Lenihan, D.; Lewis, E.F.; McNamara,
D.M.; et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the
American Heart Association. Circulation 2016, 134, e579–e646. [CrossRef]

17. Gigli, M.; Merlo, M.; Graw, S.L.; Barbati, G.; Rowland, T.J.; Slavov, D.B.; Stolfo, D.; Haywood, M.E.; Dal Ferro, M.; Altinier, A.;
et al. Genetic Risk of Arrhythmic Phenotypes in Patients with Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2019, 74, 1480–1490.
[CrossRef]

18. van den Hoogenhof, M.M.G.; Beqqali, A.; Amin, A.S.; van der Made, I.; Aufiero, S.; Khan, M.A.F.; Schumacher, C.A.; Jansweijer,
J.A.; van Spaendonck-Zwarts, K.Y.; Remme, C.A.; et al. RBM20 Mutations Induce an Arrhythmogenic Dilated Cardiomyopathy
Related to Disturbed Calcium Handling. Circulation 2018, 138, 1330–1342. [CrossRef]

19. Celeghin, R.; Cipriani, A.; Bariani, R.; Bueno Marinas, M.; Cason, M.; Bevilacqua, M.; De Gaspari, M.; Rizzo, S.; Rigato, I.; Da
Pozzo, S.; et al. Filamin-C variant-associated cardiomyopathy: A pooled analysis of individual patient data to evaluate the clinical
profile and risk of sudden cardiac death. Heart Rhythm. 2022, 19, 235–243. [CrossRef]

20. Hodgkinson, K.A.; Howes, A.J.; Boland, P.; Shen, X.S.; Stuckless, S.; Young, T.L.; Curtis, F.; Collier, A.; Parfrey, P.S.; Connors, S.P.
Long-Term Clinical Outcome of Arrhythmogenic Right Ventricular Cardiomyopathy in Individuals With a p.S358L Mutation in
TMEM43 Following Implantable Cardioverter Defibrillator Therapy. Circ. Arrhythm. Electrophysiol. 2016, 9, e003589. [CrossRef]

21. Verstraelen, T.E.; van Lint, F.H.M.; Bosman, L.P.; de Brouwer, R.; Proost, V.M.; Abeln, B.G.S.; Taha, K.; Zwinderman, A.H.;
Dickhoff, C.; Oomen, T.; et al. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the
frontiers of individual risk prediction. Eur. Heart J. 2021, 42, 2842–2850. [CrossRef] [PubMed]

22. Wahbi, K.; Ben Yaou, R.; Gandjbakhch, E.; Anselme, F.; Gossios, T.; Lakdawala, N.K.; Stalens, C.; Sacher, F.; Babuty, D.; Trochu,
J.N.; et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in
Laminopathies. Circulation 2019, 140, 293–302. [CrossRef] [PubMed]

23. van Rijsingen, I.A.; Arbustini, E.; Elliott, P.M.; Mogensen, J.; Hermans-van Ast, J.F.; van der Kooi, A.J.; van Tintelen, J.P.; van
den Berg, M.P.; Pilotto, A.; Pasotti, M.; et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a
European cohort study. J. Am. Coll. Cardiol. 2012, 59, 493–500. [CrossRef] [PubMed]

24. Thuillot, M.; Maupain, C.; Gandjbakhch, E.; Waintraub, X.; Hidden-Lucet, F.; Isnard, R.; Ader, F.; Rouanet, S.; Richard, P.; Charron,
P. External validation of risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers. Eur. J. Heart Fail. 2019,
21, 253–254. [CrossRef]

25. Desai, A.S.; Fang, J.C.; Maisel, W.H.; Baughman, K.L. Implantable defibrillators for the prevention of mortality in patients with
nonischemic cardiomyopathy: A meta-analysis of randomized controlled trials. JAMA 2004, 292, 2874–2879. [CrossRef]

26. Henkens, M.; Weerts, J.; Verdonschot, J.A.J.; Raafs, A.G.; Stroeks, S.; Sikking, M.A.; Amin, H.; Mourmans, S.G.J.; Geraeds, C.B.G.;
Sanders-van Wijk, S.; et al. Improving diagnosis and risk stratification across the ejection fraction spectrum: The Maastricht
Cardiomyopathy registry. ESC Heart Fail. 2022, 9, 1463–1470. [CrossRef]

https://doi.org/10.1093/europace/euaa401
https://doi.org/10.1016/j.jacc.2012.02.070
https://doi.org/10.1016/j.jacc.2021.04.030
https://doi.org/10.1093/ehjci/jeac124
https://www.ncbi.nlm.nih.gov/pubmed/35792682
https://doi.org/10.1093/eurheartj/ehv727
https://www.ncbi.nlm.nih.gov/pubmed/26792875
https://doi.org/10.1093/eurheartj/ehad194
https://www.ncbi.nlm.nih.gov/pubmed/37622657
https://doi.org/10.1155/2015/297696
https://www.ncbi.nlm.nih.gov/pubmed/25692133
https://doi.org/10.1093/eurjpc/zwab127
https://doi.org/10.1161/CIR.0000000000000455
https://doi.org/10.1016/j.jacc.2019.06.072
https://doi.org/10.1161/CIRCULATIONAHA.117.031947
https://doi.org/10.1016/j.hrthm.2021.09.029
https://doi.org/10.1161/CIRCEP.115.003589
https://doi.org/10.1093/eurheartj/ehab294
https://www.ncbi.nlm.nih.gov/pubmed/34113975
https://doi.org/10.1161/CIRCULATIONAHA.118.039410
https://www.ncbi.nlm.nih.gov/pubmed/31155932
https://doi.org/10.1016/j.jacc.2011.08.078
https://www.ncbi.nlm.nih.gov/pubmed/22281253
https://doi.org/10.1002/ejhf.1384
https://doi.org/10.1001/jama.292.23.2874
https://doi.org/10.1002/ehf2.13833


J. Clin. Med. 2023, 12, 7752 14 of 18

27. Yafasova, A.; Butt, J.H.; Elming, M.B.; Nielsen, J.C.; Haarbo, J.; Videbæk, L.; Olesen, L.L.; Steffensen, F.H.; Bruun, N.E.; Eiskjær, H.;
et al. Long-Term Follow-Up of DANISH (The Danish Study to Assess the Efficacy of ICDs in Patients with Nonischemic Systolic
Heart Failure on Mortality). Circulation 2022, 145, 427–436. [CrossRef]

28. Udo, E.O.; Zuithoff, N.P.; van Hemel, N.M.; de Cock, C.C.; Hendriks, T.; Doevendans, P.A.; Moons, K.G. Incidence and predictors
of short- and long-term complications in pacemaker therapy: The FOLLOWPACE study. Heart Rhythm. 2012, 9, 728–735.
[CrossRef]

29. Mulpuru, S.K.; Madhavan, M.; McLeod, C.J.; Cha, Y.M.; Friedman, P.A. Cardiac Pacemakers: Function, Troubleshooting, and
Management: Part 1 of a 2-Part Series. J. Am. Coll. Cardiol. 2017, 69, 189–210. [CrossRef]

30. Clémenty, N.; Fernandes, J.; Carion, P.L.; de Léotoing, L.; Lamarsalle, L.; Wilquin-Bequet, F.; Wolff, C.; Verhees, K.J.P.; Nicolle, E.;
Deharo, J.C. Pacemaker complications and costs: A nationwide economic study. J. Med. Econ. 2019, 22, 1171–1178. [CrossRef]
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