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SummarySUMMARY 

Drug-induced phospholipidosis (DIPL), characterized by excessive accumulation of 

phospholipids in lysosomes, can lead to clinical adverse effects. It may also alter phenotypic 

responses in functional studies using chemical probes. Therefore, robust methods are needed 

to predict and quantify phospholipidosis (PL) in early in drug discovery and in chemical probe 

characterization. Here, we present a versatile high-content live-cell imaging approach, which 

was used to evaluate a chemogenomic and a lysosomal modulation library. We trained and 

evaluated several machine learning models using the most comprehensive set of publicly 

available compounds and interpreted the best model using SHapley Additive exPlanations 

(SHAP). Analysis of high-quality chemical probes extracted from the Chemical Probes Portal 

using our algorithm, revealed that closely related molecules, such as chemical probes and their 

matched negative controls, can differ in their ability to induce PL, highlighting the importance 

of identifying PL for robust target validation in chemical biology.  
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IntroductionINTRODUCTION 

Phospholipidosis (PL) is a pathological condition characterized by an excessive accumulation 

of phospholipids in lysosomes and a distinct morphological appearance of lamellar bodies.1 PL 

is frequently induced by the exposure of cells to exogenous substances, including various 

pharmacological agents.2 This drug-induced phospholipidosis (DIPL) can have significant 

implications for drug safety and side effect profiles, including toxicity in the liver and lungs.3,4 

Currently, over fifty clinically studied drugs that are used for treating a broad spectrum of 

disorders such as neoplastic, psychiatric, and infectious diseases, are known to induce 

phospholipidosis (Figure 1A).2,4 

Importantly, DIPL is also a critical risk factor in experiments that utilize chemical probes in 

cell culture or in vivo as the accumulation of phospholipids can have confounding effects in 

many biological processes.5 In particular, when using cell-based phenotypic screens, the 

mechanism of action of the used small molecules needs to be critically assessed.6 It has been 

recently reported that several drugs identified in cellular repurposing screens showed apparent 

antiviral activity against SARS-CoV-2 via DIPL mechanisms and not by acting on their primary 

targets.7 It is therefore of utmost importance to comprehensively characterize libraries used in 

functional cellular assays not only regarding their general toxicity,8 but also for subtler cellular 

alterations, such as phospholipidosis induction to facilitate more reliable target validation in 

chemical biology. 

The exact molecular mechanism underlying the occurrence of PL has not yet been completely 

elucidated.2 There are divergent views on whether it is a target-specific process, or whether PL 

is a predominantly due to non-specific effects caused by the chemical properties of the small 
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molecules. For example, the accumulation of small molecules in the lysosomal membrane can 

lead to the release of lysosomal hydrolases and sphingolipid activator proteins from the 

surfaces of intralysosomal luminal vesicles.2 Several targets have been proposed to mediate 

DIPL, such as lysosome-specific phospholipase A2 (PLA2G15),9 or the sphingomyelinase 

(Asm)-ceramide system, but currently no single target can explain all the observed DIPL 

cases.10,11  

DIPL has been associated with cationic amphiphilic drugs (CADs) and the underlying non-

specific mechanisms that contribute to phospholipidosis are widely believed to be associated 

with the physicochemical properties of CADs. Specifically, CADs feature hydrophobic and 

hydrophilic domains and carry a positive charge at physiological pH which may contribute to 

their accumulation within lysosomes.2 This physicochemical property could be attributed to 

the ability of small molecules to diffuse passively across lipid bilayers in their unionized form, 

and subsequently become ionized and trapped within lysosomes due to the lower pH values in 

this cellular compartment.12,13 For these cases, it is also evident that the binding of CADs to 

phospholipids may lead to the formation of drug-lipid complexes that cannot be digested.14,15 

Given the impact of PL for drug development, several approaches have been developed to 

identify molecules that induce phospholipidosis in order to deprioritize them during the early 

stages of drug discovery.16 Electron microscopy (EM) has been recognized as the most reliable 

experimental technique detecting PL.17 Despite its effectiveness, the widespread utilization of 

EM has been limited due to the low throughput, high cost, and prolonged timescales of this 

analysis. Consequently, high-content imaging techniques have gained popularity as a viable 

alternative. Among the most commonly employed detection techniques are fluorescently-
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labelled phospholipids such as (1-acyl-2-(12[(7-nitro-2-1-,3-benzoxadiazol-4-

yl)amino]dodecanoyl) (NBD) NBD-PE staining18 or Nile red lipid stain.19 In addition, the 

fluorescence microscopy-based lysosomal perturbation assay that employs a red fluorescent 

probe, developed by Coleman et al. in 2010,20 has also gained widespread adoption as a reliable 

detection method. However, the implementation of an efficient assay using live-cell imaging 

methods that could also assess kinetic aspects, is still lacking. 

Experimental phospholipidosis profiling can be resource intensive, and thus several in silico 

approaches have been developed to reduce the experimental burden.16,21 Ploemen et al. 

introduced the first physicochemical property model that utilized cLogP and pKa as chemical 

properties to identify cationic amphiphilic compounds inducing PL.22 This method has been 

widely adopted and it has been later refined incorporating other properties such as the net 

charge23 or volume of distribution (Vd).24 In general, physicochemical models are useful when 

applied to small and homogeneous datasets but their predictive capacity is considerably 

diminished with assessing larger datasets.25 To further enhance the predictability of 

phospholipidosis, Przybylak et al. introduced the structural alert model comprising 39 

structural fragments that closely capture chemical features associated with phospholipidosis, 

such as peripheral amine groups and hydrophobic moieties. 26,27 Next, scientists from the U.S.A. 

National Institute of Health (NIH) developed a machine learning (ML) approach based on 

Support Vector Machine (SVM) model, trained using molecular descriptors of atom types and 

whole molecule properties of three large compound collections,28 achieving a high accuracy of 

0.90 area under the receiver operator characteristic curve (AUC). NIH scientists also showed 

that many phospholipidosis inducers and hERG blocking compounds share a similar structural 
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feature composed by two aromatic rings and an amino group forming a three-center 

toxicophore.29,30  

More recently, researchers at AstraZeneca utilized a significant amount of proprietary data 

(1,537 compounds with 441 inducers) to create a consensus computational model that 

combines ML and physicochemical property model (Ploemen’s criterion).31 The established 

model demonstrated strong performance in an external set of 183 compounds (identified 75% 

of all PL inducers). However, most machine learning approaches studies do not yet benefit 

from recently developed explainable approaches that allow for model interpretability to better 

understand their strengths and limitations.32 Thus, it is important to enhance existing 

computational approaches and gain deeper insights into the molecular mechanisms underlying 

phospholipidosis. 

In this study, we developed and validated a high-content live-cell imaging approach and 

screened two diverse libraries comprising ~ 300 compounds. We also trained a set of ML 

models using the most comprehensive set of publicly available compounds to date and assessed 

these models using the two internal experimentally screened sets. We interpreted the best model 

using the SHAP approach and used it to predict whether high-quality selective probes 

recommended by the Chemical Probes Portal (https://www.chemicalprobes.org/)33 may induce 

PL. Experimental validation confirmed many predictions and allowed us to identify chemical 

probes that induce PL at recommended concentrations. Finally, our analysis of structurally 

highly similar compounds, such as chemical probes and their inactive analogs used as negative 

controls, demonstrated that small changes in compound structure may lead to PL. Our findings 

have important implications for the practice of chemical biology evaluation and 

https://www.chemicalprobes.org/
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characterization and our understanding of the complex nature of phospholipidosis induction.  

 

Results RESULTS  

High-content assay establishment and screening two in-house datasets 

Several high-content assays have been proposed in the literature to detect phospholipidosis in 

a cellular context.1,18,19 However, these assays are endpoint assays and they have not been 

adapted for imaging in live cells. To this end, we used the LipidTox red reagent, an already 

implemented high-content imaging method first described by Nioi et al.34 and later optimized 

by Shahane et al.1 In this method, phospholipids are conjugated with a fluorescent dye to 

increase their visibility when they accumulate during phospholipidosis. In order to adapt this 

assay for live-cell monitoring, we incorporated this detection method into our previously 

published live-cell multiplex assay and further optimized this procedure (Figure 1B) (see 

STAR methods for details).8 The categorization of PL dots encompassed their localization 

within both the cell body and lysosomes, with the latter being identified using LysoTracker as 

an additional dye (Figure 1C). To rule out possible toxicity of the dyes used in live-cells over 

long periods of time (up to 72h), and to determine the optimal concentration, we performed a 

viability assessment using alamarblue after adding different dye concentrations. This 

experiment revealed no significant effects on cell survival at the concentrations used (Figure 

S1A). To validate the assay, we tested six drugs known to induce phospholipidosis (Figure 

1A)2,7 including antidepressant drug sertraline, a selective serotonin reuptake inhibitor, 

antipsychotic drug haloperidol targeting dopamine D2 receptor, and the antiestrogenic agent 

tamoxifen using osteosarcoma (U2OS) cells. Drugs were tested at three different 
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concentrations over 72h and the normalized PL was assessed based on the total intensity of the 

dye molecules compared to cells treated with DMSO. After 48h, all reference compounds 

significantly induced PL, which was detected already at the lowest concentration used (500 

nM) (Figure 1D). For all control compounds, induction of PL correlated with compound 

concentration and the time of exposure (Figure 1E). To enable subsequent machine learning 

analysis (a binary classification task mirroring the public compound annotation used for model 

training) of in-house developed data sets, it was necessary to establish a rigorous threshold for 

classifying the compounds as either "inducer" or "non-inducer" of PL. Utilizing the initial 

reference dataset, we established a threshold in U2OS cells by defining normalized PL intensity 

larger than 2 based on the intensity measured for chloroquine (Figure 1D). Nonetheless, in 

cases where compounds were close to the threshold value, we performed a careful visual 

assessment to determine whether the compound should be categorized as an "inducer" or "non-

inducer". Most PL data described in the literature have been recorded in HepG2 cells. Since 

our assay was performed in U2OS osteosarcoma cells, we tested context dependency of PL in 

different cell lines by testing the reference compounds also in HEK293T and HepG2 cells after 

24h (Table S1). In all cell lines, PL was detected for all reference compounds. Given the 

distinct morphological characteristics of each cell line, a direct comparison of the total 

intensities was not feasible (Figure S1B). We therefore recommend considering each cell line 

separately and setting the threshold for significant PL induction accordingly. This will be 

particularly important in drug discovery projects where PL may be evaluated on patient-derived 

cell models to assess the corresponding intensity threshold appropriately. 
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After establishing the high content assay and defining the threshold to distinguish between 

“inducer” and “non-inducer”, we tested two in-house compound sets in order to identify PL 

inducers. The first compound set included a diverse set of chemogenomic compounds targeting 

proteins of different families, including GPCRs, kinases, epigenetic modulators, and others 

(Table S2A). In contrast to chemical probes which are highly selective and potent modulators 

of their targets, frequently accompanied by a matched structurally related negative controls, 

chemogenomic compounds are not exclusively selective and they often target more than one 

protein. However, the selectivity of chemogenomic compounds has been comprehensively 

assessed and the hope is that phenotypic changes in cell culture can be assigned to a target 

based on hits from chemogenomic compound set with similar on-target activity but diverse off-

target profiles. The chemogenomic compound set consisted of 213 compounds, out of which 

53 (25%) were identified as "inducers" with a normalized PL intensity larger than 2 (Figure 

2A; Table S2B). To assess compounds, that are known to play a pivotal role in lysosomal 

modulation, a second set consisting of 99 compounds was used (Table S3A). In order to capture 

cellular phenotypes over long incubation times, this set was subjected to a longer incubation 

time of 72 hours. In total, 29 compounds (29%) of this second set were defined as “inducers” 

(Figure 2B, Table S3B). Among the PL inducing compounds was crizotinib, an approved 

receptor tyrosine kinase inhibitor targeting ALK and cMET, as well as a number of other 

protein kinases, which has been reported to boost lysosomal count.35 In addition, we detected 

PL upon exposure of cells with daurisoline, that acts as an autophagy inhibitor suppressing 

lysosomal acidification.36 Also, the histone deacetylase (HDAC) inhibitor mocetinostat, which 

previously has been shown to trigger accumulation of lysosomes in cells induced PL.37 As an 
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external control, four reference compounds (amiodarone, chloroquine, chlorpromazine and 

sertraline) were added to both sets and were correctly identified as “inducers”, demonstrating 

the reproducibility of our live-cell assay. There were 22 compounds that were present in both 

sets, which acted as internal controls (Figure 2C). Interestingly, although for most compounds 

phospholipidosis was observed after 24h in both sets, some compounds reached the threshold 

only at 48h, indicating the importance of assessing compounds at longer time points. 

PL has been frequently associated with off-target phenotypic effects and it might contribute to 

toxicity of diverse approved drugs.5 Nevertheless, in our 2-D cell culture models, we did not 

observe correlation between PL and cytotoxicity and only few compounds, such as kinase 

inhibitor adavosertib, showed experimentally PL induction at late time points and affected cell 

viability (Figure S2A and 2B). Other authors,4 have suggested a connection between 

autophagy and PL. However, following assessment of the lysosomal modulation set in an LC3 

HiBiT reporter assay, we did not observe a direct correlation between phospholipidosis and 

autophagy (Table S4). Therefore, additional evaluations may be required to further elucidate 

the relationship between these two phenomena. 

  

Curation of a comprehensive phospholipidosis data set from the literature 

First, a thorough analysis of PubMed was carried out, resulting in the identification of nine 

articles that reported large compound datasets assessed for PL. From these articles, we 

identified reported compounds, downloaded its chemical structure with the aid of the 

PubChemPy package (https://github.com/mcs07/PubChemPy) and applied a structural 

standardization protocol (see STAR methods for details). This analysis resulted in a set of 

https://github.com/mcs07/PubChemPy
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2,422 unique compounds that we termed the curated data set. Among these compounds, 114 

(4.7%) had inconsistent phospholipidosis annotations in the literature, a fact that has been 

observed previously.28 For example, a number compounds have been labeled as inducers as 

well as non-inducers in different publications. These inconsistencies illustrate the challenges 

around comprehensively identifying phospholipidosis, and building computational models 

with the limited data quality, quantity, and availability. To attain data with a high level of 

confidence, we eliminated compounds that possessed inconsistent annotations. This led to the 

creation of an initial set consisting of 2,308 literature compounds, of which 1,683 were non-

inducers and 625 were inducers. 

Next, we assessed the overlap between the curated set and our two in-house compound sets. 

This analysis identified 38 compounds that were present in both sets. Of these, only five 

compounds (~ 13%) had inconsistent annotations due to precipitation or high toxicity and were 

excluded from the analysis. Overall, a total of 213 compounds for the chemogenomic 

compound set (Table S2), 99 compounds for the lysosomal modulation set (Table S3), and 

2,303 compounds for the curated literature set (Table S5), were obtained. The Venn diagram 

in Figure 2C presents an overview of the distribution of compounds among these three sets, 

while Figure 2D illustrates the distribution of phospholipidosis compositions in each set. 

Specifically, the curated set obtained from the literature contained 622 inducers and 1,681 non-

inducers; the chemogenomic compound set comprised 53 inducers and 160 non-inducers; and 

the lysosomal modulation set consisted of 29 inducers and 70 non-inducers. In general, the 

percentage of inducers in each set was quite similar with 24.9% to 29.3% PL inducers. 
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A simple physicochemical model is limited to differentiate inducers from non-inducers   

Using the curated data set obtained from the literature, we initially evaluated the effectiveness 

of a simple physicochemical property model (Ploemen’s criteria using pKa and cLogP values)22 

to differentiate phospholipidosis inducers from non-inducers (see STAR methods for details). 

An overview of the analytical workflow is presented in Figure 3. Using this simple model, an 

accuracy value of 0.74 was obtained for the curated set of 2,303 compounds meaning that 74% 

of PL inducers and non-induces were correctly predicted. However, we only obtained a recall 

value of 0.35 (Figure 3, left), indicating that this simple model was only able to identify 35% 

of all PL inducers and illustrating the model's limited ability to comprehensively predict 

phospholipidosis (i.e., inducers were frequently misclassified as non-inducers). The suboptimal 

performance of the model prompted us to explore whether ML algorithms could be more 

effective. 

 

A random forest algorithm coupled with concatenated features outperforms other 

approaches  

Firstly, we evaluated four distinct ML algorithms, namely k-nearest neighbor (KNN), support 

vector machine (SVM), random forest (RF), and eXtreme Gradient Boosting (XGBoost), using 

MACCS and ECFP4 fingerprints as molecular representations. In order to better recapitulate 

the physicochemical properties that are known to be important to predict PL, the molecular 

representations were concatenated with two additional properties (pKa and cLogP) and termed 

‘concatenated features’ (see STAR methods for details). At first, the curated data was split into 

two distinct datasets: a training set that served the purpose of training the model and fine-tuning 



Cell Chemical Biology 

13 
 

its hyperparameters, and a testing set that was utilized to evaluate the model's performance 

internally. Moreover, the two physical phospholipidosis sets evaluated in-house were used as 

external validation to assess the model's predictability on real-world datasets, as depicted in the 

workflow illustrated in Figure 3. The results presented in Figure 4A-C and Figure S3 indicate 

the performance of the ML models across 10 independent trials (i.e., 10 times independently 

splitting the curated data to train and test the models). Our analysis revealed that most of the 

models had robust predictive performance on the test set, with the RF model using MACCS 

fingerprint exhibiting the highest average recall value of 0.73. Accuracy values around 0.80 

and F1 values around 0.6 were similar across all ML methods explored (Figure 4A). We next 

investigated the generalization ability of these models by assessing their performance on the 

chemogenomic compound set and the lysosomal modulation set (external validation datasets). 

Notably, the RF algorithm coupled with MACCS fingerprint also outperformed the SVM, KNN 

and XGBoost models in this setting, as indicated by the highest average recall and F1 scores 

of 0.57 and 0.47, respectively, on the chemogenomic compound set (Figure 4B). In contrast to 

the RF algorithm, SVM, KNN and XGBoost exhibited average recall values of less than 0.4 

with any of the two fingerprints tested. Similarly, when evaluating the lysosomal modulation 

set (Figure 4C), the random forest algorithm using MACCS fingerprint exhibited superior 

performance over the other three methods, achieving an average recall value of 0.84. 

Following our assessment of the three sets, we decided to further investigate the performance 

of the RF algorithm in combination with different molecular representations, including MOE 

2D descriptors (206 physicochemical property features) and PubChem fingerprint (881 

chemical substructure patterns). Our analysis demonstrated that there was little variation in the 
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predictive performance of the RF algorithm when using different molecular representations in 

both the test set (Figure S3A) and our two in-house sets (Figure S3B and S3C). 

Based on these results and considering also computational efficiency, we decided to focus on 

RF in combination with MACCS fingerprint for further analysis. To further assess this model, 

we plotted the ROC curves of the three investigated sets based on this best ML model (Figure 

4D). The AUC values of the test set and lysosomal modulation set were 0.87 and 0.90, 

respectively – a high accuracy comparable to previously reported methods.28 These values 

suggested that the model has a high predictive capability for these two sets. However, the 

models’ predictability for the diverse chemogenomic compound set was lower with an AUC 

value of approximately 0.7, indicating that it is less able to make accurate predictions for this 

set. 

The statistical results of the RF model with MACCS on the test set, chemogenomic compound, 

and lysosomal modulation sets based on the best trial are presented in Figure 4E. For 

comparison, the same sets were predicted using Ploemen’s simple physicochemical property 

model. As shown in Figure 4E, both the physicochemical and RF models have similar accuracy 

values (0.71-0.81) whilst the F1 and, importantly, the recall, is much better with the RF (0.64-

0.86) than with the physicochemical model (0.33-0.48). These results demonstrate that the 

newly developed ML model can identify many more compounds that induce PL that would be 

misclassified if only physicochemical properties were considered. 

To benchmark our ML model further, we applied previously published methods that reported 

the exact code or were straightforward to use to predict new datasets (e.g. are available via 

webserver) and we identified FP-ADMET,38 a repository of molecular fingerprint-based RF 
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built comprehensively exploring molecular descriptors for several ADMET properties, 

including PL prediction (see STAR methods for details). FP-ADMET built a RF model to 

predict PL using 1,719 compounds and reported an AUC of 0.88. When we used FP-ADMET 

to predict our chemogenomic and lysosomal modulation sets, its recall was 0.44 and 0.71, 

respectively (Figure 4E). It is worth highlighting that although FP-ADMET was able to 

improve the recall of the simple Ploemen’s physicochemical property model (0.33, 0.48), our 

algorithm displayed a significantly better recall (0.64, 0.86) on these two external validation 

sets – illustrating how our algorithm compares favorably with available methods and can 

identify more DIPL compounds from two different compound sets. 

As a means of an additional validation, we identified a set of 462 new compounds (117 PL 

inducers and 345 non-inducers, Table S5) from public sources,1,29 which we used as an 

additional validation set. Using our RF model, we were able to correctly predict 85 of the 

compounds as PL inducers, which corresponds to a recall value of ~ 0.73 – in line with our 

previous recall values of 0.64 – 0.86 in the external validation sets (Figure 4). The remaining 

performance metrics were also in line with the results on the two previous external validation 

sets or slightly higher (Figure S4), hence further highlight the strong predictability and 

robustness of our algorithm when validated prospectively and when we compared it to other 

published approaches such as FP-ADMET. 

 

Two different real-world prediction scenarios explain the disparity of prediction 

performances 

Intrigued by the marked discrepancy in the predictive ability of the ML method developed 
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when applied to the chemogenomic compound (recall = 0.64) or lysosomal modulation (recall 

= 0.86) sets (Figure 4E), we decided to explore the underlying factors. 

First, we evaluated the chemical similarity between the training set and the three investigated 

sets (Figure S5). As expected, the training set (used for model construction) had the highest 

chemical similarity to the test set with a median maximum Tanimoto coefficient (mmTc) of 

0.51, followed by lysosomal modulation set (mmTC = 0.33). The chemogenomic set was the 

most dissimilar (mmTc = 0.29), which may explain why all methods perform worse with this 

external dataset (Figure 4E). However, it is worth highlighting that our model still yielded the 

best performance across all models tested when predicting the chemogenomic set, illustrating 

its effectiveness in a challenging, real-world scenario. 

In addition to the chemical similarity, we also analyzed the physicochemical properties on each 

set of compounds to gain more insights in the differences between them. As shown in Figure 

S6, these two sets represent different areas of the property space which translate into different 

levels of difficulty for real-world computational prediction. In the lysosomal modulation set, 

most PL inducers fall within the cationic amphiphilic area of the chemical space (cLogP ≥ 3 

and pKa ≥7.4). Therefore, they are easy to predict, which explains the higher recall of the ML 

method (0.86) and that even the simple physicochemical model achieves a significant recall 

(0.48). In contrast, in the chemogenomic set, there are far more PL inducing compounds 

(orange dots in Figure S6) that fall outside the cationic amphiphilic area of the property space, 

and thus are more difficult to predict. Therefore, different external validation sets can be easier 

or harder to predict depending on the area of the chemical space they cover. Despite these 

limitations, ML still outperforms the simple model by a substantial margin (Figure 4E). 
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Additionally, we also explored whether incorporating pKa and cLogP properties into the 

MACCS fingerprint was truly improving the prediction performance. This was clearly 

demonstrated by the increase in recall values from 0.53 (without pKa and cLogP properties) to 

0.64 (with these two properties) on the chemogenomic compound set, as presented in Table 

S6. Therefore, we made the decision to continue utilizing the RF model with MACCS and 

concatenated features for further analysis. 

 

Model interpretation based on SHAP-based feature analysis  

Based on the selected computational model, it was important to elucidate the underlying 

mechanisms by which the model generates its predictions to understand its strengths and 

limitations. Therefore, we applied the SHAP approach39,40 to analyze the contributions of 

individual features (see STAR methods for details). The top 15 features that significantly 

affected the prediction output, along with their SHAP value distributions, were analyzed and 

presented in Figure 5A. These top features were also mapped back to an exemplary chemical 

structure to facilitate interpretation, as shown in Figure 5B. Due to the relatively low SHAP 

values observed for all feature bits (< 0.1, Figure 5A), it was inferred that there were no 

dominant features that strongly influenced the predictions generated by the ML model. Thus, 

using a small number of features may not yield accurate predictions. All top features, except 

for the MACCS feature "O=A >1", had a positive effect on predicting PL inducers. Thus, the 

existence of these features additively increases the likelihood of molecules being categorized 

as inducers. The most influential features were the molecular physicochemical properties of 

pKa and cLogP, as well as the MACCS fingerprint "CH2QCH2". The presence of the pKa 
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feature (pKa ≥ 7.4) and cLogP feature (cLogP ≥ 3.0) indicated that these compounds can be 

protonated to carry a positive charge in the acidic endolysosomal compartment and is more 

amphiphilic.41 This observation was in line with previous reports that suggesting that 

compounds that induce phospholipidosis tend to be cationic amphiphilic in nature.2 

Nevertheless, a significant number of compounds inducing PL fall outside the cationic 

amphiphilic chemical space (Figure S6). The "CH2QCH2" substructure often accounts for the 

presence of a hydrophilic amine group in a molecule, which is a structural representation of the 

pKa property. Additionally, other MACCS structural features, such as aromatic or six-

membered ring systems, indirectly accounted for the lipophilicobic nature of molecules. In 

summary, the ML model outperformed the simple physicochemical model by giving small 

weights to multiple features that included pKa and cLogP (indicating the characteristics of 

whole molecule) as some of the top-ranking features, but the model also ranked highly 

chemical features representing ionizable and aromatic/aliphatic moieties. Therefore, the ML 

method “learned” that even if pKa is not ≥ 7.4 or cLogP ≥ 3, the presence of other chemical 

moieties contributed to correct predictions of PL. 

Next, we attempted to deeply explore the prediction of a few representatives from our in-house 

compound sets shown in Figure 5C. Afatinib and BI-2536 are kinase inhibitors that target 

EGFR/ErbB and PLK1, respectively. While Afatinib induces autophagy and thereby increases 

lysosomal activity,42 BI-2536 suppresses lysosomal fusion.43 Nonetheless, both compounds 

were correctly categorized as inducers by the ML model, with predicted probability values of 

0.87 and 0.80, respectively (Figure 5C). The high probability of an inducer prediction can be 

attributed to the prevalence of several positive features representing by positive SHAP values 
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which are highlighted in lime on their corresponding chemical structures. Our analysis also 

included two misclassified chemogenomic compounds, namely (+)-JQ1 and (S)-ZINC-3573. 

(+)-JQ1 is a BET bromodomain inhibitor44 that suppresses cell proliferation and promotes 

lysosomal modulation. The model wrongly predicts that (+)-JQ1 is not a phospholipidosis 

inducer, which is primarily attributed to the absence of significant features, such as a 

hydrophilic amine group with a pKa value below 7.4 (Figure 5C). We also analyzed the 

features of the 18 false negative (FN) cases (Figure 4E and Table S7) in the chemogenomic 

compound and lysosomal modulation sets. The majority of them (89%) did not contain the 

“pKa ≥ 7.4” feature, indicating available amines were not predicted to be sufficiently 

hydrophilic. These results could prompt the development of better pKa prediction approaches 

or challenge the necessity of compounds to be protonated in order to induce PL. On the other 

hand, a certain number of false positive (FP) cases were also identified, such as (S)-ZINC-3573. 

(S)-ZINC-3573 is the inactive enantiomer of chemical probe (R)-ZINC-3573, a selective 

agonist of MRGPRX2.45 (S)-ZINC-3573 was misclassified as inducer of phospholipidosis 

because it presents several features such as aromatic rings, “CH2QCH2”, and pKa ≥ 7.4. These 

two examples illustrated that the presence or absence of specific moieties and physicochemical 

properties was not sufficient to correctly classify all compounds. Taken together, the SHAP 

values assigned to each feature contribute to the transparency of the ML prediction, 

significantly aiding our comprehension of how the model arrived at the specific prediction. 

 

Structurally similar compounds may differ in inducing phospholipidosis  

Intrigued by the existence of compounds that produced a phospholipidosis phenotype that was 
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contradictory with the general pKa, cLogP and features associated with it, we decided to 

investigate the structural relationship between compounds with varying phospholipidosis 

annotations through analog analysis. In this study, we used a substructure-based approach 

known as the matched molecular pair (MMP)46 to identify structural analogs among the 

investigated three compound sets. MMPs can be obtained via the application of a compound 

fragmentation algorithm (see STAR methods for details).47 Through a systematic 

fragmentation of compounds, a total of 1,368 MMPs were generated, comprising 1,149 unique 

compounds (1,078 of which were curated and 71 were chemogenomic/lysosomal modulation 

compounds). This corresponds to approximately 45% of the entire collection of compounds 

analyzed indicating high structural diversity in the three sets. To visualize the generated MMPs, 

they were organized into a network (Figure 6, upper panel). In this network, the nodes 

correspond to compounds, and the edges represent the pairwise MMP relationship. Coordinated 

MMPs formed by subsets of compounds gave rise to the formation of distinct clusters within 

the network. Upon analyzing the generated MMPs, we were able to identify a total of 343 

clusters. In general, cluster sizes are small, with an average of three to four compounds per 

cluster. Out of the identified clusters, a significant portion of 213 (62.1%) consisted solely of 

non-inducers, while a smaller subset of 43 (12.5%) was composed exclusively of inducers. This 

suggests that compounds with similar structural characteristics tend to exhibit similar 

phospholipidosis profiles. However, we also detected 87 clusters (25.4%) that contained 

compounds exhibiting both phospholipidosis inducer and non-inducer characteristics 

indicating that structurally similar compounds may significantly differ in their 

phospholipidosis induction properties. The analysis of analogs with varying phospholipidosis 
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annotations yielded a total of 236 MMPs (17.2%). Among the MMPs, we have identified a 

total of 214 distinct chemical transformations (Table S8), representing variations in their 

chemical composition. The large number of transformations suggests that there is not a single 

or a few structural modifications that are able to unambiguously explain PL induction. The 

most frequent transformation is an H ↔ CH3 transformation (7 MMPs), followed by an H ↔ 

OH transformation (5 MMPs) and an H ↔ F transformation (4 MMPs). All of them are single-

atom modification indicating that minor structural modifications with conservative impact on 

physicochemical properties are enough to alter the PL behaviors of small molecules. This 

observation underscores the intricate nature of the PL mechanisms at play. These above results 

indicated that protonation state, pKa, cLogP and substructural features were insufficient to 

correctly identify all PL inducing compounds, which has important implications for the 

development of more robust computational methods and highlights the complexity of PL. 

 

Chemical probes and their corresponding negative controls may induce divergent 

phospholipidosis phenotypes 

It is noteworthy that out of the 236 MMPs with different phospholipidosis annotations, 13 

MMPs were related to compounds that we screened in-house. Intriguingly, four MMPs were 

formed by a chemical probe and the corresponding structurally related negative control, while 

the fifth MMP was formed by two chemical probes (GSK6853 and PFI-4). Three of them were 

highlighted in the network (cluster I, II, and III) and were summarized in Figure 6. 

In three cases, chemical probes were experimentally found to induce phospholipidosis, while 

their corresponding negative controls were non-inducers. Despite variations in activity against 
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their intended primary targets (controls are inactive or much less active), pairs consisting of 

chemical probes and negative controls frequently displayed similar physicochemical properties, 

including comparable pKa and cLogP values. Therefore, very small chemical modifications 

can transform a compound from a PL inducer to a non-inducer without significantly affecting 

physicochemical properties. For example, the chemical probe PPTN functions as an antagonist 

of the GPCR family member P2RY14 (IC50 = 0.5 nM).48 The mere substitution of a hydrogen 

atom with a methyl group nearly abrogates affinity for P2RY14 (IC50 = 4,381 nM, > 8,000-fold 

difference) whilst pKa and cLogP remain very similar. MS023 (targeting PRMT1, PRMT3, 

PRMT4, PRMT6, and PRMT8)49 and TP-472 (targeting BRD7 and BRD9)50 represent two 

additional examples of the same behavior. 

Another interesting chemical probe/negative control pair was TP-064/TP-064N (Figure S7) 

targeting PRMT4.51 In this case, despite replacing the methoxy group with a secondary amine, 

both compounds remained inducers – demonstrating that these small structural changes did not 

necessarily induce a change in the propensity of small molecules inducing PL. Finally, in the 

case of SGC3027 (Figure S7), which targets PRMT7,52 we observe the opposite behavior 

where the probe was experimentally confirmed to be a non-inducer while the negative control 

was an inducer of PL.  

Overall, the identification of this series of chemical probes/negative control pairs revealing 

differences in phospholipidosis induction, demonstrated that minor chemical modifications 

with very limited impact on pKa/cLogP values and overall compound structure can transform 

a compound from a PL inducer to a non-inducer. These small alterations in compound structure 

poses challenges on computational predictions explaining why overall compound properties 
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(pKa, cLogP,) were insufficient predicting PL in most cases. These results also caution on the 

use of negative controls without further validation or characterization since the observed 

phenotype differences between probes and controls can be mediated via PL and not the known 

drug target. 

 

Prediction and experimental confirmation of chemical probes inducing phospholipidosis 

challenge their use at recommended high concentrations  

Finally, we decided to apply our ML model to identify chemical probes that might be 

inadvertently producing PL at high concentrations and thus represent a risk when they are used 

for target validation. To identify high-quality probes, we used the Chemical Probes Portal 

(https://www.chemicalprobes.org/),33 predicted all of them using our ML algorithm. Of these 

high-quality probes, 160 probes were predicted to be PL inducers. We then prioritized 31 probes 

with predicted probability value greater than or equal to 0.7 to induce PL for experimental 

validation (see STAR methods for details). From these, we correctly predicted 21 chemical 

probes as PL inducers, resulting in a precision value of around 0.7. Table S9 provides a 

comprehensive list of the 31 probes that were tested and experimental raw data is provided in 

Table S10. Figure 7A summarizes the targets of these 21 chemical probes. In total, 31 targets 

covering epigenetic and kinase groups were identified illustrating that there is no prominent 

primary target that is shared or increases the likelihood of compounds inducing PL. Figure 7B 

depicts 10 of these chemical probes that we predicted and experimentally confirmed to induce 

phospholipidosis and are recommended for utilization at high concentrations (up to 10 µM) by 

the Chemical Probes Portal. The lower panel highlights the time and concentration-dependent 

https://www.chemicalprobes.org/
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progression of phospholipidosis induction, revealing an augmented induction at higher doses 

and prolonged exposure periods. These observations underscored the necessity of carefully 

accounting for such dose and time-dependent effects when employing these probes in 

experimental settings. Alarmingly, A-770041 and GSK484 induce phospholipidosis at their 

recommended 10 µM dose. In addition, A-770041, GSK343, adavosertib, and NVP-2 induced 

phospholipidosis at even lower concentrations (1 µM) (Figure 7C) that also fall within the 

Portal recommended concentrations. Therefore, when utilizing these probes at the suggested 

concentrations in functional cell assays, a contribution of phospholipidosis to the observed 

phenotype should be taken into consideration. We have contacted the Portal with a request to 

annotate the compounds accordingly.  

 

DiscussionDISCUSSION 

Given the importance of improving small molecule induced phospholipidosis for de-risking 

drug discovery and improving the quality of chemical probes,6,7 we have developed a live-cell, 

high-content imaging assay allowing time dependent studies and developed robust prediction 

models.  

Time dependent consequences of PL on cellular signaling are poorly understood. Importantly, 

our experimental results demonstrated the importance of studying time dependency in live cells, 

to ensure the correct characterization of compounds of interest. This time dependency may also 

explain some inconsistencies regarding the effect of compounds to induce DIPL found in the 

literature, although other factors and experimental setups such as cell line of choice could also 

have contributed. Overall, the imaging assay that we developed has the advantage of tracking 
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PL development across time without any dye toxicity and allowing for simultaneously 

assessing the influence of a compound on cell viability thus reducing costs and resources. 

Generating large-scale, robust datasets with experimental methods that track DIPL across time 

might hold the key to improve ML model performance further. 

Our computational methods confirmed previous observations that ML outperforms methods 

relying solely on physicochemical properties.28 RF was the best performing algorithm in our 

assessment using public data as well in our two in-house data sets. The AUC value of our model 

on the test set was similar to previously published methods.28 However, when benchmarked 

with two external datasets, our approach outperformed FP-ADMET38 a recently-published and 

easy-to-implement RF to predict DIPL (Figure 4E). Given that both methods use RF, we 

believe that that our larger compound set (aprox. 600 more compounds) for ML model 

construction, and the concatenation of features were key to improve performance and illustrate 

the advantages of our approach. Therefore, our algorithm, together with the comprehensive 

dataset that we have curated, represent a valuable addition to the available tool-kit to predict 

DIPL. Using the SHAP approach39,40 to interpret the best performing model, it became clear 

that pKa and LogP are still important features. However, many other features can also 

significantly contribute to the accuracy of the prediction. While pKa and cLogP values 

represent a property of the entire molecule, the remaining top features represent substructure 

properties including but not limited to cationic amphiphilic structures, such as peripheral 

amines and aromatic rings. However, by conducting this feature analysis on misclassified cases 

we also identified compounds displaying many PL features that did not induce PL.  

Divergent phospholipidosis profiles among closely related analogs that share similar 
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physicochemical properties suggested that the mechanism for inducing phospholipidosis is 

complex. Comparing data on related analogs also illustrated the challenge training 

computational models that reliably predict PL using reduced and simplistic physicochemical 

properties. On the other hand, identifying highly similar analogs that contain both inducer and 

non-inducer properties presented an opportunity for medicinal chemistry endeavors aimed at 

fine-tuning the structural features of phospholipidosis inducers to render them not inducing PL. 

We identified in ~ 20% of cases very similar compounds displaying opposing PL phenotypes 

including four pairs comprising a chemical probe and its inactive analog. Chemical probes are 

frequently used in cell assays to investigate the association between a specific gene and a 

phenotype53 and matched negative controls are expected to increase the confidence that 

observed phenotypes are indeed driven by the targeted protein. Our results highlight the need 

to also comprehensively characterize negative controls for phenotypes such as PL, as observed 

phenotype might be caused by PL induction rather than the presumed target. This hypothesis 

is in agreement with recent reports on distinct off-target effects of probes and their negative 

controls.54 

Our ML model and experimental data identified 21 chemical probes of high-quality chemical 

probes in the Chemical Probes Portal (https://www.chemicalprobes.org/) that induce 

phospholipidosis, some at the recommended cellular concentrations. Thus, the additional 

annotation of the compounds evaluated in the Chemical Probes Portal will add value for the 

biomedical community to this highly annotated compound set. With the improved PL 

prediction algorithm and the live-cell assay, we moreover provide a tool set to identify masked 

PL inducers among small molecule screening collections to increase robustness and 

https://www.chemicalprobes.org/
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reproducibility in biomedical research. However, closely related analogues such as chemical 

probes and their controls which differ in PL inductions also offer interesting tools studying 

consequences of PL on cellular signaling and potentially, they will lead to PL biomarkers for 

drug safety studies in the future.  

  

Limitations of the study 

While the ML models investigated in this study demonstrated robust predictive capabilities 

concerning PL property in small molecules, the existence of structurally related compounds 

capable of inducing varying PL inductions (as exemplified by the MMPs identified here) raises 

considerations regarding the efficacy of in silico methodologies that heavily rely on similarity-

property principle. This not only emphasizes the intricate nature of PL mechanisms and 

underscores the necessity for more advanced modeling techniques and descriptors to 

comprehensively characterize molecular structures, but also underscores the elucidation of PL 

phenomena in target-based mechanisms since current rationale has predominantly centered 

around chemical patterns and physicochemical properties (a generalized PL mechanism). This 

is particularly relevant for structurally similar molecules with different PL inductions, which 

often share common chemical features. Disparities in off-target profiles related to lipid 

metabolism or synthesis among analogs could potentially serve as an explanatory avenue 

meriting thorough investigation. Additionally, the pKa calculations focused solely on the most 

basic center of small molecules, overlooking the contributions of other weak basic groups. 

Consequently, the representation of overall molecular basicity, particularly in the context of 

multiprotic molecules, might lack accuracy and fail to adequately characterize their protonation 
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states. Moreover owing the distinct morphologies inherent to diverse cell lines, specific 

validation and analysis should be performed in each new cell system. A comprehensive 

profiling within the cell system of interest or in diverse cell lines is recommended to improve 

predictability. Regrettably, due to cost and time issues, we did not test all compounds of the 

Chemical Probes Portal across different cell lines.  

 

SignificanceSIGNIFICANCE 

Phospholipidosis is a pathological condition characterized by an excessive accumulation of 

phospholipids in lysosomes, which is frequently induced by the exposure of cells to exogenous 

substances, including various pharmacological agents. This DIPL drug-induced 

phospholipidosis (DIPL) can have significant implications for drug safety and side effect 

profiles, potentially causing toxicity and should therefore be identified early on in the screening 

process for small molecules. We present a comprehensive analysis of diverse compounds for 

their capability to induce phospholipidosis. Assessing two diverse chemical libraries in a new 

high-content live cell assay, we annotated DIPL over time. The results were used to identify 

and implement an improved state-of-the-art machine learning algorithm to annotate 

phospholipidosis induction of compounds effectively, extending the currently used features to 

predict phospholipidosis and rationalizing the prediction via using SHAP the SHapley Additive 

exPlanations (SHAP) approach. By incorporating these elements, we not only validated the 

effectiveness of our annotation approach but also demonstrate that close analogs are able to 

induce divergent phospholipidosis phenotypes. We thus contribute to the knowledge and 

collective understanding of phospholipidosis as well as developed tools for compound 
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annotation. 

 

Figure legends 

Figure 1. Phospholipidosis detection in cells using compounds known to induce 

phospholipidosis. (A) Chemical structures with their calculated pKa and cLogP values of 

drugs known to induce phospholipidosis (amiodarone, chloroquine, chlorpromazine, sertraline, 

tamoxifen and haloperidol) and their pharmaceutical application area. Cationic amine group is 

highlighted in red. (B) Schematic representation of live-cell phospholipidosis protocol. (C) 

Fluorescent images of stained (blue: DNA/Nuclei, green: lysosomes, red: phospholipidosis 

dots) U2OS cells and the detection of the cellbody area and phospholipidosis (PL) dots after 

Cellpathfinder analysis. (D) Normalized PL total intensity of U2OS cells exposed to 10 µM, 

1 µM and 0.5 µM of reference compounds (amiodarone, chloroquine, chlorpromazine, 

sertraline, tamoxifen, and haloperidol) in comparison to cells exposed to 0.1 % DMSO after 

48h. Error bars show standard error of mean (SEM) of two four biological  

duplicatesreplicates. (E) Representative fluorescent images of stained (blue: DNA/Nuclei, red: 

phospholipidosis dots) U2OS cells treated with an PL inducer (haloperidol at 10 µM) in 

comparison to cells exposed to 0.1 % DMSO.   

 

Figure 2. Live-cell assay to distinguish phospholipidosis inducer and non-inducers and 

the screening of two in-house datasets. (A) Volcano plot of compounds in the chemogenomic 

compound set tested for phospholipidosis inducers or non-inducers in a live-cell assay using 

U2OS cells over 48h. Each dot represents a compound tested at 10 µM. The x-axis shows the 
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log2-fold change in normalized PL total intensity between cells treated over 6h and cells treated 

over 48h. The y-axis shows the negative log(q value) of the adjusted p-value for each 

compound. Reference compounds are shown in red. The orange square indicates compounds 

that are defined as “inducers” for significant phospholipidosis induction (normalized PL 

intensity > 2). 53 “inducers” compounds are highlighted in a heatmap showing normalized PL 

intensity after 12h, 24h and 48h of compound treatment, with orange representing high 

induction and blue representing low induction. Data was normalized against the average of 

DMSO (0.1%) treated cells. All experiments were performed in biological duplicates. 

Significance was calculated using an unpaired multiple test analysis using GraphPad Prism 

8.4.3. (B) Volcano plot of compounds in the lysosomal modulation set tested for 

phospholipidosis inducers or non-inducers in a live-cell assay using U2OS cells over 48h. Each 

dot represents a compound tested at 10 µM. The x-axis shows the log2-fold change in 

normalized PL total intensity between cells treated over 6h and cells treated over 48h. The y-

axis shows the negative log(q value) of the adjusted p-value for each compound. Reference 

compounds are shown in red. The orange square indicates the threshold for significant 

phospholipidosis induction (normalized PL intensity > 2). 29 “inducers” compounds are 

highlighted in a heatmap showing normalized PL intensity after 12h, 24h, 48h, and 72h of 

compound treatment, with orange representing high induction and blue representing low 

induction. (C) Schematic overview of the different data sets used in this study (Curated curated 

data set, Chemogenomic chemogenomic compound set, Lysosomal lysosomal modulation set) 

and the number of overlapping compounds. (D) Bar diagram of different data sets used in this 

study (curated data set, chemogenomic compound set, lysosomal modulation set). Bars with a 
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blue color are showing the number of compounds defined as “non-inducer”, while orange bars 

show the number of “inducers” of every compound set. 

 

Figure 3. Flowchart of the analysis. The process began with curation of reported 

phospholipidosis data from scientific literature, followed by the application of a multistep 

structural standardization protocol to obtain high-confidence data for model construction. 

Initially, a simple physicochemical property model was applied to the curated data set. However, 

it was found to have unsatisfactory performance, indicating the need for a more robust model 

capable of accurately distinguishing between inducers and non-inducers. Therefore, ML 

models were subsequently developed. To validate the performance of the ML model, two in-

house screening datasets were utilized - a chemogenomic compound set and a lysosomal 

modulation set, in addition to a test set. The evaluation metrics were used to select the best ML 

model, which was subsequently used for practical applications in predicting chemical probes 

in the Chemical Probes Portal. The metric of recall assesses the model's ability to correctly 

identify positive samples, while the F1 score is a measure of the harmonic mean of precision 

and recall. Accuracy provides an overall estimate of the model's prediction accuracy. 

 

Figure 4. Performance machine leaning models in combination with different molecular 

representations. The violin plots illustrate the performance of four different ML algorithms, 

which were based on MACCS and ECFP4 fingerprints concatenated with calculated LogP and 

pKa. The models were evaluated using the test set (A), chemogenomic compound set (B) and 

the lysosomal modulation set (C) across 10 independent trials. Based on the best trial of the 
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RF with MACCS concatenated features, ROC curves for three sets are plotted (D) and the 

statistical performance measures of the computational models, including the simple 

physicochemical model and FP-ADMET model are presented (E). TP refers to "true positive", 

TN to "true negative", FP to "false positive", and FN to "false negative". The metric of recall 

assesses the model's ability to correctly identify positive samples, while the F1 score is a 

measure of the harmonic mean of precision and recall. Accuracy provides an overall estimate 

of the model's prediction accuracy; BA is the arithmetic mean of sensitivity and specificity 

when dealing with imbalanced data; MCC a metric used to assess the performance of binary 

classification models, a score of 0 indicates that the classifier performs no better than random 

guessing. The Receiver Operating Characteristic (ROC) curve and its corresponding Area 

Under ROC (AUC) were utilized as a threshold-independent metric to further assess the overall 

predictive performance. With the exception of the MCC, which ranges from -1 to 1, all other 

metrics are scaled between 0 and 1, with a score of 1 indicating optimal classification 

performance. 

 

Figure 5. Top ranked features analysis and rationalization of the prediction on exemplary 

cases. (A) Shown is the distribution of the top 15 features identified by SHAP analysis, which 

was conducted using the RF algorithm in conjunction with MACCS (concatenated with cLogP 

and pKa) for phospholipidosis inducer prediction. Each feature's line is represented by a series 

of dots, where each dot corresponds to a molecule, and the stacking of dots shows the density 

of SHAP values. A higher positive SHAP value suggests a more significant contribution to the 

prediction of phospholipidosis inducers. Atom symbols and bond types are provided at the 
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bottom of the figure for reference. (B) To aid in understanding the MACCS substructure 

patterns, the top 13 features (excluding pKa and cLogP) have been mapped back to a chemical 

structure, which is highlighted in lime. (C) Four exemplary compounds coming from in-house 

data sets depict how the model predicts the induction of phospholipidosis. Two of these 

compounds (top) were correctly predicted, while the other two (bottom) were misclassified. 

The contribution of each feature is presented alongside the SHAP force plot, which highlights 

the features that positively or negatively contribute to the inducer prediction with red and blue 

colors, respectively. In the force plot, features with a value of zero or one indicating the absence 

or presence of the corresponding feature and the length of the bars indicates the degree of 

contribution of each feature towards the prediction. The base value is the base probability and 

the number with black bold font in plot represents the final output (predicted probability to be 

PL inducer) of all features.  

 

Figure 6. Structure-phospholipidosis network and exemplary analog pairs with disparate 

phospholipidosis annotation. The network representation at the top displays MMP-based 

relationships between compounds from three sets. Each node represents a compound and the 

edges represent pairwise MMP relationships. The circular and rectangular nodes correspond to 

compounds from curated and in-house sets, respectively. The orange and blue hues of the nodes 

denote compounds that act as phospholipidosis inducers and non-inducers, respectively. At the 

bottom, three analog pairs consisting of chemical probes and their corresponding negative 

controls (highlighted in the network) are presented. Each pair is accompanied by the compound 

name and two calculated physicochemical properties (cLogP and pKa). The primary target gene 
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names corresponding to each probe are provided in the center. Structural modifications between 

pairs are highlighted in red. Additionally, fluorescent stained image (blue: DNA/Nuclei, red: 

phospholipidosis dots) of U2OS cells for each compound is also provided. 

 

Figure 7. Prediction and experimental validation of high-quality chemical probes from 

The the Chemical Probes Portal inducing phospholipidosis. (A) Target family distribution 

for the 21 probes confirmed to induce phospholipidosis. (B) Details of ten chemical probes 

correctly predictepredicted by the ML model and experimentally confirmed to be 

phospholipidosis inducers recommended for use at high concentrations (1 µM or 10 µM in cell-

based assays). Each probe is accompanied by its name, primary target (gene name), 

recommended in-cell concentration by the Chemical Probes Portal, and predicted probability 

of inducing PL. (C) Heat map showing normalized PL intensity in U2OS cells after 24h, 48h 

and 72h of selected compounds (amiodarone, UNC064, AZ191, I-CBP112, A-770041, 

GSK343, SGC-CBP30, adavosertib, NVP-2, borussertib) treatment at two concentrations (1 

µM and 10 µM) in comparison to cells treated with 0.l % DMSO. Compound A-770041 is 

highlighted as a chemical probe that is recommended at higher concentrations (1-10 µM) and 

that induces PL at longer time points. Orange is representing high PL induction and blue is 

representing low PL induction. Values show SEM of two biological duplicates.  

 



Cell Chemical Biology 

35 
 

Figure 1 

 



Cell Chemical Biology 

36 
 

Figure 2 

 

 

 

 



Cell Chemical Biology 

37 
 

Figure 3 

 

 

 

 

 

 

 



Cell Chemical Biology 

38 
 

Figure 4 

 

 



Cell Chemical Biology 

39 
 

Figure 5 
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Figure 6 
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Figure 7 
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STAR METHODS 

KEY RESOURCE TABLE 

REAGENT OR 
RESOURCE SOURCE IDENTIFIER 
Chemicals, peptides, and recombinant proteins 
Hoechst33342 Thermo 

Scientific 
Cat#: 62249  
https://www.thermofisher.com/order/catalog/product/62249 

HCS LipidTOX Red 
phospholipidosis 
detection reagent 

Thermo 
Scientific 

Cat#: H34351 
https://www.thermofisher.com/order/catalog/product/H3435
1?SID=srch-srp-H34351  

LysoTracker Green 
DND-26 

Thermo 
Scientific 

Cat#: L7526 
https://www.thermofisher.com/order/catalog/product/de/en/L
7526#:~:text=LysoTracker%20Green%20DND%2D26%20i
s,excited%20using%20a%20FITC%20filter. 

Trypan blue 0.4 % Thermo 
Scientific 

Cat#: 15250061 
https://www.thermofisher.com/order/catalog/product/152500
61 

Critical commercial assays 
AlamarBlue Cell 
Viability Reagent 

Invitrogen Cat#: DAL1025 

Autophagy LC3 
HiBiT Reporter 
Assay 

Promega Cat#: GA1050 

Experimental models: cell lines 

U2OS cells 

(female, 15-years 

old) 

ATCC HTB-96™ 

HEK293T (female, 
fetus) 

ATCC CRL-1573™ 

HepG2 (male, 15-

years old) 

ATCC HB-8065™ 

Software and algorithms 
PubChemPy GitHub https://github.com/mcs07/PubChemPy 
KNIME 4.6.2 KNIME 

Analytics 
Platform 

https://www.knime.com/ 

https://www.thermofisher.com/order/catalog/product/62249
https://www.thermofisher.com/order/catalog/product/H34351?SID=srch-srp-H34351
https://www.thermofisher.com/order/catalog/product/H34351?SID=srch-srp-H34351
https://www.thermofisher.com/order/catalog/product/de/en/L7526#:%7E:text=LysoTracker%20Green%20DND%2D26%20is,excited%20using%20a%20FITC%20filter
https://www.thermofisher.com/order/catalog/product/de/en/L7526#:%7E:text=LysoTracker%20Green%20DND%2D26%20is,excited%20using%20a%20FITC%20filter
https://www.thermofisher.com/order/catalog/product/de/en/L7526#:%7E:text=LysoTracker%20Green%20DND%2D26%20is,excited%20using%20a%20FITC%20filter
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canSARchem 
workflow 

KNIME 
Hub 

https://hub.knime.com/danieladolciami/spaces/Public/latest/c
anSARchem~hquSdFp3di4kiEv 

RDKit version 
2022.03.5 

Package https://www.rdkit.org/ 

PaDELPy GitHub https://github.com/ecrl/padelpy 
MOE 2020.09 Software https://www.chemcomp.com/Products.htm 
ChemAxon/Instant 
JChem Version 
22.16.0 

Software https://chemaxon.com/instant-jchem 

scikit-learn 1.0.2 Package https://scikit-learn.org/stable/ 
Python 3.9.10 Programmi

ng language   
https://www.python.org/ 

Cytoscape version 
3.9.1 

Software  https://cytoscape.org/ 

SHAP 0.41.0 Package https://shap.readthedocs.io/en/latest/index.html 
CQ1 microscope 
software 

Yokogawa v 1.04.03.01 

CellPathfinder 
Software v3.04.02.02 

Yokogawa N/A 

GraphPad Prism 
v8.4.3 

Graphpad 
Software 

https://www.graphpad.com/features 

Other 
CQ1 microscope Yokogawa N/A 
384-well cell culture 
microplate, PS, f-
bottom, µClear® 

Greiner Cat#: 781091 

ECHO® 550 
Acoustic Liquid 
Handler 

Labcyte N/A 

ECHO® source plate Labcyte Cat#: P.05525 
Cytomat2C24 
incubator 

Thermo 
Scientific 

N/A 

TC20 Automated 
Cell Counter 
 

Bio-Rad https://www.bio-rad.com/de-de/product/tc20-automated-cell-
counter?ID=M7FBG34VY 

PHERAstar® plate 
reader 

BMG 
Labtech 

N/A 

DMEM medium 
plus L-glutamine 
(high glucose) 

Thermo 
Scientific 

Cat#11965084 

McCoy’s 5A 
medium 

Gibco Cat#15410604 

Fetal bovine serum Thermo Cat#26140079 

https://www.chemcomp.com/Products.htm
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(FBS) Scientific 
Penicillin-
Streptomycin 
(10.000 U/ml) 

Thermo 
Scientific 

Cat#14190144 

DPBS Thermo 
Scientific 

Cat#14190-094 

Geneticin™ (G418 
Sulfate) 

Thermo 
Scientific 

Cat#10131035 

 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, susanne.mueller-knapp@bmls.de 

Materials availability  

This study did not generate any new reagents.  

Data and code availability 

The published article includes all datasets generated during this study, including the curated 

literature dataset (Table S5). The source code of our best ML model for PL prediction is 

available on: https://github.com/HuabinHu/ML-for-PL-prediction 

 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

Cell lines and cell line culture 

U2OS (female, 15-years old) cells were regularly tested for mycoplasma infection. Cells were 

grown in DMEM medium supplemented with 10% FBS and 1% Penicillin/Streptomycin 

(100U/ml penicillin and 100 mg/ml streptomycin) at 37°C and 5% CO2. 

HEK293T (female, fetus) cells were regularly tested for mycoplasma infection. Cells were 

https://github.com/HuabinHu/ML-for-PL-prediction
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grown in DMEM medium supplemented with 10% FBS and 1% Penicillin/Streptomycin 

(100U/ml penicillin and 100 mg/ml streptomycin) at 37°C and 5% CO2. 

HepG2 (male, 15-years old) cells were regularly tested for mycoplasma infection. Cells were 

grown in DMEM medium supplemented with 10% FBS and 1% Penicillin/Streptomycin 

(100U/ml penicillin and 100 mg/ml streptomycin) at 37°C and 5% CO2. 

U2OS Autophagy LC3 HiBiT Reporter (female, 15-years old) cells were regularly tested for 

mycoplasma infection. Cells were grown in McCoy’s 5A medium supplemented by 10% FBS 

(Thermo Scientific) and 250 µg/mL G418 (Thermo Scientific) at 37°C and 5% CO2. 

All cell lines were obtained from ATCC (details are described in the key resource table) without 

further authentication. Influence of sex, gender or both is not expected. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

METHOD DETAILS 

1. Phospholipidosis detection using confocal microscopy 

Human Osteosarcoma cells (U2OS) (ATCC® HTB-96), human hepatocellular carcinoma cells 

(HepG2) (ATCC® HB-8065™) and human embryonic kidney cells (HEK293T) (ATCC® 

CRL-1573™) were cultured in DMEM plus L-glutamine (high glucose) supplemented by 10% 

FBS (Thermo Scientific) and Penicillin/Streptomycin (Thermo Scientific). HCS LipidTOX 

Red phospholipidosis detection reagent (Thermo Scientific) was diluted in cell culture medium 

1:1000 and incubated for 5 minutes at 37°C and 5% CO2. To remove any aggregates, the dye 

was filtered using 0.2 µm sterile filters. Additionally, the cells were stained with 60 nM 

Hoechst33342 (Thermo Scientific) and 75 nM LysoTracker Green DND-26 (Thermo 

Scientific). For every cell line 1500 cells per well in 50 µL/well were seeded in 384- well plates 
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(cell culture microplate, PS, f-bottom, μClear, 781091, Greiner) in culture medium 

supplemented with the indicated amount of cell staining dyes. All compounds used in this study, 

were tested at 10 µM over a 48h time period in U2OS cells. Compounds from the Lysosomal 

modulation set and hit compounds from the chemical probe portal were additionally tested at 

1 µM over a 72h period. Reference compounds (amiodarone, chloroquin, chlorpromazin, 

sertralin, tamoxifen, haloperidol) were tested at three different concentrations (10 µM, 1 µM 

and 0.5 µM) in all three cell lines (HEK293T, HepG2 and U2OS) and were used as positive 

controls for all experiments. Cellular shape and fluorescence were measured at 10x 

magnification at 6h, 12h, 24h, 48h as well as 72h after compound exposure using a CQ1 high-

content confocal microscope (Yokogawa). Reference compounds were also imaged at 60x 

magnification. The following setup parameters were used for image acquisition: Ex 405 nm/Em 

447/60 nm, 500 ms, 50% (Hoechst33342); Ex 561 nm/Em 617/73 nm, 100 ms, 40% (HCS 

LipidTOX); Ex 488/Em 525/50 nm, 50 ms, 40% (LysoTracker Green); bright field, 300 ms, 

100% transmission, one centered field per well, 7 z-stacks per well with 55 μm spacing. Images 

were analyzed using the CellPathfinder software (Yokogawa). Viability assessment using a ML 

algorithm implemented in the CellPathfinder software was performed as described previously 

by Tjaden et al.8,55 In brief, cell body and cell nuclei were detected and gated in different 

categories based on different features of the cells. Cells showing “Hoechst High Intensity 

Objects” were excluded. Cells defined as “Normal” were further gated in cells showing healthy, 

fragmented or pyknosed nuclei.55 Phospholipidosis dots were defined as being included in 

lysosomes based on LysoTracker staining. Phospholipidosis was calculated using the total 

intensity (average) of channel 3. Data was normalized against the average of DMSO (0.1%) 



Cell Chemical Biology 

47 
 

treated cells. All experiments were performed in biological duplicates. Significance was shown 

which was calculated by using an unpaired multiple t test analysis of timepoints 12h and 48h 

using GraphPad Prism 8.4.3. Significance was shown using a two-way ANOVA analysis. 

 

2. AlamarBlueTM Cell cell viability assessment of cell staining dyes 
 

Human Osteosarcoma cells (U2OS) (ATCC® HTB-96ATCCHTB-96) were cultured in DMEM 

plus L-glutamine (high glucose) supplemented by 10% FBS (Thermo ScientificGibco) and 

Penicillin/Streptomycin (Thermo ScientificGibco). 5000 cells per well were seeded in 384-

well plates (cell culture microplate, PS, f-bottom, μClear, 781091, Greiner) containing 50 

µL/well culture medium one day prior to experimental read out. Cells were incubated over 

night at 37°C and 5 % CO2. Six different concentrations of HCS LipidTOX Red 

phospholipidosis detection reagent (Thermo Scientific) (1:4000, 1:2000, 1:1000, 1:500, 1:250, 

1:125) or LysoTracker Green DND-26 (Thermo Scientific) (400 nM, 200 nM, 100 nM, 50 nM, 

25 nM, 12.5 nM) or both (1:1000 HCD LipidTOX Red phospholipidosis detection reagent and 

75 nM LysoTracker Green DND-26) were added in six replicates. Staurosporine 10 µM was 

added as a positive control. After 24h of compound incubation alamarBlueTM HS was added 

1:10 (10 µL/well) to every well according to the manufacturer’s instructions. Plates were 

incubated for 1.5 h protected from light at 37°C and 5 % CO2. Fluorescence at an excitation 

wavelength of 560 nm and emission wavelength of 590 nm was measured using a PHERAstar® 

plate reader (BMG Labtech). Data was normalized against the average of DMSO (0.1%) treated 

cells. Two biological replicates were tested.  
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3. Autophagy LC3 HiBiT Reporter reporter Assayassay 

Autophagy flux was detected as described previously.56 In brief, U2OS Autophagy LC3 HiBiT 

Reporter Cells (Promega) were cultured in McCoy’s 5A medium (Gibco) supplemented by 10% 

FBS (Thermo ScientificGibco) and 250 µg/mL G418 (Thermo ScientificGibco). 2000 cells per 

well were seeded in 384-well plates (cell culture microplate, PS, f-bottom, low volume, 784075, 

Greiner) containing 10 µL/well culture medium one day prior to experimental read out. Cells 

were incubated over night at 37°C and 5 % CO2. Compounds (Lysosomal modulation set) were 

added at two different concentrations (2.5 µM and 10 µM). Nano-Glo® HiBiT Lytic Reagent 

was added to the cells 1:100 prior to readout. Luminescence was measured 6h, 24h and 48h 

after compound exposure with or without autophagy induction of 250 nM Torin using a 

PHERAstar® plate reader (BMG Labtech).  

DATA CURATION, COMPUTATIONAL ANALYSIS AND MODEL BUILDING 

1. Chemogenomic compound and lysosomal modulation data set curation 

The “chemogenomic compound set” was selected from of our in-house compound library, 

including compounds covering kinases, epigenetic and GPCR targets. The screen was 

performed to further annotate the already implemented in-house library. The second set called 

“lysosomal modulation set” was selected from an in-house library of compounds, containing a 

collection of small molecules involved in autophagy.  

2. Literature-reported phospholipidosis data curation and structure standardization. 

Following a comprehensive review of phospholipidosis-related literature, we manually 

compiled compounds with reported in vivo or in vitro phospholipidosis annotations from nine 

literature sources.23,24,27,31,41,57-60 Compounds sourced from diverse origins were subjected to 

rigorous standardization protocols involving several steps. First, the compound's name was 
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converted to SMILES-format strings with the aid of the PubChemPy package 

(https://github.com/mcs07/PubChemPy). Subsequently, the chemical structures of the 

compounds were standardized using an open-access pipeline, namely the canSARchem 

registration workflow.61 This pipeline involved several steps such as salt removal, 

tautomerization, and charge neutralization. This multistep standardization protocol ensured the 

identification of duplicates, enabling appropriate subsequent analyses. 

3. Molecular representations 

In cheminformatics, various molecular representations, such as molecular fingerprints and 

numerical physicochemical descriptors, have been developed and widely adopted to encode 

chemical or physical information of small molecules in a computer-readable format for 

multiple applications.62 To explore the performance of ML prediction, we employed three 

widely-used two-dimensional (2D) fingerprints and one 2D physicochemical descriptor from 

Molecular Operating Environment (MOE 2020.09, 

https://www.chemcomp.com/Products.htm), namely: (1) the Molecular ACCess System 

(MACCS) fingerprint,63 which contains 166 predefined structural patterns encoded by a fixed 

position with a length of 166 bits (i.e., 166 substructures); (2) the extended-connectivity 

fingerprint (ECFP), which is a circular topological fingerprint capturing local atom 

environments by considering circular layers centered at each heavy atom with increasing bond 

diameter up to a maximum of a predefined value.64 Here, we employed the ECFP fingerprint 

with a bond diameter of 4 (ECFP4), which was folded into a 2048-bit vector; (3) the PubChem 

fingerprints, which encodes a total of 881 predefined molecular fragments or patterns to 

represent the chemical information of a molecule 

https://github.com/mcs07/PubChemPy
https://www.chemcomp.com/Products.htm
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(https://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt); and (4) 206 

MOE 2D descriptors, which provide partial charge, pharmacophore feature information, 

subdivided surface areas, and other physical properties in contrast to the previously mentioned 

fingerprints. The calculation of MACCS and ECFP4 fingerprints was performed using the 

RDKit package version 2022.03.5 (https://www.rdkit.org/). PubChem fingerprint were 

generated the by PaDELPy library,65 while MOE 2D descriptors were computed by MOE 

2020.09 software (https://www.chemcomp.com/Products.htm). In addition, the 

physicochemical properties of cLogP and pKa (the most basic center) were calculated using 

ChemAxon/Instant JChem version 22.16.0 (https://chemaxon.com/instant-jchem). These 

properties were concatenated with the molecular representations mentioned above. To fit with 

the binary nature of the molecular fingerprints, the continuous cLogP and pKa values were 

transformed into binary values, with a bit set to one if the cLogP value was greater than or 

equal to 3.0 (or if the pKa value was greater than or equal to 7.4) and a bit set to zero if the 

cLogP value was less than 3.0 (or if the pKa value was less than 7.4).41 

 

4. Building a simple physicochemical property model 

Previously calculated pKa and cLogP values were used to calculate Ploemen’s rule formulated 

as: (pKa)2 + (cLogP)2 ≥ 90, in conjunction with pKa ≥ 8 and cLogP ≥ 1, as the criteria for 

classifying a compound as a potential phospholipidosis inducer.22 

 

5. FP-ADMET model 

We utilized a recently developed model (https://gitlab.com/vishsoft/fpadmet) capable of 

https://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
https://www.rdkit.org/
https://www.chemcomp.com/Products.htm
https://chemaxon.com/instant-jchem
https://gitlab.com/vishsoft/fpadmet
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predicting absorption, distribution, metabolism, excretion, and toxicity (ADMET) for the 

compounds of interest.38 This model incorporates 20 distinct binary fingerprints, enabling the 

modeling of over 50 ADMET-related properties. Specifically, we employed the model to assess 

its performance on our two external sets on PL prediction, aiming to compare it with our own 

developed model. 

 

6. Chemical similarity calculation 

Tanimoto coefficient (Tc), as a popular similarity metric, was used to quantify the structural 

similarity between two compounds.66 Tc is generally defined as:  

Tc(A, B) =  
c

a + b − c
 

where a and b are the number of features present in compounds A and B, respectively, and c is 

the number of features shared by A and B. Here, molecules are represented by ECFP fingerprint 

with radius of 2 (ECFP4) and folded into 2048-bit vector. Tc measurements were carried out in 

RDKit package version 2022.03.5 (https://www.rdkit.org/). 

 

7. Machine learning models and hyperparameter optimization 

To discriminate phospholipidosis-inducers from non-inducers, four distinct ML algorithms 

were employed to generate classification tasks. All ML models were generated using the 

python-implemented scikit-learn 1.0.2 (https://scikit-learn.org/stable/).67 

7.1 k-nearest neighbor 

A k-nearest neighbor (k-NN) algorithm is a non-parametric and supervised ML method 

introduced by Fix and Hodges.68 It can be used to solve both classification and regression 

https://www.rdkit.org/
https://scikit-learn.org/stable/
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problems. In classification tasks, the algorithm uses predefined distance metrics to calculate 

the ranked distances between the compound of interest (unknown sample) and its k nearest 

neighbors in the training dataset.69 The majority vote (class label) among the k neighbors is 

assigned to the compound of interest. The value of k is a critical parameter that needs to be 

optimized to control the bias and variance of the method. 

7.2 Random fForest 

A random forest (RF) classifier is a popular supervised ML algorithm that involves an ensemble 

of decision trees.70 During the model training, each individual tree is constructed using a 

bootstrap sampling method71 and a random subset of features for node splitting, resulting in a 

diverse set of trees. The prediction for a given input data is obtained by aggregating the outputs 

of all individual trees and determining the majority class vote. RF is known for its robustness 

against overfitting and its ability to handle high-dimensional datasets. 

7.3 Support vector machine 

Support Vector Machines (SVMs) are a class of supervised ML algorithms widely used for 

classification tasks.72 The main objective of SVM is to find the optimal hyperplane(s) in a high-

dimensional feature space that can optimally separate support vectors from each class, thereby 

maximizing the margin or distance between the classes. However, if the input data points are 

not linearly separable in the original feature space, a kernel function can be applied to map 

them into a higher-dimensional feature space where they can be linearly separable.73 The choice 

of kernel function, including polynomial, radial basis function (RBF), and sigmoid kernel, is 

critical and often depends on the nature of the data and the classification task. 

7.4 eXtreme Gradient Boosting 
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eXtreme Gradient Boosting (XGBoost) is a highly popular supervised ensemble machine 

learning algorithm used for classification and regression tasks.74 Unlike RF, which relies on 

independent decision trees and a bagging-based algorithm, XGBoost follows a gradient 

boosting approach.75 It constructs the model in a sequential stage-wise fashion by progressively 

adding weak learners, typically decision trees that perform slightly better than random guessing. 

The algorithm iteratively improves the ensemble by leveraging the prediction performance of 

the preceding learner. It dynamically adjusts the weight distribution, giving greater emphasis 

to samples that have a significant influence on the construction of the subsequent learner. By 

aggregating multiple shallow learners and considering the importance or weight assigned to 

each learner, XGBoost effectively reduces bias and enhances predictive performance. XGBoost 

is implemented in xgboost package (https://xgboost.readthedocs.io/en/stable/). 

 

7.5 Hyperparameter optimization  

The ML models were fine-tuned by adjusting their parameters through the use of an internal 

stratified 5-fold cross-validation technique, which was implemented using the scikit-learn 

package67 version 1.0.2 (https://scikit-learn.org/stable/) implemented in python version 3.9.10.  

For the k-NN algorithm, the optimal k values were selected from a range of [1, 3, 5, 7, 10], and 

the leaf size was adjusted with values of 30, 40, and 50.  

For the Random Forest algorithm, the following parameters were optimized: (1) the number of 

decision trees ("n_estimators": 100, 200, 300, 400); (2) the number of features considered 

during the search for the best split ("max_features": sqrt, log2, 0.7); (3) the minimum number 

of samples required at a leaf node ("min_samples_leaf": 1, 3, 5, 10); (4) the maximum depth 

https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/
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of the tree ("max_depth": 7, 10, 12, None). Additionally, the model was built using a balanced 

class weight.  

For the SVM algorithm, the following parameters, which greatly impact the performance of 

the model, were fine-tuned: (1) the regularization parameter ("C": 0.1, 1, 10, 50, 100, 200, 300, 

400, 500, 1000); (2) the selection of the kernel function (polynomial, RBF, and sigmoid kernel); 

(3) the kernel coefficient gama ("gama": 1, 0.1, 0.01, 0.001).  

For XGBoost algorithm, the following parameters were optimized: (1) the step size shrinkage 

used for update (“learning rate”: 0.05, 0.15, 0.25); (2) maximum depth of a tree (“max_depth”: 

3, 5, 7, 9); (3) minimum sum of instance weight (hessian) needed in a child 

(“min_child_weight”: 1, 3, 5, 7); (4) minimum loss reduction required to make a further 

partition on a leaf node of the tree ("gamma": 2, 4); (5) the portion of columns to be randomly 

samples for individual base trees (“colsample_bytree”: 0.3, 0.5); (6) the number of decision 

trees (n_estimators: 100, 300, 400, 500). 

8. Performance evaluation 

For all ML models, 70% of the curated phospholipidosis data were used for model training and 

hyperparameter optimization. The best performing hyperparameter combinations were then 

selected to generate the final classifier, which was trained with the complete training set. The 

remaining 30% of curated data (test set), coupled with two external data sets (chemogenomic 

compound and lysosomal modulation set), were utilized for evaluating the prediction 

performance of the model in a realistic scenario using 10 independent trials. To assess the 

model's performance, the recall, F1-score (F1), accuracy, balanced accuracy (BA), and 

Matthew’s Correlation Coefficient (MCC)were calculated using the following equations: 
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Recall =  
TP

TP + FN 
 

F1 =  
2TP

2TP + FP + FN
 

Accuracy =  
TP + TN

TP + TN + FP + FN
 

BA =  
0.5TP

TP + FN
+ 

0.5TN
TN + FP

 

MCC =  
TP × TN − FP × FN

�(TP + FP)(TP +  FN)(TN + FP)(TN +  FN)
 

where TP denotes “true positives”, TN “true negatives”, FP “false positives”, and FN “false 

negatives”. Recall measures the model's ability to detect positive samples; F1 score indicates 

the harmonic mean of precision and recall; accuracy represents the overall prediction accuracy 

of the model; BA is the arithmetic mean of sensitivity and specificity when dealing with 

imbalanced data; MCC a metric used to assess the performance of binary classification models, 

a score of 0 indicates that the classifier performs no better than random guessing. Moreover, 

the Receiver Operating Characteristic (ROC) curve and its corresponding Area Under ROC 

(AUC) are also utilized as a threshold-independent metric to further assess the overall 

predictive performance. With the exception of the MCC, which ranges from -1 to 1, all other 

metrics are scaled between 0 to 1 with 1 representing perfect classification. 

 

9. Model interpretation and probability calculation 

In order to gain better insights into the underlying factors that contribute to the 

phospholipidosis prediction, we utilized a locally interpretable explanation method called 

Shapley Additive exPlanations (SHAP).39,40 This approach, based on game theory, was 

originally developed to allocate the total gain among players in a cooperative team, allowing 

for the evaluation of individual player contributions to the outcome of a game. In the context 
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of our phospholipidosis prediction model, Shapley values were used to estimate the 

contributions of each feature to the final output. The magnitude and direction (sign) of the 

feature contribution are manifested by the Shapley values. Positive Shapley values indicate that 

a feature positively contributes to the prediction of phospholipidosis inducers, whereas for 

features with negative contributions to inducer prediction (i.e., positive contributions to non-

inducer prediction), Shapley values with a negative sign will be used. All features work in a 

cooperative manner, and the final output prediction reflects the additive Shapley values of all 

features. To calculate the predicted probability of a test compound using SHAP, the method 

first calculates the expected probability also referring to as the base probability. The base 

probability is obtained as the average model output over training set instances and corresponds 

to the predicted probability of a test compound with unknown feature values. Then, SHAP 

values are calculated for each feature of the test compound quantifying the contribution of each 

feature to the predicted probability relative to the expected value. The SHAP values are added 

to the expected value to modify the base probability. By combining the SHAP values with the 

base probability, we can obtain the final output probability of the ML model. SHAP analysis is 

carried out via using SHAP package version 0.41.0 

(https://shap.readthedocs.io/en/latest/index.html).  

 

10. Matched molecular pair generation 

Matched molecular pair (MMP) is defined as a pair of compounds distinguished by a single 

site.46 In order to identify structurally similar pairs, a computationally efficient fragmentation 

algorithm was introduced to systematically generate MMPs in large-scale manner. This 

https://shap.readthedocs.io/en/latest/index.html
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involved systematically fragmenting exocyclic single bonds in the compounds, yielding two 

fragments at each step.47 To obtain analogs that typically generated during compound 

optimization, strict size constraints were implemented during the fragmentation process to 

derive a core and substituent fragment. In particular, the core fragment was mandated to consist 

of no fewer than 1.5 times the number of non-hydrogen atoms present in the substituent 

fragment. Furthermore, the maximal size of fragment substituent was set to 13 non-hydrogen 

atoms.76 All MMPs were generated using MMP-related nodes that were integrated into KNIME 

4.6.2 (https://www.knime.com/). Following the generation of MMPs, they were organized in a 

network format using Cytoscape version 3.9.1 (https://cytoscape.org/). 

11. Chemical Probes Portal 

Compounds from the Chemical Probes Portal (https://www.chemicalprobes.org/), a publicly 

available resource based on expert reviews that aims to enable the assessment, selection, and 

utilization of chemical probes,33 were downloaded (accessed in August, 2022). Only the 

compounds with an in-cell rating of three stars or more were selected, resulting in 321 high-

quality chemical probes (from 795 probes in total). The best machine learning model was used 

to predict if any of them could potentially induce phospholipidosis. After removing those 

already existing in the curated dataset, we further prioritized the probes with a predicted 

probability value greater than or equal to 0.7 for experimental validation, yielding 31 probes 

for experimental confirmation. 

 

 

 

https://www.knime.com/
https://cytoscape.org/
https://www.chemicalprobes.org/
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QUANTIFICATION AND STATISTICAL ANALYSIS  
 

All statistical analysis was performed using GraphPad Prism 8.4.3. Statistical details and 

definition of parameters are stated in the star methods sections and figure legends. Sample sizes 

are indicated in the respective figure legend. 
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