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Abstract

This paper builds a spatial model of trade with supply-chain links to try to understand
the effect of economic links and policies on the spread of the Covid-19 pandemic during the
first wave across NUTS2 UK regions. We find that the fight to reduce infection rates was
more successful in the UK than in the European Union. Our results imply that without
the policy reaction in Europe, the number of deaths during the first wave of the pandemic
would have been about 4,400,000 larger in the European Union and about 1,217,000 higher
in the UK, and that these benefits vary greatly across UK regions. Comparing the effects
of the policies implemented in the EU27 and in the UK, we estimate that, in the absence
of European-Union’s anti-Covid-19 measures, the number of deaths in the UK would have
been an 80% larger; and that UK anti-Covid-19 measures saved 50,000 lives in the European
Union and 1,200,000 lives in the UK.
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1 Introduction

The recent COVID-19 pandemic has ended 4.55 million lives (as of October 1st, 2021), forced

quarantines all over the world, stopped global value chains for a significant amount of time, and

created one of the largest global recessions in recent years. However, as with the spread of other

infectious diseases, its impact in terms of lives and economic activity has varied greatly across

regions and industries (see, e.g., Villani et al. (2020) and de Vet et al. (2021)). In this paper,

we build on the idea that diffusion of infectious diseases depend on human interactions (e.g.,
∗Fidel Pérez Sebastián acknowledges financial support from ESRC-UKRI under grant ES/V015265/1, and
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see Fogli and Veldkamp (2021)), and in particular, on how dense is the economic network of a

given area. We consider endogenously determined economic interactions and analyze the effect

of the policies adopted to fight the first wave of the pandemic across different regions in the UK.

More specifically, the paper asks the following questions. What is the contribution of economic

linkages to the expansion of the disease? How many lives have the polices implemented saved?

The model we develop embeds an spatial economic model in the spirit of Allen and Arkolakis

(2014); Caliendo and Parro (2014) and Caliendo et al. (2017) into the canonical Susceptible,

Infected, Recovered (SIR) model by Kermack et al. (1927). The purpose of the proposed frame-

work is to analyze the two way causation between the spatial dynamics of an epidemic and the

spatial distribution of economic activity. More specifically, the setup incorporates Ricardian

trade á la Eaton and Kortum (2002), and extends the SIR model in two ways. First, similar

to Fernández-Villaverde and Jones (2020), we consider five population groups composed of sus-

ceptible, vaccinated, infected, resolving, and recovered individuals, and also account for deaths.

Second, we allow for spatial connections that are endogenously determined by the structure of

our economic geography model. The assumption is that when regions trade, people enter in con-

tact with one another so they put themselves at risk of getting infected or that the virus is itself

transported through the imported goods. As a result of the economic geography model, denser

regions will experience more rapid increase in infections for two reasons. First, within the region,

there are more interactions across individuals and thus, a higher probability of transmission.

Second, the larger a region is, the more it will trade with other regions, and thus, the higher the

probability of transmitting the disease across regions.

In our framework, the economy is composed of a set of locations that produce goods in

different sectors. Each sector produces three goods: a final product, an intermediate good, and

a composite intermediate or material. The first two can be traded but trade is costly. The third

one is only sold domestically within the region. In addition, following Caliendo and Parro (2014),

whereas the domestic movement of materials is inter-industry, cross-regional trade of intermediate

goods is purely intra-industry.1 This feature captures that the latter type of trade represents

the largest component of the trade flows of intermediates. For example, World Bank (2009)

finds that, from 1962 to 2006, worldwide intra-industry trade in intermediate goods increased

approximately from 30% to 60% of total trade. This share equals 42 percent in our European

Union 28-country group (EU28) dataset for the year 2013. What is most important is that these

inter- and intra-industry links across sectors mean that policies and changes that affect a given

industry can potentially affect all other sectors and regions. Our main contribution is to assess
1Compared to the sectoral structure presented by Caliendo and Parro (2014), the main difference with ours is

that we consider that final consumption products can cross regional borders. The reason is that some of them,
like tourism, can be important for the propagation of the virus and are tradable.
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how the heterogeneity in production structures and regional connections affect the spread of the

disease and its economic impact.

The model proceeds in two phases. For a given the population composition, the first phase

obtains the distribution of economic activity and bilateral trade shares. In the second phase, we

take as given the bilateral trade shares and the spatial distribution of economic activity along

with the disease ecology to determine how the population composition changes from one week

to the next. This creates a loop in which disease dynamics and economic activity affect each

other. In particular, disease prevalence can reduce the labor force in a region through either

mortality, morbidity or policy actions. These shocks affect the level of economic activity and

reduce international trade. The modification of the trade patterns, in turn, has an impact on the

spread of the disease by decreasing the amount of infection “exported” to other regions. These

general equilibrium forces resemble a behavioral response in which agents protect themselves

from the infection.

The explicit modelling of the geography is important to understand the disease dynamics.2

In general, those regions that are more isolated will receive and transmit less the infection. As

an example, take the evolution of the pandemic in Spain versus Italy and the UK. The spread

of the infection in Spain was faster in Madrid (a region in the center of the country) and then

expanded throughout the nation. In Italy, the infection started in the north and then moved

slowly towards the south. In the UK, in turn, the disease was more concentrated in the south

but, at the same time, more widespread than in other parts of Europe. Our model addresses

these singularities through the explicit modelling of the geography of trade in Europe.

We calibrate the model to match the distribution of workers and wages across 230 regions

from 28 countries in Europe for 10 sectors of production comprising the whole economy and

use our framework to assess through a set of counterfactuals, how policies adopted during the

coronavirus pandemic, which include social distancing and regional lockdowns, have affected the

impact of the disease. We focus on the first wave that goes from February 25th to July 15th,

2020.

We find that, even though the incidence of the disease was larger in the UK than in the

European Union, the fight to reduce the infection rates was more successful in the former economy

than in the latter. Our results also imply that without the policy reaction in Europe, the number

of deaths during the first wave of the pandemic would have been about 4,400,000 larger in the

European Union and about 1,217,000 higher in the UK, and that these benefits greatly vary

across UK regions. Comparing the effects of the policies implemented in the EU27 and in the
2Wilson (2010) surveys the literature on the links between geography and infectious diseases and notes that

socioeconomic conditions, public health infrastructure, urban versus rural environments, density and mobility of
the population are important factors explaining the types and abundance.
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UK, we estimate that, in the absence of European-Union’s anti-Covid-19 measures, the number

of deaths in the UK would have been an 80% larger, which would have implied 34 additional

deaths per 100,000 inhabitants. Finally, UK anti-Covid-19 measures saved 50,620 lives in the

European Union and about 1,200,000 lives in the UK.

The paper proceeds as follows. Section 2 describes the related literature. Section 3 introduces

the model. The calibration of its exogenous variables and parameters is discussed in section 4.

Section 5 presents the results. Section 6 concludes.

2 Related Literature

Our paper contributes to a large and growing literature on the economic interactions and infec-

tious diseases. We motivate our modelling strategy based on the empirical evidence supporting

the link between economic interactions and infectious diseases. Several early examples showed

the importance of diseases in developing countries. Chakraborty et al. (2010) introduce ratio-

nal disease behavior in a general equilibrium framework focused on the effects of the burden of

malaria and the HIV infection on economic development. They show that these diseases can be

a source of economic growth traps. Oster (2012), it turn, shows in the context of Africa, that

engaging in exports leads to a large and significant increase in new HIV infections mainly due

to the movement of truckers.

The connection between trade and infectious-disease transmission is not only prevalent in

developing countries. Adda (2016) provides evidence based on microdata that the expansion of

transportation networks and interregional trade had a significant impact on virus spreading in

France. Focusing on European pandemics going back to the 14th century, Jorda et al. (2020)

find important long-run economic consequences even after 40 years. In the context of COVID-19

in the United States, Desmet and Wacziarg (2021) show that population density of a county is

persistently correlated with its COVID-19 severity. We contribute to this strand of the literature

by constructing and calibrating a model for a set of European regions at different stages of

development and assessing the importance of trade on the spread of the disease.

We are not the first in introducing spatial connections in epidemiological models. Lloyd

and May (1996) and Keeling (1999) are early examples of spatial models of epidemics. Paeng

and Lee (2017) extend the canonical SIR model by including spatial infections assuming that

the infection can be spread in a given radius. In the epidemiological literature, the connection

between trade and the spread of infectious diseases is also known, Mayer (2000) notes that vectors

of transmission of dengue fever or cholera were introduced in the U.S. through imported tires

and through dumping bilge water into the ocean. We depart from this literature by endogenizing

the spatial connections within a quantitative economic geography model, instead of assuming a
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given radius of infection or stochastic encounters.

More closely related to our context, Antràs et al. (2020) build a two-country framework of

human interactions in which they combine a gravity equation structure and an epidemiological

model of disease evolution. In their model, the disease spreads as agents travel from one country

to another. We depart from them by building a multi-country and multi-sector setup with an

input-output structure rich enough to capture the transmission of the disease through bilateral

trade across all the network nodes. The inclusion of different sectors can also allow us to consider

a wider array of policies, like selected closures.

We use our model to address the effect of region-specific lockdown policies during the first

wave of the pandemic and the trade-off between the spread of the disease and potential losses

from not engaging in trade. Recent papers study optimal lockdown policies focusing on different

group populations (Acemoglu et al., 2020), the intensity and duration of the policy (Alvarez et al.,

2020), and the distributional consequences (Glover et al., 2020). More closely to our context,

Fajgelbaum et al. (2020) find that regional-specific lockdowns result in better outcomes than

uniform lockdowns. We depart from them by analyzing the policy effects at a higher regional

level, but our result go in line with theirs. We also depart from them in that we consider deaths

as a crucial vector affecting the labor supply.

Our article also talks to another branch of recent papers focused on consumer behavior and

output responses when faced with an infectious disease (Eichenbaum et al., 2020; Guerrieri et al.,

2020; Krueger et al., 2020). Crucially, we depart from them by looking at the differential effects

of having an open economy, multiple regions, and a rich input-output structure. Çakmaklı et al.

(2021) study how demand and supply shocks affect global vaccinations and how vaccinations of

other countries can potentially benefit home countries. They do not include, however, endogenous

links for the spread of the infection. We also extend the methodology by Fernández-Villaverde

and Jones (2020) to recover infection rates based on future deaths and use it to calibrate our

model with endogenous links in the disease.

3 The model

We assume the economy is composed of a set of G geographical locations or regions that belong

to different countries and J sectors or industries. Regions are denoted by g, i and h and sectors

by j and k. In each industry, there is production of a composite intermediate or material, an

array of different varieties of intermediate goods, and a set of different types of final consumption

goods. Households provide labor to the production process. Labor is mobile across sectors and

immobile across locations. All markets are perfectly competitive.

We abstract from the movement of workers across locations, because this aspect does not
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seem to have played a significant role during the pandemic due, among other things, to the

mobility restrictions imposed. In the model, the effect of the movement of people to the spread

of the virus will be captured by the level of activity in sectors related to transportation and

tourism.

The model offers a rich supply chain structure. Local materials from different sectors are em-

ployed along with the labor input to produce intermediate goods. In the next stage, intermediate

goods produced by the same industry possibly in different locations are combined to generate

final consumption products and a composite intermediate or material. These connections among

the different stages of the production chain can provide amplification effects of trade disruptions.

We suppose that the intermediate goods and final products can be tradable or not, whereas

materials are not tradable. We consider that final consumption products can cross regional

borders, because some of them, like tourism, can be important for the propagation of the virus

and are tradable. Trade in intermediate goods is intra-industry, which represents the largest

component of the world trade flows of intermediates.

Let us now move to describing the model demographics. For simplicity, we omit time sub-

scripts. The size of the population in region g equals Ng. This population is composed of five

groups: susceptible vaccinated and susceptible non-vaccinated people—denoted by Vg and Sg,

respectively—who are not infected but can develop the disease; infected individuals, Ig; resolv-

ing cases Rg who can pass away with probability δ or recover with probability (1 − δ);3 and

recovered Cg, who can potentially get reinfected. Hence, it must be satisfied that

Ng = Sg + Vg + Ig +Rg + Cg. (1)

We will consider the possibility that recovered and vaccinated individuals may rejoin the sus-

ceptible non-vaccinated population once the partial immunity acquired by being exposed to the

virus or the vaccine is lost.

Only a fraction lgH from each group H can supply labor services. This fraction lgH will be

taken as exogenous, given by morbidity and policy considerations. Then, the available labor

force Lg equals:

Lg = lgSSg + lgV Vg + lgIIg + lgRRg + lgCCg. (2)

With these ingredients, the model can be numerically solved through a loop that consists of

two phases. In the first phase, given the population composition, we can obtain the spatial dis-

tribution of economic activity. The second phase takes as given the spatial distribution delivered

by the first phase, along with the disease ecology to determine how the population composition
3Resolving cases are infected individuals that cannot infect other people. Fernández-Villaverde and Jones

(2020) suggest that distinguishing between infection and recovery periods matters for the model to fit the data
well with biologically sensible parameters.
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changes from one day to the next. We consider that the infection can spread within and across

locations because of people contact. Finally, the new population composition feeds again the first

phase, and this loop continues until predictions for the desired number of weeks are generated.

3.1 Phase 1: Economic Allocations Across Space

The first phase of the model determines the underlying economic geography through which the

virus and the economic consequences of policies will potentially spread.

3.1.1 Households

Welfare-maximizing consumers in each location have identical preferences given by:4

Wg =
J∏

j=1

(
cjg
)αj

g ; (3)

where

cjg =

[∫ 1

0
cjg(Ω

j)1−1/ςjdΩj

]ςj/(ςj−1)

; (4)

the parameter αj
g represents the share of sector-j products in total consumption expenditure in

location g, that is,
∑J

j=1 α
j
g = 1; the variable cjg(Ωj) denotes the units consumed in location g of

variety Ωj from sector-j (Ωj is one among a mass of size one of different varieties); and the pa-

rameter ςj gives the elasticity of substitution between different varieties of sector-j consumption

products.

In each location, the population size Ng is divided between workers Lg and non-workers

Ng −Lg. Each of the two consumer types has, in principle, a distinct budget constraint, because

income may differ depending on whether they work or not. However, we assume that workers

pay lump-sum unemployment insurance (tg) at the location were they provide labor services, and

these taxes are fully redistributed as unemployment benefits (sg) to the non-working individuals

at the local level, that is, tgLg = sg(Ng − Lg). Furthermore, this redistribution is such that

their incomes are equalized, wg − tg = sg; where wg is the wage rate. Which implies that

tg = (Ng − Lg)wg/Ng and then wg − tg = Lgwg/Ng. That is, if there are more individuals

unemployed, income per capita falls; and the opposite occurs if more people work. We also

consider that consumers may pay lump-sum taxes τg that are directed to provide subsidies to

firms. Therefore, letting lg be the fraction of workers in region g (i.e., lg = Lg/Ng), the budget

constraint—which is the same for all consumers—can be written as:
4The assumption of a unitary elasticity of substitution in consumption might seem restrictive at first. However,

it is worth pointing out that consumption in our framework denotes consumption of gross output, that is, final
consumption expenditure. Herrendorf et al. (2013) estimate an elasticity of substitution in the range of 0.85−0.89

but also show that an elasticity of 1 can fit aggregate consumption shares as good as a CES. As the number of
sector increases, our assumption of a unitary elasticity becomes more credible.

7



lgwg +
Fg + D̃g

Ng
− τg =

J∑
j=1

∫ 1

0
P j
g (Ω

j)cjg(Ω
j) dΩj ; (5a)

where P j
g (Ωj) is the price of variety Ωj from sector-j consumed in g. The government of region

g can also collect revenues from tariffs (Fg) that are redistributed to the whole local population.

The term D̃g represents the regional trade deficit. Financing a trade deficit requires the inflow of

resources from other locations, and this is why D̃g appears in the consumer’s budget constrain.

Notice as well that this variable can be used in the experiments as a fiscal policy tool.

Given these preferences, the optimality conditions imply that the share of variety Ωj in

consumption expenditure on the goods produced by industry j is a function of relative prices

and the elasticity of substitution. In particular,

P j
g (Ωj)cjg(Ωj)

P j
g c

j
g

=

[
P j
g (Ωj)

P j
g

]1−ςj

; (6)

where P j
g represents the ideal price index of the sector-j final products, which equals

P j
g =

[∫ 1

0
P j
g (Ω

j)1−ςjdΩj

]1/(1−ςj)

. (7)

They also confirm that consumption expenditure on sector j products in a location g is a constant

fraction of total income given by αj
g.

Taking into account that budget constraint (5a) says that income is fully spent in buying

consumption goods, we can write welfare, equation (3), using an indirect utility function approach

as:

Wg =
yg
Pg

; (8)

where yg is income per capita in region g, which equals

yg = lgwg +
Fg + D̃g

Ng
− τg; (9)

and Pg provides the ideal consumption price index that households face in location g,

Pg =

J∏
j=1

(
P j
g

αj
g

)αj
g

. (10)

Note that welfare depends on the fraction of workers lg and on the per-capita trade deficit and

tariff revenue. Thus, shocks to a sector affect welfare through the trade deficit, the tariff revenues

and the price index. Furthermore, constraining the share of working individuals in a region has

ceteris paribus first order effects on welfare.5

5In order to derive (8), notice that the indirect utiity functions for working (WL
g ) and non-working (WNL

g )
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3.1.2 Firms

In each location g, a firm that operates in sector j produces either an intermediate-good variety

(qjg(ωj), ωj ∈ (0, 1)), a final-product variety (Qj
g(Ωj), Ωj ∈ (0, 1)), or a composite intermediate

or material (QMj
g ). The production of intermediate goods uses labor and materials from other

industries, whereas the production process of final goods and materials demand intra-industry

intermediates. Intermediate-good manufacturers and final-good and material producers in sector

j may benefit from subsidization rates sjg and sjg, respectively, which reduce the costs of the

different production inputs in the same proportion. All markets are perfectly competitive and

firms maximize profits. We next describe in more detail each of the different stages of the

production chain.

3.1.3 Intermediate goods

A firm in sector j produces a variety ωj of intermediate goods using labor (Lj
g(ωj)) and composite

intermediates from every other sector k (mkj
g (ωj)) according to the production function:

qjg(ω
j) = ajg zjg(ω

j)Lj
g(ω

j)γ
j
g

J∏
k=1

mkj
g (ωj)γ

kj
g ; (11)

where ajg is sector j’s fundamental productivity in intermediate-goods manufacturing by region

g; zjg(ωj) is a random sector-variety-specific productivity shock; and γjg denotes the share of value

added on gross output. The term affected by the product operator provides the use of materials

from all other sectors, with γkjg representing the expenditure share of the material from sector k

employed in the input composite of the intermediate good produced by industry j. We assume

that
∑J

k=1 γ
kj
m = 1− γjg . Production functions, then, exhibit constant returns to scale.

Because markets are perfectly competitive and firms are profit maximizers, intermediate-

good prices must equal marginal costs, bjg/[ajg zjg(ωj)]; where bjg gives the cost of a unitary input

bundle once subsidies are taken into account. The cost bjg is common to all varieties and given

by

bjg = (1− sjg)Υ
j
gw

γj
g

g

J∏
k=1

(
PMk
g

)γkj
g

; (12)

individuals are, respectively,

WL
g =

1

Pg

(
wg − tg +

Fg + D̃g

Ng
− τg

)
and WNL

g =
1

Pg

(
sm +

Fg + D̃g

Ng
− τg

)
.

Defining NgWg = LgW
L
g + (Ng − Lg)W

NL
g as total welfare in a location, Wg is given by

Wg =
Lg

Ng
WL

g +

(
1− Lg

Ng

)
WNL

g ,

which, substituting each of the indirect utility functions, and recalling that sm = wg − tg = wgLg/Ng and that lg

represents the fraction of working individuals in a location g, we get equation (8)
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where the constant Υj
g equals

Υj
g =

(
1

γjg

)γj
g J∏
k=1

(
γkjg

)−γkj
g

;

PMk
g is the price of the composite intermediate produced by sector k in region g; and wg denotes

the wage rate in location g. Equation (12) says that the subsidy will translate into lower prices

because it complements market revenues at paying for the inputs. Notice that the term 1 − sjg

can be written as a common factor because of constant returns to scale and because production

subsidies reduce all input costs by the same proportion.

3.1.4 Final products

In each sector-region (j, g) pair, a set of final goods indexed by Ωj are produced under perfect

competition using intermediate goods from the same sector following a Dixit-Stiglitz aggregator

with a constant elasticity of substitution σj > 1:

Qj
g(Ω

j) = Aj
gZ

j
g(Ω

j)

[∫ 1

0
rjg
(
ωj
)1−1/σj

dωj

] σj

σj−1

; (13)

where Aj
g is the sector-region fundamental productivity in final-goods production; rjg

(
ωj
)

repre-

sents the demand in region g for intermediate good ωj from the lowest-cost supplier, which can

belong to any of the regions.

Profit maximization implies the following demand function for each or the varieties:

rjg
(
ωj
)
=

[
(1− sjg) p

j
g

(
ωj
)

Bj
g

]−σj

Qj
g(Ωj)

Aj
gZ

j
g(Ωj)

; (14)

where pjg
(
ωj
)

is the price of intermediate good ωj in location g; and Bj
g gives the cost of the

input bundle with subsidies already embedded as

Bj
g = (1− sjg)

[∫ 1

0
pjg
(
ωj
)1−σj

dωj

] 1

1−σj

. (15)

Equation (14) implies that the demand of intermediate ωj per unit of final output depends on the

ωj ’s price relative to the price of the other varieties of intermediates. Consequently, as a response

to the subsidy, the amount for intermediate products demanded can increase, not because of a

change in the price that firms perceived ((1 − sjg) pjg
(
ωj
)
), but because of the decrease in the

price of the final output (given by the marginal cost), which can cause an increase in Qj
g(Ωj).

3.1.5 Composite intermediate goods

Production of materials in sector j uses a very similar technology to the one of final goods. In

particular,

QMj
g = Aj

g

[∫ 1

0
rjg(ω

j)1−1/σj
dωj

] σj

σj−1

. (16)
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That is, it also combines varieties of intermediate goods coming from the same sector. The

difference with equation (13) is that productivity in the case of the production of the composite

intermediate is fully deterministic. Clearly, the demand for intermediate inputs will be very

similar to the one delivered by final goods; in particular,

rjg
(
ωj
)
=

[
(1− sjg) p

j
g

(
ωj
)

Bj
g

]−σj

QMj
g

Aj
g

; (17)

Because composite intermediate goods do not engage in inter-regional trade, the price paid for

them by intermediate-goods manufacturers is directly given by the marginal cost of production

in the same location. This implies that

PMj
g =

Bj
g

Aj
g

. (18)

3.1.6 Inter-regional trade and destination prices

Intermediate goods and final products can travel across locations. Inter-regional trade is costly.

Trade costs combine tariffs and iceberg transportations costs. We consider that tariff may be

different for intermediate and final goods. More specifically, a sector-j intermediate imported by

region g from location i involves a trade cost equal to

κjgi =
(
1 + τ jgi

)
djgi; (19)

where τ jgi is the imposed ad-valorem tariff on intermediate goods from sector j. The transporta-

tion cost djgi implies that the arrival of one unit of an intermediate product to g coming from

i requires sending djgi units produced of that product. For the case of final goods, trade costs

equal

Kj
gi =

(
1 + T j

gi

)
djgi. (20)

Now T j
gi represents the tariff on final goods from industry j, and djgi the iceberg costs related to

trade in final goods. Because we will use changes in iceberg costs as proxies to study the effect

of supply-chain disruptions, it is only assumed that djgi, d
j
gi ≥ 1 for all g and i. For the same

reason, the usual triangular inequality κjgi ≤ κjhiκ
j
gh and Kj

gi ≤ Kj
hiK

j
gh may not hold for all g, i

and h.

Taking into account these trade costs, the prices at destination of the traded products from

the lowest-cost supplier are the following:

pjg(ω
j) = min

i∈[1,G]

{
bjiκ

j
gi

ajgz
j
g(ωj)

}
(21)

and

P j
g (Ω

j) = min
i∈[1,G]

{
Bj

iK
j
gi

Aj
gZ

j
g(Ωj)

}
. (22)
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Equations (21) and (22) say that the price at destination will be given by the minimum across

locations of the product between the marginal cost and the trade cost. A more expensive input

bundle or higher trade costs will push the price up, whereas a larger productivity will push it

down.

Following Eaton and Kortum (2002), trade in the model obeys a Ricardian motive generated

by a random allocation of productivities across sectors and regions. In particular, the realizations

of the productivity variables zjg and Zj
g for varieties ωj and Ωj follow Fréchet distributions with

location parameter equal to one and sector-specific shape parameters θj and Θj , respectively. A

smaller value of the shape parameter implies a larger dispersion of the distribution. We suppose

that the random productivity variables are independently distributed across goods, industries

and regions, and that 1 + θj > σj and 1 +Θj > ςj . Results in Caliendo and Parro (2015) imply

that, with these assumptions on the distribution of efficiencies, the distribution of prices allow

rewriting equations (15) and (7) as

Bj
g = (1− sjg) Γ

(
1 +

1− σj

θj

)1/(1−σj)
 G∑

i=1

(
bjiκ

j
gi

aji

)−θj
−1/θj

, (23)

P j
g = Γ

(
1 +

1− ςj

Θj

)1/(1−ςj)
 G∑

i=1

(
Bj

iK
j
gi

Aj
i

)−Θj−1/Θj

; (24)

where Γ(·) is the gamma function.

In the case that a sector is not tradable, which implies that all the varieties of intermediate

goods and consumption products from that sector are bought from domestic producers, Caliendo

and Parro (2015) also show that the relevant price indices amount to imposing that κjgi = Kj
gi =

∞ for all i ̸= g in equations (23) and (24). Then, we end up with Bj
g = (1 − sjg) Γ(1 + (1 −

σj)/θj)1/(1−σj)bjg/a
j
g and P j

g = Γ(1 + (1− ςj)/Θj)1/(1−ςj)Bj
g/A

j
g.

3.1.7 Expenditure Shares

Let xjg and Xj
g be region g’s total expenditures on intermediate goods and final products from

sector j, respectively. They are obtained at destination prices, and therefore, include tariff

payments. Define xjgi and Xj
gi as the expenditures in location g on sector-j intermediate goods

and sector-j final products, respectively, imported by location g from location i. Finally, let πj
gi

and Πj
gi be region g’s total expenditure shares of intermediate goods and final products from

sector j exported by location i to location g, respectively; that is, πj
gi = xjgi/x

j
g and Πj

gi = Xj
gi/X

j
g .

Caliendo and Parro (2015) show that

πj
gi =

(
bjiκ

j
gi/a

j
i

)−θj

∑G
h=1

(
bjhκ

j
gh/a

j
h

)−θj
, (25)
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Πj
gi =

(
Bj

iK
j
gi/A

j
i

)−Θj

∑G
h=1

(
Bj

hK
j
gh/A

j
h

)−Θj . (26)

Bilateral trade shares contain important information. First, they are declining on transport

costs and increasing in the productivity of the producer (since this productivity reduces the

marginal cost directly). Second, they include information on the input-output structure of the

whole economy through the prices paid for intermediate inputs. Furthermore, this input-output

structure is also affected by the economic geography, since intermediate inputs can be imported

from abroad. In terms of the effects of policies regarding the control of COVID-19, this gravity

equation is potentially informative for several reasons. It can potentially capture the fact that

some sectors might be more affected by social distancing policies, since sectors can differ in

their labor input intensities. Dingel and Neiman (2020) estimate that, in the U.S., the share

of jobs that can be done from home significantly varies across cities and industries and also

show that this share is decreasing in the level of development of the countries. Our model

could plausibly capture this. Our model could also show the effects of how shutting down a

certain sector or region, would affect the rest of sectors and locations through the input-output

structure. Furthermore, in the second phase of the model, infections can be spread through

economic linkages, since some sectors are more interconnected than others, those regions that

are more intensive in certain inputs can show significantly faster infection rates.

3.1.8 Market clearing and government and regional deficits

Local labor markets require that the sum of labor employed in the different industries equals the

total amount of labor available in the region. Formally,

J∑
j=1

Lj
g = Lg (27)

Furthermore, because in equilibrium labor costs must equal a constant fraction γjg of the value

of the intermediate-goods production, the following condition must hold:

wgLg =
J∑

j=1

γjg

1− sjg

G∑
i=1

xjiπ
j
ig

1 + τ jig
. (28)

Notice that the right hand side (RHS) of equation (28) adds the expenditures across sectors and

regions on intermediate goods manufactured in location g that go to pay the labor input. It also

implies that payments to labor are in part satisfied using the subsidies, in an amount equivalent

to a fraction γjgs
j
g/(1 − sjg) of the revenues from sales. We divide by the tariff to convert each

expenditure amount into the value of production.
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In the same manner, the total value of the production of composite intermediates from sector

j in a location g has to be equal to a subsidy-weigted fraction (determined by the γjkg s) of the

expenditure on region g’s intermediate goods across sectors and locations. In particular,

PMj
g QMj

g =
J∑

k=1

γjkg

1− sjg

G∑
i=1

xki π
k
ig

1 + τkig
. (29)

Notice that market clearing conditions (28) and (29) imply as well that the intermediate goods

market clears.

Employing again a production-expenditure equality, market clearing in the location g’s final-

goods market requires that the value of the sector-j final-goods produced in g equals the con-

sumption expenditure across regions on final products from that location. Taking into account

that the revenues from the production activity of the final-product sector fully goes to pay for

the intermediate goods used as inputs, we can write the market clearing condition as:

xjg −
PMj
g QMj

g

1− skg
=

1

1− skg

G∑
i=1

Xj
iΠ

j
ig

1 + T j
ig

. (30)

The left hand side of equation (30) subtracts the value of materials to provide just the amount

of expenditure in intermediate goods satisfied by final-goods producers. The subsidy skg is in the

equation because the expenditure on inputs, xjg, equals the market revenues—given by the terms

affected by the sum operator—plus the subsidies received by the industry.

Note that consumers’ expenditure on sector-j products in region-i is a fixed fraction αj
i of

their income. Hence,

Xj
i = αj

iyiNi; (31)

where income per capita yi, given by equation (9), is a function of tariff revenues. We can now

write those revenues using the notation introduced previously as:

Fg =
J∑

j=1

G∑
i=1

(
τ jgi

xjgπ
j
gi

1 + τ jgi
+ T j

gi

Xj
gΠ

j
gi

1 + T j
gi

)
. (32)

Moving next to the determination of the trade balance, we consider that the regional trade

deficit D̃g is given by the sum of the sectoral deficits, D̃j
g. The sectoral deficit D̃j

g equals the value

of the region g’s imports of industry-j goods from all other locations minus the value of exports

of sector-j products from location g to all other locations. This is equivalent to imposing that the

deficit is given by the difference between total expenditure by region g on sector-j intermediate

and final products net of tariffs and the total value of production of industry-j intermediate and

final goods in location g. More specifically,

D̃j
g =

G∑
i=1

(
xjgπ

j
gi

1 + τ jgi
+

Xj
gΠ

j
gi

1 + T j
gi

)
−

G∑
i=1

(
xjiπ

j
ig

1 + τ jig
+

Xj
iΠ

j
ig

1 + T j
ig

)
. (33)
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The second parenthesis gives the value of production by adding across locations the amount

spent on products from the sector-region pair (j, g) net of tariffs.

Therefore, trade balance in location g implies the the sum of the sectoral trade deficits must

equal the regional one, which means

D̃g =

J∑
j=1

D̃j
g. (34)

It can be shown that the trade balance condition, equation (34) implies that the labor market

clears, that is, equation (28).

Finally, we allow for the possibility that the regional budget deficit, denoted by D̄g, is not

zero. Therefore, the following condition must hold:

D̄g =

J∑
j=1

G∑
i=1

(
sjg

1− sjg

xjiπ
j
ig

1 + τ jig
+

sjg

1− sjg

Xj
iΠ

j
ig

1 + T j
ig

)
+

J∑
j=1

sjg

1− sjg
PMj
g QMj

g − τgNg. (35)

That is, if the expenditure in subsidies is larger than the taxes collected to finance them, there

will be a positive budget deficit.

3.1.9 Equilibrium system in relative changes

As in Caliendo and Parro (2014), we solve the model in changes. Let us denote a proportional

change in a variable with a hat (ˆ) and the value of the variable next period with a prime (′).

Then, for example, τ̂ jgi = τ j′gi/τ
j
gi. The exogenous shocks that we will consider correspond to

new tariffs, τ j′gi and T j′
gi , new subsidies to firms, sj′g and sj′g , supply-chain disruptions proxied by

changes in the trade costs, d̂jgi and d̂jgi for g ̸= i, local production restrictions proxied by d̂jgg and

d̂jgg, and confinement policies captured by new stocks of available labor in the region, L′
g.

Equations (12) and (18) imply that the gross growth rate in the cost of the intermediate-goods

input bundle equals

b̂jg =

(
1− sj′g

1− sjg

)
ŵ

γj
g

g

J∏
k=1

(
B̂k

g

)γkj
g

. (36)

In turn, combining expressions (23) and (25) obtains the change in the cost of the final-goods

input bundle and the export shares of intermediate products as

B̂j
g =

(
1− sj′g

1− sjg

)[
G∑
i=1

πj
gi

(
b̂ji κ̂

j
gi

)−θj
]−1/θj

(37)

and

π̂j
gi =

(
b̂ji κ̂

j
gi

B̂j
g

)−θj

, (38)
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respectively; where κ̂jgi =
(
1 + τ j′gi

)
d̂jgi/

(
1 + τ jgi

)
.The gross growth rate in the sectoral price

index and the final-good export shares are delivered by equations (24) and (26) as

P̂ j
g =

[
G∑
i=1

Πj
gi

(
B̂j

i K̂
j
gi

)−Θj
]−1/Θj

(39)

and

Π̂j
gi =

(
B̂j

i K̂
j
gi

P̂ j
g

)−Θj

, (40)

respectively; where K̂j
gi =

(
1 + T j′

gi

)
d̂jgi/

(
1 + T j

gi

)
.

Market clearing conditions can be employed to obtain the future values of the expenditure

variables as a function of the above changes. In particular, market clearing for final-goods,

equations (29) and (30), implies that region g’s next-period expenditure in intermediate goods

from sector j is given by:

xj′g =
1

1− sj′g

(
J∑

k=1

G∑
i=1

γjkg

1− sj′g

xk′i π
k′
ig

1 + τk′ig
+

G∑
i=1

Xj′
i

Πj′
ig

1 + T j′
ig

)
. (41)

Notice that πk′
ig and Πj′

ig can be written as πk
igπ̂

k
ig and Πj

igΠ̂
j
ig, respectively.

From equations (9), (29), (31), (32) and (35), next-period’s expenditure in final goods from

sector j equals:

Xj′
g = αj

g

[
L′
gw

′
g +

J∑
k=1

G∑
i=1

(
τk′gi

xk′g π
k′
gi

1 + τk′gi
+ T k′

gi

Xk′
g Πk′

gi

1 + T k′
gi

)
+ D̃′

g − τ ′gNg

]
; (42)

where

D̃′
g =

J∑
j=1

G∑
i=1

(
xj′g π

j′
gi

1 + τ j′gi
+

Xj′
g Π

j′
gi

1 + T j′
gi

)
−

J∑
j=1

G∑
i=1

(
xj′i π

j′
ig

1 + τ j′ig
+

Xj′
i Π

j′
ig

1 + T j′
ig

)
. (43)

Again, we can write w′
g as wgŵg so that it becomes a function of the changes determined by

previous equations in the system.

The system formed by equations (36) to (43) is undertermined because the number of unknows

is equal to the number of equations plus one. In order to solve it, Caliendo and Parro (2014)

assume that the economy’s trade deficit in each location g is exogenous. We, on the other hand,

allow for the trace deficit to be determined by the model and, instead, required that the wage

rate does not vary. This looks to us more appropriate for the problem that we analyze.

Equations (36) to (43) imply that we do not need to calibrate fundamental productivities

and trade costs to solve the system. We simply start from a baseline scenario that consists of

initial data on regional wages, labor, and trade and budget deficits {wg, Lg, D̃g, D̄g}Gg=1, pairwise

regional expenditure shares and tariffs in every sector {πj
gi,Π

j
gi, τ

j
gi, T

j
gi}

G,G,J
g=1,i=1,j=1, and the as-

sumption of no subsidies for firms, sjg = sjg = 0. We also need to assign values to the labor share
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in gross output (γjg), the share of intermediate goods from sector k employed in the production

of sector j (γjkg ), the share of consumption expenditure on sector-j goods (αj
g), and the shape

parameters θj and Θj of the Fréchet distributions. With that information on our hands, we

consider shocks on the values τ ′gi, T
′
gi, s

j′
g , sj′g , d̂jgi, d̂

j
gi and/or L′

g, and solve the system going

through the following steps.

1. Assume ŵg = 0 for all g.

2. From equations (36) and (37) obtain {b̂jg, B̂j
g}G,J

g=1,j=1.

3. Once we know the cost of the unitary input bundles, we recover the values of {P̂ j
g , π̂

j
gi, Π̂

j
gi}

for all g ∈ {1, . . . , G} and j ∈ {1, . . . , J} from equations (39) to (40).

4. Obtain {xj′g , Xj′
g }G,J

g=1,j=1 using (41) and (42).

The above implies that, in this economy, an equilibrium in relative changes can be defined as

follows. Given the new value of the regional labor supply {Lg}Gg=1, regional deficits {D̃′
g, D̄

′
g}Gg=1,

and pairwise regional government policies in every industry {τ j′gi, T
j′
gi}

G,G,J
g=1,i=1,j=1, a competitive

equilibrium is a set of changes in intermediate-good and final-product price indices in for each

sector-location pair {B̂j
g, P̂

j
g }G,J

g=1,j=1, and pairwise regional expenditure shares in every sector

{π̂j
gi, Π̂

j
gi}

G,G,J
g=1,i=1,j=1, in addition to new values of the total sector-location expenditure volumes

{xj′g , Xj′
g }G,J

g=1,j=1, such that the optimizing conditions for households, intermediate-product man-

ufacturers, final-good firms and material producers—which are reflected in equations (12), (18),

(23) to (26) and (31)—hold, and market clearing in all markets is achieved through conditions

(29), (30) and (33).

3.2 Phase 2: Infection Dynamics

The dynamics take place at the local level but we allow for possible contagions across locations

depending on effective distance. Typically, epidemiology models characterize the transitions

from one state to another with exogenously given probabilities that refer to the characteristics

of the particular infection. Here, instead, we assume that transition probabilities depend on

two factors, one exogenous that captures the characteristics of the infection, and an endogenous

geographic component that captures how more economically active locations can be more prone

to infections since they have more connections with the rest of locations.

People that work face-to-face, people that work telematically, and people that do not work

have different probabilities of catching the disease due to their different number of encounters

with other people. Additionally, individuals that have recovered from the disease or have been

vaccinated can have a lower probability of becoming infected. We assume that all the infected,
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regardless of whether they are in hospital or not, are able to pass the disease to workers; obviously,

if the infected is in a hospital, they can pass the disease mainly to health workers.

We consider two scenarios where people can become infected. First, infections occur locally

through social interactions not related to market activities, like for example visiting relatives at

home or walking in the streets. Second, the virus can be transmitted through a market related

activity, what we call the geographic component, such as workers producing output, consumers

enjoying a beverage in a cafeteria, or product trade. Within this second component, the move-

ment of goods and services within and between regions can also be an important vector for

the transmission of the disease, because some degree of human interaction is needed to arrange

those transactions. For example, when infected people buy tourism or via infected truck drivers.

Actually, Oster (2012) finds that doubling exports increases HIV infections by 10-70% through

truckers in Africa. Importantly, truck transportation is responsible for the movement of 80% of

the world’s goods. In the same vein, Adda (2016) finds that the expansion of transportation net-

works and inter-regional trade explains an important part of the prevalence of infection diseases

in France.

Locally, susceptible individuals get infected with probability denoted by (1 − κ)ρg; where κ

captures the proportion of infections that arise in market-related contexts (trade or production)

and is time-invariant. The time-varying probability ρg provides the likelihood that a susceptible

individual gets the disease if an infected agent is met. The parameter ρg is affected by local

policies, local behaviors, and other non-production related characteristics. The weight of the

geographic component, in turn, depends on the level of market activity. This can be captured by

the expenditure variables xjig and Xj
ig. Hence, the dynamics for infected people can be written

as:

I ′g = (1− φ)Ig︸ ︷︷ ︸
Infected not becoming resolving

+ SgΦg; (44)

where the term Φg is given by

Φg = (1− κ)ρg
Ig
Ng︸ ︷︷ ︸

Local Component

+ κ

(
G∑
i=1

ρi
Ii
Ni

ΛiX̃ig

)
︸ ︷︷ ︸
Geographic Component

; (45)

and the coefficient φ gives the fraction of infected that become resolving every period.

According to motion equation (44), the number of infected people tomorrow depends on

infected people today net of those that become resolving cases. The equation also considers

that the susceptible can catch the disease. As expression (45) specifies, this can occur through

the local and the geographic components. The strength of the latter depends on the contagion

probability and the prevalence of the disease in the trade partner and also on the relative level
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of human interactions in transactions. In particular, the term X̃ig represents the level of market

interaction between any two regions i and g, and is given by:

X̃ig =

∑J
j=1

(
xjig + xjgi +Xj

ig +Xj
gi

)
∑G

h=1

∑J
k=1

(
xkhg + xkgh +Xk

hg +Xk
gh

) (46)

It says that the human-interaction level between two economies i and g is a function of bilateral

imports and exports if two different locations are involved or a function the local expenditure

volumes if market activity is fully local. Notice that the bilateral trade volumes in equation (45)

are weighted by a region variable Λi that controls for the degree of telematic work, among other

things.6

The following equations, along with equation (44), describe the full epidemiological model:

S′
g = (1− λg − Φg)Sg + αV Vg + αCCg (47a)

V ′
g = (1− αV )Vg + λgSg (47b)

R′
g = φIg + (1− ξ)Rg (47c)

C ′
g = (1− αC)Cg + (1− δ)ξRg (47d)

F ′
g = Fg + δξRg (47e)

N ′
g = Ng − δξRg (47f)

The parameter λg represents the fraction of the susceptible that are vaccinated during the period

in location g; αc and αv are the fraction of the recovered and the vaccinated that fully lose

immunity, respectively; the parameter ξ reflects the fraction of cases that resolve in a given

period, and therefore, its inverse pins down the average number of periods it takes for a case to

resolve; and φ relates to the average number of days (1/φ) a person is infectious.

Equation (47a) says that the size of the susceptible population decreases with the fraction λg

that receives the vaccine and the fraction Φg that gets infected by the Covid-19 virus, but rises

with the recovered and vaccinated that lose their immunity. The vaccinated population, equation

(47b), increases with the fraction of the susceptible that receive the vaccine and decreases with

the vaccinated individuals that lose immunity. In equation (52), in turn, a fraction φ of infected

individuals become resolving, and a fraction ξ of cases are resolved. The number of recovered

individuals, equation (47d), evolves in a similar way as the one of the vaccinated: a fraction αc

lose their immunity and some of the resolving, among the fraction δ that survives, recover during
6It can be show that the basic reproduction number of the disease, R0, increases in our setup with the level

of trade integration between two regions, X̃ig. See appendix A for the details. The coefficient R0 represents the
average number of secondary infections produced by a typical case of an infection in a population where everyone
is susceptible.
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the period. The evolution of the stock of fatalities (Fg) is simple, (47e) implies that the new

deaths come from the fraction (δξ) of resolving that resolve and die. Finally, the evolution of the

region’s population is given by equation (47f), which implies that a fraction δξ of the resolving

cases die.

4 Calibration

The main source for the calibration of the economic part of the model is Thiessen (2020), which

offers the Rhomolo-MRIO Tables for 2013 published by the European commission. The dataset

provides input-output tables for a set of 268 regions that include 267 EU28 NUTS2-2010 areas

plus the rest of the world (ROW). Nevertheless, due to the lack of sufficiently disaggregated data

for the disease variables, we need to aggregate some locations to the NUTS1 and country levels.

After doing so, we are left with 230 regions (see Table 1). The numbers are disaggregated into ten

main sectors of activity belonging to the NACE Rev2 classification (see Table 2). A summary of

the data sources employed for the calibration of both the economic and disease parameters—and

their values in some cases—are provided in Table 3.

From Thiessen (2020), we also compute αj
g, that is, the shares of the different sectors in total

consumption expenditure in each location. The same dataset allows deriving estimates of the

share of value added on gross output, γjg , and the expenditure share of each material employed

in the input composite of the intermediate good produced by other industries, γkjg .7

The sector-specific shape parameters θj and Θj of the Fréchet distributions related to the

productivity variables zjg and Zj
g , respectively, are obtained as follows. Consider two regions, i

and g, and the bilateral trade expenditures between the two, xjgi, x
j
ig, X

j
gi and Xj

ig. Recall that

expenditure shares πj
gi = xjgi/x

j
g and Πj

gi = Xj
gi/X

j
g are given in equilibrium by equations (25)

and (26). These expressions imply that we can write:

xjgi x
j
ig

xjgg xjii
=

(
κjgi κ

j
ig

κjgg κjii

)−θj

, (48)

and
Xj

gi X
j
ig

Xj
gg Xj

ii

=

(
Kj

gi K
j
ig

Kj
gg Kj

ii

)−θj

. (49)

Equations (48) and (49) provide gravity equations for intermediate and final products, respec-

tively. They present bilateral trade expenditures as a function of bilateral trade costs. Equations

(19) and (20) say that trade costs are composed of tariffs and iceberg costs. We assume, for the
7Due to the large number of observations, these and other parameter and variable values are not reported in

the paper. They are available from the authors upon request.
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only purpose of estimating the trade shares, that djgi = djgi = vgi e
µj
g+ηji+εjgi ; where vgi = vig rep-

resents symmetric bilateral trade costs like distance (geographical, language, etc...) or belonging

to a certain trade agreement; µj
g and ηji capture sector-specific fixed effects in the importer and

exporter regions, respectively; and εjgi is a random disturbance. Substituting those expressions

for trade costs into (48) and (49), equalizing tariffs to zero and taking logs, we obtain:

ln

(
xjgi x

j
ig

xjgg xjii

)
= −θj ln

(
vgivig
vggvii

)
+ ε̃jgi;

and

ln

(
Xj

gi X
j
ig

Xj
gg Xj

ii

)
= −Θj ln

(
vgivig
vggvii

)
+ ε̃jgi;

where ε̃jgi = εjgi + εjig − εjgg − εjii. Hence, all asymmetric components of the iceberg costs (µj
g,

µj
i , ηjg and ηji ) have cancelled out. In addition, we have equalized tariffs to zero because, in

the estimation, we use data on export spending for the EU28 in 2013 from Thiessen (2020) but

exclude the flows from and to the rest of the world; clearly, trade among EU members are not

subject to tariffs or other trade restrictions.

As proxy for the symmetric component of the bilateral trade costs, we employ distance

between regions obtained from Persyn et al. (2020). This dataset gives estimates of different

distance measures between EU regions at the NUTS2 level. We choose the distance measure

that provides arithmetic averages over the geodesic distance between many centroids for each

region-pair. Each region have more than on centroid and then vgg > 1. In the estimation, we use

data on expenditure variables (xjgi and Xj
gi) from the original 267 European regions considered

in Thiessen (2020) to maximize the amount of information. The results of the estimation of the

trade elasticities are presented in Table 4. The estimates range from 1.99 to 3.09 for intermediate

goods and from 1.94 to 3.09 for final products. The smallest elasticity corresponds to construction

(sector C), and the largest to public administration, defence, education, human health and social

work activities (sectors O_Q).

We now turn to the parameters that govern the disease dynamics. We set the values for Λg

from Dingel and Neiman (2020). In particular, we estimate the percentage of workers in each

sector that can work from home ςj and then, for each region, we compute Λg as

Λg = 1−
∑
j∈J

ςj
xjg +Xj

g∑
k∈J x

k
g +Xk

g

which is a weighted average where the weights are sectoral expenditure shares. This takes into

account the sectoral composition of each region.

Parameter κ comes from Eichenbaum et al. (2020) who estimate 17% of infections related

to work environments. We take φ, ξ and δ from Fernández-Villaverde and Jones (2020). The
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parameter φ is equalized to 0.125, which implies that an individual is infectious for 8 days, and

ξ to 0.143 so that the average case takes 15 days to fully resolve (8 days infectious plus 7 of

resolving). The mortality rate δ is taken which is set to 1%.

Next, since we focus on the first wave, we equalize to zero the vaccination rate λg and the

immunization loss for vaccinated αV . The evidence on reinfection rates for COVID-19 is still

unclear. Regarding reinfection among those not vaccinated, Sheehan et al. (2021) estimate that

the protection from getting infected ranges from 81.8−84.5%. Taking into account this evidence,

we fix αC = 0.168 which implies a protection from the infection of 83.15%.

Finally, we recover the time-variant ρg, that is, the probability that a susceptible individual

gets the disease.8 Because some regions do not have data on Covid-19 daily deaths (see Table

5 for details), we need to split our sample in two groups. The first group is composed of those

areas that do report daily deaths. The second one, in turn, is the set of regions that only

report confirmed cases. For those regions that report deaths, we extend the approach suggested

by Fernández-Villaverde and Jones (2020), which essentially boils down to obtaining ρg as a

residual using data on deaths only. This method is explained in detailed in appendix B.9

However, sometimes in a region, we encounter three consecutive days with zero deaths and

the method breaks down. When this occurs, we estimate a constant infection rate ρ̄g for the

region that presents the problem as follows. We first make κ = 0 to eliminate the geographic

component so that we can obtain a ρ̄g in isolation from other regions. Then, we estimate ρ̄g by

NLLS so as to minimize the distance of the predicted deaths from the actual death observations.

This estimated average infection rate is assigned (ρg = ρ̄g) only to the periods in which it is not

possible to recover it due to the consecutive-zeros problem.

For the regions that do not report daily deaths, we give daily values to ρg based on the

reported number of daily infections. To do that, we again first omit the geographical components

(i.e., κ = 0), and from equations (44) and (45) recover, for each day and region, a preliminary

ρg from the infection data. This preliminary ρg serves to generate the necessary time series of

predicted fatalities Fg from the system of equations (44) to (47e). Once we have the estimated

deaths, we follow the method described in appendix B to get ρt that will be used during the

simulations.
8For the calibration of the remaining disease parameters and initial values, ROW was assumed to be composed

by China, the U.S. and Switzerland. This means that for both, the EU27 and the UK, we consider at least 70%
of the trade volumes with other areas.

9In the calibration of ρg, we eliminate the geographical component, that is, take κ = 0. The reason is that, in
many periods, the large number of zero deaths makes the system where the {ρg}Gg=1 are obtained jointly (because
of the geographical component) indeterminate. This problem could be partially solved through singular value
decomposition and applying a least-squares method. However, the gap between predicted and actual deaths was
always significantly worse when using this alternative procedure.
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In order to start the simulations, we need initial values for different variables. Tables 6

and 7 provide some of those initial values for different economic and disease related variables,

respectively. The population size Ng at the beginning of the pandemic in each region comes from

the same sources as deaths (see Table 5). To be consistent with the input-output data, the rest

of numbers are extracted from the year 2013. We pick the expenditure shares of intermediate

goods and final products by sector, origin and destination, πj
gi and Πj

gi, from Thiessen (2020).

The number of workers, Lg, are obtained from different sources. In particular, for the EU28,

we use employment by NUTS 2 regions from regional labour statistics, Eurostat. For ROW, we

take the number of persons engaged from Penn World Tables, 10.0.

Wages, wg, are calculated as total compensation of employees divided by the employment

figures. Total compensation of employees for the EU27 group (EU28 minus the United Kingdom)

comes from the Eurostat regional accounts data; whereas for the UK, we get them from the gross

annual pay for all employee jobs reported by Annual Survey of Hours and Earnings. For ROW,

compensation of employees are directly taken from Thiessen (2020). Lump-sum taxes τg are

calibrated so as to reproduce the observed total expenditures on final products by region and

sector, Xj
g , provided by Thiessen (2020).

Subsidies for intermediate goods and final-good products/materials, sjg and sjg, respectively,

are equalized to zero. Bilateral ad-valorem tariff for intermediate and final goods, τ jgi and T j
gi,

respectively, are zero among EU members. The only tariffs different from zero are the ones

related to ROW. We assign values to the different industries using information from Eurostat

(2017) on average import tariffs imposed by the EU28 to other countries in 2013 and WITS -

UNCTAD TRAINS information (see appendix for details).

5 Results

We focus on the first wave of the Covid-19 pandemic, and more specifically, in the period that

goes from February 25 to July 15, 2020. First, we take a look at the fatality data and the

calibrated ρg. Figure 1 provides the total daily number of deaths in the European Union (EU27)

and in the UK. This number in our smoothed time series reached a maximum values of 2,867 in

the EU27 on April 4th, and 887 in the UK on April 11th. That is, the pandemic in the UK evolved

with a one-week lag compared to the European Union. Nevertheless, even the death events were

larger in continental Europe, the incidence of the disease was actually larger in the UK. We can

observe this fact in Figure 2 that reports the number of deaths per 100,000 inhabitants. In the

UK, this ratio reached 1.25, whereas in the EU27 its maximum was a bit less than half that

number, in particular it was 0.61.

Figure 3 presents the average value of the parameter ρg across NUTS2 regions. Remember
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that this parameter is calibrated as a residual, and therefore, its values capture the disease

ecology but also the effect of the policies applied to fight the pandemic. We can see in Figure 3

that the probability of infection reached higher values in the UK than in the European Union.

The maximum, in particular, was 0.20 on March 21st for the former economy and 0.14 on March

22nd for the latter. However, we can also see that the reduction was faster and deeper in the UK

than in the EU27. That is, policies seem to have been more successful in the UK, maintaining

after April 16th a gap in favor of the UK of about 2 percentage points.

Let us now have a more disaggregated view of the death data in the UK. Figure 4 plots the

number of deaths in each of the 37 NUTS2 regions in the UK. The largest number of daily cases

was achieved in Inner London-East (UKI2), Greater Manchester (UKD3) and West Midlands

(UKG3) with 118, 64 and 57 deaths in one day, respectively. The lowest daily numbers, on the

other hand, took place in North Eastern Scotland (UKM5), Highlands and Islands (UKM6) and

Northern Ireland (UKN0) with 3, 3 and 4 cases, respectively.

Even though the number of deaths and their relative magnitude per 100,000 inhabitants show

a high correlation of 0.561, they do not correlate perfectly. In the second column of results in

Table 8, we see that the largest volumes of deaths per 100,000 inhabitants are found in Greater

Manchester (UKD3), Cheshire (UKD6), Trees Valley and Durham (UKC1) and West Midlands

(UKG3) with rates equal to 93, 90, 87 and 87; and the lowest in Northern Ireland (UKNO), Dorset

and Somerset (UKK2) and Devon (UKK4) where these rates were 6, 19 and 22, respectively.

Our next task is analyzing what the predictions of the model say about the impact of the

policy measures implemented during the first wave and captured by the evolution of the param-

eter ρg. We start by looking at how the model does at matching the fatality data. Figure 5

shows that the model predictions follow well the trend and its changes in the data. Nevertheless,

they tend to underestimate the number of deaths. Comparing columns one and three in Table

8, we can see that this generates an error in the predicted total number of deaths of 19.5% and

24.8% for the European Union and the United Kingdom, respectively. This is due to the method

followed to calibrate the parameter ρg, which does not consider the geographic component of the

infection (see appendix for details).

The first question that we ask is what would have been the cost for the economy in terms

of deaths if no policy had been implemented. At the regional level, the parameter ρg reaches it

largest values at the beginning of the infection in the corresponding area, and then goes down

due to the policy actions implemented. Hence, in order to answer the above question, we let the

parameter ρg remain constant at its average over the first ten days during which region g reports

fatalities. The purpose of averaging out over ten days is reducing measurement error concerns.

Table 8 in the columns labeled as “Predicted deaths with ρ constant” gives the results from
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this exercise. Without the policy reaction, deaths in the European Union would have been

4,545,222 instead of the predicted 107,112, and 1,248,078 instead of 30,571 in the UK. Which

represent an increase rate of 4,143% and 3,983%, respectively. In terms of the lives saved per

100,000 inhabitants, the average for the EU27 and the UK equal 202 and 1718, respectively. That

is, again the impact looks stronger in the UK. Across NUTS2 UK regions, there is a relatively

high correlation of 0.668 between the number of deaths and the live saved by policies. More

specifically, the largest effect is found in Berkshire, Buckinghamshire and Oxfordshire (UKJ1)

where 2654 lives per 100,000 inhabitants were saved by the policy measures. Other areas where

more than 2000 lives per 100,000 inhabitants were saved include Cheshire (UKD6), Derbyshire

and Nottinghamshire (UKF1), Greater Manchester (UKD3), Inner London-East (UKI2), West

Midlands (UKG3) and Essex (UKH3). The smallest impact, in turn, is found in Lincolnshire

(UKF3), North Eastern Scotland (UKM5) and Dorset and Somerset (UKK2), where the lives

saved are between 849, 861 and 903 per 100,000 inhabitants, respectively.

In this paper, we are specially interested in measuring the impact of the economic links in

the pandemic. Let us start by looking at the weight of trade with different locations in each of

the UK regions. Table 9 says that the largest share in trade is UK based. Intra-region and cross-

UK-region trade accounts for between 83.0% and 96.2% of total trade. Whether the former form

of trade or the latter one dominated varies widely across regions. For example, Cheshire (UKD6)

is the one that shows the largest reliance in domestic trade: 50.6% is trade within the region and

25.4% comes from flows with other UK areas. Lincolnshire (UKF3) is, on the other extreme,

the one that relies the less from intra-region flows, only 28.7%, whereas its inter-regional trade

with the rest of the UK accounts for 66.1% of total trade. Trade flows with the European Union

also vary significantly across UK regions. The largest shares of 7.6% and 7.9% are shown by

Inner London East and West (UKI1 and UKI2), whereas the lowest of 3.2% is shown by Eastern

Scotland (UKM2). These results tell us that trade across regions may have had an important

effect on the spread of the disease.

A first assessment of the effect of these economic links is provided in the fourth column of

results in Table 8. It gives the percentage contribution of the Geographic component in equation

(45) to the generation of infected individuals, and therefore, to the number of fatalities. Recall

that the Geographic component is the one that collects the impact of all economic activity. The

weight of this component in total deaths is, on average, around 10%, and more specifically, 10.2%

in the European Union and 9.7% in the UK. Across UK regions, it reaches the highest values

of 19.6 percent in Inner London-East (UKI2), 17.0% for Eastern Scotland (UKM2) and 16.8%

for Devon. The smallest one, 7.8%, corresponds to Kent (UKJ4) and North Eastern Scotland

(UKM5).
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The geographic component is also affected by domestic economic activity. To get a closer

look at the effect of the trade relations with other nations. We consider the effect of maintaining

ρg constant in the EU27 but not in the UK. This will give us an idea of the impact of the applied

European-Union anti-Covid-19 policies on the UK prevalence. This effect in our model fully

runs through economic activity. The first three columns in Table 10 provide the results of this

experiment. Without the policies implemented in the EU27, the number of deaths in the UK

would have been a 80% larger. The lives saved by those policies amount to 24,434 or 34 per

100,000 inhabitants.

By region, Highlands and Islands (UKM6) are the one that was benefitted the most, with

lived saved per 100,000 inhabitants equal to 76. Then, Cornwall and Isles of Scilly (UKK3),

Cumbria (UKD1), Northern Ireland (UKN0), North Eastern Scotland (UKM5) and Lincolnshire

(UKF3) saved more than 50 lives each. The ones that benefitted the less were Greater Manchester

(UKD3), West Yorkshire (UKE4), Gloucestershire, Wiltshire and Bristol/Bath area (UKK1) and

West Midlands (UKG3), for which the EU27 policies saved less than 25 lives.

The last three columns in Table 10 focus exclusively on the policies implemented in the UK.

They show the results when we assume that ρg changes only in non-UK regions. They say that

UK anti-Covid-19 measures saved 50,620 lives in the European Union, which represents two lives

per 100,000 inhabitants. In the UK, this number is much larger; in particular, they saved a

total of 1,204,239 lives or 1,700 per 100,000 inhabitants. Berkshire, Buckinghamshire and Ox-

fordshire (UKJ1) was the most benefitted, with 2,649 lives saved per 100,000 inhabitants. It was

followed by Cheshire (UKD6), Greater Manchester (UKD3), Derbyshire and Nottinghamshire

(UKF1), Inner London-East (UKI2), West Midlands (UKG3) and Essex (UKH3); all of them

with more than 2,000 lives saved by the fight against Covid-19 in the UK during the first wave.

At the bottom of this ranking, we have Lincolnshire (UKF3), North Eastern Scotland (UKM5)

and Dorset and Somerset (UKK2) with 808, 818 and 864 lives saved per 100,000 inhabitants,

respectively. Interestingly, the correlation across UK regions between the lives saved by EU27

and by UK policies is -0.672. The reason is that the EU27 effect on the UK works exclusively

through economic links, whereas the one of UK policy affects the evolution of the disease also

through social interaction.

6 Conclusion

We have built a spatial model of trade with supply-chain links across NUTS2 European regions

to try to understand the effect of economic links and policies in the spread of the Covid-19

pandemic during the first wave, which goes from the 25th of February to the 15th of July, 2020.

Our have mainly focus on this effect within the UK.
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During that period, the incidence the disease was larger in the UK than in the European

Union. However, we find that the fight to reduce the infection rates was more successful in the

former economy than in the latter. More importantly, without the policy reaction in Europe,

the number of deaths during the first wave of the pandemic would have been about 4,400,000

larger in the European Union, and about 1,217,000 higher in the UK. In terms of the lives

saved per 100,000 inhabitants, the average for the EU27 and the UK equal 202 and 1,718,

respectively. On average, the largest gains where in areas where the volume of deaths was

higher, like Berkshire, Buckinghamshire and Oxfordshire, Cheshire, Greater Manchester, Inner

London-East, West Midlands, and Essex.

In terms of the effect of economic activity to the spread of the disease and the impact of

the policy measures, we find that the percentage contribution of the Geographic component

to the number of fatalities is, on average, around 10%. Hence, even though family and social

interactions have a larger weight, the one of economic activity is also significant. We also find

that the number of deaths in the UK in the absence of anti-Covid-19 measures in the European-

Union would have been a 80% larger; they saved about 34 lives per 100,000 inhabitants. In turn,

UK anti-Covid-19 measures saved 50,620 lives in the European Union, which represents two lives

per 100,000 inhabitants. In the UK, this number is much larger; in particular, they saved a total

of about 1,200,000 lives or 1,700 per 100,000 inhabitants.

We have just started exploiting the rich structure of the model. There is still much work

that can be done to understand the effects of economic links on the spread of the disease and

the capacity of the economy to recover from the recession. In future work, we plan to analyze

the effect on the more recent evolution of the pandemic and on the prospects of the economy to

recover of vaccination policies, telematic work, selected sectoral and regional closures, subsidies

and tariffs.
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A The Basic Reproduction Number in Our SVIRCF Model

Following Heffernan et al. (2005), we can write the equation for infected individuals in matrix

form as:

I′ = (I+ F−D) I; (50)

where I is the identity matrix, I′ is the vector of infections in each location at time t+ 1, and F

and D are defined as

F =



(1−κ)ρ1
S1
N1

+κΛ1ρ1X̃11
S1
N1

··· κΛgρgX̃g1
S1
Ng

··· κΛGρGX̃G1
S1
NG

...
. . . ··· ···

...
κΛ1ρ1X̃1g

Sg
N1

··· (1−κ)ρg
Sg
Ng

+κΛgρgX̃gg
Sg
Ng

··· κΛGρGX̃Gg
Sg
NG

... ··· ···
. . .

...
κΛ1ρ1X̃1G

SG
N1

··· κΛgρgX̃gG
SG
Ng

··· (1−κ)ρG
SG
NG

+κΛGρGX̃GG
SG
NG



D =



φ · · · 0 · · · 0
...

. . . · · · . . .
...

0 · · · φ · · · 0
...

. . . · · · . . .
...

0 · · · 0 · · · φ


For the two region case, these matrices equal:

F =

(
(1−κ)ρ1

S1
N1

+κΛ1ρ1X̃11
S1
N1

κΛ2ρ2X̃21
S1
N2

κΛ1ρ1X̃12
S2
N1

(1−κ)ρ2
S2
N2

+κΛ2ρ2X̃22
S2
N2

)

V =

(
φ 0

0 φ

)
Let us keep focusing on the simplest case of two regions for which the components of X̃gi do

not change over time, neither the parameters regarding the disease ecology. In addition, assume

that Sm,t = Nm,t and there is no vaccine available. Then, we have that the basic reproduction

number R0 is given by the largest eigenvalue of matrix B = FV−1. Matrix B is given by

B =


X̃11κρΛ + ρ (1− κ)

φ

X̃21κρΛ

φ
X̃12κρΛ

φ

X̃22κρΛ + ρ (1− κ)

φ


and the basic reproduction number is given by

R0 =
κρΛ

√
X̃2

11 − 2X̃11X̃22 + 4X̃12X̃21 + X̃2
22

2φ
+

ρ
(
X̃11κΛ + X̃22κΛ− 2κ+ 2

)
2φ
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(There seem to be subindices missing in ρΛ) which increases with trade integration, since the

partial derivatives are increasing in the trade share with the opposite region.

∂R0

∂X̃12

=
κρΛX̃21

φ
√
X̃2

11 − 2X̃11X̃22 + 4X̃12X̃21 + X̃2
22

> 0

∂R0

∂X̃21

=
κρΛX̃12

φ
√
X̃2

11 − 2X̃11X̃22 + 4X̃12X̃21 + X̃2
22

> 0

B Parameters for the Evolution of the Disease

In order to calibrate {ρgt}Gg=1, we follow the method in Fernández-Villaverde and Jones (2020) and

recover the parameter from deaths numbers. In addition, to ameliorate possible mismeasurement

problems, like for example underreporting during weekends, we first smooth those daily-deaths

series using a moving average of seven days and then a Hodrick-Prescott filter with smoothing

parameter 850.

This calibration method is applied to our case as follows. Let us add a time index (t) to the

different variables for mathematical convenience. Additionally, let us take the convention that Zt

provides the value of an arbitrary variable Z at the end of period t, and that ∆Zt+1 = Zt+1−Zt.10

Define also fgt+1 ≡ ∆Fgt+1, that is, the (smoothed) number of people that died on day t + 1

in region g. For the initial waves of the pandemic, in which there was no vaccine available, we

assume λg = 0 for all regions.

From equation (47e), we can solve for Rgt in terms of daily deaths as

Rgt =
fgt+1

δξ
, (51)

which then implies

∆Rgt+1 =
∆fgt+2

δξ
. (52)

Combining equations (47c) and (52), we can express infected individuals today as a function

of future daily fatalities:

Igt =
1

δφ

(
∆fgt+2

ξ
+ fgt+1

)
. (53)

Which implies

∆Igt+1 =
1

δφ

(
∆fgt+3 −∆fgt+2

ξ
+∆fgt+2

)
. (54)

Using the ratio of (54) to (53), the growth rate of the infected cases can be obtained as:

∆Igt+1

Igt
=

1/ξ(∆fgt+3 −∆fgt+2) + ∆fgt+2

1/ξ∆fgt+2 + fgt+1
. (55)

10Notice that the timing convention does not have any important implication for our previous discussion. It
would simply mean, for example, that when the susceptible is infected by the virus or vaccinated during period
t, it does not develop the disease or gets immunity until period t + 1; and that, since Lgt is then the number of
workers available at the end of period t, all the economic activity takes place at the end of each period.
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Next, equation (44), letting Ggt(Iit) denote the geographic component in equation (45), delivers

(1− κ)ρgt +
κGgt(Iit)Ngt

Igt
=

Ngt

Sgt

(
∆Igt+1

Igt
+ φ

)
.

Which substituting (53) and (55) becomes:

(1− κ)ρgt + κGgt(Iit)
δφNgt(

∆fgt+2

ξ + fgt+1

) =
Ngt

Sgt

(
1/ξ(∆fgt+3 −∆fgt+2) + ∆fgt+2

1/ξ∆fgt+2 + fgt+1
+ φ

)
. (56)

To get an expression for the evolution of the susceptible as a function of the fatalities, we

can use (47a), (45) and (53) to obtain the law of motion for this variable as:

Sgt+1 = Sgt

{
1− λgt − (1− κ)

ρgt
δφNgt

(
∆fgt+2

ξ
+ fgt+1

)
+

κ

(∑
i∈G

X̃iglitρit
1

δφNit

(
∆fit+2

ξ
+ fit+1

))}
+ αCCgt + αV Vgt.

Note we also need to include the law of motion for vaccinated and recovered individuals which

from (47b) and substituting equation (51) into (47d) yield

Vgt+1 = (1− αV )Vgt + λgtSgt (57)

Cgt+1 = (1− αC)Cgt +
1− δ

δ
fgt+1 (58)

Finally, we need initial values for {Ig0, Sg0, Ng0}Gg=1. For the stock of fatalities, recovered and

vaccinated, this value is zero, that is, Fg0 = Cg0 = Vg0 = 0. Knowing the number of fatalities

in the next two periods, we then obtain Ig0 and Rg0 from (53) and (51); and the number of

susceptible is directly obtained from (1) taking Ngt = Ng0 for all t from the sources reported in

Table 5.

In principle, knowing those numbers, and taking the daily deaths and fraction of vaccinated

{fgt, λgt}G,T
g=1,t=1 from the data, we could end up with a system of four times G equations, given by

(56) to (58), and four times G unknowns, {ρgt, Sgt+1, Cgt+1, Vgt+1}Gg=1 that is solvable. However,

the large number of zero deaths encountered in many periods make the system indeterminate

many times when the geographical component is considered. The solution that we have adopted

to solve this problem is assuming in the calibration of ρg that κ = 0. In this way, the system for

each region simplifies and becomes independent of other areas. Hence, for each period t ∈ [1,T]

and region g ∈ [1, G], we first recover ρgt from (56) and then {Sgt+1, Cgt+1, Vgt+1}Gg=1 from the

other three equations.
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Figure 1: Total daily deaths in the EU27 and the UK
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Figure 2: Daily deaths per 100,000 inhabitants in the EU27 and the UK
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Figure 3: Average daily ρg in the EU27 and the UK
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Figure 4: Total daily deaths in the UK NUTS2 regions
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Figure 5: Daily deaths: data versus predictions
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Table 1: NUTS2 Regions

Code Region Code Region

AT11 Burgenland (AT) BE1
Région Bruxelles-Capitale
/ Brussels H G

AT12 Niederösterreich BE2 Vlaams Gewest
AT13 Wien BE3 Région wallonne
AT21 Kärnten BG Bulgaria
AT22 Steiermark CYP Kypros
AT31 Oberösterreich CZ01 Praha
AT32 Salzburg CZ02 Strední Cechy
AT33 Tirol CZ03 Jihozápad
AT34 Vorarlberg CZ04 Severozápad
DE11 Stuttgart CZ05 Severovýchod
DE12 Karlsruhe CZ06 Jihovýchod
DE13 Freiburg CZ07 Strední Morava
DE14 Tübingen CZ08 Moravskoslezsko
DE21 Oberbayern DE30 Berlin
DE22 Niederbayern DE40 Brandenburg
DE23 Oberpfalz DE50 Bremen
DE24 Oberfranken DE60 Hamburg
DE25 Mittelfranken DE71 Darmstadt
DE26 Unterfranken DE72 Gießen
DE27 Schwaben DE73 Kassel
DE80 Mecklenburg-Vorpommern DEA1 Düsseldorf
DE91 Braunschweig DEA2 Köln
DE92 Hannover DEA3 Münster
DE93 Lüneburg DEA4 Detmold
DE94 Weser-Ems DEA5 Arnsberg
DED2 Dresden DEE0 Sachsen-Anhalt
DED4 Chemnitz DEF0 Schleswig-Holstein
DED5 Leipzig DEG0 Thüringen
DK01 Hovedstaden DK02 Sjælland
DK03 Syddanmark DK04 Midtjylland
DK05 Nordjylland EE00 Eesti
EL11 Anatoliki Makedonia, Thraki EL12 Kentriki Makedonia
EL13 Dytiki Makedonia EL14 Thessalia
EL21 Ipeiros EL22 Ionia Nisia
EL23 Dytiki Ellada EL24 Sterea Ellada
EL25 Peloponnisos EL30 Attiki
EL41 Voreio Aigaio EL42 Notio Aigaio
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Table 1: NUTS2 Regions

Code Region Code Region

EL43 Kriti ES11 Galicia
ES12 Principado de Asturias ES13 Cantabria
ES21 País Vasco ES22 Comunidad Foral de Navarra
ES23 La Rioja ES24 Aragón
ES30 Comunidad de Madrid ES41 Castilla y León
ES42 Castilla-la Mancha ES43 Extremadura
ES51 Cataluña ES52 Comunidad Valenciana
ES53 Illes Balears ES61 Andalucía
ES62 Región de Murcia ES63 Ciudad Autónoma de Ceuta (ES)
ES64 Ciudad Autónoma de Melilla (ES) ES70 Canarias (ES)
FI19 Länsi-Suomi FI1B Helsinki-Uusimaa
FI1C Etelä-Suomi FI1D Pohjois- ja Itä-Suomi
FI20 Åland FR10 Île de France
FR21 Champagne-Ardenne FR22 Picardie
FR23 Haute-Normandie FR24 Centre (FR)
FR25 Basse-Normandie FR26 Bourgogne
FR30 Nord - Pas-de-Calais FR41 Lorraine
FR42 Alsace FR43 Franche-Comté
FR51 Pays de la Loire FR52 Bretagne
FR53 Poitou-Charentes FR61 Aquitaine
FR62 Midi-Pyrénées FR63 Limousin
FR71 Rhône-Alpes FR72 Auvergne
FR81 Languedoc-Roussillon FR82 Provence-Alpes-Côte d’Azur
FR83 Corse HRV Croatia
HU Hungary IE Ireland
ITC1 Piemonte ITC2 Valle d’Aosta/Vallée d’Aoste
ITC3 Liguria ITC4 Lombardia
ITF1 Abruzzo ITF2 Molise
ITF3 Campania ITF4 Puglia
ITF5 Basilicata ITF6 Calabria
ITG1 Sicilia ITG2 Sardegna
ITH1 Provincia Autonoma di Bolzano/Bozen ITH2 Provincia Autonoma di Trento
ITH3 Veneto ITH4 Friuli-Venezia Giulia
ITH5 Emilia-Romagna ITI1 Toscana
ITI2 Umbria ITI3 Marche
ITI4 Lazio LTU Lietuva
LUX Luxembourg LVA Latvija
MLT Malta NL Netherlands
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Table 1: NUTS2 Regions

Code Region Code Region

PL11 Lódzkie PL12 Mazowieckie
PL21 Malopolskie PL22 Slaskie
PL31 Lubelskie PL32 Podkarpackie
PL33 Swietokrzyskie PL34 Podlaskie
PL41 Wielkopolskie PL42 Zachodniopomorskie
PL43 Lubuskie PL51 Dolnoslaskie
PL52 Opolskie PL61 Kujawsko-Pomorskie
PL62 Warminsko-Mazurskie PL63 Pomorskie
PT11 Norte PT15 Algarve
PT16 Centro (PT) PT17 Área Metropolitana de Lisboa
PT18 Alentejo PT20 Região Autónoma dos Açores (PT)
PT30 Região Autónoma da Madeira (PT) RO Romania
ROW Rest of the world SE11 Stockholm
SE12 Östra Mellansverige SE21 Småland med öarna
SE22 Sydsverige SE23 Västsverige
SE31 Norra Mellansverige SE32 Mellersta Norrland
SE33 Övre Norrland SI01 Vzhodna Slovenija
SI02 Zahodna Slovenija SK01 Bratislavský kraj
SK02 Západné Slovensko SK03 Stredné Slovensko
SK04 Východné Slovensko UKC1 Tees Valley and Durham
UKC2 Northumberland and Tyne and Wear UKD1 Cumbria
UKD3 Greater Manchester UKD4 Lancashire
UKD6 Cheshire UKD7 Merseyside
UKE1 East Yorkshire and Northern Lincolnshire UKE2 North Yorkshire
UKE3 South Yorkshire UKE4 West Yorkshire

UKF1 Derbyshire and Nottinghamshire UKF2
Leicestershire, Rutland and
Northamptonshire

UKF3 Lincolnshire UKG1
Herefordshire, Worcestershire
and Warwickshire

UKG2 Shropshire and Staffordshire UKG3 West Midlands
UKH1 East Anglia UKH2 Bedfordshire and Hertfordshire
UKH3 Essex UKI1 Inner London - West

UKI2 Inner London - East UKJ1
Berkshire, Buckinghamshire
and Oxfordshire

UKJ2 Surrey, East and West Sussex UKJ3 Hampshire and Isle of Wight

UKJ4 Kent UKK1
Gloucestershire, Wiltshire and
Bristol/Bath area

UKK2 Dorset and Somerset UKK3 Cornwall and Isles of Scilly
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Table 1: NUTS2 Regions

Code Region Code Region

UKK4 Devon UKL1 West Wales and The Valleys
UKL2 East Wales UKM2 Eastern Scotland
UKM3 South Western Scotland UKM5 North Eastern Scotland
UKM6 Highlands and Islands UKN0 Northern Ireland (UK)
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Table 2: NACE Rev2 sectors included in the analysis

Section Industry

A Agriculture, forestry and fishing
B_E Industry (except construction and mining)
C Mining
F Construction
G_I Wholesale and retail trade, transport, accommodation and food service activities
J Information and communication
K_L Financial, insurance, and real estate activities
M_N Professional, scientific, technical, administrative and support service activities
O_Q Public administration, defence, education, human health and social work activities

R_U
Arts, entertainment and recreation; other service activities; activities
of household and extra-territorial organizations and bodies

Table 3: Calibration Summary

Parameter Source Value | Description

αj
g Thissen et al. (2019)

Share of sector j in total consumption
expenditure in location g

γjg Thissen et al. (2019) Share of value added in gross output
γkjg Thissen et al. (2019) Input-output coefficients
θj ,Θj Thissen et al. (2019) and Persyn et al. (2020) Gravity equation estimation

Λg Dingel and Neiman (2020)
Estimated using data on who can work
from home and trade shares

κ Eichenbaum et al. (2020) 0.17 | Average infection rate related to work

ϕ Fernández-Villaverde and Jones (2020)
0.125 | Average infections per period.
Then 1/ϕ = 8 days

ξ Fernández-Villaverde and Jones (2020)
0.143 | Average number of days to resolve.
Then, 1/ξ = 7 days

δ Fernández-Villaverde and Jones (2020) 0.01 | Average fatality rate
λg Direct data on vaccinations Estimated by regions
αV Several sources 0.159 | Evidence on vaccine effectiveness
αC Several sources 0.168 | Evidence on reinfection rates

ρg Fernández-Villaverde and Jones (2020)
Time varying infection rate calibrated as a
residual using the model
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Table 4: Sector-specific shape parameters of the Fréchet distributions

Sectors Intermediates Finals

A 2.7776 2.7754

B_E 2.8126 2.8036

C 1.9930 1.9428

F 3.0822 3.0822

G_I 2.7182 2.7420

J 2.7242 2.6601

K_L 2.9438 2.9439

M_N 2.8146 2.8298

O_Q 3.0900 3.0903

R_U 3.0257 3.0228
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Table 5: Death and infection data sources by country

Country Country code Number of regions Indicator* Source

Austria AT 9 Deaths, population AGES
Belgium BE 3 Deaths Sciensano
Bulgaria BG 1 Deaths Our World In Data
Croatia HR 1 Deaths Our World In Data
Cyprus CY 1 Deaths Our World In Data

Czech Republic CZ 8 Deaths Ministry of Health
Denmark DK 5 Infections Statens Serum Institut
Estonia EE 1 Deaths Our World In Data
Finland FI 5 Deaths Helsing Sanomat
France FR 22 Deaths Government Statistical Office

Germany DE 38 Deaths Robert Koch Institute
Greece EL 13 Infections Ministry of Health
Hungary HU 1 Deaths Our World In Data
Ireland IE 1 Deaths Our World In Data
Italy IT 21 Deaths Dipartimento della Protezion Civile

Latvia LV 1 Deaths Our World In Data
Lithuania LT 1 Deaths Our World In Data
Luxembourg LU 1 Deaths Our World In Data
Malta MT 1 Deaths Our World In Data
Netherlands NL 1 Deaths Our World In Data

Poland PL 16 Deaths Government of Poland
Portugal PT 7 Deaths Ministry of Health
Rest of the World ROW 1 Infections Our World In Data
Romania RO 2 Deaths Our World In Data
Slovakia SK 4 Infections Radovan Ondas**

Slovenia SI 2 Deaths COVID-19 Sledilnik
Spain ES 19 Deaths Narrativa Tracking
Sweden SE 8 Deaths Public Health Agency of Sweden
United Kingdom UK 37 Infections National Health Service

* Population numbers at the time when the pandemic started come from the same sources.
** Radovan Ondas independently compiled a machine readable dataset from the reports published by the National Health Information
Centre. The data is accessible in his GitHub Repository: https://github.com/radoondas/covid-19-slovakia/
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Table 6: Values for certain economic variables in the initial period

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

AT11 134.0 26.582 -7.263 FR61 1351.6 36.943 -1.070
AT12 782.3 30.316 -12.218 FR62 1243.7 38.053 -5.194
AT13 796.1 51.764 -15.269 FR63 295.9 32.894 0.362
AT21 257.5 33.961 -11.470 FR71 2699.9 41.459 -6.766
AT22 584.6 34.507 -10.782 FR72 537.3 35.294 -0.426

AT31 719.2 37.197 -17.733 FR81 955.4 36.560 -12.551
AT32 273.8 39.259 -22.797 FR82 1955.2 40.466 -2.172
AT33 369.8 34.640 -20.136 FR83 62.2 76.115 5.869
AT34 187.4 36.073 -23.458 HRV 1524.0 13.286 -4.580
BE10 412.6 96.775 -15.889 HU00 3892.8 11.470 -4.055

BE20 2774.6 41.152 -15.051 IE00 1888.5 37.022 -12.201
BE30 1343.2 36.687 -2.747 ITC1 1770.7 28.079 2.619
BG00 2934.9 5.662 -3.473 ITC2 54.7 29.565 1.156
CYP 365.1 22.851 -10.685 ITC3 603.1 28.411 2.506
CZ01 649.4 27.075 -22.304 ITC4 4221.5 32.745 3.376

CZ02 626.2 10.431 -4.104 ITF1 485.9 24.778 0.550
CZ03 576.1 11.787 -4.412 ITF2 98.6 23.228 -1.146
CZ04 504.8 10.136 -3.759 ITF3 1580.5 25.247 1.002
CZ05 689.5 11.280 -2.701 ITF4 1158.4 25.028 -1.909
CZ06 792.9 12.658 -5.787 ITF5 178.6 23.431 -1.743

CZ07 554.2 11.232 -2.121 ITF6 518.2 24.357 -5.995
CZ08 544.1 12.379 -4.676 ITG1 1334.7 26.096 -0.919
DE11 2024.8 46.418 -19.429 ITG2 546.3 24.201 -1.089
DE12 1382.3 40.482 -7.598 ITH1 243.0 34.195 -149.067
DE13 1141.4 33.852 0.691 ITH2 229.2 31.358 -133.874

DE14 943.3 37.081 1.375 ITH3 2043.1 27.872 -21.282
DE21 2376.5 44.906 -30.306 ITH4 495.5 30.221 -64.095
DE22 626.0 31.706 3.137 ITH5 1904.1 29.684 -19.811
DE23 566.2 34.709 4.314 ITI1 1534.1 26.074 -22.678
DE24 542.5 33.663 6.094 ITI2 349.0 24.186 -80.430

DE25 864.6 41.955 3.737 ITI3 615.7 24.433 -62.624
DE26 674.6 34.375 3.437 ITI4 2225.5 33.170 -6.193
DE27 919.4 34.923 0.761 LTU 1292.8 10.625 -3.610
DE30 1604.1 36.535 -9.281 LUX 238.7 94.932 -29.984
DE40 1200.1 24.884 -19.873 LVA 893.9 10.539 -9.128
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Table 6: Values for certain economic variables in the initial period

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

DE50 299.1 51.296 2.623 MLT 181.6 18.957 -21.888
DE60 885.6 54.994 -18.539 NL00 8285.3 39.156 -15.015
DE71 1912.2 45.963 -37.108 PL11 1247.7 6.867 -1.807
DE72 503.5 33.955 5.715 PL12 1044.0 6.136 -10.795
DE73 591.4 37.559 4.617 PL21 1314.9 8.955 -3.773

DE80 741.9 26.457 1.978 PL22 1903.3 10.471 -6.689
DE91 734.0 40.740 2.966 PL31 957.8 5.988 -0.758
DE92 1013.5 35.950 -0.458 PL32 800.1 7.504 -0.548
DE93 804.8 24.695 2.341 PL33 554.0 6.192 -1.144
DE94 1214.6 30.523 -5.334 PL34 453.3 7.127 -0.924

DEA1 2364.0 40.903 -31.247 PL41 1365.6 9.896 -6.177
DEA2 2013.5 40.181 -29.272 PL42 572.4 9.223 -3.354
DEA3 1209.3 32.514 -4.406 PL43 404.7 7.845 -2.437
DEA4 968.6 35.664 0.693 PL51 1055.6 11.646 -6.788
DEA5 1623.0 36.641 -3.571 PL52 346.1 9.092 -3.167

DEB1 717.0 30.416 2.206 PL61 761.4 8.427 -2.292
DEB2 264.5 27.323 5.418 PL62 528.7 7.500 -1.866
DEB3 981.0 34.487 -1.896 PL63 894.1 9.448 -4.990
DEC0 464.8 37.471 -16.756 PT11 1543.9 14.458 -5.570
DED2 743.8 29.692 -2.809 PT15 186.9 14.699 -9.925

DED4 688.1 26.945 -1.295 PT16 1059.2 12.866 -5.925
DED5 474.6 30.726 -11.489 PT17 1132.9 26.130 -10.925
DEE0 1048.9 26.492 -0.673 PT18 298.5 14.760 -5.861
DEF0 1336.9 29.431 -1.028 PT20 99.2 16.322 -6.223
DEG0 1067.1 26.589 0.795 PT30 108.8 16.377 -17.914

DK01 858.4 61.770 -17.926 RO00 8549.1 5.349 -4.747
DK02 367.7 37.375 -10.079 ROW 942281.9 6.379 -21.974
DK03 538.9 47.297 -21.957 SE11 1133.4 57.620 -32.283
DK04 606.0 46.647 -19.716 SE12 750.4 43.493 -10.368
DK05 265.2 45.533 -22.082 SE21 394.9 42.934 -16.470

EE00 621.3 13.873 -8.711 SE22 672.4 43.034 -14.361
EL11 187.4 13.975 -1.287 SE23 951.4 45.211 -19.223
EL12 553.6 15.569 -2.522 SE31 387.3 40.281 -14.935
EL13 77.1 22.555 -10.095 SE32 172.5 41.157 -18.188
EL14 235.5 13.886 -2.724 SE33 242.2 44.075 -19.639
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Table 6: Values for certain economic variables in the initial period

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

EL21 103.9 13.513 -1.575 SI01 473.5 16.270 -6.015
EL22 75.2 13.777 -6.052 SI02 432.4 23.982 -8.198
EL23 202.7 13.852 -3.918 SK01 315.2 25.285 -37.207
EL24 171.3 15.648 -7.450 SK02 824.8 9.903 -4.622
EL25 191.3 13.472 -3.304 SK03 563.9 10.025 -3.793

EL30 1312.0 22.400 -11.083 SK04 625.4 8.968 -2.845
EL41 65.6 14.652 -1.155 UKC1 491.7 17.574 -3.107
EL42 122.8 17.225 -7.810 UKC2 641.4 18.338 -4.316
EL43 214.8 14.179 -5.425 UKD1 240.1 17.303 -5.735
ES11 1006.4 23.089 -9.808 UKD3 1215.3 20.438 -5.678

ES12 369.4 25.605 -8.770 UKD4 639.2 18.059 -5.299
ES13 222.5 23.698 -7.971 UKD6 431.8 20.000 -482.572
ES21 873.6 33.219 -10.681 UKD7 657.2 18.000 -192.049
ES22 258.1 30.630 -11.029 UKE1 422.9 17.903 -5.425
ES23 124.5 24.648 -13.305 UKE2 386.9 17.838 -6.861

ES24 515.3 27.559 -11.060 UKE3 621.8 16.243 -4.002
ES30 2718.1 35.590 -12.687 UKE4 1006.7 20.347 -5.931
ES41 916.4 24.179 -7.936 UKF1 973.3 18.111 -4.702
ES42 712.3 21.324 -8.212 UKF2 816.7 20.108 -5.229
ES43 339.7 21.775 -4.217 UKF3 342.8 13.848 -6.070

ES51 2969.6 29.935 -11.567 UKG1 642.1 18.541 -7.249
ES52 1771.2 23.223 -8.090 UKG2 754.6 15.956 -5.027
ES53 475.8 23.426 -10.654 UKG3 1136.4 20.761 -5.159
ES61 2571.5 23.665 -6.053 UKH1 1155.3 19.056 -6.970
ES62 514.9 23.302 -12.779 UKH2 885.8 23.202 -5.794

ES63 25.6 33.891 -0.382 UKH3 839.2 16.779 -4.313
ES64 24.6 31.541 0.014 UKI1 1524.1 63.399 -51.863
ES70 729.7 24.064 -7.055 UKI2 2238.5 19.722 -4.353
FI19 600.6 38.136 -73.287 UKJ1 1184.5 30.080 -10.911
FI1B 796.1 48.499 1.898 UKJ2 1360.9 20.605 -5.798

FI1C 502.2 37.192 3.059 UKJ3 938.1 21.087 -5.775
FI1D 542.9 36.367 1.162 UKJ4 806.6 16.680 -4.745
FI20 15.0 47.661 6.337 UKK1 1171.8 20.758 -7.030
FR10 5277.6 64.750 -17.352 UKK2 615.3 15.670 -4.123
FR21 506.9 37.200 -5.522 UKK3 238.8 13.092 -3.574
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Table 6: Values for certain economic variables in the initial period

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

Region
Employment

(,000)
Wages
(,000)

Tax per
capita

FR22 728.0 34.172 -1.195 UKK4 512.6 16.107 -4.338
FR23 717.5 39.026 -0.711 UKL1 851.5 13.342 -3.091
FR24 1000.7 36.918 -5.498 UKL2 535.7 18.690 -6.418
FR25 578.5 35.348 0.511 UKM2 962.8 18.727 -3.527
FR26 639.7 36.367 -0.802 UKM3 991.2 19.921 -2.492

FR30 1492.6 40.037 -9.713 UKM5 251.7 39.198 -22.072
FR41 904.6 33.876 -3.644 UKM6 233.6 14.205 -7.639
FR42 809.4 38.182 -1.524 UKN0 797.2 15.945 -3.035
FR43 468.6 34.315 -1.568
FR51 1509.7 38.074 -5.185

FR52 1336.1 35.452 -6.330
FR53 714.1 33.652 -2.779
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Table 7: Values for certain disease-related variables in the initial period

Region
Start of the
pandemic

Non-telematic
workers (%)

Infected Region
Start of the
pandemic

Non-telematic
workers (%)

Infected

AT11 27-Mar 0.643 103.044 FR61 22-Mar 0.652 4015.271
AT12 19-Mar 0.636 1949.035 FR62 19-Mar 0.637 1854.444
AT13 14-Mar 0.593 1852.674 FR63 22-Mar 0.658 927.643
AT21 30-Mar 0.634 411.027 FR71 18-Mar 0.641 20220.949
AT22 17-Mar 0.645 2239.692 FR72 26-Mar 0.649 1584.200

AT31 23-Mar 0.646 1532.013 FR81 18-Mar 0.681 4746.184
AT32 26-Mar 0.619 1097.628 FR82 19-Mar 0.639 8072.069
AT33 21-Mar 0.619 2603.076 FR83 19-Mar 0.651 1388.133
AT34 29-Mar 0.640 616.282 HRV 27-Mar 0.628 1139.221
BE10 10-Mar 0.606 4803.839 HU00 20-Mar 0.659 1439.566

BE20 14-Mar 0.650 25756.309 IE00 21-Mar 0.611 7687.612
BE30 15-Mar 0.658 23732.681 ITC1 05-Mar 0.653 10748.732
BG00 27-Mar 0.646 1336.648 ITC2 17-Mar 0.657 3390.699
CYP 29-Mar 0.606 327.516 ITC3 04-Mar 0.652 5371.631
CZ01 24-Mar 0.590 2612.614 ITC4 20-Feb 0.650 65345.453

CZ02 30-Mar 0.666 832.420 ITF1 14-Mar 0.658 4934.933
CZ03 06-Apr 0.668 630.218 ITF2 19-Mar 0.661 464.173
CZ04 30-Mar 0.660 912.995 ITF3 13-Mar 0.659 5534.914
CZ05 01-Apr 0.672 425.525 ITF4 07-Mar 0.667 1735.225
CZ06 01-Apr 0.662 734.146 ITF5 26-Mar 0.668 858.063

CZ07 30-Mar 0.666 438.712 ITF6 18-Mar 0.679 2213.232
CZ08 30-Mar 0.662 603.674 ITG1 16-Mar 0.665 4125.970
DE11 06-Mar 0.667 3280.369 ITG2 20-Mar 0.665 2285.404
DE12 12-Mar 0.658 2525.148 ITH1 13-Mar 0.635 3647.874
DE13 08-Mar 0.667 3829.431 ITH2 14-Mar 0.635 6967.356

DE14 15-Mar 0.668 5409.605 ITH3 02-Mar 0.640 4053.239
DE21 13-Mar 0.645 10327.778 ITH4 09-Mar 0.636 3351.826
DE22 16-Mar 0.665 5266.321 ITH5 28-Feb 0.641 12422.694
DE23 15-Mar 0.662 6770.607 ITI1 11-Mar 0.639 8172.510
DE24 15-Mar 0.662 3235.555 ITI2 19-Mar 0.637 2022.638

DE25 19-Mar 0.653 6599.939 ITI3 03-Mar 0.636 5089.702
DE26 11-Mar 0.660 2449.937 ITI4 07-Mar 0.639 3240.823
DE27 13-Mar 0.663 2273.360 LTU 25-Mar 0.681 568.314
DE30 17-Mar 0.620 6112.987 LUX 18-Mar 0.598 1508.562
DE40 24-Mar 0.639 4756.678 LVA 11-Apr 0.649 499.430

DE50 25-Mar 0.642 1018.454 MLT 10-Apr 0.599 98.637
DE60 12-Mar 0.626 2122.158 NL00 09-Mar 0.636 15453.226
DE71 19-Mar 0.626 5456.108 PL11 02-Apr 0.663 466.260
DE72 23-Mar 0.662 1030.016 PL12 25-Mar 0.611 2133.254
DE73 22-Mar 0.661 3268.592 PL21 01-Apr 0.652 730.002

DE80 26-Mar 0.653 847.376 PL22 28-Mar 0.657 2415.361
DE91 17-Mar 0.659 3850.167 PL31 29-Mar 0.673 369.333
DE92 19-Mar 0.656 3142.748 PL32 01-Apr 0.671 629.576
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Table 7: Values for certain disease-related variables in the initial period

Region
Start of the
pandemic

Non-telematic
workers (%)

Infected Region
Start of the
pandemic

Non-telematic
workers (%)

Infected

DE93 25-Mar 0.660 1810.941 PL33 15-Apr 0.669 287.577
DE94 14-Mar 0.665 2100.665 PL34 15-Apr 0.675 74.174

DEA1 11-Mar 0.637 3617.624 PL41 31-Mar 0.669 2145.465
DEA2 06-Mar 0.610 4521.161 PL42 18-Apr 0.666 546.586
DEA3 17-Mar 0.660 4106.123 PL43 22-Jul 0.672 497.269
DEA4 17-Mar 0.664 1619.907 PL51 24-Mar 0.659 648.968
DEA5 18-Mar 0.668 4113.175 PL52 06-Apr 0.672 781.619

DEB1 16-Mar 0.659 1420.570 PL61 07-Apr 0.669 979.346
DEB2 25-Mar 0.657 586.702 PL62 10-Aug 0.677 232.002
DEB3 20-Mar 0.665 2279.947 PL63 21-Apr 0.656 1012.212
DEC0 17-Mar 0.635 2913.969 PT11 20-Mar 0.646 7663.833
DED2 19-Mar 0.634 1516.737 PT15 01-Apr 0.641 402.946

DED4 21-Mar 0.641 3703.584 PT16 20-Mar 0.656 3630.319
DED5 26-Mar 0.623 669.239 PT17 20-Mar 0.603 2762.330
DEE0 20-Mar 0.662 1689.044 PT18 24-Jun 0.666 788.249
DEF0 16-Mar 0.656 2470.665 PT20 10-Apr 0.667 377.163
DEG0 21-Mar 0.661 2215.732 PT30 13-Oct 0.652 0.001

DK01 28-Feb 0.599 5.233 RO00 21-Mar 0.651 8706.891
DK02 03-Mar 0.649 4.319 ROW 25-Feb 0.635 339.840
DK03 01-Mar 0.651 3.753 SE11 26-Mar 0.580 25240.461
DK04 15-Jul 0.654 0.867 SE12 26-Mar 0.623 7369.381
DK05 08-Mar 0.659 3.542 SE21 26-Mar 0.635 1349.541

EE00 30-Mar 0.652 1611.450 SE22 26-Mar 0.615 1041.884
EL11 12-Oct 0.632 3.748 SE23 26-Mar 0.616 2741.393
EL12 15-Jul 0.630 3.283 SE31 26-Mar 0.629 2819.716
EL13 10-Aug 0.635 3.339 SE32 07-Apr 0.614 1370.495
EL14 29-Jul 0.637 3.819 SE33 05-Apr 0.623 1578.364

EL21 28-Aug 0.630 3.100 SI01 23-Mar 0.670 1414.387
EL22 09-Nov 0.588 3.039 SI02 28-Mar 0.643 983.944
EL23 15-Aug 0.630 3.074 SK01 18-Aug 0.614 22.267
EL24 08-Sep 0.643 3.163 SK02 15-Mar 0.665 3.454
EL25 09-Aug 0.630 3.274 SK03 25-Aug 0.667 9.379

EL30 09-Nov 0.607 10.546 SK04 10-Aug 0.669 9.062
EL41 14-Aug 0.598 3.531 UKC1 15-Mar 0.627 4.767
EL42 11-Oct 0.554 3.442 UKC2 13-Mar 0.624 5.420
EL43 09-Aug 0.580 3.797 UKD1 09-Mar 0.631 4.039
ES11 15-Mar 0.640 4876.296 UKD3 09-Mar 0.620 5.866

ES12 18-Mar 0.632 4225.524 UKD4 13-Mar 0.631 5.712
ES13 20-Mar 0.635 3846.428 UKD6 15-Mar 0.592 5.117
ES21 07-Mar 0.635 5876.978 UKD7 12-Mar 0.598 5.689
ES22 16-Mar 0.644 6582.146 UKE1 18-Mar 0.635 4.117
ES23 11-Mar 0.648 2601.451 UKE2 15-Mar 0.626 4.362

ES24 07-Mar 0.639 1332.486 UKE3 08-Mar 0.627 5.025
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Table 7: Values for certain disease-related variables in the initial period

Region
Start of the
pandemic

Non-telematic
workers (%)

Infected Region
Start of the
pandemic

Non-telematic
workers (%)

Infected

ES30 07-Mar 0.587 73177.142 UKE4 12-Mar 0.622 5.105
ES41 13-Mar 0.642 21223.621 UKF1 06-Mar 0.631 4.893
ES42 11-Mar 0.637 20920.870 UKF2 10-Mar 0.627 5.393
ES43 15-Mar 0.645 7275.205 UKF3 16-Mar 0.639 4.339

ES51 09-Mar 0.625 22908.766 UKG1 09-Mar 0.631 4.532
ES52 12-Mar 0.633 13245.641 UKG2 10-Mar 0.631 4.823
ES53 19-Mar 0.583 3553.364 UKG3 06-Mar 0.623 6.405
ES61 13-Mar 0.630 11181.436 UKH1 10-Mar 0.628 4.955
ES62 22-Mar 0.649 3989.206 UKH2 08-Mar 0.622 4.615

ES63 04-Apr 0.637 107.564 UKH3 10-Mar 0.627 5.537
ES64 03-Sep 0.639 73.033 UKI1 01-Mar 0.593 6.144
ES70 16-Mar 0.590 3136.775 UKI2 04-Mar 0.612 12.268
FI19 05-Mar 0.620 5986.344 UKJ1 05-Mar 0.612 5.290
FI1B 26-Feb 0.653 5548.468 UKJ2 07-Mar 0.617 5.405

FI1C 06-Mar 0.666 3868.857 UKJ3 06-Mar 0.617 4.509
FI1D 03-Mar 0.669 3197.378 UKJ4 11-Mar 0.627 5.676
FI20 21-Mar 0.661 334.259 UKK1 09-Mar 0.621 4.940
FR10 18-Mar 0.630 84443.478 UKK2 17-Mar 0.630 3.947
FR21 19-Mar 0.660 5846.306 UKK3 14-Mar 0.630 3.853

FR22 18-Mar 0.659 12914.460 UKK4 11-Mar 0.628 3.426
FR23 19-Mar 0.656 3153.497 UKL1 10-Mar 0.630 6.153
FR24 22-Mar 0.651 7177.193 UKL2 09-Mar 0.628 6.211
FR25 23-Mar 0.653 2811.046 UKM2 09-Mar 0.624 4.763
FR26 18-Mar 0.656 6448.034 UKM3 08-Mar 0.625 5.131

FR30 18-Mar 0.648 7110.021 UKM5 19-Jul 0.614 1.513
FR41 18-Mar 0.656 24535.396 UKM6 13-Mar 0.634 3.505
FR42 18-Mar 0.650 34338.163 UKN0 15-Mar 0.630 4.439
FR43 18-Mar 0.658 7869.257
FR51 21-Mar 0.650 6747.541

FR52 18-Mar 0.645 3074.450
FR53 21-Mar 0.657 2696.476
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Table 8: Results

Region code Region name Total
per

100,000
Total

Geographic
(%)

Total
Increase

(%)
Lives
saved*

EU27 European Union 133063 28 107112 10.2 4545222 4143 202
UK United Kingdom 40672 57 30571 9.7 1248078 3983 1718

UKC1 Tees Valley and Durham 1037 87 737 9.9 19622 2564 1581

UKC2
Northumberland and
Tyne and Wear

1095 76 827 12.8 22484 2619 1497

UKD1 Cumbria 382 77 323 8.6 6302 1854 1199
UKD3 Greater Manchester 2587 93 1660 9.8 63906 3749 2231
UKD4 Lancashire 1016 68 762 9.4 22772 2889 1480
UKD6 Cheshire 829 90 505 9.1 21494 4158 2271
UKD7 Merseyside 1283 83 920 10.1 29038 3057 1824

UKE1
East Yorkshire and
Northern Lincolnshire

546 59 409 11.7 10115 2374 1045

UKE2 North Yorkshire 464 57 353 11.5 13982 3865 1666
UKE3 South Yorkshire 1120 81 788 8.7 24589 3021 1713
UKE4 West Yorkshire 1440 63 1052 11.2 46595 4330 1979

UKF1
Derbyshire and
Nottinghamshire

1416 65 977 10.6 49536 4970 2220

UKF2
Leicestershire, Rutland and
Northamptonshire

1250 69 863 8.6 35603 4026 1916

UKF3 Lincolnshire 262 35 237 10.5 6585 2680 849

UKG1
Herefordshire, Worcestershire
and Warwickshire

942 70 651 11.6 25729 3852 1874

UKG2 Shropshire and Staffordshire 1121 69 815 9.4 29821 3560 1797
UKG3 West Midlands 2496 87 1737 13.4 63443 3553 2140
UKH1 East Anglia 1248 50 996 10.2 41422 4060 1621

UKH2
Bedfordshire and
Hertfordshire

1414 77 1051 9.7 27648 2532 1444

UKH3 Essex 1443 80 992 11.3 38064 3737 2044
UKI1 Inner London - West 2063 64 1891 9.1 58138 2974 1754
UKI2 Inner London - East 4155 79 2849 19.6 116507 3989 2158

UKJ1
Berkshire, Buckinghamshire
and Oxfordshire

1138 48 710 15.8 64021 8921 2654

UKJ2 Surrey, East and West Sussex 1544 54 1144 13.5 50870 4346 1732
UKJ3 Hampshire and Isle of Wight 1001 51 772 11.9 31357 3960 1549
UKJ4 Kent 1254 69 879 7.8 31617 3498 1684

UKK1
Gloucestershire, Wiltshire
and Bristol/Bath area

1088 44 859 15.8 41523 4731 1643

UKK2 Dorset and Somerset 256 19 271 11.2 12210 4407 903
UKK3 Cornwall and Isles of Scilly 247 44 245 8.5 7465 2943 1288
UKK4 Devon 262 22 261 16.8 15294 5760 1273
UKL1 West Wales and The Valleys 975 50 776 9.8 27188 3402 1347
UKL2 East Wales 576 50 462 9.7 14964 3142 1252
UKM2 Eastern Scotland 1002 24 952 17.0 54301 5603 1277
UKM3 South Western Scotland 1268 27 1237 10.7 82975 6609 1735
UKM5 North Eastern Scotland 139 28 148 7.8 4378 2851 861
UKM6 Highlands and Islands 150 32 145 9.4 5164 3454 1069
UKN0 Northern Ireland (UK) 163 6 318 14.2 31357 9763 1123
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Table 9: Intra- and inter-regional trade for the UK NUTS2 regions

Region code Region name Domestic Rest of UK EU27 ROW

UKC1 Tees Valley and Durham 0.308 0.605 0.068 0.019

UKC2
Northumberland and
Tyne and Wear

0.376 0.534 0.077 0.014

UKD1 Cumbria 0.356 0.579 0.060 0.005
UKD3 Greater Manchester 0.408 0.535 0.044 0.013
UKD4 Lancashire 0.305 0.638 0.050 0.007
UKD6 Cheshire 0.596 0.254 0.043 0.107
UKD7 Merseyside 0.562 0.339 0.061 0.038

UKE1
East Yorkshire and
Northern Lincolnshire

0.380 0.565 0.049 0.006

UKE2 North Yorkshire 0.347 0.604 0.042 0.006
UKE3 South Yorkshire 0.308 0.617 0.071 0.004
UKE4 West Yorkshire 0.382 0.559 0.051 0.007

UKF1
Derbyshire and
Nottinghamshire

0.333 0.613 0.044 0.011

UKF2
Leicestershire, Rutland and
Northamptonshire

0.392 0.552 0.047 0.010

UKF3 Lincolnshire 0.287 0.660 0.047 0.005

UKG1
Herefordshire, Worcestershire
and Warwickshire

0.358 0.588 0.044 0.010

UKG2 Shropshire and Staffordshire 0.340 0.622 0.034 0.004
UKG3 West Midlands 0.385 0.529 0.061 0.024
UKH1 East Anglia 0.413 0.506 0.047 0.034
UKH2 Bedfordshire and Hertfordshire 0.354 0.545 0.071 0.029
UKH3 Essex 0.310 0.593 0.071 0.026
UKI1 Inner London - West 0.452 0.388 0.079 0.081
UKI2 Inner London - East 0.334 0.497 0.075 0.094

UKJ1
Berkshire, Buckinghamshire
and Oxfordshire

0.451 0.449 0.062 0.038

UKJ2 Surrey, East and West Sussex 0.357 0.504 0.070 0.069
UKJ3 Hampshire and Isle of Wight 0.429 0.503 0.040 0.027
UKJ4 Kent 0.345 0.566 0.056 0.033

UKK1
Gloucestershire, Wiltshire
and Bristol/Bath area

0.396 0.529 0.041 0.033

UKK2 Dorset and Somerset 0.304 0.635 0.039 0.022
UKK3 Cornwall and Isles of Scilly 0.359 0.586 0.045 0.010
UKK4 Devon 0.346 0.594 0.038 0.022
UKL1 West Wales and The Valleys 0.303 0.621 0.046 0.029
UKL2 East Wales 0.331 0.627 0.035 0.007
UKM2 Eastern Scotland 0.401 0.533 0.032 0.034
UKM3 South Western Scotland 0.430 0.507 0.032 0.030
UKM5 North Eastern Scotland 0.616 0.343 0.035 0.006
UKM6 Highlands and Islands 0.398 0.545 0.047 0.010
UKN0 Northern Ireland (UK) 0.426 0.493 0.048 0.033
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Table 10: Additional results with ρ constant

Region code Region name Total
Increase

(%)
Lives

saved*
Total

Increase
(%)

Lives
saved*

EU27 European Union 4485729 4088 200 157732 47 2
UK United Kingdom 55005 80 34 1234811 3939 1700

UKC1 Tees Valley and Durham 1146 56 34 19367 2530 1560

UKC2
Northumberland and
Tyne and Wear

1314 59 34 22135 2577 1473

UKD1 Cumbria 609 89 57 6137 1803 1166
UKD3 Greater Manchester 2185 32 19 63746 3739 2225
UKD4 Lancashire 1178 55 28 22501 2854 1462
UKD6 Cheshire 733 45 25 21427 4145 2264
UKD7 Merseyside 1424 55 33 28803 3032 1809

UKE1
East Yorkshire and
Northern Lincolnshire

791 93 41 9714 2276 1001

UKE2 North Yorkshire 661 87 38 13801 3814 1644
UKE3 South Yorkshire 1189 51 29 24371 2993 1697
UKE4 West Yorkshire 1541 47 21 46383 4310 1970

UKF1
Derbyshire and
Nottinghamshire

1572 61 27 49362 4952 2212

UKF2
Leicestershire, Rutland and
Northamptonshire

1459 69 33 35357 3998 1903

UKF3 Lincolnshire 616 160 51 6282 2552 808

UKG1
Herefordshire, Worcestershire
and Warwickshire

1089 67 33 25535 3822 1860

UKG2 Shropshire and Staffordshire 1249 53 27 29621 3535 1785
UKG3 West Midlands 2370 36 22 63226 3540 2132
UKH1 East Anglia 2096 110 44 40850 4003 1598

UKH2
Bedfordshire and
Hertfordshire

1694 61 35 27255 2495 1423

UKH3 Essex 1878 89 49 37781 3709 2028
UKI1 Inner London - West 3087 63 37 57793 2956 1743
UKI2 Inner London - East 4202 47 26 116046 3973 2149

UKJ1
Berkshire, Buckinghamshire
and Oxfordshire

1302 83 25 63897 8903 2649

UKJ2 Surrey, East and West Sussex 2075 81 32 50388 4304 1715
UKJ3 Hampshire and Isle of Wight 1427 85 33 30980 3911 1530
UKJ4 Kent 1710 95 46 31275 3459 1666

UKK1
Gloucestershire, Wiltshire
and Bristol/Bath area

1398 63 22 41123 4685 1627

UKK2 Dorset and Somerset 937 246 50 11700 4219 864
UKK3 Cornwall and Isles of Scilly 597 143 63 7280 2867 1255
UKK4 Devon 728 179 40 14927 5620 1242
UKL1 West Wales and The Valleys 1442 86 34 26730 3343 1324
UKL2 East Wales 841 82 33 14680 3080 1227
UKM2 Eastern Scotland 2262 138 31 53068 5474 1248
UKM3 South Western Scotland 3396 175 46 82058 6535 1715
UKM5 North Eastern Scotland 401 170 51 4168 2709 818
UKM6 Highlands and Islands 503 246 76 4893 3268 1011
UKN0 Northern Ireland (UK) 1903 499 57 30150 9384 1079
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