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Abstract 31 

 32 

The amount of information that can be retained in working-memory (WM) is limited. Limitations of 33 

WM capacity have been the subject of intense research, especially trying to specify algorithmic 34 

models for WM. Comparatively, neural circuit perspectives have barely been used to test WM 35 

limitations in behavioral experiments. Here, we used a neuronal microcircuit model for visuo-36 

spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a 37 

topographic organization of the circuit responsible for spatial memory retention. This assumption 38 

leads to specific predictions, which we tested in behavioral experiments. According to the model, 39 

nearby locations should be recalled with a bias, as if the two memory traces showed attraction or 40 

repulsion during the delay period depending on distance.  Another prediction is that the previously 41 

reported loss of memory precision for increasing number of memory items (memory load) should 42 

vanish when the distances between items are controlled for. Both predictions were confirmed 43 

experimentally. Taken together, our findings provide support for a topographic neural-circuit 44 

organization of vsWM, they suggest that interference between similar memories underlies some 45 

WM limitations, and they put forward a circuit-based explanation that reconciles previous 46 

conflicting results on the dependence of WM precision with load. 47 

 48 

 49 
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Working-memory (WM) refers to the ability of actively retaining stimulus information over a short 55 

period of time and it is thought to be a core component of cognitive functions (Baddeley 1986, 56 

Conway et al. 2003). A hallmark of WM is that the information retained is limited. Currently, a 57 

significant effort is being devoted to characterizing the nature of WM capacity limitations, but their 58 

bases remain controversial (Luck and Vogel 2013, Ma et al. 2014). Important points of discordance 59 

have been whether or not the number of items in WM can be increased at a cost in precision (Bays 60 

and Husain 2008, Zhang and Luck 2008) and whether the similarity of the items to memorize 61 

improves (Johnson et al. 2009, Lin and Luck 2009) or degrades (Elmore et al. 2011) WM 62 

performance. 63 

Recently, a neuronal circuit perspective is entering these debates: electrophysiological experiments 64 

have started to investigate the neural basis of multiple item WM (Buschman et al. 2011, Warden and 65 

Miller 2007, Lara and Wallis 2014), and neural-circuit modeling has been used to link cellular and 66 

network mechanisms with behavior to understand WM capacity limitations (Macoveanu et al. 2006, 67 

2007, Edin et al. 2009, Wei et al. 2012, Wimmer et al. 2014, Bays 2014, Papadimitriou et al. 2015). 68 

Most of these models are variations of a model (Compte et al. 2000) developed to be consistent with 69 

neurophysiological data from behaving monkeys (Funahashi et al. 1989). They rely on the 70 

assumption that there is a topographic structure in the circuits supporting vsWM, which implements 71 

a continuous attractor mechanism responsible for the retention of spatial memory. Some evidence 72 

from fMRI (Schluppeck et al. 2006, Kastner et al. 2007) and electrophysiology studies 73 

(Constantinidis et al. 2001, Inoue and Funahashi 2002) supports a coarse degree of spatial WM 74 

maps in parietal and prefrontal cortex. Recently, neural evidence for attractor dynamics on a fine 75 

vsWM spatial map in prefrontal cortex has also been found (Wimmer et al. 2014). However, 76 

additional implications of such a spatial memory map for the relation between vsWM precision, 77 

capacity and stimulus similarity remain untested. We aimed here to advance our understanding of 78 

the neuronal underpinnings of vsWM by explicitly testing the assumption of a topographic structure 79 

of the vsWM buffer. One implication of this structure is that the efficiency with which different 80 



items are memorized should depend on their relative locations, since stronger interference of 81 

memory traces would be expected for nearby items. Using simulations we predicted an attractive 82 

bias when remembering locations of two nearby items, for very short inter-item distances.  This 83 

prediction was validated in behavioral experiments in humans. We then sought to address how these 84 

interferences affected the relationship between memory load and precision. In our model, the effect 85 

of load on memory precision was largely accounted for by changes in inter-item distance with load. 86 

Behavioral data confirmed this prediction. We finally tested in an additional experiment that 87 

behavioral data was better explained by memory attraction than by memory swapping (Bays et al. 88 

2009), and we also confirmed that intermediate distances between memorized items were 89 

characterized by a repulsive memory bias. The importance of our work is three-folded. First, we 90 

provide new experimental evidence concerning interference in vsWM. Second, we test a critical 91 

assumption of an important class of models of vsWM. Third, we put forward a plausible 92 

explanation reconciling previous results concerning the dependence of memory precision on load 93 

and concerning similarity effects on performance. 94 

 95 

 96 

Materials and Methods 97 

Model 98 

We used a previously proposed computational model (Compte et al. 2000, Edin et al. 2009) to study 99 

the precision of vsWM of multiple items. The model (Compte et al. 2000) was originally developed 100 

to account for a candidate neuronal mechanism for vsWM, namely the selective sustained elevated 101 

neuronal firing of the prefrontal cortical neurons of monkeys performing a vsWM task (Funahashi 102 

et al. 1989). The model consists of a network of interconnected excitatory and inhibitory spiking 103 

neurons. The neurons encode the spatial location of fixed-eccentricity visual stimuli in angle θ. That 104 

is, they encode positions (in angle) on a circle. Presentation of a stimulus at location θ is simulated 105 

by increasing the external input to the corresponding excitatory neurons. The selective response of 106 



the neurons in the network is maintained due to the structured connectivity of the network. 107 

Excitatory neurons encoding for nearby angles have stronger than average connections, which is 108 

essential for a selective group of neurons to sustain elevated spiking after stimulus cessation 109 

(Compte et al. 2000)  110 

The parameter values used were as in the IPS circuit described in Edin et al. 2009, for a network 111 

capacity of 2 items. The model had 1024 excitatory and 256 inhibitory leaky integrate-and-fire 112 

neurons (Tuckwell 1988). The neuronal selectivity was imposed by external inputs, assumed to 113 

originate in upstream areas of the dorsal pathway. Specifically, the presence of a visual stimulus at 114 

an angle θstim was modeled by increasing the external input to excitatory neurons with preferred 115 

direction around θstim. The strength of the external input to a neuron encoding θ decayed with the 116 

distance to θstim according to ( ) ( )( )( )exp cos 2 / 360 1stim stim stimI θ,θ = α μ π θ θ − −  , where 117 

α = 0.025 nA and μ = 39.  118 

The integrate-and-fire neuron model describes how the membrane voltage Vm integrates incoming 119 

inputs until a certain threshold value Vth is reached and an action potential or spike is fired. After 120 

reaching the threshold, Vm  is reset to Vres for a refractory time period refτ  before continuing to 121 

integrate inputs. The equation describing the sub-threshold changes in Vm is:  122 

 123 

Each cell is then characterized by the total membrane capacitance mC  , the total leak conductance 124 

Lg  , the leak reversal potential LE  and by thV  , resV  , and refτ  . For excitatory neurons the values 125 

used were: 0.5mC =  nF, 25Lg =  nS, 70LE = −  mV, 50thV = −  mV, 60resV ,= −  mV, 2refτ =  ms; and 126 

for inhibitory neurons: 0.2mC =  nF, 20Lg =  nS, 70LE = −  mV, 50thV = −  mV, 60resV ,= −  mV, 127 

1refτ =  ms.  128 

The network of neurons was organized according to a ring structure: excitatory and inhibitory 129 

m
m L m L syn ext

dVC = g (V E ) I I
dt

− − − −



neurons were spatially distributed on a ring so that nearby neurons encoded nearby spatial locations. 130 

An illustration of this structure is shown in Figure 1A. Connections between neurons were spatially 131 

tuned so that nearby neurons with similar preferred directions had stronger than average 132 

connections, while distant neurons had weaker connections. The distance dependent connection 133 

strength syn,ijg  between cells i and j was described by syn,ij i j syng = W(θ θ )G− , where  134 

 135 

and J −  was set to satisfy a normalization condition (see Compte et al. 2000). The parameters used 136 

were: 9.4E Eσ =→  deg, 32.4E I I Eσ = σ =→ →  deg, 5.7+
E EJ =→  , 1.4+ +

E I I EJ = J =→ →  , 1.5+
I IJ =→  . Thus, 137 

the connectivity between excitatory and inhibitory neurons was wider and flatter than that between 138 

excitatory neurons. The connectivity between inhibitory neurons was not spatially tuned. The 139 

strengths of the connections were 0.7E EG =→  nS, 0.49E IG =→  nS, 0.935I EG =→  nS, 140 

0.7413I IG =→  nS. Apart from stimulus selective inputs, all neurons received uncorrelated random 141 

background excitatory input. The times of incoming action potentials were modeled according to a 142 

Poisson process with rate 1,800 sp/s. The conductances of this input were 6.5ext Eg =→  nS, 143 

5.8ext Ig =→  nS. The effect of incoming action potentials was modeled through conductance-based 144 

synapses. Thus, postsynaptic currents followed the equation:  145 

 146 

where syng  is the synaptic conductance, s is the synaptic gating variable, and Vsyn is the synaptic 147 

reversal potential ( 0synV =  for excitatory synapses, 70synV = −  mV for inhibitory synapses). 148 

Recurrent excitatory connections were modeled to follow the dynamics of NMDAR mediated 149 

transmission, external excitatory inputs to follow AMPAR mediated transmission and inhibitory 150 

inputs to follow GABAAR transmission. The dynamics of the AMPAR and GABAAR synaptic 151 

2 2( ) /2i j+
i jW(θ θ )= J +(J J )e θ θ σ− −− −− −

syn syn m synI = g s (V V ),−



gating variables were modeled as an instantaneous jump of magnitude 1 when a presynaptic action 152 

potential occurred, followed by an exponential decay with time constant 2 ms for AMPA and 10 ms 153 

for GABAA. The NMDAR conductance was voltage-dependent and this was modeled by 154 

multiplying syng by 2+1/ (1 [ ]exp(-0.062 ) / 3.57)m+ Mg V , with 2+[ ] 1.0Mg =  mM. The dynamics of the 155 

NMDAR synaptic gating were modeled by:  156 

( ) ( )1s i
s x

ds s dx x= +α x s , = + δ t t
dt τ dt τ

− −− −  157 

where s is the gating variable, x is a synaptic variable proportional to the neurotransmitter 158 

concentration in the synapse, ti  are the presynaptic action potential times, 100sτ =  ms is the decay 159 

time, 2xτ =  ms controls the rise time, and 0.45sα =  kHz controls the saturation properties of 160 

NMDAR channels.  161 

Predictions from the model were derived from simulation results. Each simulation started with 100 162 

ms of baseline activity, followed by stimulus specific stimulation during 500 ms and ended with a 163 

500 ms delay period (Figure 1B,D).  The locations of the memories for each item were read out 164 

using Bayesian or maximum a posteriori decoding assuming an extended Poisson model as 165 

described by Zemel et al. (1998). This encoding-decoding framework was developed to handle 166 

situations where more than a single value (for example several locations) should be encoded and 167 

decoded from the neural activity of a population of neurons. Using this method, from the neuronal 168 

activity one determines a whole probability distribution over possible locations instead of a single 169 

most likely location. This allows for the encoding and decoding of different locations.  The 170 

decoding distribution of items, that is the probability distribution of angular locations jφ ,  was 171 

estimated given the activity of the excitatory neurons in the last 100 ms of the delay period. For this, 172 

we used the function sqp from the software package GNU Octave (Eaton et al., 2009) to maximize 173 

an approximation of the logarithm of the probability distribution of angular locations jφ  (equation 174 

17 of Zemel et al. 1998): 175 

  176 

( ) 2( ) logj i j ij j j+1
i j

AP r f x ( )φ φ ε φ φ
 

= − − 
 

 



 177 

where ir  is the activity of neuron i, ijx  is the difference between the preferred angles of neurons i  178 

and j  , ijf(x )  is a neuronal tuning function assumed to be Gaussian with standard deviation 10 deg, 179 

set to match the dispersion of the network response to one item (the tuning), and 710=ε −  is a 180 

weighting coefficient of the smoothness prior 2
j j+1( )φ φ− , which imposes smoothness across 181 

angular locations jφ . Single values for the estimated locations of memorized items were found by 182 

determining the locations jφ  corresponding to the local maxima of AP( jφ ). Before estimation, the 183 

spiking activity was resampled to a resolution of 360 for efficiency. Memory imprecision for each 184 

stimulus item was quantified as the distance in angle between that item location and the closest 185 

local maximum of the posterior probability of item locations, with the restriction that the distance 186 

had to be smaller than 35 deg. This restriction assured that in cases where the memory trace 187 

vanished during the delay period the particular item was not attributed to a memory trace and 188 

instead it was counted as forgotten. In these cases the read-out was taken to be a random location on 189 

the circle to mimic a subject guessing a forgotten spatial location. In cases where memory traces 190 

merged, the items were attributed to the same local maximum of the posterior probability. To study 191 

the effect of the distance between two simultaneously presented items on WM performance, we ran 192 

100 simulations for different angular distance Δθ  between the two items (Figure 2A, Δθ  from 45 193 

to 90 deg). From these simulations we calculated the angular distance between remembered 194 

locations and corresponding item locations. This angular distance is a measure of error or bias in 195 

remembered location. If this bias was in the direction of the location of other memorized items 196 

(Figure 1B) we defined it as a positive memory bias, corresponding to the attraction of memory 197 

traces. If the bias was in the direction opposed to close-by memorized items we defined it as a 198 

negative memory bias, corresponding to the repulsion of memory traces.  To study the relation 199 

between precision and load for different positions of the items we ran 300 simulations for each load 200 

and for each stimulus distribution (far or random cases, Figure 2B). For trials labeled random, items 201 



were simulated at random around a circle, with the restriction that they could not be closer than 33 202 

deg. In trials labeled far, we applied the additional condition that at least one item per simulation 203 

(far item) was more than 80 deg apart from all other items. The results were then calculated probing 204 

these far items. In particular, we computed standard deviations of the angular distances between 205 

remembered locations and corresponding item locations. We also calculated psychometric curves 206 

for each load and stimulus distribution. To this end, we counted for all simulations and for a given 207 

probed angular distance how many memory traces were counter-clockwise in relation to the probed 208 

distance. The results are presented as proportion of memories counter-clockwise to the probed 209 

location, as a function of angular distance between the probe and item. We fitted these proportions 210 

using probit models with angular distance as independent variable. The probit models were 211 

estimated using the Statistics Toolbox of Matlab. 212 

The integration of the model equations was done using a second order Runge-Kutta algorithm. The 213 

simulations were performed with code implemented in C++.  214 

 215 
 216 

Behavioral experiments 217 

We used a vsWM task where the subjects were presented with a set of dots and had to judge after a 218 

blank delay period whether a re-appearing dot had been displaced clockwise or counter-clockwise. 219 

The experimental paradigm is schematically illustrated in Figure 3A. The stimuli were displayed on 220 

a computer screen, on gray background. Participants sat ~60 cm from the screen and were asked to 221 

fixate the central black square present during the whole trial time. Participants were also asked to 222 

memorize each item per se and avoid remembering the dots as a pattern. To limit the efficacy of 223 

pattern encoding strategies, we introduced specific constraints for the location of the items in each 224 

trial so that geometric symmetries or cardinal directions were avoided (see below).   225 

Each trial started with the presentation of a central fixation cue for 1 s, followed by the presentation 226 

of the visual stimulus for 1 s. The stimulus consisted of a set of three or four colored dots (items) 227 

presented on an invisible circle centered on the fixation point and with a radius subtending a visual 228 



angle of 12.4 deg. The items were never presented on the horizontal and vertical diameters of the 229 

circle. The colors were attributed randomly to the different items for each trial. The stimulus was 230 

followed by 100 ms presentation of a mask consisting of an annulus (radii in visual angle 11.5 deg 231 

and 13.2 deg) of a pixelized noise pattern in a gray scale. The mask was followed by the 232 

presentation of a probe (in no-delay trials) or by a delay of 1 or 3 s (delay trials) followed by 233 

presentation of a probe. The probe stimulus consisted of one of the stimulus dots displaced 234 

clockwise or counterclockwise on the invisible circle relative to the original stimulus location. The 235 

task consisted in judging the direction of displacement and reporting it by pressing one of two 236 

possible keys in a keyboard. Participants were given 5 s to respond and always did it before this 237 

time had elapsed. The probe was displayed until the subjects responded. Participants were trained 238 

until they showed no problems in associating the directions with the respective keys. It always took 239 

less than 48 trials to automatize the association. The amount of displacement in visual angle of the 240 

probe item was 0.9, 1.3 or 1.7 deg (4, 6, and 8 deg along the circle), and the probe could not be in a 241 

different hemifield than the corresponding target item. In half of the trials the memory of an item 242 

that was far from all other items was probed. For these trials, half showed all items far from each 243 

other (minimal distance between items was 70 deg along the circle for load 3 and 50 deg for load 4). 244 

These trials are referred to as far trials in Figure 3 and as balanced trials in Figure 4. The other half 245 

of trials where an item far from all other was probed had two non-probed items close to each other 246 

(minimal distance along the circle from the probed item to another item was 90 deg for load 3, and 247 

50 deg for load 4). These trials are referred to as unbalanced trials in Figure 4. Different restrictions 248 

on distances were imposed on trials with load 3 and 4 to ensure that a substantial part of the circle 249 

was spanned by the locations (in angle) of the items. With this we wanted to minimize possible 250 

effects of attention that could appear if subjects could focus on a small portion of the circle, and 251 

strategies to store items as geometric patterns. These restrictions resulted in trial types with 252 

balanced (invariant) and unbalanced (varying) distances across loads, which we used to demonstrate 253 

the Prediction of conditional dependence of precision on load (see Results). In half of the total 254 



number of trials the memory of an item located close to another item was probed (the distance 255 

between nearby items was between 10 and 20 deg along the circle, corresponding to a visual angle 256 

between 2.2 and 4.2 deg). In half of these trials the probe was displaced outwards or away from the 257 

nearby item and in the other half of trials the probe was displaced inwards or towards the nearby 258 

item. For each trial type, trials were balanced in relation to relative positions of the dots in the 259 

stimulus, the displacements of the probe, the number of items and the presence or absence of a 260 

delay period. The experiment was run in sessions of 48 trials, lasting around 5 minutes. Within each 261 

session the delay was fixed, and each participant ran 4 sessions for each of 3 possible delays (no-262 

delay, 1 s or 3 s). Type of trial, direction and amount of displacement, color of dots and hemifield of 263 

the probed dot were randomized and balanced within each session. The order of the sessions was 264 

randomized across participants. 8 healthy participants (4 females) took part in the experiment, with 265 

ages between 23 and 37 years and normal or corrected-to-normal vision.  266 

To check for evidence of errors due to misremembering the colors of the items (Bayes et al. 2009, 267 

Pertzov et al. 2012, Ma et al. 2014), we conducted a variant of this vsWM experiment. The 268 

experimental paradigm is schematically illustrated in Figure 5A. The experiment was exactly as the 269 

one described above, except for the response period. After the delay period the fixation dot changed 270 

from black to the color of one of the previously presented items. The subject was required to 271 

respond by indicating the remembered position of the item matching the color of the fixation mark. 272 

To indicate the remembered position, the subjects used a pressure-sensitive tablet and pen. The 273 

movement of the pen was reproduced in the visual display as a cursor so that the subjects saw the 274 

colored fixation dot moving from the fixation spot to the remembered position. The subject 275 

indicated the reported position by releasing the pen from the tablet. All trials had a delay of 3s and 276 

separation between nearby items ranged from 3.1 to 4.4 deg of visual angle (14 to 20 deg on the 277 

circle). Data was acquired from 4-8 sessions from each of 9 healthy participating subjects (4 278 

females), ages between 21 and 27 years old  and showing normal or corrected-to-normal vision.   279 

For each subject, sessions were typically acquired in different days. Some participants completed 280 



fewer sessions, because they were not available for more data collection. The trials where the 281 

probed item was near another item were classified into two trial types, according to the probed item 282 

being clockwise or counter-clockwise relative to the nearby item.  283 

Participants for both experiments were recruited among a local community of researchers and 284 

students from the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). The 285 

experiments were conducted with the approval of the CEIC at the Hospital Clínic in Barcelona 286 

(Spain) and informed consent was obtained from all participants before the experiments took place. 287 

 288 

Behavioral data analysis 289 

Behavior from the first experiment was measured as the number of correct trials. The results were 290 

analyzed using generalized mixed probit models in R (R Development Core Team, 2013), MASS 291 

package (Venables and Ripley 2002), with participant as a random factor. For the first test of our 292 

first prediction (see Results), trial type, delay and the interaction between trial type and delay were 293 

used as independent variables or predictors. For the second test of this prediction, the amount of 294 

probe displacement was also included.  295 

Since the interaction term was significant in both cases, the data was separated according to 296 

delay and a model was fitted using trial type as predictor for test 1 and trial type, amount of probe 297 

displacement and the interaction between these two variables as predictors for test 2. For the test of 298 

the second prediction (see Results), trial type, delay, load and amount of probe displacement were 299 

used as independent variables. The model also included interactions between these variables. Since 300 

an interaction between delay, trial type and displacement was found to be significant the data was 301 

separated according to the delay. A new model without the delay variable was fitted. Since for the 302 

delay trials we found an interaction between displacement, load and trial type, the data was further 303 

divided according to trial type. For these new data partitions, a model was fitted using amount of 304 

probe displacement, load and the interaction between these two variables as predictors. 305 

Behavior in the second experiment was analyzed in three ways. For testing the prediction of 306 



attraction, the data was analyzed using a linear mixed model, with participant as a random factor 307 

and trial type as a predictor. To test the dependency of memory biases on inter-item distance (Figure 308 

6)  we fitted cumulative Gaussians to the cumulative fraction of error reports  (Figure 5B), 309 

collapsing clockwise and sign-inverted counterclockwise errors, and we used the fitted mean as an 310 

estimate of the memory bias (Figure 6A). Positive biases thus reflected attraction and negative 311 

biases reflected repulsion of the two memories. In Figure 6B we assessed the significance of each 312 

participant’s memory bias with a two-sample t-test on the error distributions of clockwise and 313 

counterclockwise trials. We used a multinomial regression model to test if the relative incidence of 314 

significant repulsion biases as compared with attraction biases increased with inter-item distance in 315 

our subject population (Figure 6B). The dependent variable could take 3 possible values: attraction, 316 

repulsion or no effect. For each subject, we got 3 measurements of the dependent variable, 317 

corresponding to 3 bins of distances between items (Figure 6). The model included an intercept and 318 

the inter-item distance (taking values 3, 3.75, 4.2) as predictors. The link function was a generalized 319 

logit function. 320 

Finally, in order to test alternative statistical models, the data was fitted to three statistical models 321 

detailed below using a custom expectation maximization algorithm for the maximum likelihood 322 

estimation (Dempster et al. 1977) based on publicly available code (Bays et al. 2009, 323 

http://www.paulbays.com). Model comparison was done using Akaike information criterion (AIC) 324 

(Akaike 1974), which is a measure of the relative quality of a statistical model for a given data set. 325 

Information loss of one model relative to another is then calculated by the differences between AIC 326 

values (Burnham and Anderson 2004). The information loss ΔAIC of each model compared to the 327 

best (the one with the lowest AIC) was calculated for each subject and then averaged across 328 

subjects. The relative likelihood of model i relative to the best model was computed as 329 

exp(ΔAICi/2). 330 

 331 

 332 



Statistical models 333 

A possible explanation for the errors in the task could be a wrong association (or binding) of color 334 

and location of the items (Bays et al. 2009, Pertzov et al. 2012, Ma et al. 2014). To access whether 335 

interference (attraction) between memory traces of item locations or misbinding best explains our 336 

experimental results we used three statistical models, hereby called swap, attraction and 337 

attraction+swap models. All the models assume that the experimental distribution EXPf (Δθ)  of 338 

errors in reported angle Δθ  can be described as a mixture of von Mises components (Figure 5C), a 339 

circular analogue of the Gaussian distribution with dispersion parameter σ , defined as 340 

2 2exp / / (2 (1/ ))σ 0(Δθ)= cos(Δθ) σ πI σφ     , with 0I  the modified Bessel function of order 0.  341 

Swap model. This model is the one introduced by Bays et al. (2009),  to account for performance on 342 

a recall task where both stimuli and responses are chosen from a circular parameter space. The 343 

model assumes that the experimental distribution can be described as a mixture of 3 components:  344 

 345 

The first component, weighted by tp  , describes the responses to correctly remembered items, 346 

where the subject reports the remembered position with some uncertainty around the error to the 347 

actual location of the target item. This is modeled using the von Mises distribution centered around 348 

the error to the target Δθ , with dispersion parameter σ . The second component, weighted by ntp , 349 

describes the responses to nearby non-target items, i.e. responses indicating the remembered 350 

location of a non-target item (item with a color different from the probed color). Such responses 351 

reflect errors in the binding of color and location of an item (swap errors, Bays et al. 2009). This is 352 

also modeled using a von Mises distribution with dispersion parameterσ , but now centered on the 353 

error to the non-target location *Δθ = θ-θnt. Finally, the third component describes the situation 354 

where the item location is forgotten and the subject guesses according to a uniform distribution. The 355 

*1 1( ) ( )EXP t nt σ i u
i

f p p (Δθ )+ p
n 2πσθ φ θ φΔ = Δ + 



model has 3 parameters tp , ntp  and σ , which can be estimated to fit the experimental data. 356 

Attraction model. In this model the subjects’ reports are described by a unimodal von Mises 357 

distribution centered on a location intermediate between the target and non-target items. This 358 

displacement would occur as a result of the attraction of coding bumps in our more detailed model 359 

of Figure 1. This model drops one of the components, the possibility of having swap errors, and 360 

introduces a bias b  in the mean, representing the attraction effect:  361 

 362 

Since nearby items were separated by different distances δi , the bias bi in individual trials was 363 

constrained to be a fraction of δi: bi = b' δi, and we estimated the constant factor b'. In total, the 364 

model has 3 parameters pt, σ and b', which can be estimated to fit the measured data. 365 

 366 

Attraction+swap model. Finally, both errors might co-exist: in some trials the two features of the 367 

stimulus are misbound, but in any case reports (to target or to non-target items) are biased towards 368 

the nearby stimulus. This model is the same as the swap model but with one more parameter for the 369 

bias: 370 

 371 

Note that the bias b (as above, bi = b' δi ) affects equally both the responses to target and non-target 372 

items. This model has 4 parameters tp , ntp , σ ,and b' which can be estimated to fit the experimental 373 

data. 374 

 375 

376 

1
EXP t σ uf (Δθ)= p (Δθ+b)+ p

2π
φ

*1 1( ) ( )
n

EXP t nt σ i u
i

f p b p (Δθ b)+ p
n 2πσθ φ θ φΔ = Δ + + −



Results 377 

 378 

Predictions from the computational model 379 

We used an existing computational model (Compte et al. 2000, Edin et al. 2009) to study vsWM of 380 

several simultaneously presented items. For simplicity, we considered only the memory storage of 381 

locations at equal eccentricity, so that the item locations could be labeled by an angle θ. The model 382 

consists of a one-dimensional network of neurons connected in a topographic manner (Figure 1A), 383 

so that neurons encoding nearby locations have stronger connections than neurons encoding far 384 

apart locations. This structure enables the network to sustain stimulus selective activity during a 385 

delay period (Compte et al. 2000). When plotting the activity of excitatory neurons organized 386 

according to their selectivity (Figure 1B, C), the sustained spiking corresponding to a memory trace 387 

is visualized as a spatially localized bump of activity in the network (y-axis) that is persistent over 388 

time (x-axis). The continuous topographical structure of the network connectivity implies that 389 

memory traces maintained simultaneously are not independent and interfere with each other. It 390 

further implies that the interference is dependent on the relative locations of the angles memorized, 391 

more interference being expected for nearby items than for far-apart items. Possible types of 392 

interference of memory traces are attraction (Figure 1B), repulsion and extinction (Figure 1C). To 393 

study the effects of interference on vsWM for several items we started by considering two items and 394 

we systematically changed the angle Δθ  separating them. We measured memory bias as the angular 395 

distance between cued locations and memory locations encoded in network activity 0.5 s after 396 

stimulus extinction (Materials and Methods).  Further we defined memory bias as being positive 397 

when it reflected attraction between memory traces and negative when it reflected repulsion 398 

between memory traces. Figure 2A shows that there is a large attraction effect for angles smaller 399 

than 60, and an intermediate repulsion effect for intermediate angles, which disappears as Δθ  400 

increases.  Our simple model cannot match quantitatively the conditions of a real cortical circuit and 401 

hence we do not know in what range of Δθ  we should expect the different behaviors, attraction and 402 



repulsion. However, we do know that for small angles between items we should have an attraction 403 

effect while for very large angles we should have no effect. Based on this we sought to mainly test 404 

our model using items very close by or in relative isolation, where we would not need to search for 405 

subject-dependent angles leading to repulsion.  Hence, the first prediction we aimed at testing in 406 

behavioral experiments was that vsWM for adjacent locations should show biases consistent with a 407 

perceived attraction between the two items. We refer to this prediction as the Prediction of 408 

attraction biases. We have however also checked a posteriori our experimental data for evidence of 409 

the predicted repulsive effects at intermediate inter-item distances (see “Testing repulsive biases”). 410 

 411 
We then studied how interference affected precision in our network model when the number of 412 

items to be memorized (the load) increased. We measured the standard deviation over trials of 413 

report errors σ  , in simulation series where different number of items (from 1 to 4) where presented 414 

to the network for memorization. We considered two cases. In the first case, we minimized 415 

interference by keeping distances between items large (far case). In the second case, the items were 416 

located at random (random case). We found that σ  depended markedly on load in the random case, 417 

while it remained relatively constant as load changed in the far case (Figure 2B). This was because 418 

when items were randomly placed, the probability of having items separated in the range of 419 

interference (Figure 2A) increased with load. When this probability was only allowed to change 420 

minimally with load, as in the far case, σ  remained practically constant.  421 

This effect can be demonstrated in the shape of psychometric curves. We used the same simulations 422 

as above to derive psychometric curves showing the proportion of items that are judged counter-423 

clockwise to a probed location (Materials and Methods), as a function of angular distance between 424 

probed location and item location (Figure 2C, D). For the simulations where only far items were 425 

probed, the psychometric curves changed minimally with load (Figure 2C). For the simulations 426 

where items were randomly placed, the psychometric curves for loads 3 and 4 showed greater 427 

difference (Figure 2D). The different slopes of the psychometric curves reflect different memory 428 

precisions for loads 3 and 4, consistent with greater interference of neighboring bumps in load 4 429 



trials. So, our second prediction was that the previously reported loss of precision with load (Bays 430 

and Husain 2008) would largely depend on the relative positioning of the items to be memorized, 431 

being minimized when the minimal distances between the items in the visual stimuli are large. This 432 

prediction will be referred to as the Prediction of conditional dependence of precision on load.  433 

 434 

Testing the prediction of attraction biases 435 

To test the predictions from the model we used the behavioral experiment illustrated in Figure 3A. 436 

The experimental paradigm was adapted from a previously reported paradigm (Bays and Husain 437 

2008) used to investigate the loss of precision with load in a vsWM task in humans. For each trial 438 

the subjects were required to keep in mind the locations of 3 or 4 colored dots positioned on an 439 

invisible circle (stimulus). After presentation of a visual mask, and in some trials after an additional 440 

short delay period (1-3 s), one colored dot reappeared on the invisible circle (probe) and the task 441 

was to judge whether it had been displaced clockwise or counter-clockwise. The average accuracy 442 

on this task was of 70% correct. All subjects performed significantly above chance level, with 443 

accuracies ranging from 59% to 79%. 444 

We conducted two tests of the Prediction of attraction biases. For the first test we used the trial 445 

types depicted in Figure 3B and labeled them as far (encircled in black) and outwards trials 446 

(encircled in green). In the far trials all items were located far apart from each other. In the outwards 447 

trials the probed item was presented within a visual angle of 4.2 deg from another item, and it was 448 

displaced outwards (or away) from the nearby item (see Materials and Methods). In such trials, if 449 

the predicted attraction between bumps of activity corresponding to neighboring items occurred 450 

(Figures 1B, 2A), we expected the memory of any one of these two adjacent items to be biased 451 

towards the middle point between them. As a result, a probe displaced outwards from the 452 

corresponding target, whose memorized location has been attracted to the neighboring item, would 453 

appear to have been subject to a larger displacement than the actual one. This would help the 454 

subject to judge correctly the displacement as outwards as opposed to inwards. This is 455 



schematically depicted in Figure 3D. The bell-shaped curves in Figure 3D represent the probability 456 

distributions of the locations stored in memory over multiple trials of two fixed cue stimulus 457 

configurations, corresponding to far and outwards trial categories, respectively. One can see that the 458 

distance between the mean location of the remembered item and the location of the probe is smaller 459 

for far trials (distance 1) than for outwards trials (distance 2). The location of the probed item 460 

defines an area under the tail of the probability function which is larger for the far trials (area 1) 461 

than for the outwards trials (area 2), and this determines the probability of incorrectly judging the 462 

direction of displacement of the probe. This should result in better performance for outwards trials 463 

than in a control condition without interference, like in far trials. This is indeed what we observed in 464 

our behavioral data set: the fraction of behavioral errors for far trials was significantly larger than 465 

that for outwards trials (p = 0.01) (Figure 3C). However, the effect observed could have occurred 466 

before the delay period, during encoding of the visual stimulus. We rejected this explanation by 467 

testing for a difference between trials with and without intervening delay between visual stimulation 468 

and response. We found a significant interaction between trial type (far or outwards) and delay 469 

(p = 0.03) and no significant difference between trial types for no-delay trials (Figure 3C).  470 

For the second test of the Prediction of attraction biases we used the trial types depicted in 471 

Figure 3E, and labeled them as counter-clockwise (encircled in red) and clockwise (encircled in 472 

blue) trials. In both trial types the probed item was located adjacent to another item. For counter-473 

clockwise item trials the probed item was located counter-clockwise to the neighboring item, and 474 

for clockwise item trials the opposite was verified. If attraction occurred, we expected the memory 475 

to be biased and the psychometric curves of the two trial types should be horizontally displaced 476 

instead of centered at zero probe displacement. The predicted displacement would be clockwise 477 

(counter-clockwise) for counter-clockwise (clockwise) item trials, indicating that nearby items were 478 

perceived attracted to each other. The data confirmed this prediction (Figure 3F). The two 479 

psychometric curves were significantly different from each other (p < 0.0001) and the effect 480 

appeared with delay, as verified by a significant interaction (p < 0.0001) between trial type and 481 



delay. Note that the magnitude of the attractive bias was indicative of a partial attraction, not a 482 

complete merge of the memories (mean distance between close by items was 3.2 ± 0.14 deg of 483 

visual angle, so a complete merge would correspond to a horizontal displacement by 1.6 ± 0.14 deg 484 

of visual angle in Fig. 2E). 485 

 486 

Testing the prediction of conditional dependence of precision on load 487 

To test this prediction we used two different trial types having in common that the probed item was 488 

not in close vicinity to any other item (more than 50 deg along the circle). These different trial types 489 

result from the following considerations on the experimental design (for details see Materials and 490 

Methods). We designed the experiment such that each load condition included a balanced number of 491 

trials with probed item far from or close to neighboring items. The former trials (probed item far) 492 

contained a balanced number of trials with non-probed items in a far or close configuration, giving 493 

rise to the two trial types used in this section. Further, a relatively large part of the circle was 494 

covered by the items in each trial by experimental design, in order to minimize possible effects of 495 

focusing the attention on a restricted arc. Given these constraints, the two trial types had different 496 

inter-item distance properties in relation to load, which we took advantage of to test our second 497 

model prediction. In one trial type (far non-probed items) the minimal distance from the probed 498 

item to other simultaneously presented items was relatively invariant with load (Figure 4A) and 499 

therefore these trials are referred to as balanced trials. In the other trial type (close non-probed 500 

items) the minimal distance between the probed item and other items varied markedly between 501 

loads (Figure 4B) and therefore they are referred to as unbalanced trials. Note that the labels 502 

balanced and unbalanced refer to the distance between probed item and the nearest item being 503 

practically invariant (balanced) or varying significantly (unbalanced) across loads. This difference 504 

is summarized in Figure 4C showing the mean of the minimal distances for the two loads, which is 505 

the same for balanced trials but differs for unbalanced trials. With this set of trials that dissociate 506 

load changes from changes in inter-item distances, we went on to test behavioral performance in the 507 



task to validate the model’s prediction. We found that there was a significant interaction of trial type 508 

(balanced/unbalanced) and probe displacement on the fraction of correct responses (p = 0.05). 509 

Further, we found no difference between the psychometric curves for load 3 and 4 for balanced 510 

trials (Figure 4D) but a difference emerged (p = 0.03) for unbalanced trials (Figure 4E). The 511 

difference between the psychometric curves for loads 3 and 4 in unbalanced trials corresponded to a 512 

loss of precision with load (Figure 4F). Precision is here defined as the inverse of the standard 513 

deviation of the cumulative normal curves fitted to the data (Bays and Husain 2008), and it 514 

quantifies the slope of the psychometric curve at zero probe displacement. This loss of precision 515 

was not observed when the distances were balanced across loads (Figure 4F), thus confirming our 516 

second Prediction. The observed differential loss of precision with load for unbalanced trial types 517 

appeared with delay: We verified that there was a significant interaction between delay, 518 

displacement and trial type (p = 0.05) and that for the cases with no delay there was no interaction 519 

between trial type and displacement or load. That is, the differences in psychometric curves 520 

observed in trials with delay were not present with no delay.  521 

 522 

Testing a swap-error model 523 

An alternative explanation for the results in Figure 3C and F is that, in some error trials, the subjects 524 

swapped the colors and locations of the two memorized nearby items (Bays et al. 2009, Pertzov et 525 

al. 2012, Ma et al. 2014). Misremembering the binding between color and location would also result 526 

in a reduced fraction of errors for outwards trials. Intuitively, in trials where the color and locations 527 

memories are swapped, the perceived displacement of the probe would be large (the distance 528 

between items plus the actual displacement) and therefore the response would be correct with 529 

higher probability. Thus, we carried out another experiment to contrast this misbinding hypothesis 530 

with the memory attraction hypothesis supported by our computational model.  531 

To check for evidence of swap errors in our experimental context, we collected behavioral data 532 

in a variant of the original paradigm (Figure 5A and Materials and Methods). In this task, nine 533 



participants had to report the remembered locations by controlling a cursor. We quantified 534 

behavioral performance with the standard deviation of the error-to-target distribution, which was 535 

3.6 ± 0.6 degrees of visual angle across subjects (range: 2 to 7.5 deg). If we excluded trials for 536 

which the error to target exceeded 45 degrees along the circle, the error-to-target standard deviation 537 

was 2.8 ± 0.4 degrees of visual angle (range: 1.5 to 5.8 deg).  538 

First, we checked that the results shown in Figure 3 were also verified in the modified experimental 539 

paradigm. Indeed, we found that there was a significant difference between the reported errors for 540 

the counter-clockwise and clockwise trial types (Figure 4B, p< 0.0001). Similar as in Figure 3, this 541 

data was consistent with attraction of the two memories. We were able to measure the specific 542 

fraction of a perfect merge verified in the data. We did this by normalizing the mean error in each 543 

trials to the distance between close stimuli. The subjects that showed a significant effect (5 out of 9) 544 

presented 26% ± 8% (39% ± 6%) of the attraction expected for a total merge of the memories in 545 

clockwise (counter-clockwise) trials. 546 

We then fitted behavioral reports with statistical models that included Gaussian-like distributions 547 

around the target memory items (Materials and Methods) using a custom expectation maximization 548 

algorithm based on (Bays et al. 2009). For all tested models, the dispersion parameter σ estimated 549 

from trials with close probed items (σ = 7.63 ± 0.88 deg along the circle, n=9) did not differ 550 

significantly from that estimated from trials with far probed items (paired t-test, p> 0.05, n=9), 551 

suggesting that differences in precision between isolated and clustered memory items (Figure 3C) 552 

were not due to different memory resolutions in these two situations. Instead, we tested the 553 

hypothesis that these differences occurred as a result of memory biases caused by neighboring 554 

memories, and we contrasted 3 different models (Materials and Methods): an attraction model 555 

where responses to the target stimulus experienced a mean bias towards the neighboring memory; a 556 

swap model, in which responses to target stimuli were unbiased, but in some trials responses 557 

clustered around the neighboring non-target item; and an attraction+swap model, which combined 558 

the two situations: a fraction of swap responses and a mean bias toward neighboring memories 559 



(Figure 5C). Note that for the swap model we only considered swaps between close-by items. We 560 

compared the estimated maximum likelihoods of each model using differences in the Akaike 561 

information criterion (AIC, Materials and Methods).  We calculated this difference between all the 562 

models and the best model. The best model (the one with the lowest AIC) was the attraction model 563 

for all but one participant, for which the attraction+swap model had the lowest AIC (ΔAIC for the 564 

swap model was 11.7, i.e. a relative likelihood < 0.0001). We excluded this subject to calculate the 565 

average information loss of the swap and merge+swap models relative to the attraction model for 566 

the other participants. The swap model was the worst of the three statistical models tested (Figure 567 

5D). Adding up AICs for these 8 participants, the relative likelihood of the swap model compared to 568 

the attraction model was below 10-4. These results lead us to discard an explanation based on swap 569 

errors alone for the memory attraction that we demonstrated in Figure 3.  570 

 571 

Testing repulsion biases 572 

Our model also predicts repulsion for intermediate distances between close-by items (Figure 1B). 573 

This is a result of the limited divergence of inhibitory connections in the network (medium-range 574 

inhibitory connectivity, see Materials and Methods). We could test this prediction in our second 575 

experiment. As shown in Figure 6, the interaction between two nearby memories transitioned from 576 

attraction to repulsion as the inter-item distance grew, matching qualitatively our network 577 

simulations (Figure 1B). We computed the memory bias from the psychometric curve fit for each 578 

subject (Materials and Methods) and plotted it against distance between items (Figure 6A). Across 579 

subjects, the attractive memory bias of the psychometric curve decreased significantly (one-tailed 580 

paired t-test, p = 0.02, n = 9) from very close memories (3.-3.5 deg of visual angles, memory bias 581 

95% confidence interval [0 0.7] deg, permutation test p = 0.05) to slightly more distant ones (4.2 582 

deg of visual angles), at which point the memory bias became marginally negative (memory bias 583 

95% confidence interval [−1.2 0.1] deg, permutation test p = 0.07). In addition, we tested significant 584 

memory biases within subjects (Materials and Methods), and we found that the number of subjects 585 

with a significant repulsive (attractive) memory bias increased (decreased) with distance between 586 



items (Figure 6B, multinomial regression model p = 0.035, Materials and Methods), indicating a 587 

consistent but individually-specific dominance of repulsion for intermediate distances.  588 



Discussion 589 

 590 

In the current study we investigated the neural circuit mechanisms of vsWM limitations by 591 

formulating predictions from a specific neural circuit hypothesis and by testing them in new 592 

behavioral experiments. Specifically, we confirmed model-predicted attractive and repulsive biases 593 

in the recollection of items located nearby in space, and we found that the model-predicted 594 

reduction in vsWM precision caused by the presence of nearby memorized items could explain the 595 

previously reported decrease of vsWM precision with load (Bays and Husain 2008). Taken together, 596 

our results support the encoding of vsWM in sustained activity of topographically organized neural 597 

circuits.  598 

 599 

Item similarity, interference and WM 600 

With this work we contribute to two partially overlapping debates on the behavioral aspects of 601 

visual WM. One of these debates revolves around the impact of similarity and interference between 602 

items, between items and distractors, and items and landmarks on WM performance. Several studies 603 

have demonstrated such effects in vsWM in the presence of landmarks (Werner and Diedrichsen 604 

2002), WM with distractors (Kerzel 2002, Macoveanu et al. 2007, Van der Stigchel et al. 2007, 605 

Herwig et al. 2010 ), memory of sequential items (Papadimitriou et al. 2015), vsWM with memory 606 

manipulation (Oberauer and Kliegl 2006), WM of colors (Johnson et al. 2009, Lin and Luck 2009, 607 

Elmore et al. 2011, Brady and Alvarez 2011), WM of spatial frequency (Viswanathan et al. 2010, 608 

Huang and Sekuler 2010, Mazyar et al. 2012, van den Berg et al. 2012,), WM of sizes (Brady and 609 

Alvarez 2011) and WM of orientation (Johnson et al. 2009, van den Berg et al. 2012). However, 610 

these studies found discrepant results concerning the impact of item similarity and interference. To 611 

our knowledge we are the first to demonstrate a similarity effect for WM of simultaneously 612 

memorized spatial locations: the attraction effect of neighboring items. We have provided evidence 613 

of a detrimental effect of similarity interference on performance, but we identified one specific 614 



condition under which the similarity effect results in vsWM performance enhancement: when the 615 

test is presented away from the nearby memorized item (Figure 3C). This is consistent with an 616 

attraction of the representations of memorized nearby locations. The analogy between the attraction 617 

of memories and the previously reported attraction between a memory and a distractor (Herwig et 618 

al. 2010, Macoveanu et al. 2007) and between a memory and an irrelevant previous memory 619 

(Papadimitriou et al. 2015) suggests that distractors compete for a representation in the same 620 

memory circuits as actual memories, similar to the hypothesis of current neural models of vsWM 621 

(Compte et al. 2000, Macoveanu et al. 2007, Cano-Colino et al. 2013).  622 

Conceptually, the very existence of similarity effects has led some authors (Elmore et al. 2011, 623 

van den Berg et al. 2012) to interpret them as support for a resources model of WM (Wilken and Ma 624 

2004, Ma et al. 2014), which in its most basic formulation states that WM can be seen as a resource 625 

shared between the memory representations of the different items. Indeed, similarity effects are not 626 

accommodated naturally in the alternative model, the slots model of WM, which states that one 627 

memorizes each item independently until a maximal number of items is reached (Luck and Vogel, 628 

1997, 2013). As some authors have noted, however, similarity or interference effects would not pose 629 

any problem to the slots model if they primarily occurred in the encoding phase, not the mnemonic 630 

phase of the task (Johnson et al. 2009, Lin and Luck 2009). In our experiments, similarity effects 631 

are not present when there is no delay period and the task is otherwise identical. This suggests that 632 

spatial interference of memorized locations occurs during the maintenance of information in WM 633 

and not during the encoding of information. An alternative explanation for the results in Figure 634 

3C,F is that the participants remembered in some trials the colors of two nearby items swapped 635 

(Bays et al. 2009, Pertzov et al. 2012, Ma et al. 2014). To have an idea about how prevalent this 636 

type of errors was in our experimental setup, we ran an additional experiment. We found clear 637 

evidence that swap errors alone cannot explain the prediction of attraction biases and so we 638 

conclude that attraction of memory traces is a more plausible explanation for our results. Note 639 

however, that the amount of swap errors is probably closely related to the specifics of the task and 640 



previous studies that found substantial evidence for swap errors did not use vsWM but tasks based 641 

on WM of color (Bays et al. 2009) or orientation (Pertzov et al. 2012).  642 

 643 

WM precision with load 644 

A second debate concerns the relation between precision of vsWM and number of items to 645 

memorize (WM load), and its implications for the nature of WM. Some authors found a decrease of 646 

precision with load (Bays and Husain 2008, Bays et al. 2009) supporting the resources model 647 

(Wilken and Ma, 2004) of WM, while others found a saturation of precision with load (Zhang and 648 

Luck 2008) supporting models of the family of the slots model (Luck and Vogel 1997, Zhang and 649 

Luck 2008). Crucially, in these slots models information about further items cannot enter WM after 650 

reaching a maximum number of memorized items. Much ongoing research on WM limitations has 651 

focused on resolving the dichotomy between these two alternatives providing new experimental 652 

evidence and leading to further development of algorithmic models, including hybrid models with 653 

characteristics from the slots and resources models (Alvarez and Cavanagh 2004, Xu and Chun 654 

2006, Bays and Husain 2008, Zhang and Luck 2008, Bays et al. 2009, Anderson et al. 2011, 655 

Buschman et al. 2011, Elmore et al. 2011, van den Berg et al. 2012, Luck and Vogel 2013, Ma et al. 656 

2014). A parallel line of research is focusing on the circuit mechanisms of vsWM in biologically 657 

detailed network models (Compte et al. 2000, Macoveanu et al. 2007, Edin et al. 2009, Wei et al. 658 

2012, Bays 2014) that are typically hard to classify into any of these abstract model categories. We 659 

took one such biologically detailed model and we found that the interference between items causes, 660 

on average, loss of memory precision (see also Wei et al. 2012). As the number of items in a 661 

constrained area increases, the probability of having interference between memories increases and 662 

hence a loss of precision with load is observed. The model thus predicts that the decrease of vsWM 663 

precision with load depends largely on the relative location of the items. Our experimental results 664 

were consistent with a distance-dependent relation between precision and load, showing both a 665 

reduction of precision with load (Figure 4E) and a lack thereof (Figure 4D) on the same behavioral 666 



data, depending on a selection of trials based on inter-item distance. This suggests that inter-item 667 

distance could be a factor explaining the conflicting results in the literature (Bays and Husain 2008, 668 

Zhang and Luck 2008). Furthermore, our experiments showed that the relationship between spatial 669 

memory precision and load emerged through the delay. This suggests that explanations based on the 670 

processes of memory encoding and decoding (Bays 2014) need to incorporate also the role of 671 

memory maintenance mechanisms. 672 

 673 

WM model 674 

The network model was used with the same parameters as in (Edin et al. 2009), without further 675 

tuning. We did not seek a quantitative match between the angles or times used for the behavioral 676 

experiments and model simulations. Such a match can be sought by changing parameters of the 677 

model, for example increasing the size of the network would make the values of angular distances 678 

and times in the model approach those of the experiments, at the cost of slower simulations. Such 679 

procedure would make model testing unpractical, without providing any significant conceptual 680 

advantage. Hence, we searched for qualitative robust predictions to test experimentally. Consistent 681 

with this, Wei and coauthors (Wei et al. 2012) working in parallel in a similar model derived 682 

predictions qualitatively in agreement with ours but based on different activity patterns. Indeed, 683 

their model differs from ours fundamentally in that it features a normalization regime where the 684 

same number of active neurons is split among the number of items encoded, with the overall 685 

population activity invariant with load (see also Bays 2014). This is not the regime of operation of 686 

our network, which shows graded rate responses and mean firing rates increasing with load (Edin et 687 

al. 2009). Another difference between the models is that our model, but not the model of Wei et al. 688 

(2012), predicts repulsion between memory traces. Our experimental results (Figure 6) show 689 

evidence for repulsion, hence supporting our model. Further exploration of the regimes where the 690 

two models operate should provide new discriminating predictions to test against experimental data 691 

in the future. Johnson and coauthors (Johnson et al. 2009) also proposed a firing rate model 692 



explaining color similarity effects based on a specific decoder mechanism, in contrast with our 693 

model which allocates the mechanism in the dynamics of the circuit during the maintenance phase. 694 

Our experimental results for vsWM show that the similarity effects appear with delay and therefore 695 

are not originated during the encoding or decoding phases of the task. This is consistent with 696 

interference during the active maintenance of memory. We note however that different mechanisms 697 

might be behind the effects described for color (Johnson et al. 2009) or orientation (Bays 2014) 698 

WM tasks. Finally, our model did not simulate all components of the tasks: Our tasks demanded the 699 

binding of two different features (color and position), while the model was only simulating the 700 

storage of position. This is partly because of the lack of a consensual model for feature binding in 701 

working memory, but also because the behavioral effects that we are reporting proved not to depend 702 

crucially on such binding. Indeed, we demonstrate in our last experiment that the attraction effect is 703 

independent of swap errors. This result justifies interpreting our data with a simplified model 704 

representing only location information. However, a complete understanding of this task will require 705 

explicitly simulating the binding component. 706 

Our results advance our understanding of vsWM in terms of its neuronal circuit underpinnings by 707 

providing evidence for a critical assumption of an explicit computational model of vsWM. Namely, 708 

that vsWM is supported by a network of neurons organized according to a continuous topography in 709 

terms of internal connectivity and external inputs received. This topographical connectivity enables 710 

the model to sustain a continuous attractor mechanism, on which memories of neighboring items 711 

interfere (Amari 1977). Recently, direct experimental evidence from neural activity in the prefrontal 712 

cortex of monkeys performing a single-item spatial working memory task has been obtained in 713 

favor of this continuous attractor mechanism (Wimmer et al. 2014). Here, the consistency of our 714 

experimental results with the model predictions in the case of multi-item working memory lends 715 

further support to the continuous attractor as the basis of vsWM. Further, the model explains 716 

parsimoniously behavioral effects that cannot be consistently integrated within the prevalent 717 

algorithmic models for vsWM. This underscores the potential of using a circuit-based framework to 718 



interpret experimental results on the mechanisms of vsWM.  719 
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Figure legends 843 

Figure 1: The biophysical network model. (A) Schematic representation of the ring structure of the 844 

network model (left) and of the connectivity structure (right) between excitatory (triangles) and 845 

inhibitory neurons (grey circles). Neurons encoding similar angles were strongly connected as 846 

illustrated by the width of the lines connecting cells. Connections onto excitatory neurons are 847 

indicated with a solid line and onto interneurons with a dashed line, excitatory connections are 848 

indicated in black and inhibitory in grey. (B) Example activity of excitatory neurons in the network, 849 

when items were located in the vicinity of each other leading to attraction of the memory traces.  850 

(C) Example activity of excitatory neurons in the network in a trial with 3 presented items, 851 

illustrating the loss of a memory trace during the delay period.  852 

 853 

Figure 2: The biophysical network model predicts behavioral effects in multi-item vsWM tasks. 854 

(A) Memory bias as a function of angle between two items simultaneously presented. The results 855 

are averages over 100 simulations and are based on memory traces after 500 ms from stimulus 856 

offset. Memory biases towards the other presented item (attraction) were defined as positive, while 857 

biases away from the other presented item (repulsion) were defined as negative. The bias for small 858 

angles is easier to explore experimentally and leads to the formulation of the Prediction of attraction 859 

biases. (B) Standard deviation error of the memory trace after 500 ms as a function of load. The 860 

standard deviation error was relatively constant for far items (circles, dashed line) and increased 861 

with load for randomly located items (triangles, solid line), leading to the Prediction of conditional 862 

dependence of precision on load. (C) Proportion of probes judged to be displaced counter-clockwise 863 

from the memorized item. The results are for far items and loads 3 (black) and 4 (gray) and were 864 

fitted with a probit model with displacement of the probe as independent variable. (D) Same as (C) 865 

but for randomly located items. Panels (C) and (D) use the same simulations as in (B) and show that 866 

for far items there is no decrease in precision with load, which is observed for randomly located 867 

items. This observation also leads to the Prediction of conditional dependence of precision on load. 868 



 869 

Figure 3: Behavioral data supports the model-derived Prediction of attraction biases. (A) Schematic 870 

illustration of the paradigm used in the behavioral experiment. (B) Illustration of the sorting of trials 871 

according to relative positions of the items. In one case, items were far from each other (far trials, 872 

framed in black). In the other case, the target item was presented close to another item and was 873 

displaced away from its neighbor during probing (outwards trials, framed in green). (C) Fraction of 874 

errors averaged over participants (n=8) in 48 trials of each trial type (delay/no delay and 875 

far/outwards). Data was analyzed using a probit model. Significant differences are indicated with a  876 

*. There was a significant interaction between delay and trial type. For no delay trials there was no 877 

difference between the fraction of errors for far and outward trials, while there was a significant 878 

difference for delay trials. Error bars indicate standard errors of the mean. (D) Schematic illustration 879 

of the mechanism thought to underlie the decrease in errors for outward trials compared with far 880 

trials. The bell-shaped curves represent the probability distribution of the remembered locations. 881 

The probed item defines an area under the probability function. This area is the probability of 882 

incorrectly judging the direction of displacement of the probe and is larger for far than outward 883 

trials (a2<a1). The distance between location of the item and location of the probe is larger for 884 

outward trials (d1<d2). Hence, the probability of a correct response in outwards trials is larger than 885 

in far trials, as observed experimentally. (E) Illustration of another sorting of trials, all containing 886 

the probed item in the vicinity of another item. Trials were sorted according to the clockwise (blue) 887 

or counter-clockwise (red) location of the probed item relative to the neighboring item. (F) 888 

Psychometric curves for clockwise (blue) and counter-clockwise (red) trials were horizontally 889 

displaced in relation to each other. Curves resulted from a probit model fit to data from all 890 

participants (n=8). The results of C and F are consistent with the Prediction of attraction biases.  891 

 892 

893 



Figure 4: Behavioral data supports the model-derived Prediction of conditional dependence of 894 

precision on load. (A and B) Histograms of the distances between the target or probed item to the 895 

nearest non-probed item for loads 3 (contour only bars) and 4 (filled bars) for the case of balanced 896 

or invariant distances across load, A, or for the case of unbalanced or varying distances across load 897 

trials, B (see Results). Each combination of load and trial type (balanced/unbalanced) included 384 898 

trials. (C) Mean distances from the target to the nearest neighbor for loads 3 and 4 and for balanced 899 

(triangles) and unbalanced (circles) distances. Error bars indicate standard deviations. (D) 900 

Psychometric curves for load 3 (black) and 4 (gray) for the case of balanced distances. Curves 901 

resulted from a probit model fit to data from all participants (n=8). (E) The same as in D for 902 

unbalanced distances. (F) Precision derived from panels D, E decreased with load for unbalanced 903 

distances (circles) while it remained unchanged for balanced distances (triangles). Error bars 904 

indicate standard errors of the mean.  905 

 906 

Figure 5: Behavioral data suggests that attraction of memory representations and not swap errors is 907 

responsible for memory biases observed in close trials. (A) Schematic illustration of the modified 908 

experimental paradigm, where participants indicated the remembered target location upon 909 

appearance of a colored cue in the center of the screen. (B) Top: distributions of error to target for 910 

clockwise (gray) and counter-clockwise (black) trials differed significantly (p< 0.00005, data from 911 

all participants n=9), revealing an attractive bias. Bottom: Cumulative proportion of errors to target 912 

from the distributions in top panel, to compare with psychometric curves in Figure 2E. Data was 913 

fitted with a cumulative normal function.  (C) Schematic illustration of the probability density 914 

function for each of the 3 models tested. Swap (black), attraction (dark gray) and attraction+swap 915 

model (light gray). (D) Average information loss ΔAIC across subjects (n=8) for swap and 916 

attraction+swap models compared to the attraction model, the best model for data from these 917 

participants. 918 

 919 
920 



Figure 6: Memory repulsion emerges for intermediate distances between close-by items. (A) 921 

Subject-averaged memory bias (Materials and Methods) for trials with different distances between 922 

memorized close-by items (x-axis). Shadows indicate bootstrap-derived 95% confidence intervals. 923 

Stars denote significant difference as evaluated with one-tailed paired t-test at p < 0.05. (B) Number 924 

of subjects with significant (t-test p < 0.05) attractive and repulsive memory bias in trials with 925 

different inter-item distance. 926 
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