Pd(II) and Pt(II) Coordination Chemistry with Hybrid Pyridine-Pyrazole Ligands: from 3D-Frameworks

 Structures in Molecular ComplexesMiguel Guerrero, ${ }^{\mathrm{A}}$ José A. Pérez, ${ }^{\mathrm{A}}$ Teresa Calvet, ${ }^{\mathrm{B}}$ Mercè Font-Bardía, ${ }^{\mathrm{C}}$ and Josefina Pons ${ }^{\text {A,D }}$
${ }^{\text {A }}$ Departament de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
${ }^{B}$ Cristal \cdot lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n, 08028-Barcelona, Spain.
${ }^{C}$ Unitat de Difracció de RX. Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028-Barcelona, Spain.
${ }^{\text {D }}$ Corresponding author. Email: Josefina.Pons@uab.es

Abstract

In this paper we studied the reaction of ligands 2-[5-phenyl-1-(3,6,9-trioxodecane)-1H-pyrazol-3-yl]pyridine (L1) and 3,5-bis(2-pyridyl)-1-(3,6,9-trioxodecane)-1H-pyrazole (L2) with $\left[\mathrm{MCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right](\mathrm{M}=\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}))$, to obtain monomeric complexes $\left[\mathrm{MCl}_{2}(\mathrm{~L})\right]$ ($\mathrm{M}=\mathrm{Pd}(\mathrm{II}): \mathrm{L}=\mathrm{L} 1$ (1), $\mathrm{L}=\mathrm{L} 2$ (2); $\mathrm{M}=\mathrm{Pt}(\mathrm{II}): \mathrm{L}=\mathrm{L} 1$ (3), $\mathrm{L}=\mathrm{L} 2$ (4)). Additionally, the reaction of $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]$ with L 1 (5) and L 2 (6) was also studied pointing out dimeric structures with bridged acetates between the $\mathrm{Pd}(\mathrm{II})$ atoms. All complexes were characterised by elemental analyses, conductivity measurements, infrared spectroscopy (IR), ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies, and electrospray ionisation mass spectrometry (MS$\mathrm{ESI}(+))$. The crystal structure of complex $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3) was determined by X-ray diffraction methods; it consists of a mononuclear complex where L1 acts as a bidentate chelate ligand. Moreover, we also studied the extended structure observing that the ether, present in the alkyl chain of the ligand, chlorine, and platinum moieties play a fundamental role in the final disposition of the supramolecular structure. All these results show how the design of an appropriate hybrid ligand can strongly influence the structural control of the molecular packing.

1. INTRODUCTION

During the past 20 years the smart design of new multi-functional composites ${ }^{[1]}$ with appealing properties have been of great interest and have been actively pursued in fields like materials chemistry, crystal engineering, or biomedicine. ${ }^{[2-5]}$ One of the most important issues in this field is to achieve the correct molecular packing through the smart design of all the elements involved, which, in turn, will affect the macroscopic properties of the material. Moreover, non-covalent interactions like hydrogen bonding are a particularly powerful building motif for the construction of self-assembling supramolecular structures. ${ }^{[6-8]}$

In the process of self-assembly of metallic complexes there are two main issues to take into account: a) the number and type of coordinating moieties which contains the used ligand in the reaction, and b) the coordination number and the preferred geometry of the chosen metallic centre. Regarding the ligand, heterocycles represent an intelligent option because of their ring structure containing heteroatoms with different coordination behaviour; this fact has been clearly proved in the past century with wide application in all areas of coordination chemistry, for example, of azole-derived ligands. ${ }^{[9]}$ Moreover, pyrazole ligands, which are able to be engaged in hydrogen bonding and have been used in liquid crystals, self-assembled species, and catalysis, ${ }^{[10,11]}$ are considered excellent candidates to build 1D, 2D, and 3D frameworks due to their steric profile being highly dependent on the presence o substituents, their size, and their position on the aromatic ring. ${ }^{[12]}$

We have previously described the synthesis, characterisation, and reactivity towards $\operatorname{Pd}($ II $)$ of several families of hybrid 3,5-dimethylpyrazole ligands containing N polyetheralkyl chains, ${ }^{[13,14]}$ with phenyl groups in different relative positions, ${ }^{[15,16]}$ as well as using the mixed-donor ligand 1,8-bis(3,5-dimethyl-1H-pyrazol-1yl)-3,6-dioxaoctane. ${ }^{[17]}$ A high versatility of these ligands has been observed and their denticity varies from N, N bidentate (chelate or bridge) to $\mathrm{N}, \mathrm{O}, \mathrm{O}$, Ntetradentate (equatorial or axial). ${ }^{[17]}$ Furthermore, these hybrid pyrazole ligands have also been found to accommodate a range of metal coordination geometries (tetrahedral, cis/trans-square planar, or octahedral) and nuclearity
(monomer, dimer, or polymer), as a consequence of the coordination requirement of the metals, the reaction conditions, and the variety of the donor atoms. ${ }^{[18,19]}$

As an extension of the above results, we have recently described the synthesis and characterisation of a new family of N -polyetherpyrazole ligands introducing pyridine substituents: 2-[5-phenyl-1-(3,6,9-trioxodecane)-1H-pyrazol-3-yl] pyridine (L1) and 3,5-bis(2-pyridyl)-1-(3,6,9-trioxodecane)-1H-pyrazole (L2) (M. Guerrero, J. A. Pérez, V. Branchadell, et al., unpubl. data). Due to their potential application in supramolecular chemistry, here we present a study of the synthesis and characterisation of new $\operatorname{Pd}($ II $)$ and $\mathrm{Pt}(\mathrm{II})$ complexes with these hybrid pyridine-pyrazole ligands, and compare with closely related complexes.

2. RESULTS AND DISCUSSION

Synthesis and Spectroscopic Properties of Complexes 1-4

Complexes cis-[$\left.\mathrm{MCl}_{2}(\mathrm{~L})\right](\mathrm{M}=\mathrm{Pd}(\mathrm{II}): \mathrm{L}=\mathrm{L} 1$ (1), L 2 (2); $\mathrm{M}=\mathrm{Pt}(\mathrm{II}): \mathrm{L}=\mathrm{L} 1$ (3), L 2 (4)) were obtained when $\left[\mathrm{MCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}))$ was reacted with the corresponding pyrazole ligand (L1, L2) using $1 \mathrm{M}: 1 \mathrm{~L}$ ratio in an acetonitrile solution (Scheme 1). The ability of L1 and L2 to coordinate $\mathrm{Pd}($ II $)$ and $\operatorname{Pt}($ II $)$ metallic centres is comparable to other complexes with N -alkylpyrazole, ${ }^{[20-22]}$ and N hydroxyalkylpyrazole ${ }^{[23-25]}$ ligands.

The elemental analyses are consistent with the formula $\left[\mathrm{MCl}_{2}(\mathrm{~L})\right](\mathrm{M}=\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}))$ for compounds $1-4$. The positive ionisation mass spectra ($\mathrm{ESI}(+)-\mathrm{MS}$) of compounds $1-4$ give peaks with m / z values of 509 (100 \%) (1), 510 (100 \%) (2), 598 (100 \%) (3), and 599 $(100 \%)(4)$; all of them are attributable to $[\mathrm{M}-\mathrm{Cl}]^{+}(\mathrm{M}=\mathrm{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}))$. Molecular peaks are observed with the same isotope distribution as the theoretical ones. Complexes 1-4 are slightly soluble in common organic solvents, such as acetone, dichloromethane, or ethanol. Thus, dimethyl sulfoxide was used for the conductivity measurements. The obtained values $\left(22-36 \mathrm{O}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right.$) show the non-ionic behavior of $1-4$ (conductivity values for a nonelectrolyte are below $50 \mathrm{O}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ in DMSO solution). ${ }^{[26,27]}$ The IR spectra studied in the range of $4000-400 \mathrm{~cm}^{-1}$ show the coordination of the ligands to the $\operatorname{Pd}(\mathrm{II})$ or $\operatorname{Pt}(\mathrm{II})$ atom (Fig. S1, Crystallographic data). The $(\mathrm{n}(\mathrm{C}=\mathrm{C}), \mathrm{n}(\mathrm{C}=\mathrm{N})$)ar (ar=aromatic) bands of the pyrazole ligand increase in frequency when part of the complex, whereas no significant change is observed in the $n(C-O-C)$ as (as ${ }^{1} / 4$ asymmetric) band. ${ }^{[28,29]}$

The IR spectra of complexes $1-4$ in the $600-100 \mathrm{~cm}^{-1}$ region were also studied. The presence of bands between $492-462 \mathrm{~cm}^{-1}$ for $\mathrm{Pd}(\mathrm{II})$ and $483-450 \mathrm{~cm}^{-1}$ for $\mathrm{Pt}(\mathrm{II})$ complexes, assigned to $\mathrm{n}(\mathrm{M}-\mathrm{N})$, confirm the coordination of the Npz ($\mathrm{pz=}=$ pyrazole) of the ligand to the metallic atom. It is remarkable to point out that both palladium and platinum complexes display two $\mathrm{n}(\mathrm{M}-\mathrm{Cl})$ bands between 356 and $331 \mathrm{~cm}^{-1}$, indicating that the chlorine atoms
are coordinated to the $\mathrm{M}(\mathrm{II})$ atom in cis disposition,[30] due to the chelating structure of the ligand.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and HSQC NMR spectra for complexes $1-4$ in CDCl_{3} show the signals of the coordinated ligands. ${ }^{[28,29]}$ All NMR signals are reported in detail in the Experimental section. In the ${ }^{1} \mathrm{H}$ NMR spectra, characteristic signals for the $\mathrm{CH}(\mathrm{pz})$ are observed between 7.00 and 6.73 ppm . The protons of the 3,6,9-trioxodecane chain appear between 5.59 and 3.31 ppm , and the protons of the methyl group of the chain between 3.41 and 3.32 ppm .

In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra the signals attributable to $\mathrm{CH}(\mathrm{pz})$ appear between 108.4 and 104.6 ppm , the carbons of the 3,6,9-trioxodecane chain between 71.8 and 49.3 ppm , and the carbon of the methyl group of the chain between 59.9 and 58.8 ppm . Interestingly, when the ligand is part of the complex the signals of $\mathrm{CH}(\mathrm{pz})$ in the ${ }^{1} \mathrm{H}$ NMR decrease in chemical shift, while the signals increase in chemical shift in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Additionally, ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiments for complexes 3 and 4, at 298 K , have been also recorded in CDCl_{3} and display only one signal for each complex at $\mathrm{d}=2187 \mathrm{ppm}$ (3) and -2173 ppm (4). These values appear in the range described in the literature for complexes with $\left[\mathrm{PtCl}_{2} \mathrm{~N}_{2}\right]$ core (between -2447 and -1198 ppm). ${ }^{[30-32]}$ These data illustrate how sensitive the platinum chemical shift is to the average ligand environment.

Crystal and Molecular Structure of Complex cis-[PtCl 2 (L1)] (3)

The crystal structure of 3 consists of discrete cis- $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ molecules linked by intermolecular forces (Fig. 1). Selected bond distances and angles are given in Table 1 and other parameters and details concerning the refinement of the crystal structures are gathered in Table 2.

The platinum centre has typical square-planar geometry (with a slight tetrahedral distortion) showing the largest deviation from the mean coordination plane ($0.014 \AA$). The metal atom is coordinated to one L1 ligand via one pyrazole nitrogen, one pyridine nitrogen, and two chlorine atoms in a cis-disposition. The L1 ligand behaves as a chelated bidentate ligand (bite angle of $78.6(4)^{\circ}$) forming a five-membered metallocycle.

The bond distances $\mathrm{Pt}-\mathrm{N}_{\mathrm{py}}\left(2.040(9) \AA\right.$, where $\mathrm{py}^{1 / 4}$ pyridine) are in the same order as $\mathrm{Pt}-\mathrm{N}_{\mathrm{pz}}(2.050(9) \AA)$. The $\mathrm{Pt}-\mathrm{N}_{\mathrm{py}}, \mathrm{Pt}-\mathrm{N}_{\mathrm{pz}}$, and $\mathrm{Pt}-\mathrm{Cl}$ distances are in the usual range found for other platinum complexes containing analogous ligands.[33] The $\left[\mathrm{PtCl}_{2}\left(\mathrm{~N}_{\mathrm{py}}\right)\left(\mathrm{N}_{\mathrm{pz}}\right)\right]$ core (containing pyrazole, pyridine nitrogen atoms, and terminal chlorine atoms) is found in seven complexes describes in the literature. ${ }^{[22,34-36]}$ It is important to mention that L1 is not positioned in a planar way; pyridyl and phenyl groups of the ligands are clearly twisted with respect to the pyrazole ring. Whereas the pyridyl group is slightly twisted (py-pz dihedral angle 4.18), the phenyl group (ph) shows a significant torsion with respect to pyrazole (ph-pz dihedral angle 55.68). The 3,6,9-trioxodecane group, which is bonded to $\mathrm{N}(3)$, moves away from the chelating plane giving a torsion angle $(\mathrm{N}(2)-\mathrm{N}(3)-\mathrm{C}(15)-\mathrm{C}(16))$ of -74.08 ; this value is lower than others previously reported $\left(\left[\mathrm{PdCl}_{2}(\mathrm{LA})\right](\mathrm{LA}=1\right.$-octyl-3,5-bis (2-pyridyl)pyrazole). ${ }^{[22]}$

Extended Structure of cis-[PtCl2(L1)] (3)

In order to shed light on the final disposition of the selfassembled structure it is necessary to study the interactions between the metal centres and the organic ligands. In this case, the extended structure analyses revealed a novel threedimensional network (Fig. 2). What is more important, the presence of intermolecular hydrogen bonds $(\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl})$ have been studied in recent times. These kind of interactions have proved to be key for the final configuration of the supramolecular structure of solids. ${ }^{[37-39]}$ So, we have investigated the self-assembly pattern of complex $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3) in the crystal structure mainly through different intermolecular hydrogen bonding interactions ($\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$) and also intermetallic interactions ($\mathrm{Pt} \cdots \mathrm{Pt}$). All the bonding parameters are gathered in Table 3.

Three different H atoms (H7, H19, and H21) (Fig. 2) are engaged in hydrogen bonds with the Cl atom, which acts as the sole receptor for the interactions. Each $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ unit is linked to seven neighbouring molecules, via $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (bond distances and angles ranging between $2.72-2.94 \AA$ and 140-1708, respectively), accompanied by cooperative $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (bond distances and angles ranging between 2.54-2.704 \AA and 143-1568, respectively), forming layers of molecules with opposite distributions showing clear interdigitation. This fact confirms that the oxygen atoms, present in the alkyl
chain of L1, play an important role in the generation of these directional hydrogen bonding interactions. All the $\mathrm{C}-\mathrm{H} \cdots \mathrm{X}(\mathrm{X}=\mathrm{Cl}$ or O$)$ intermolecular contacts can be considered as 'weak' on the basis of the contact distances and angles. ${ }^{[40]}$ Moreover, important intermetallic interactions (3.403(1) $\left.\mathrm{A}^{\circ}\right)$ have also been observed between adjacent Pt atoms (Fig. 2).

Synthesis and Spectroscopic Properties of Complexes 5 and 6

To study the effect of the anion, we have also studied the reaction of L1 and L2 with $\left[\mathrm{Pd}(\mathrm{Ac})_{2}\right]\left(\mathrm{Ac}=\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$, giving rise to dimeric complexes $[\mathrm{Pd}(\mathrm{Ac})(\mathrm{L})]_{2}(\mathrm{Ac})_{2}(\mathrm{~L}=\mathrm{L} 1(5)$ and L2 (6)). In contrast to complexes 1-4, complexes 5 and 6 are soluble in acetone, dichloromethane, and ethanol. The proposed formula was confirmed by elemental analyses. The positive ionisation mass spectra (MS-ESI $(+)$), of complexes 5 and 6 , give peaks with m / z values of 529 (100 \%) (5) and 530 (100 \%) (6), attributable to $[\mathrm{Pd}(\mathrm{Ac})(\mathrm{L})]^{+}$. Molecular peaks of the cations and the theoretical ones are observed with the same isotope distribution.

Conductivity values of 10^{-3} Msamples in methanol solution (197 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}(5)$, $\left.200 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}(6)\right)$ are in agreement with the presence of $1: 2$ electrolyte compounds by comparison with reported compounds (between 160 and $220 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$). ${ }^{[26,27]}$

The IR spectra of complexes 5 and 6 show absorption bands assigned to the asymmetric and symmetric $n(O C O)$ stretching modes and the typical bands of polyetherpyrazole-derived ligands. ${ }^{[28,29]}$ The IR spectra of these complexes containing the acetate anion were recorded between 1650 and $1400 \mathrm{~cm}^{-1}$, allowing us to determine the coordination mode of the acetate group. These complexes show a complicated spectrum in this region and display bands between 1642-1591 and 1473-1432 cm^{-1}, separated by $\Delta=205-126 \mathrm{~cm}^{-1}$ (Fig. S1, Crystallographic data). These D values are consistent with the presence of both ionic and coordinated acetate groups, pointing out the presence of dimeric species. ${ }^{[30,41]}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for complexes 5 and 6 recorded in CDCl_{3} solution show signals for coordinated ligands (L1, L2) and acetate groups. In the ${ }^{1} \mathrm{H}$ NMR spectra
the bands attributable to $\mathrm{CH}(\mathrm{pz})$ appears at 6.71 (5) and 7.08 (6) ppm; moreover the signals that correspond to the protons of the chain $\mathrm{N}_{\mathrm{pz}}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$ appear between 4.74 and 3.19 ppm and the protons of the methyl groups at 3.30 and 3.29 ppm . The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra display the signals of $\mathrm{CH}(\mathrm{pz})$ at 104.5 (5) and 105.9 (6) ppm, the signals of the chain $\mathrm{N}_{\mathrm{pz}}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$ between 71.8 and 49.3 ppm , and the carbons of the methyl groups at 59.0 and 58.9 ppm .

The methyl of the acetate groups display two signals in each of the ${ }^{1} \mathrm{H}$ NMR spectra and the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. These signals appear at 2.10 and 1.98 ppm (for ${ }^{1} \mathrm{H}$), and 23.0 and 22.9 ppm (for ${ }^{13} \mathrm{C}$) (5) and 2.13 and 2.05 (for ${ }^{1} \mathrm{H}$), and 23.4 and 22.8 ppm (for ${ }^{13} \mathrm{C}$) (6). The presence of two signals for each type of proton could indicate the presence of two types of acetates: bridged ($2.10,2.13 \mathrm{ppm} ; 23.0,23.4 \mathrm{ppm}$) and ionic ($1.98,2.05 \mathrm{ppm} ; 22.9$, 22.8 ppm). Unfortunately, no suitable single crystals could be obtained for complexes 5 and 6.

3. CONCLUSIONS

We have studied new $\operatorname{Pd}(\mathrm{II})$ and $\operatorname{Pt}(\mathrm{II})$ monomeric complexes with 2-[5-phenyl-1-(3,6,9-trioxodecane)-1H-pyrazol-3-yl] pyridine (L1) and 3,5-bis(2-pyridyl)-1-(3,6,9-trioxodecane)- 1H-pyrazole (L2) ligands (1-4). Additionally, the reaction of $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]$ with L 1 (5) and L 2 (6) was also studied, showing formation of dimeric structures with bridged acetates between the $\operatorname{Pd}(I I)$ atoms. All new complexes have been characterized by elemental analyses, conductivity measurements, infrared and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies, and MS-ESI $(+)$ spectrometry.

The crystal structure of complex $\left[\mathrm{PtCl}_{2}(\mathrm{L1})\right]$ (3) was determined by X-ray diffraction methods showing a square planar geometry unit where the platinum centre is coordinated to one bidentate L1 ligand and two chlorine atoms in cis disposition. The extended structure shows that the ether moieties, present in the alkyl chain of the ligand, as well as Cl and Pt atoms, play a fundamental role in the final disposition in the supramolecular structure. All these results show how the design of an appropriate hybrid ligand can strongly influence structural control of molecular packing.

4. EXPERIMENTAL

General Details

All reactions were carried out in vacuum line and using Schlenk techniques. All reagents were commercial grade materials without further purification. All solvents were previously dried and distilled by standard methods.

Conductivity measurements were performed at room temperature in dimethyl sulfoxide (DMSO) or methanol solutions ($10^{-3} \mathrm{M}$) employing a Crison i-micro CM 2200 conductimeter. Elemental analyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were carried out by the Chemical Analyses Service of the Universitat Autònoma de Bacelona on a Carlo Erba CHNS EA-1108 instrument. Infrared spectra were run on a Perkin-Elmer FT spectrophotometer series 2000 cm^{-1} as KBr pellets or polyethylene films in the range $4000-100 \mathrm{~cm}^{-1}$ under a nitrogen atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, HSQC, and NOESY spectra were run on a NMR-FT Bruker $\mathrm{AC}-250 \mathrm{MHz}$ spectrometer in CDCl 3 solutions, at room temperature. ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ were recorded at 298 K in CDCl 3 solutions, and at 77.42 MHz on a DPX360 MHz Bruker spectrometer using aqueous solutions of $\left[\mathrm{PtCl}_{6}\right]^{2-}(0 \mathrm{ppm})$ as an external reference, with delay times of 0.01 s . Chemical shifts (δ) are given in ppm. Mass spectra [MS-ESI(b)] were obtained with an Esquire 3000 ion trap mass spectrometer from Bruker Daltonics.

Samples of $\left[\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]^{[42]}$ and $\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]^{[43]}$ were prepared as described in the literature. 2-[5-Phenyl-1-(3,6,9-trioxodecane)-1H-pyrazol-3-yl]pyridine (L1) and 3,5-bis(2-pyridyl)-1-(3,6,9-trioxodecane)-1H-pyrazole (L2) ligands were prepared according to the methods by us (Scheme 1) (M. Guerrero, J. A. Pérez, V. Branchadell, et al., unpubl. data).

Synthesis of the Complexes [PdCl2(L)] (L5L1 (1); L2 (2))

A solution of $\left[\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right](0.088 \mathrm{~g}, 0.34 \mathrm{mmol})$ in 75 mL of dry acetonitrile was treated with a solution of L1 or L2 ($0.125 \mathrm{~g}, 0.34 \mathrm{mmol})$ dissolved in 5 mL of dry acetonitrile. After 12 h of stirring at room temperature, the solution was concentrated until a crystalline precipitate appeared. The complex was obtained as orange needles. The solid was
recrystallised from dichloromethane. The solid was filtered off, washed with diethyl ether (5 mL), and dried under vacuum.

1. (75% yield). (Found: $\mathrm{C} 46.5, \mathrm{H} 4.7, \mathrm{~N} 7.6 . \mathrm{C}_{21} \mathrm{H}_{2} 5 \mathrm{~N}_{3} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{Pd}$ requiresC46.3, H4.6, N7.7 \%). Conductivity ($1.0 \times 10^{-3} \mathrm{M}$ in DMSO): $25 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} . v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3114 v(\mathrm{C}-\mathrm{H})$ aromatic (ar), $2899 \mathrm{n}(\mathrm{C}-\mathrm{H})$ aliphatic (al), $1625(\mathrm{v}(\mathrm{C}=\mathrm{C}), \mathrm{v}(\mathrm{C}=\mathrm{N})$)ar, 1458 $(\delta(\mathrm{C}=\mathrm{C}), \delta(\mathrm{C}=\mathrm{N}))$ ar, $1133 v(\mathrm{C}-\mathrm{OC})$ as, $1045 \delta(\mathrm{C}-\mathrm{H})$ ar, vibration in the plain (ip), $784 \delta(\mathrm{C}-$ H)ar, vibration out of the plane (oop); (polyethylene, cm^{-1}): 492, $481 \vee(\mathrm{Pd}-\mathrm{N}), 349,340$ $v(\mathrm{Pd}-\mathrm{Cl}) . \delta \mathrm{H}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 9.01\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=5.6, \mathrm{H}_{\text {ortho }}\right.$, py $), 7.80-7.60\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{py}}\right)$, $7.51-7.41\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{ph}}\right), 6.73\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{pz}}\right), 4.92\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=4.8, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.99(2 \mathrm{H}, \mathrm{t}$, $\left.3^{3}=4.8, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.47\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\right), 3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) . \mathrm{dC}\left(\mathrm{CDCl}_{3}\right.$, $62.9 \mathrm{MHz}) 148.9$ (Cortho, py), 136.7, 130.3, 129.1, 128.5, 122.2 (Cpy, Cph), 130.3-128.5 $\left(\mathrm{C}_{\mathrm{ph}}\right), 105.6(\mathrm{Cpz}), 71.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 70.6-69.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) 2,58.8\left(\mathrm{OCH}_{3}\right), 49.3$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) . m / z(\mathrm{ESI}+) 509\left(100,[\mathrm{PdCl}(\mathrm{L} 1)]^{+}\right)$
2. (72% yield). (Found: $\mathrm{C} 44.0, \mathrm{H} 4.3, \mathrm{~N} 10.2 . \mathrm{C}_{20} \mathrm{H}_{2} 4 \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{Pd}$ requires C 44.0 , H 4.4, N 10.3%). Conductivity ($9.8 \times 10^{-4} \mathrm{M}$ in DMSO): $22 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \cdot v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3090 v(\mathrm{C}-\mathrm{H}) \mathrm{ar}, 2875 \mathrm{v}(\mathrm{C}-\mathrm{H}) \mathrm{al}, 1611,1571(\mathrm{v}(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}))$ ar, 1459, $1438(\delta(\mathrm{C}=\mathrm{C})$, $\delta(\mathrm{C}=\mathrm{N})$)ar, $1104 \mathrm{v}(\mathrm{C}-\mathrm{O}-\mathrm{C})$ as, $1030 \delta(\mathrm{C}-\mathrm{H}) \mathrm{ar}, \mathrm{ip}, 783,768 \delta(\mathrm{C}-\mathrm{H}) \mathrm{ar}$, oop; (polyethylene, $\left.\mathrm{cm}^{-1}\right): 479,464 v(\mathrm{Pd}-\mathrm{N}), 356,342 v(\mathrm{Pd}-\mathrm{Cl}) . \delta \mathrm{H}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 9.32(1 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=5.4$, Hortho, py), 8.68 ($1 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}^{1 ⁄ 4} 4.7$, Hortho, py), 7.98-7.27 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{py}}$), 6.97 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{pz}}$), $5.52\left(2 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=4.7, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.89\left(2 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=4.7, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.31\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\right) . \delta \mathrm{C}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) 154.0$ (Cortho, py), 150.9 (Cortho, py), 140.1, 139.3, 130.6, 126.7, 124.8, $121.4(\mathrm{C}$ py $), 108.4\left(\mathrm{C}_{\mathrm{pz}}\right), 71.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 70.6-70.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}, 59.9\left(\mathrm{OCH}_{3}\right), 52.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) . m / z(\mathrm{ESI}+) 510\left(100,[\mathrm{PdCl}(\mathrm{L} 2)]^{+}\right)$

A solution of $\left[\mathrm{PtCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right](0.118 \mathrm{~g}, 0.34 \mathrm{mmol})$ in 75 mL of dry acetonitrile was treated with a solution of L1 or L2 $(0.125 \mathrm{~g}, 0.34 \mathrm{mmol})$ dissolved in 10 mL of dry acetonitrile. The resulting solution was stirred and heated at reflux for 24 h , before concentrating on a vacuum line to one fifth of the initial volume. The yellow solution was filtered off, washed with diethyl ether (5 mL), and dried under vacuum.
3. (68% yield). (Found: $\mathrm{C} 39.6, \mathrm{H} 3.7, \mathrm{~N} 6.7 . \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{Pt}$ requires $\mathrm{C} 39.8, \mathrm{H}$ 4.0, N 6.6%). Conductivity ($1.2 \times 10^{-3} \mathrm{M}$ in DMSO): $36 \mathrm{O}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} . v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3104 v(\mathrm{C}-\mathrm{H}) \mathrm{ar}, 2868 v(\mathrm{C}-\mathrm{H}) \mathrm{al}, 1619(v(\mathrm{C}=\mathrm{C}), \mathrm{n}(\mathrm{C}=\mathrm{N}))$ ar, $1466(\delta(\mathrm{C}=\mathrm{C}), \delta(\mathrm{C}=\mathrm{N}))$ ar, 1122 $v(\mathrm{C}-\mathrm{O}-\mathrm{C})$ as, $1032 \delta(\mathrm{C}-\mathrm{H}) \mathrm{ar}, \mathrm{ip}, 782,765 \delta(\mathrm{C}-\mathrm{H}) \mathrm{ar}$, oop; (polyethylene, cm^{-1}): 483, 471 $v(\mathrm{Pt}-\mathrm{N}), 348,334 v(\mathrm{Pt}-\mathrm{Cl}) . \delta_{\mathrm{H}}\left(\mathrm{CDC1}_{3}, 250 \mathrm{MHz}\right) 9.69\left(1 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J} 1 / 45.9, \mathrm{H}_{\text {ortho }}\right.$, py $), 8.02-$ $7.62\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{py}}\right), 7.53-7.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{ph}}\right), 6.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{pz}}\right), 5.05(2 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=5.7$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.06\left(2 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=5.7, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.46\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) 2\right), 3.32(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) 149.4(\mathrm{Cortho}$, py), 139.0, 130.1, 129.7, 128.7, 124.5, 120.8 $\left(\mathrm{C}_{\mathrm{py}}, \mathrm{C}_{\mathrm{ph}}\right), 106.8\left(\mathrm{C}_{\mathrm{pz}}\right), 71.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 71.6-70.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}, 58.8\left(\mathrm{OCH}_{3}\right), 49.8$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .{ }_{195} \mathrm{Pt}\{1 \mathrm{H}\}\left(\mathrm{CDCl}_{3}, 77.0 \mathrm{MHz}\right)-2187(\mathrm{~s}) . \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 598\left(100,[\mathrm{PtCl}(\mathrm{LL})]^{+}\right)$
4. (65\% yield). (Found: C 37.6, H 3.7, N 8.7. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{Pt}$ requires $\mathrm{C} 37.9, \mathrm{H}$ 3.8, N 8.8%). Conductivity ($9.6 \times 10^{-4} \mathrm{M}$ in DMSO): $32 \mathrm{O}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3099 v(\mathrm{C}-\mathrm{H}) \mathrm{ar}, 2881 v(\mathrm{C}-\mathrm{H}) \mathrm{al}, 1621,1591(v(\mathrm{C} / 14 \mathrm{C}), v(\mathrm{C}=\mathrm{N})) \mathrm{ar}, 1447(\delta(\mathrm{C}=\mathrm{C})$, $\delta(\mathrm{C}=\mathrm{N})$)ar, $1108 v(\mathrm{C}-\mathrm{O}-\mathrm{C})$ as, $1033 \delta(\mathrm{C}-\mathrm{H})$ ar, ip, $790 \delta(\mathrm{C}-\mathrm{H})$ ar, oop; (polyethylene, $\left.\mathrm{cm}^{-1}\right)$: $465,450 v(\mathrm{Pt}-\mathrm{N}), 342,331 \mathrm{v}(\mathrm{Pt}-\mathrm{Cl}) . \delta \mathrm{H}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 9.64\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=5.7\right.$, Hortho, py), $8.72\left(1 \mathrm{H}, \mathrm{d}, 3 \mathrm{~J}=4.8\right.$, Hortho, py), 8.04-7.37 ($\left.6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\text {py }}\right], 7.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{pz}}\right], 5.59(2 \mathrm{H}$, $\left.\mathrm{t}, 3 \mathrm{~J} 1 / 4.8, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.94\left(2 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=4.8, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) 3.32(8 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\right) . \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) 149.8\left(\mathrm{C}_{\text {ortho }}, \mathrm{py}\right), 149.5$ (Cortho, py), 139.3, 137.2, 124.7, 124.2, $121.2\left(\mathrm{C}_{\mathrm{py}}\right), 105.0(\mathrm{C} \mathrm{pz}), 71.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 70.4,70.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}$,
$59.0\left(\mathrm{OCH}_{3}\right), 50.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) .{ }^{195} \mathrm{Pt}\{1 \mathrm{H}\}\left(\mathrm{CDCl}_{3}, 77.0 \mathrm{MHz}\right)-2173(\mathrm{~s}) . \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 599$ (100, $\left.[\mathrm{PtCl}(\mathrm{L} 2)]^{+}\right)$

Synthesis of the Complexes [Pd(Ac)(L)] 2(Ac) 2 (L5L1 (5); L2 (6))
The reactions were carried out under nitrogen atmosphere. To a Schlenk flask containing deoxygenated warm $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, was added $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(0.045 \mathrm{~g}, 0.20 \mathrm{mmol})$ and L 1 or L 2 $(0.074 \mathrm{~g}, 0.20 \mathrm{mmol})$. The resulting solution was stirred at room temperature for 16 h and then concentrated on a vacuum line to one-fifth of the initial volume; crystalline solids were obtained, which were filtered off, washed with ethanol, and dried under vacuum.
5. (80% yield). (Found: C 50.7, H 5.1, N 7.3. $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{Pd}_{2}$ requires C $50.7, \mathrm{H} 5.3, \mathrm{~N}$ 7.1%). Conductivity ($1.1 \times 10^{-3} \mathrm{M}$ in $\mathrm{CH}_{3} \mathrm{OH}$): $197 \mathrm{O}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. $\mathrm{nmax}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3068 \mathrm{v}(\mathrm{C}-\mathrm{H}) \mathrm{ar}$, $2877 v(\mathrm{C}-\mathrm{H}) \mathrm{al}, 1647(v(\mathrm{C}=\mathrm{C}), v(\mathrm{C}=\mathrm{N}))$ ar, 1635, $1591 v(\mathrm{COO})$ as, $1472 v(\mathrm{COO}) \mathrm{s}$, 1465, 1432 $(\delta(\mathrm{C}=\mathrm{C}), \delta(\mathrm{C}=\mathrm{N}))$ ar, $1102 v(\mathrm{C}-\mathrm{O}-\mathrm{C})$ as, 1079, $1031 \delta(\mathrm{C}-\mathrm{H})$ ar, ip, 787, $770 \delta(\mathrm{C}-\mathrm{H})$ ar, oop; (polyethylene, cm^{-1}): $512 \mathrm{v}(\mathrm{Pd}-\mathrm{O}), 485 \mathrm{v}(\mathrm{Pd}-\mathrm{N}) . \delta \mathrm{H}\left(\mathrm{CDC1}_{3}, 250 \mathrm{MHz}\right) 8.15\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=5.0, \mathrm{H}_{\text {ortho }}\right.$, py), 7.97-7.32 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{py}}$), 7.49-7.47 (8H, m, $\left.\mathrm{H}_{\mathrm{ph}}\right), 6.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{pz}}\right), 4.31\left(4 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=4.7\right.$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.85\left(4 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=4.7, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.51\left(16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}\right), 3.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $2.10\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }}\right), 1.98\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {ionic }}\right) . \mathrm{dC}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) 178.7$ $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }+ \text { ionic }}, 178.5\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }+ \text { ionic }}, 149.6\left(\mathrm{C}_{\text {ortho, }}\right.$ py $), 140.0,130.3,129.8,128.9$, 124.3, $121.0\left(\mathrm{C}_{\mathrm{py}}\right), 130.3-128.9\left(\mathrm{C}_{\mathrm{ph}}\right), 104.5(\mathrm{C} \mathrm{pz}), 71.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 70.3,69.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}$, $59.0\left(\mathrm{OCH}_{3}\right), 49.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 23.0\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }+ \text { ionic }}, 22.9\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridgedpionic. }} \mathrm{m} / \mathrm{z}$ (ESI+) $529\left(100,[\operatorname{Pd}(\mathrm{Ac})(\mathrm{L} 1)]^{+}\right)$
6. (82\% yield). (Found: C $48.5, \mathrm{H} 4.9, \mathrm{~N} 9.4 . \mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{Pd}_{2}$ requires $\mathrm{C} 48.6, \mathrm{H} 5.1, \mathrm{~N}$ 9.5%). Conductivity ($1.0 \times 10^{-3} \mathrm{M}$ in $\mathrm{CH}_{3} \mathrm{OH}$): $200 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. $\mathrm{nmax}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3075 \mathrm{n}(\mathrm{C}-\mathrm{H}) \mathrm{ar}$, $2867 \mathrm{n}(\mathrm{C}-\mathrm{H}) \mathrm{al}, 1651(\mathrm{n}(\mathrm{C}=\mathrm{C}), \mathrm{n}(\mathrm{C}=\mathrm{N})$)ar, 1642, $1602 \mathrm{n}(\mathrm{COO})$ as, $1477 \mathrm{n}(\mathrm{COO}) \mathrm{s}, 1473,1437$ $(\mathrm{d}(\mathrm{C}=\mathrm{C}), \mathrm{d}(\mathrm{C}=\mathrm{N})$)ar, $1107 \mathrm{n}(\mathrm{C}-\mathrm{O}-\mathrm{C})$ as, 1062, $1035 \mathrm{~d}(\mathrm{C}-\mathrm{H})$ ar, ip, 789, $773 \mathrm{~d}(\mathrm{C}-\mathrm{H}) \mathrm{ar}$, oop; (polyethylene, cm^{-1}): $508 \mathrm{n}(\mathrm{Pd}-\mathrm{O}), 483 \mathrm{n}(\mathrm{Pd}-\mathrm{N}) . \mathrm{dH}\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) 8.56\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=4.8, \mathrm{H}_{\text {ortho }}\right.$, py), $8.19\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=4.7, \mathrm{H}_{\text {ortho }}\right.$, py), $7.83-7.05\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{py}}\right], 7.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{pz}}\right], 4.74(4 \mathrm{H}, \mathrm{t}, 3 \mathrm{~J}=4.8$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.80\left(4 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=4.8, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.29\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.19\left(16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) 2\right)$, $2.13\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }}\right), 2.05\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {ionic }}\right) . \mathrm{dC}\left(\mathrm{CDCl}_{3}, 62.9 \mathrm{MHz}\right) 179.3$ $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged+ionic }}, 179.1\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }+ \text { ionic }}, 149.8\left(\mathrm{C}_{\text {ortho }}\right.$, py $), 149.4$ (Cortho, py), 138.3,
137.8, 124.3, 124.1, 123.4, 122.8 (Cpy), $105.9(\mathrm{Cpz}), 71.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 70.6,70.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}$, $58.9\left(\mathrm{OCH}_{3}\right), 49.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 23.4\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }+ \text { ionic, }} 22.8\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{\text {bridged }+ \text { ionic. }} \mathrm{m} / \mathrm{z}$ (ESI+) $530\left(100,[\mathrm{Pd}(\mathrm{Ac})(\mathrm{L} 2)]^{+}\right)$

X-Ray Crystal Structure Analyses of Complex [PtCl $2(L 1)]$ (3)
Suitable crystals for X-ray diffraction of compound cis-[$\left.\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3) were obtained through crystallisation from acetonitrile. Data were collected on an Enraf-Nonius CAD4 four-circle diffractometer using the $\omega / 2 \theta$ scan technique. Intensities were collected with graphite monochromatised Mo K α radiation ($\lambda=0.71069 \AA$). Unit cell parameters were determined from automatic centring of 25 reflections $\left(12^{\circ}<\theta>21^{\circ}\right) .7037$ reflections were measured in the range $2.31^{\circ} \leq \theta \geq 29.98^{\circ}, 6763$ of which were non-equivalent by symmetry (R int $($ on I$)=0.055$). 3008 reflections were assumed as observed applying the condition I $.2 \sigma(\mathrm{I})$. Three reflections were measured every 2 h as orientation and intensity control, significant intensity decay was not observed. Lorentz-polarisation and absorption corrections were made.

The structure was solved by direct methods and refined by the full-matrix least-squares method, using 6763 reflections (very negative intensities were not assumed).[44] The function minimised was $\Sigma \mathrm{w} \|\left.\mathrm{Fo}\right|^{2}-\left.|\mathrm{Fc}|^{2}\right|^{2}$, were $\mathrm{w}=\left[\sigma^{2}(\mathrm{I})+(0.0386 \mathrm{P})^{2}\right]^{-1}$ and $\mathrm{P}=\left(|\mathrm{Fo}|^{2}+2|\mathrm{Fc}|^{2}\right) / 3$. All H atoms were computed and refined, using a riding model with an isotropic temperature factor equal to 1.2 times the equivalent temperature factor of the atom which are linked. The final $\mathrm{R}(\mathrm{F})$ factor and $R\left(F^{2}\right)$ values as well as the number of parameters and other details concerning the refinement of the crystal structure are gathered in Table 2.

5. CRYSTALLOGRAPHIC DATA

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC reference number CCDC 916483 for compound $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3). Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ. (Fax: +44 1223 33603); email: deposit@ ccdc.com.ac.uk www.htpp://ccdc.cam.ac.

6. ACKNOWLEDGEMENTS

This work has been financially supported by the Spanish Ministry of Culture and Education (project CTQ 2007 6391/BQU and MAT2011-27225).

7. REFERENCES

[1] R. Bishop, Chem. Soc. Rev. 1996, 25, 311. doi:10.1039/CS9962500311
[2] C. B. Aakerôy, K. R. Seddon, Chem. Soc. Rev. 1993, 22, 397. doi:10.1039/CS9932200397
[3] W. Jones,OrganicMolecular Solids 1997 (CRCPress: BocaRaton, FL).
[4] G. R. Desiraju, The Crystal as a Supramolecular Entity 1996 (John Wiley \& Sons: Chichester).
[5] N. A. J. M. Sommerdijk, Angew. Chem. Int. Ed. 2003, 42, 3572. doi:10.1002/ANIE. 200390544
[6] J. M. Lehn, Supramolecular Chemistry: Concepts and Perspectives 1995 (VCH: Weinheim).
[7] M. D. Hollingsworth, Science 2002, 295, 2410.
[8] M. Guerrero, J. Pons, M. Font-Bardia, T. Calvet, J. Ros, Polyhedron 2010, 29, 1083. doi:10.1016/J.POLY.2009.11.018
[9] F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. Engl. 2008, 47, 3122. doi:10.1002/ANIE. 200703883
[10] J. Pérez, L. Riera, Eur. J. Inorg. Chem. 2009, 4913. doi:10.1002/EJIC. 200900694
[11] M. Guerrero, J. Pons, J. Ros, J. Organomet. Chem. 2010, 695, 1957. doi:10.1016/J.JORGANCHEM.2010.05.012
[12] J. J. Neumann, M. Suri, G. Frank, Angew. Chem. Int. Ed. Engl. 2010, 49, 7790. doi:10.1002/ANIE. 201002389
[13] A. Boixassa, J. Pons, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 2003, 346, 151. doi:10.1016/S0020-1693(02)01384-1
[14] C. Luque, J. Pons, T. Calvet, M. Font-Bardía, J. García-Antón, J. Ros, Inorg. Chim. Acta 2011, 367, 35. doi:10.1016/J.ICA.2010.11.041
[15] M. Guerrero, J. Pons, V. Branchadell, T. Parella, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chem. 2008, 47, 11084. doi:10.1021/IC8013915
[16] M. Guerrero, J. García-Antón,M. Tristany, J. Pons, J. Ros, K. Philippot, B. Chaudret, P. Lecante, Langmuir 2010, 26, 15532. doi:10.1021/LA1016802
[17] M. Guerrero, J. Pons, T. Parella, M. Font-Bardía, T. Calvet, J. Ros, Inorg. Chem. 2009, 48, 8736. doi:10.1021/IC900908N
[18] (a) M. Guerrero, J. Pons, J. Ros, M. Font-Bardía, V. Branchadell, Cryst. Growth Des. 2012, 12, 3700. doi:10.1021/CG300506C (b) A. de Leon, M. Guerrero, J. GarcíaAntón, J. Ros, M. Font-Bardia, J. Pons, CrystEngComm 2013, 15, 1762.
[19] (a) M. Guerrero, J. Pons, J. Ros, M. Font-Bardía, O. Vallcorba, J. Rius, V. Branchadell, A. Merkoc,i, CrystEngComm 2011, 13, 6457. doi:10.1039/C1CE05626C (b) S. Muñoz, M. Guerrero, J. Ros, T. Parella, M. Font-Bardia, J. Pons, Cryst. Growth Des. 2012, 12, 6234. doi:10.1021/CG3014333
[20] V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-Bardía, J. Ros, Organometallics 2008, 27, 1084. doi:10.1021/OM7009182
[21] V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-Bardía, J. Ros, Organometallics 2007, 26, 3183. doi:10.1021/OM070093U
[22] V. Montoya, J. Pons, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 2006, 359, 25. doi:10.1016/J.ICA.2005.07.047
[23] V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 2007, 360, 625. doi:10.1016/J.ICA.2006.08.058
[24] S. Muñoz, J. Pons, J. Ros, M. Font-Bardía, C. A. Kilner, M. A. Halcrow, Inorg. Chim. Acta 2011, 373, 211. doi:10.1016/J.ICA. 2011.04.027
[25] M. Guerrero, J. Pons, M. Font-Bardía, T. Calvet, J. Ros, Aust. J. Chem. 2010, 63, 958. doi:10.1071/CH10040
[26] L. K. Thompson, F. L. Lee, E. J. Gabe, Inorg. Chem. 1988, 27, 39. doi:10.1021/IC00274A010
[27] W. J. Geary, Coord. Chem. Rev. 1971, 7, 81. doi:10.1016/S0010-8545 (00)80009-0
[28] D. H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry 1995 (McGraw Hill: London).
[29] E. Pretch, T. Clerc, J. Seibl, W. Simon, Tables of Determination of Organic

Compounds. 13C NMR, 1H NMR, IR, MS, UV/Vis, Chemical Laboratory Practice 1989 (Springer: Berlin).
[30] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn 1986 (Wiley \& Sons: New York, NY).
[31] C. Luque, J. Pons, T. Calvet, M. Font-Bardía, J. García-Antón, J. Ros, Inorg. Chim. Acta 2011, 367, 35. doi:10.1016/J.ICA.2010.11.041
[32] L. Scuzová, Z. Trávnicek, M. Zatloukal, I. Popa, Bioorg. Med. Chem. 2006, 14, 479. doi:10.1016/J.BMC.2005.08.033
[33] V. Montoya, J. Pons, X. Solans, M. Font-Bardía, J. Ros, Inorg. Chim. Acta 2005, 358, 2763. doi:10.1016/J.ICA.2005.01.028
[34] L. Holland, W.-Z. Shen, P. von Grabe, P. J. S. Miguel, F. Pichierri, A. Springer, C. A. Schalley, B. Lippert, Dalton Trans. 2011, 40, 5159. doi:10.1039/C0DT01408G
[35] T. V. Segapelo, I. A. Guzei, L. C. Spencer, W. E. Van Zyl, J. Darkwa, Inorg. Chim. Acta 2009, 362, 3314. doi:10.1016/J.ICA.2009.02.046
[36] E. Budzisz, M. Miernicka, I.-P. Lorenz, P. Mayer, U. Krajewska, M. Rozalski, Polyhedron 2009, 28, 637. doi:10.1016/J.POLY.2008. 12.013
[37] G. Aullón,D. Bellamy, L. Brammer, E. A. Bruton, A. G. Orpen, Chem. Commun. 1998, 67, 653. doi:10.1039/A709014E
[38] M. J. Calhorda, Chem. Commun. 2000, 10, 801. doi:10.1039/A900221I
[39] V. Balamurugan, J. Mukherjee, M. S. Hundal, R. Mukherjee, Struct. Chem. 2007, 18, 133. doi:10.1007/S11224-006-9113-2
[40] J. W. Steed, J. L. Atwood, Supramolecular Chemistry, 2nd edn 2009 (John Wiley \& Sons: New York, NY).
[41] J. Pons Picart, F. J. Sánchez, J. Casabó , J. Rius, A. Alvarez-Larena, J. Ros, Inorg. Chem. Commun. 2002, 5, 130. doi:10.1016/S1387-7003 (01)00358-6
[42] S. Komiya, Synthesis of Organometallic Compounds: A Practice Guide 1997 (Ed. Board: New York, NY).
[43] F. P. Fanizzi, F. P. Intini, L. Maresca, G. Natile, J. Chem. Soc., Dalton Trans. 1990,

492

495
496

498
499
[44] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.

Bond length $[\AA$]

$\mathrm{Pt}-\mathrm{N}(1)$	$2.040(9)$	$\mathrm{Pt}-\mathrm{Cl}(1)$	$2.298(3)$
$\mathrm{Pt}-\mathrm{N}(2)$	$2.050(9)$	$\mathrm{Pt}-\mathrm{Cl}(2)$	$2.307(3)$
Bond angles $\left[{ }^{\circ}\right]$			
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(2)$	$78.6(4)$	$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$179.1(3)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$87.08(14)$	$\mathrm{N}(2)-\mathrm{Pt}-\mathrm{Cl}(1)$	$172.2(2)$
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{Cl}(1)$	$93.7(3)$	$\mathrm{N}(2)-\mathrm{Pt}-\mathrm{Cl}(2)$	$100.6(3)$

Table 1 Selected bond lengths [\AA] and bond angles [8] for cis- $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3)

503 504

	cis $-\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3)
Molecular formula	$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Pt}$
Formula weigh	633.43
Temperature (K)	293(2)
Wavelength (A)	0.71069
System, space group	Monoclinicic, $\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell dimensions	
a (\AA)	9.093(11)
b (A)	17.669(6)
c (A)	16.537(4)
$\beta\left({ }^{\circ}\right.$)	117.65(4)
$\mathrm{V}\left(\AA^{3}\right)$	2353(3)
Z	4
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.788
$\mu\left(\mathrm{mm}^{-1}\right)$	6.215
F(000)	1232
Crystal size (mm^{3})	$0.2 \times 0.1 \times 0.1$
hkl ranges	$-12 \leq \mathrm{h} \leq 12-24 \leq \mathrm{k} \leq 6,-12 \leq 1 \leq 23$
2θ Range (${ }^{\circ}$)	2.31 to 29.98
Reflections collected/ unique/ $\left[\mathrm{R}_{\text {int }}\right]$	7089/6813[R(int) $=0.0560]$
Completeness to θ	99.4
Absorption correction	None
Data/restrains/parameters	6813/5/242
Goodness-of-fit on F^{2}	0.986
Final R indices [$\mathrm{I}>2 \sigma$ (I)]	$\mathrm{R} 1=0.0722, \mathrm{wR}_{2}=0.1168$
R indices (all data)	$\mathrm{R} 1=0.2289, \mathrm{wR}_{2}=0.1496$
Largest diff. peak and hole (e \AA^{-3})	1.323 and -1.244

Table 2. Crystallographic data for cis- $\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3)

Table 3. Distances $[\AA \AA$] and angles [deg] related to hydrogen bonding in complex 3

Symmetry codes: (i) $-1+x, y, z$; (ii) $-1+x, 1 / 2-y,-1 / 2+z$; (iii) $-1+x$, $y,-1+z$; (iv) $1+x, y, 1+z$; (v) $1-x,-y,-z$; (vi) $1-x,-y,-z$

	D-H	D $\cdots \mathrm{A}$	A $\cdots \mathrm{H}$	D-H $\cdots \mathrm{A}$
$\mathrm{C}(7)-\mathrm{H}(7) \cdots \mathrm{Cl}(2)^{\mathrm{i}}$	0.93	$3.64(1)$	2.72	170
$\mathrm{C}(19)-\mathrm{H}(19) \cdots \mathrm{Cl}(1)^{\text {ii }}$	0.97	$3.76(2)$	2.94	142
$\mathrm{C}(21)-\mathrm{H}(21) \cdots \mathrm{Cl}(1)^{\mathrm{iii}}$	0.96	$3.73(2)$	2.94	140
$\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{O}(3)^{\text {iv }}$	0.93	$3.33(1)$	2.54	143
$\mathrm{C}(14)-\mathrm{H}(14) \cdots \mathrm{O}(3)^{\mathrm{v}}$	0.93	$3.43(2)$	2.62	146
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A}) \cdots \mathrm{O}(2)^{\text {vi }}$	0.97	$3.60(2)$	2.70	156

Figures Captions

Figure 1. ORTEP diagram of complex cis-[$\left.\mathrm{PtCl}_{2}(\mathrm{L1})\right]$ (3) showing all non-hydrogen atoms and the atom-numbering scheme; 50% probability displacement ellipsoids are shown.

Figure 2. Aview of the three-dimensional layered supramolecular architecture of cis$\left[\mathrm{PtCl}_{2}(\mathrm{~L} 1)\right]$ (3) along the [100] direction, generated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ (blue) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (red) intermolecular interactions.
(a)

L1
(b)

Scheme 1.

Figure 1

Figure 2

