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Summary of the thesis in Spanish/ Resumen de la tesis en 

castellano 

Directoras de tesis: Dra Sonia Pernas y Dra Maggie Cheang 

Título: Descifrando las complejidades moleculares del cáncer de mama precoz con 

receptores de estrógeno positivos para identificar biomarcadores de resistencia a la 

hormonoterapia. 

Introducción: 

El 80% del cáncer de mama (CM) expresa receptores de estrógenos positivos (RE+) y hasta un 

15% de ellos también sobre-expresa o amplifica el receptor 2 del factor de crecimiento 

epidérmico humano (HER2), lo que confiere una biología molecular y comportamiento 

distintos en el CM precoz con RE+. Los mecanismos de sensibilidad y resistencia a los distintos 

tratamientos en CM aún se desconocen en su totalidad, sin embargo, se sabe que los 

biomarcadores derivados de la expresión proteica determinada únicamente por 

inmunohistoquímica (IHC) no siempre predicen de manera adecuada la respuesta a los 

diferentes tratamientos en CM. Por ejemplo, la sobreexpresión HER2+ o los RE+ no son 

predictores obligados de respuesta a tratamientos con terapia anti-HER2 u hormonoterapia 

(HT), respectivamente. En el año 2000 se descubrió la actual clasificación molecular en CM 

que clasificó a los tumores en subtipos de acuerdo con diferencias en sus patrones de expresión 

génica (Luminal A y B, Basal like, Normal like y Her2-enriquecido (HER2-E)). Estos subtipos 

moleculares revelaron diferencias críticas en incidencia, supervivencia y respuesta a los 

distintos tratamientos en CM y en consecuencia, han permitido el avance hacia una medicina 

más personalizada. Los subtipos intrínsecos moleculares se encuentran representados en todos 

los subtipos histológicos, pero en distinta distribución: entre los tumores con RE+/HER2-, 

hasta un 80-85% son Luminal A o B con solo un 5-10% de HER2-E y un 5% de basal-like, 

mientras que entre los tumores RE+/HER2+, aproximadamente un 40% son HER2-E, un 55% 

Luminal A o B y hasta un 5% basal-like. 

A pesar de los avances médicos experimentados en la ultima década, una alta proporción de 

pacientes con CM precoz con RE+ (alrededor del 20%) desarrollará resistencias a la HT con 

un consecuente aumento en su riesgo de recaída. Se han descrito múltiples mecanismos de 

resistencia a la HT y se conoce que pueden variar dependiendo del subtipo tumoral. Algunos 

de ellos incluyen: mutaciones somáticas, la intercomunicación entre factores de crecimiento 
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HER2 y RE o alteraciones en la señalización. Los subtipos intrínsecos definidos en base a la 

distinta expresión génica también influyen en la heterogeneidad molecular del CM, confiriendo 

distinto pronóstico y respuesta a los tratamientos. Por ejemplo, se sabe que los tumores HER2-

E predicen mayor sensibilidad a tratamiento anti-HER2, pero peor pronóstico en comparación 

a los tumores luminales. 

Existe también cierta evidencia que apunta a un papel relevante de la inmunidad tumoral en la 

respuesta a la HT tanto en CM precoz que sobre-expresa HER2 como en tumores HER2-

negativo (HER2-). Por tanto, es imprescindible mejorar el conocimiento sobre la biología 

molecular en CM precoz con RE+ para la optimización de los distintos tratamientos disponibles 

y su consecuente mejora en el pronóstico. Sin embargo, definir los mecanismos de resistencia 

a la HT en CM RE+ es difícil ya que las pacientes permanecen libres de enfermedad durante 

largos períodos de tiempo. Además, existe evidencia que indica que puede haber diferencias 

moleculares significativas entre las muestras tumorales de la biopsia y la cirugía, conocido 

como un efecto artefactual, probablemente en relación con la manipulación/estrés que sufren 

las muestras y que no al efecto directo de la HT. Por ello, los ensayos clínicos pre-quirúrgicos 

o "window off opportunity" o "de ventana", es decir aquellos que evalúan un fármaco durante

un corto periodo de tiempo (generalmente durante 2-4 semanas) antes de realizar el tratamiento 

estándar, son clave para investigar y entender el efecto que el propio tratamiento ejerce sobre 

el tumor y microambiente tumoral ya que tanto las características basales como los cambios 

que se producen por el tratamiento, se pueden correlacionar con la respuesta tumoral. Un 

ejemplo de ello, son los cambios en proliferación celular tales como el Ki67. 

En esta tesis doctoral, utilizamos muestras biológicas del ensayo clínico fase III POETIC, el 

estudio "window of opportunity" más grande del mundo que aleatorizó a casi 4500 pacientes 

a recibir inhibidores de la aromatasa (IA) de forma pre-operatoria por dos semanas durante el 

tiempo de espera hasta la cirugía (rama de tratamiento) o bien a no tratamiento (rama control). 

Utilizamos datos de expresión génica tanto de pacientes con tumores RE+/HER2- como con 

RE+/HER2+ incluidos también en el estudio POETIC. Asimismo, analizamos los cambios 

moleculares que se produjeron en una cohorte independiente de pacientes con CM precoz 

RE+/HER2- del Hospital Royal Marsden que recibieron HT neoadyuvante durante más de 1 

mes (hasta 2 años) para compararlos con los resultados del estudio POETIC, tras un período 

corto de tratamiento con HT. 

Hipótesis: 
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Nuestra hipótesis principal se basa en que los mecanismos de resistencia a la terapia endocrina 

son consecuencia no sólo de la expresión de ciertas características moleculares basales, sino 

también de los cambios que el propio tratamiento ejerce sobre el tumor y que varían, en función 

del subtipo de CM con RE+ (HER2+/HER2-). También creemos que la inmunidad tumoral y 

algunas características de los puntos de control de la inmunidad están implicados en estos 

mecanismos de resistencia. La caracterización de estos puede servir para descubrir 

biomarcadores potenciales de respuesta al tratamiento hormonal, así como de pronóstico. En 

concreto, en la cohorte de RE+/HER2- creemos que los cambios que la HT produce en el tumor 

o microambiente tumoral son distintos según la duración del tratamiento, siendo estos mayores

a mayor duración del mismo. 

Por otro lado, esperamos que dentro del subgrupo de cáncer de mama con RE +/HER2+, el 

subtipo intrínseco HER2-E, así como otras firmas génicas adicionales (algunas relacionadas 

con la inmunidad tumoral), jueguen un papel esencial como biomarcadores de resistencia a la 

HT y de mal pronóstico en CM precoz. 

Objetivos: 

Nuestro objetivo fprincipal es la búsqueda de biomarcadores pronósticos y de resistencia 

temprana a la HT en CM precoz con RE+ así como la caracterización de la inmunidad 

tumoral y su rol en esta resistencia. 

l. En la cohorte de CM precoz RE+/HER2- pretendemos:

1.1. Objetivo 1: Evaluar los cambios moleculares a nivel del subtipo intrínseco que se

producen tras HT durante 2 semanas pre-operatoria y tras un periodo de tratamiento 

más largo (> 1 mes). Evaluaremos si existe correlación entre la duración del 

tratamiento con HT y dichos cambios. 

1.2. Objetivo 2: Evaluar y comparar los cambios moleculares más allá de los subtipos 

intrínsecos, a nivel de expresión génica, tanto de genes individuales como en vías 

moleculares (firmas génicas), entre muestras pareadas, es decir entre la biopsia basal 

al diagnóstico y a las dos semanas en la cirugía, tras HT durante 2 semanas y tras un 

periodo de tratamiento más largo ( > 1 mes). 

1.3. Objetivo 3: Caracterizar los cambios/diferencias moleculares que se observan entre 

muestras pareadas, entre la biopsia basal al diagnóstico y a la cirugía, de pacientes con 

CM RE+ que no han recibido tratamiento (controles): efecto arte factual. 
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1.4. Objetivo 4: Evaluar el valor predictivo de respuesta a los IA, tanto de la expresión 

génica basal como de los cambios moleculares producidos tras dos semanas y tras > 1 

mes de tratamiento con IA, mediante la correlación de dichas características con los 

cambios de Ki67 entre la biopsia basal y la cirugía (Ki 67 residual:?: o <10%). 

1.5. Objetivo 5: Evaluar el valor pronóstico en cuanto a riesgo de recaída y supervivencia 

global de los cambios moleculares observados tras 2 semanas de tratamiento con IA 

y tras > 1 mes de duración. 

2. En la cohorte de CM precoz RE+/HER2+:

2.1. Objetivo 6: Evaluar la expresión génica basal, es decir en la biopsia basal pre­

tratamiento, del subtipo HER2-E para predecir resistencia precoz a HT, medida por: l. 

Reducción del Ki67 (>75%; buenos respondedores, 50-75%; respondedores 

intermedios o <50%; malos respondedores) y 2. Ki67 residual a las 2 semanas, en la 

cirugía :?:10% o <10%). 

2.2. Objetivo 7: Evaluar la capacidad de los genes individuales y firmas génicas basales 

más allá del subtipo intrínseco para predecir respuesta/resistencia precoz a HT, en base 

a los cambios de Ki67 y Ki67 residual a las 2 semanas de tratamiento en la cirugía en 

CM precoz RE+/HER2+. 

2.3. Objetivo 8: Identificar subgrupos moleculares adicionales más allá de los subtipos 

intrínsecos, que nos permitan predecir mejor la respuesta a los IA. 

2.4. Objetivo 9: Evaluar el valor pronóstico en cuanto a riesgo de recaída de los diferentes 

subtipos intrínsecos moleculares, genes individuales, firmas génicas en CM 

RE +/HER2+ y nuevos subgrupos moleculares. 

Materiales, métodos y resultados principales en CM precoz RE+/HER2-: 

Manuscrito 1 

Métodos: 

Hemos evaluado la expresión génica pre y post tratamiento en muestras de tejido tumoral de: 

1) un subgrupo de pacientes tratadas dentro del estudio fase III POETIC en el que las pacientes

se aleatorizaron 2: 1 a recibir IA durante dos semanas previas a la cirugía (rama tratamiento) 

versus no tratamiento (rama control) y 2) una segunda cohorte independiente de pacientes 

tratadas en el hospital Royal Marsden con HT neoadyuvante durante más de 1 mes en el estudio 

NeoAI (media de tratamiento de 6.24 meses +/- desviación standard 3.9 meses). Para evaluar 

la expresión génica basal y los cambios moleculares que se produjeron tras diferentes 
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duraciones de tratamiento con HT, así como evaluar su valor predictivo de respuesta a HT, se 

extrajo el ARN del tejido tumoral pre y post- IA de estas pacientes del estudio POETIC (137 

pacientes que habían recibido 2 semanas de IA y 4 7 de la rama control) y de 80 pacientes del 

estudio NeoAI). 

Posteriormente comparamos esos cambios moleculares producidos tras 2 semanas de HT con 

los observados tras un período más largo de HT neoadyuvante (> 1 mes). Se determinaron los 

subtipos intrínsecos y mediante la expresión de genes individuales se calculó la puntuación de 

más de 600 módulos/firmas génicas relacionados con diferentes vías moleculares del cáncer y 

con la inmunidad pre y post tratamiento. Un valor p de menos de 0.05 por ambas colas se 

consideró estadísticamente significativo. Se calcularon t-student para todas las comparaciones 

no apareadas. Se llevaron a cabo pruebas t-pareadas seguidas de correcciones de Benjami­

Hochberg para comparaciones múltiples, correlaciones de Spearman para explorar la 

correlación de los cambios de expresión de algunos genes individuales o módulos/firmas 

génicas particulares con la duración del tratamiento con IA. Se utilizó el Análisis de 

Significación de Microarrays (análisis SAM) para seleccionar firmas génicas y genes 

individuales cuya expresión basal y cambios en los mismos estuvieran asociados con 

resistencia precoz a los IA. 

Para establecer el valor pronóstico de estas características moleculares asociadas a resistencia 

a IA, en términos de tiempo hasta la recurrencia (TTR) y supervivencia global, establecimos 

modelos de regresión de Cox multivariables ajustados por las variables clínico-patológicas 

estándares: grado de diferenciación histológica, tamaño tumoral, estado ganglionar y edad. 

Resultados: 

Objetivo 1: La HT neoadyuvante produce porcentajes de cambio en el subtipo intrínseco muy 

similares, independientemente de la duración del tratamiento con IA. En la cohorte del estudio 

POETIC, la mayoría de los tumores Luminal B (90%) y HER2-E (50%) cambiaron a Luminal 

A o normal-like. En la cohorte de NeoAI se obtuvieron resultados similares, con el 76.3% de 

tumores Luminal B y  el 50% de HER2-E siendo re-asignados a Luminal A. No se observó una 

asociación entre la duración de tratamiento con IA y la frecuencia de cambios de subtipo 

intrínseco. 

Objetivo 2: A diferencia de los subtipos intrínsecos, el tratamiento con IA neoadyuvante 

durante un período más prolongado mostró un impacto más marcado a nivel transcripcional, 

con magnitudes de cambio mayores y en un mayor número de genes, algunos involucrados en 
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vías de señalización clave en cáncer de mama como MAPK, PJ3KIAKT/mTOR o en la respuesta 

1mmune. 

Objetivo 3: En las muestras pareadas (biopsia basal diagnóstica y a la cirugía) de la rama 

control, reportamos y validamos un aumento significativo en la expresión génica de algunos 

genes relacionados con las vías de FOS y JUN implicadas en la mitosis y procesos de 

diferenciación, a pesar de no haber recibido ningún tratamiento. Estas diferencias moleculares 

se tratan probablemente de artefactos que se producen como consecuencia de la manipulación 

de muestras, por ejemplo, secundaria a distinto tiempos a la fijación al formol entre la biopsia 

y la cirugía. Su existencia puede derivar en resultados sesgados e inapropiados, por lo que es 

necesaria su caracterización más profunda. 

Objetivo 4: Las pacientes con CM RE+/HER2- que presentaban al diagnóstico un subtipo 

intrínseco con alto índice de proliferación que cambiaron a un subtipo con menor índice 

proliferativo (por ejemplo, de Luminal B o HER2-E a Luminal A), presentaron una mejor 

respuesta al tratamiento medida por cambios de Ki67. Asímismo, la expresión pre-quirúrgica 

de diversas firmas génicas relacionadas con la respuesta inmune y con el control tumoral se 

asociaron a resistencia a IA. De igual modo, los cambios observados entre la biopsia basal y la 

cirugía en algunas firmas génicas relacionadas con la inmunidad tumoral y con vías de 

proliferación celular se asociaron también con resistencia a IA. 

Objetivo 5: V arios de los cambios moleculares observados entre la biopsia basal y la cirugía 

tuvieron un impacto en el riesgo a la recaída de estas pacientes, en términos de TTR. Por 

ejemplo, en cuanto a cambios en los subtipos intrínsecos moleculares, observamos una 

asociación entre el cambio de subtipo hacia Luminal B y un mayor riesgo de recurrencia, 

independientemente de la duración de la HT prequirúrgica. Algunas de esos cambios 

moleculares asociados con distinta supervivencia fueron el aumento de los coeficiente de 

correlación a Luminal A y normal o la disminución de la proliferación , que se correlacionaron 

con una mejor supervivencia, así como el aumento del coeficiente de correlación a HER2-E 

con un aumento en el riesgo de recaída .. 

Manuscrito 2 

Métodos: 

Para el segundo estudio de resistencias a HT en CM precoz RE+/HER2+, utilizamos todas las 

muestras disponibles de pacientes con CM RE+/HER2+ del estudio POETIC (n=342; 237 

tratadas y 105 controles). Se extrajo el ARN del tejido tumoral tanto de la biopsia al diagnóstico 

como de la cirugía, para la posterior evaluación de la expresión génica de 758 genes mediante 

tecnología Nanostring (panel BC360 para la evaluación de cáncer de mama - que engloba los 
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subtipos intrínsecos y 46 firmas biológicas clave en CM incluyendo inmunidad tumoral). La 

tasa de proliferación celular se estimó como porcentaje de tinción de células cancerosas para 

Ki67. La respuesta se definió en función de: 1) los cambios relativos de Ki67 desde el inicio 

hasta la cirugía: respuesta pobre (reducción <50%), intermedia (50-75%) y buena(> 75%) y 

2) Ki67 residual tras 2 semanas de tratamiento: alto (2: 10%) frente a bajo (<10%). Asimismo,

se identificaron nuevos subgrupos moleculares basados en diferencias en expresión de ERBB2 

(gen de HER2), vía de señalización de los RE, o vías relacionadas con la inmunidad tumoral, 

mediante agrupación por consenso ("consensus clustering"). Para establecer el valor predictivo 

de respuesta a IA de las distintas características moleculares, se realizaron análisis de regresión 

logística. Se utilizó el Análisis de Significación de Microarrays (análisis SAM) para 

seleccionar firmas génicas y genes individuales cuya expresión basal estuviera asociada con la 

resistencia temprana a los IA. Para establecer el valor pronóstico de las diferentes 

características moleculares, en términos de TTR, utilizamos modelos de regresión de Cox 

multivariables ajustados por las variables clínico-patológicas post-quirúrgicas estándares 

(grado de diferenciación histológica, tamaño tumoral, estado ganglionar y edad). 

Resultados: 

Objetivo 6: Nuestros resultados validan el subtipo intrínseco conocido como HER2-E como 

marcador predictivo de resistencia precoz a la HT en tumores RE+/HER2+. 

Objetivo 7: La expresión basal elevada de diversas firmas génicas relacionadas con la 

señalización endocrina tales como ESRJ, FOXA 1, PGR y la firma de señalización de la vía del 

RE se asociaron con respuesta a IA. Por el contrario, la expresión basal elevada de ERBB2 se 

asoció a resistencia a IA. De igual modo, las firmas génicas relacionadas con la deficiencia de 

la reparación del ADN tales como la deficiencia de la recombinación homóloga, la firma 

subrogada de mutaciones en p53, la vía de hipoxia y otras firmas génicas involucradas en el 

componente de punto de control inmunológico ("immune-checkpoint component"), tales como 

IDO], IFN Gamma, y PD-Ll, se asociaron a resistencia precoz a IA. Resultados similares se 

observaron a nivel de genes individuales. 

Objetivo 8: Mediante el uso de la técnica de "consensus clustering", identificamos 5 nuevos 

subgrupos moleculares según la expresión basal de genes individuales para predecir respuesta 

a 2 semanas de tratamiento con IA y con valor pronóstico. Se identificaron 3 subgrupos, 

fundamentalmente conformados por tumores HER2-E y Luminal B,caracterizados por 

resistencia a los IA: el subgrupo 1 enriquecido con genes inmunes y relacionados con las 

quemocinas, así como con niveles bajos de ESRJ; el subgrupo 2 con genes relacionados con la 

matriz extracelular, niveles también bajos de ESRJ y con los niveles más altos de ERBB2; y el 
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subgrupo 3 más "inexpresivo", compuesto principalmente por genes relacionados con la 

deficiencia de reparación del ADN ( deficiencia de la recombinación homóloga). Los subgrupos 

4 y 5 se caracterizan por una buena respuesta a IA y enriquecimiento con tumores luminales. 

Ambos subgrupos sobre-expresan genes relacionados con la vía de señalización del RE, pero 

el subgrupo 5 también genes implicados en la vía de MAP K / P 13K y RAS. Estos nuevos 

subgrupos moleculares con distinto valor predictivo de respuesta precoz a los IA presentaron 

también distinto valor pronóstico; el subgrupo 2 mostró un aumento significativo del riesgo de 

recaída, permitiendo distinguir aquellos tumores resistentes a IA y con un riesgo de recidiva 

aumentado más allá del subtipo intrínseco. 

Objetivo 9: Observamos un aumento significativo en el riesgo de recaída para el subtipo 

HER2-E comparado con los tumores luminales (HR 2.14; 95% Cll.11-4.17; p=0.0224). 

HER2-E se mantuvo como factor predictivo independiente para peor TTR en el análisis 

multivariado ajustado por variables clínico-patológicas post-quirúrgicas clásicas. Por el 

contrario, varias firmas génicas relacionadas con la inmunidad tumoral y otras involucradas en 

el componente de punto de control inmunológico mostraron un valor pronóstico independiente 

para bajo riesgo de recidiva. Finalmente, los nuevos subgrupos moleculares caracterizados por 

niveles altos de ERBB2 y baja expresión de características inmunes, también presentaron un 

mayor riesgo de recidiva independiente de otras variables. 

Discusión 

Aunque el tratamiento con IA ha mejorado el pronóstico de mujeres post-menopáusicas con 

cáncer de mama precoz con RE+, un porcentaje considerable de las mismas (entre un 15-20%) 

presentan aún un alto riesgo de recaída. Hoy en día, aún falta mejorar el desarrollo de 

biomarcadores que nos permitan seleccionar y optimizar los tratamientos más adecuados para 

cada paciente; por lo que es prioritario ampliar nuestro conocimiento sobre la biología 

molecular en CM. 

Este proyecto de doctorado consta de dos estudios principales que se diseñaron con el objetivo 

de investigar el valor predictivo de respuesta a la HT y el valor pronóstico de las distintas 

características moleculares del CM precoz con RE+, tanto en población HER2- como HER2+. 

En este trabajo se ha realizado una caracterización integral de la expresión basada en el ARN 

de los cambios que ocurren en este tipo de tumores bajo tratamiento con IA, tanto tras una 

exposición corta (2 semanas) como tras una duración más larga del mismo (> 1 mes). En esta 

caracterización molecular, se ha incluido también la determinación de los subtipos intrínsecos 

por P AM50, así como otras vías de señalización clave en CM. También se ha evaluado la 
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asociación de estas características tumorales iniciales, así como las que acontecen tras el inicio 

del tratamiento con IA, con la resistencia al tratamiento y la supervivencia de las pacientes. 

Por un lado, los resultados de este estudio demuestran que las vías de proliferación e inmunidad 

tumoral están involucradas en la resistencia precoz a IA en pacientes con CM RE+/HER2-. 

Además, en este subgrupo de CM, los cambios moleculares que se producen sobre los subtipos 

intrínsecos son similares independientemente de la duración del tratamiento, asociándose 

además con distinta supervivencia. Estos hallazgos sugieren la utilidad clínica de la evaluación 

de los cambios en los subtipos intrínsecos tras tan solo 2 semanas de tratamiento. Por otro lado, 

el subtipo intrínseco HER2-E, niveles altos de ERBB2, alteraciones en la recombinación 

homóloga y enp53, así como también elevada inmunidad tumoral, están asociados a resistencia 

precoz a IA en RE+/HER2+ así como a distinta supervivencia. 

Hasta donde sabemos, los resultados incluidos en esta tesis son únicos. Por un lado, 

comparamos directamente y por primera vez el efecto molecular que se produce tras distintas 

duraciones de IA. Por otro, incluimos un estudio con la cohorte más grande reportada hasta la 

fecha de pacientes con CM precoz RE+/HER2+ en la que se ha evaluado el efecto puro del 

tratamiento con IA (sin tratamiento anti-HER2). Los resultados de esta tesis doctoral pueden 

ser de una gran utilidad clínica, ya que responden a la necesidad de búsqueda de nuevos 

biomarcadores de respuesta a HT mediante la correcta evaluación de su valor pronóstico y 

predictivo de respuesta, mediante la correlación con marcadores subrogados de respuesta como 

es el Ki67. En esta tesis también hemos incluido un manuscrito que revisa el diseño de ensayos 

clínicos para la evaluación de fármacos en immuno-oncología, reforzando la necesidad de 

estudios translacionales como los reportados en esta tesis, con el objetivo de encontrar 

biomarcadores de respuesta a los distintos tratamientos en cáncer de mama así como fomentar 

el uso de variables de evaluación de respuesta subrogados adecuados. 
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l. INTRODUCTION

1.1 Breast Cancer 

Breast cancer (BC) is the most common malignancy worldwide and the first cause of cancer­

related death among women, with 2.3 million new cases diagnosed in 2020 and accounting for 

685,000 deaths in the same year. As of the end of 2020, there were almost 8 million women 

alive who had been diagnosed with BC in the past five years. As incident cases are expected to 

increase by 50% in the next two decades, it will become the most prevalent cancer (1 ). In 

addition, there are more lost disability-adjusted life years in women due to BC globally than 

any other type of cancer. BC occurs in every country of the world in women at any age after 

puberty but with increasing rates in later years (2). 

BC is a heterogenous disease that has been classically classified into 3-4 clinically and 

biologically different subtypes, according to hormone receptor (oestrogen [ER] and/or 

progesterone [PR ]), and human epidermal growth factor receptor 2 (HER2) status, hormone 

receptorpositive (ER-positive and/or PR-positive) being the most common type of BC. These 

classic BC subtypes are based on immunohistochemistry (IHC) markers such as the expression 

of ER, PR, and HER2, with a prognostic and predictive value for different treatments in BC 

(3). 

Overall, treatment of early-stage BC may include surgical removal, radiation therapy, and 

systemic therapy (including chemotherapy, endocrine therapy (ET), and targeted therapy 

depending on tumour and patient characteristics) to treat the microscopic disease that has 

potentially spread from the breast tumour through the blood and or lymph vessels. Such 

treatments, which can prevent cancer growth and spread, have improved BC prognosis over 

the years (4). However, the cumulative risk of hormone receptor positive BC distant 

recurrences, especially in node-positive cases, has remained steady for decades, being a well­

recognised unmet clinical need. 

1.2 Breast cancer molecular classification 

New biomarkers based on omic technologies have been increasingly used for cancer diagnosis, 

prognosis, and therapy guidance, heralding the era of precision oncology. RNA biomarkers or 

gene expression signatures have emerged as a major class thanks to the widespread 

development of high throughput technologies. The introduction of these high throughput 
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technologies has improved our knowledge of tumour biology and has opened new windows for 

improving diagnosis and targeted treatments based on individual alterations and tumour 

biomarkers (5,6). 

During the last 20 years, gene-expression profiling has improved our understanding of the 

complex BC portrait by identifying at least four intrinsic molecular subtypes: Luminal A, 

Luminal B, HER2-enriched (HER2-E), Basal-like, and a normal breast-like group, which differ 

in terms of incidence, prognosis, and response to therapies (7 ,8). The training set for the 

PAM50 subtype predictor, co-developed by Professor Perou and Dr.Cheang amongst others, 

was composed of tumour samples from 220 patients with ER+ orER-HER2+ orHER2-

tumours. One thousand nine hundred and six genes were used and included 12 true normal 

breast samples constituting the normal breast-like centroid (9). A final set of 50 genes from 

these samples was used to calculate the four intrinsic subtypes and the normal-like. In addition 

to the intrinsic subtypes, the P AM50 assay provides a risk of relapse (ROR) score, predicting 

relapse-free survival for patients with node-negative tumours not receiving adjuvant systemic 

therapy. 

The HER2-E subtype is characterised by high expression of HER2-regulated genes and 

proliferation/cell cycle-related genes with lower expression of luminal-related genes than the 

luminal A and B subtypes (9,10). This molecular entity is likely to be driven by the 

EGFR/HER2 pathway, showing distinct behaviour and epidemiological risk factors. All the 

intrinsic subtypes can be found in each ofthe classic pathological-IHC-based subtypes but with 

a different distribution. In ER+/HER2- BC, around 80-85% are Luminal A or B, 5-10% are 

HER2-E, and only 5% are basal-like. By contrast, in HER2+ BC, this distribution differs 

according to ER status, with up to 75-80% ofER-/HER2+ being HER2-E, 15% Luminal A or 

B, and 5% basal-like while only 35-40% of ER+/HER2+ are HER2-E, 55-60% Luminal A or 

B and up to 5% being basal-like (11,12). 

Each intrinsic subtype presents a different response to each of the available treatments and 

different behaviours. For example, data have shown that luminal A and luminal B baseline 

tumours might be more likely to respond to ET than other subtypes (13,14) and that ET 

treatment could lead to profound changes in them. However, changes in intrinsic subtypes after 

exposure to ET alone and their predictive and prognostic value have been understudied. The 

use ofthe PAM50 assay as a predictive and prognostic biomarker tool has been generalised for 

adjuvant treatment decision-making in patients with ER+/HER2- early BC. However, in 
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HER2+ disease, its use in clinical practice has not been generalised yet, although it has been 

extensively used in clinical research. Studies in HER2+ BC have revealed that the HER2-E 

subtype is a predictor of higher sensitivity to anti-HER2 targeted therapy (15-18) but is 

associated with worse outcomes compared with luminal tumours. The role of intrinsic subtypes 

in patients with BC treated with ET has also been explored in HER2+ BC. In a single-arm, 

multicentric study (PerELISA), 65 postmenopausal patients with hormone receptor 

positive/HER2+ operable BC received two weeks of letrozole and underwent a tumour re­

biopsy for Ki67 evaluation (17). Patients classified as molecular responders (those presenting 

a Ki67 relative reduction >20% from baseline to re-biopsy) continued letrozole and started 

trastuzumab-pertuzumab for five cycles. Patients classified as molecular non-responders 

started weekly paclitaxel for 13 weeks combined with trastuzumab and pertuzumab. This study 

reported the association of P AM50 intrinsic subtyping with molecular responders, with 92% 

ofluminal A and B vs. 44% ofHER2-E and basal-like being molecular responders (p < 0.001). 

This study also reported a significantly higher pCR rate in HER2-E compared with the other 

intrinsic subtypes (45.5% vs. 13.8%, p=0.042). Although these results were promising, this 

was a small, single-arm, non-randomised study and no survival outcomes were reported. 

Nevertheless, these results support a potential strategy for de-escalating treatment in the 

management ofthose patients with ER+/HER2+ disease. 

1.3 Treatment of oestrogen receptor-positive early breast cancer 

Hormone receptor positive BC is the most common BC type accounting for about 70% of all 

newly diagnosed cases (19). Approximately 15% ofthem also show an overexpression and/or 

amplification of HER2. A sample is considered ER-positive if at least 2::_1 % of tumour cell 

nuclei are immunoreactive via IHC. However, there are limited data on ET benefit for cancers 

with 1 % to 10% of cells staining ER + (ER low positive ). Reproductive factors such as early 

menarche, late menopause, the absence of pregnancies, or lack of breastfeeding increase the 

risk of developing ER+ BC. Other known causes that impact on the risk ofhaving BC are long 

exposures to exogenous hormone receptor agonists via hormonal contraception or hormonal 

replacement (20). 

Oestrogen deprivation therapy is a major treatment strategy for ER+ BC (21), leading to a 

reduced risk of relapse in early ER+ BC (22-24). Oestrogen biosynthesis is regulated by the 

hypothalamus and pituitary gland via the actions of GnRH and follicle-stimulating hormone 

(FSH). It is synthesised in peripheral tissues such as adipose tissue, breast, and skin via the 
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action of the aromatase enzyme, which converts androstenedione and testosterone released 

from ovaries and adrenal glands to oestrone and oestradiol, respectively. The ovaries are the 

major source of oestrogens in premenopausal women (23). In postmenopausal women, the 

synthesis of oestrogens from androgens occurs through the aromatase enzyme in peripheral 

tissues. 

The landscape of ET has changed since oestrogen deprivation was first achieved by 

oophorectomy or surgical removal of the adrenal glands. Current ET strategies are based 

mainly on targeting ER signalling pathways by reducing circulating levels of oestrogens or by 

blocking the action of oestrogen at its receptor. There are three main types of ET according to 

their mechanism of action: selective ER modulators (SERM) such as tamoxifen, selective 

oestrogen down regulators such as fulvestrant (SERDs), and aromatase inhibitors (AI)(25,26). 

However, in early-stage BC, only tamoxifen and Ais are currently approved. Two major classes 

of Ais have been developed: 1) type I steroidal drugs that include exemestane, an androgen 

substrate analogue that competitively but irreversibly binds the enzyme inactivating it, and 2) 

type II nonsteroidal inhibitors such as anastrozole and letrozole, which are examples of 

triazoles, which reversibly bind to enzymes (26). 

Other treatments including chemotherapy, targeted treatments, or CDK 4/6 inhibitors are also 

given to patients with hormone receptor positive early breast cancer according to other clinical 

and molecular factors such as HER 2 status or genomic risk. 

1.3.1 Treatment of oestrogen receptor-positive/HER2-negative breast cancer 

According to their risk of recurrence, pre-menopausal women with ER+/HER2- early BC can 

be treated with tamoxifen (low-risk patients) or with the combination of ovarian suppression 

with gonadotropin-releasing hormone agonists (GnRHa) (or alternatively oophorectomy) plus 

Al (high-risk patients). Postmenopausal patients are treated with an Al for 5-10 years, 

depending on their risk of recurrence and tolerance(27). 

Chemotherapy is also recommended in high-risk ER+/ HER2-negative tumours [I, A] such as 

histological grade III, Ki67>25%, pN+, :::;;35 years old, lymphovascular invasion, progesterone 

receptors < 20%, 2: T3. In cases ofuncertainty regarding indication for adjuvant chemotherapy 

(after consideration of all clinical and pathological factors), gene expression assays, such as 

MammaPrint [I, A], Oncotype DX [I, A], Prosigna, Endopredict, or the Breast Cancer Index, 
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can be used. These panels provide a score grading the risk of recurrence to assist clinicians 

with adjuvant treatment decisions (28). These molecular signatures are used for decision­

making, including not only the use of adjuvant chemotherapy but also the duration of adjuvant 

ET(29). 

Cyclin-Dependent Kinase 4/6 inhibitors (CDK 4/6i) have dramatically improved progression­

free and overall survival (OS) of patients with advanced hormone receptor-positive/HER2-

negative BC and, in combination with ET, are now considered the standard of care for first or 

second lines of treatment (30). CDK4/6i have also been investigated in the early setting for 

ER+/HER2-negative disease, with contradictory results. In the monarchE study, 5637 patients 

with high-risk, early-stage BC were randomly assigned to receive standard adjuvant ET, with 

or without abemaciclib 150 mg twice daily for two years. At a preplanned second efficacy 

interim analysis, two-year invasive disease-free survival was 92.2% with abemaciclib vs. 

88.7% without CDK4/6inhibitorhazard ratio [HR0.75 [95% CI 0.60---0.93]), a difference that 

was significant and clinically meaningful(31 ). However, the PALLAS trial, which was 

performed in parallel to the monarchE trial and in patients with stage II-III hormone-receptor­

positive, HER2-negative BC, did not show a benefit of palbociclib in addition to standard ET 

in the adjuvant setting(32). Based on these results, the use of two years of abemaciclib has been 

approved in the adjuvant setting in combination with Al+/- GnRH analogues in patients with 

high-risk ER+/HER2- early BC considered as more than 4 positive axillar nodes or 1-3 positive 

nodes with 2: 5 cm and/or G2, Ki67 2: 20%. 

1.3.2 Treatment of oestrogen receptor-positive/HER2-positive breast cancer 

Treatment for ER+/HER2+ early BC patients may include chemotherapy, ET, and anti-HER2 

therapy. The addition oftrastuzumab to chemotherapy dramatically improved the prognosis of 

early-stage HER2-positive breast cancer. However, not all patients benefit to the same extent 

and 15%-31 % of patients still recur based on long-term follow-up of adjuvant pivotal trials. A 

better understanding of tumour biology has led to the development of optimised anti-HER2 

drugs and add-on strategies to further improve survival outcomes but also to de-escalating 

approaches to avoid unnecessary toxicities(33,34). In general, patients with HER2+ early BC 

should receive neoadjuvant systemic treatment (if tumour size 2:2cm and/or Node +) with dual 

HER2 blockade with trastuzumab and pertuzumab plus chemotherapy followed by surgery. 

Adjuvant systemic therapy includes ET for ER+ and anti-HER2 treatment, which differs 

depending on the achievement or not of a pathological complete response, stressing the 

importance of using neoadjuvant systemic treatment for patients with stage II or III disease and 
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administering adjuvant T-DMl to those patients with residual disease (35). Extended adjuvant 

therapy with neratinib may be considered in sorne patients at high risk of recurrence, however, 

it is unknown what the benefits may be in patients with prior pertuzumab and T-DMl 

treatment(36). 

Altematively, surgery can be followed by adjuvant treatment, especially in small, node­

negative disease (stage I), and these cases may include a de-escalating regimen with paclitaxel 

plus trastuzumab for 12 weeks followed by trastuzumab to complete one year oftreatment (37). 

Due to the synergy between trastuzumab and chemotherapy, adjuvant trastuzumab alone is not 

standard practice, unless the chemotherapy treatment had to be stopped due to toxicity (38). 

(39). ER+/HER2+ BC patients are also susceptible to receiving hormonotherapy for 5-10 years, 

depending on their risk of recurrence (28). 

The most common strategies for ER+ early BC are summarised in figure l. 

Figure l. Current treatment strategies for oestrogen receptor-positive early-stage breast cancer. 

Abbreviations: ER: Oestrogen receptor, T: Tumour, N: Node, ET: Endocrine therapy, HER2: 

Human epidermal growth factor receptor 2. 
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1.4 Mechanisms of breast cancer resistance to endocrine therapy 

The majority of patients with advanced disease and up to 30% of patients with hormone 

receptor-positive BC in the adjuvant setting will become resistant to the inhibitory effects of 

their ET. A large proportion of patients acquire resistance to ET following initial 

responsiveness (acquired resistance), and sorne do not respond from the start (intrinsic 

resistance ). This is associated with tumour growth and disease recurrence or progression and 

remains an area of unmet clinical need ( 40). 

Over the last decade, severa! efforts have been made to elucidate the different mechanisms 

leading to resistance to Al (22). However, the intrinsic nature of ER+ BC, in which the risk of 

recurrence persists for severa! decades after diagnosis, has made it challenging to understand 

the whole picture of ET resistance and whether this resistance is inherent to the primary tumour 

or results from gained alterations (22,41 ). A better understanding of these mechanisms would 

improve the development of new biomarkers to select patients with hormone-dependant BC 

for better strategies. In addition, the detection of Al resistance in primary tumours, before 

relapse, is essential because early-stage breast cancer is still within the "curability opportunity". 

Different mechanisms associated with resistance to ET have been described, including loss or 

modification of ERa expression, regulation of signalling pathways such as the 

PI3K/AKT/mTOR or CDK 4/6 pathways, altered expression of specific microRNAs, growth 

factor receptors, and cell cycle-related genes, balance of co-regulatory proteins, alterations in 

ER-related pathways, and co-regulatory proteins amongst others such as the tumour 

microenvironment (22). Although ER+ BC is less immunogenic than other subtypes, tumour 

immunity may also be involved in resistance to ET ( 41 ). Figure 2 shows the main mechanisms 

of Al resistance known to date (22). 
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Figure 2. Summary ofthe main known mechanisms ofresistance to aromatase inhibitors (22). 
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One of the main known mechanisms of resistance to Al is the presence of somatic mutations 

in, for example, PJ3K, TP53, MAPKJ, GATA3, E-cadherin, or RBJ (42). Data suggest that Al 

resistance is encoded by the mutation patterns present in individual tumour genomes; however, 

detailed and validated studies are still needed. Overall, the mutational maps developed from 

neoadjuvant Al studies emphasize the genomic heterogeneity that underlies the clinical 

heterogeneity of the disease. One of the main known mechanisms of Al resistance includes 

mutations in the PI3K-AKT-mTOR pathway, frequently altered in breast cancer. Activation of 

PJ3K has been shown to regulate ER expression. Therefore, inhibition of PJ3K induces ER 

expression, thus double blockade might be the cause of synthetic lethality (22). 

1.4.2 ESRl alterations 

ESRJ mutations are known acquired Al-resistance mechanisms. These mutations were first 

described in ER+ advanced BC in patients whose disease had progressed after long-term ET. 

ESRJ mutations are rare in treatment-na'ive primary tumours but frequently appear after ET in 

metastatic patients. Other molecular alterations of ESRJ that lead to Al resistance include 
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amplifications and translocations. All these alterations are more commonly associated with 

acquired rather than intrinsic resistance (43,44). 

1.4.3 Crosstalk between the activation of growth factor receptors (GFRs) 

and ER signalling 

Aberrant activation of HER2 ( 45), fibroblast growth factor receptor 1 (FGFRl) ( 46), and 

insulin-like growth factor 1 receptor (IGFlR) have been identified as other mechanisms of Al 

resistance (47,48). Their downstream signalling components, such as MAPKs and the PI3K­

AKT pathway ( 49) have also been associated with acquired ET resistance. Activation of the 

PI3K pathway has been shown to regulate ER expression (50) and mutations in the a-catalytic 

subunit have been associated with the development of acquired ET resistance (51,52). Prior 

data have demonstrated that the overexpression of different growth factor receptors (GFRs) 

signalling through the epidermal growth factor receptor (EGFR) or HER2 activates MAPK in 

ER+ BC, leading to the loss of ERa expression (50,53), and that inhibition of MAPK can 

reactivate ER expression and tumour responsiveness to ET (54). This crosstalk is particularly 

relevant in ER+/HER2+ BC ( 45). Therefore, targeting both ER and HER2 pathways is crucial 

for patients with ER +/HER2+ early BC ( 17). Another strategy is to target HER2 mutations that 

occur mainly in ER+ breast cancer. However, the adequate selection of patients with potentially 

resistant tumours and the different strategies needed are still required (36). 

1.4.4 Alterations in other signalling pathways 

Cell-cycle regulation, including deregulation of cyclin D-CDK4 or CDK6 and enrichment of 

cyclin D1 (CCNDl) have also been associated with resistance to ET (6,42). Data have also 

shown that epigenetic regulators such as aberrant histone and DNA modifications play a role 

in ET resistance(6). The host microenvironment, including the extracellular matrix (ECM) and 

various stromal immune components, are associated with ET resistance (55). Moreover, the 

chronic inflammation observed in BC is known to promote disease progression and metastasis 

development (56--58). 

1.4.5 Role of tumour immunity in resistance to aromatase inhibitors in 

oestrogen receptor-positive early breast cancer 

Although ER+\HER2- BC tumours are known to be less immunogenic than other types ofBC, 

prior studies have shown that tumour immunity could be involved in resistance to ET (59). 

Tumour immune-enrichment and immune-checkpoint component-related genes are 
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upregulated in most luminal B tumours showing poor response to ET as measured by higher 

Ki67 and worse prognosis ( 41,60). Sorne of the immune-related genes involved in Al 

resistance include IDOJ, LAG3, CTLA4, STAT 1, and IFNó. A high expression of these genes 

is associated with higher tumour immune tolerance, which has been related to early resistance 

to ET (60-62). These findings suggest a potential benefit for immune-checkpoint inhibition 

in this setting. 

By contrast, there is strong evidence suggesting that immune cell pathways and the tumour 

microenvironment play a crucial role in HER2+ disease (63). HER2+ BC has higher stromal 

tumour-infiltrating lymphocytes (TILs) compared with HER2- BC, thus conforming a more 

immunogenic subgroup when compared with other BC subgroups (64--67). HER2-positive BC 

is generally considered more immunogenic than hormone receptor-positive/HER2-negative 

BC, but less immunogenic than triple negative (TN) BC. Differences in immunogenicity also 

exist among intrinsic molecular subtypes, with HER2-enriched tumours being one of the most 

immunogenic. Compared with other subtypes, HER2-enriched tumours show the highest levels 

of TILs and are associated with higher expression of immune activation genes (68,69). 

The interplay between the immune system and tumour is complex and dynamic, involving the 

interaction with different HER2-targeted treatments and additional treatments such as 

chemotherapy, ET, and the modulating action ofhormone receptor status, and tumour biology 

(64). For example, TILs have shown prognostic and predictive value for anti-HER2-targeted 

treatments in HER2+ BC (70). In addition to their association with survival outcomes, the 

presence of immune cells and immune-related biomarkers is linked to the effect of different 

treatments in BC (71-73). In HER2+ BC, the NeoSphere (74) and NeoALTTO (75) studies 

have shown that tumours with low baseline TILs have lower pathological complete response 

(pCR) rates. Additionally, both the NeoAL TTO (75) and TRYPHAENA (76) studies showed 

that TILs were associated with improved event-free survival when systemic therapy was 

administered in the neoadjuvant setting. It was also reported in the FinHER study that TILs 

were predictive of benefit to adjuvant trastuzumab (71). A pooled analysis of six prospective 

neoadjuvant clinical trials showed that increased TILs were associated with higher pCR rates 

and improved disease-free survival in HER2+ BC (77). However, the analysis <lid not show an 

association between increased TILs and OS. In contrast, data from the adjuvant N9831 study 

suggested that the increased presence of TILs was associated with an improvement in 

recurrence-free survival in patients who received chemotherapy alone, but not among patients 

treated with chemotherapy plus trastuzumab (78). 
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When looking at the immune cell subtype in the tumour microenvironment, CD8+, CD4+ 

Thl, and NK cells are generally considered to favour a tumour-suppressive environment, 

whilst CD4+ T-helper 2 (Th2), FOXP3+ T-regulatory, and dendritic cells play a pro­

tumorigenic role (79). Furthermore, the modulation of immune cells that occurs in HER2+ 

BC has shown a clinical impact on treatment efficacy (80,81 ). 

Altogether, previous research suggests a crucial role of tumour immunity and immune­

checkpoint component on prognosis and resistance to different treatments in ER+ both HER2-

and HER2+ early BC. However, the impact of these immune features on resistance to Al 

treatment has been understudied and requires further investigation. 

1.5 Limitations in the study of resistance to endocrine therapy. Window-of­

opportunity clinical trials and on-treatment tumour biopsy utility 

Short pre-surgical trials of an investigational therapy and on-treatment biopsies are a unique 

setting to correlate treatment with changes in proliferation of, for example, Ki67 as a surrogate 

marker of drug activity (82,83) Ki67 has been developed as a biomarker of ET efficacy and 

may predict long-term outcomes (84). 

lntrinsic resistance, i.e., lack ofresponse to initial ET, can be diagnosed at 2--4 weeks following 

neoadjuvant Al therapy, if tumour Ki67 levels are over 10%. This strategy has been explored 

in the phase Ill POETIC trial and other clinical trials and will be developed in the following 

chapters (82,85). Other neoadjuvant studies investigating different ETs have demonstrated that 

approximately one-third of cases fail to suppress the Ki67 index to below 10%, indicating early 

resistance to treatment. 

The study of endocrine treatment resistance has encountered several limitations: 

a) Patients are disease-free for long periods. Pre-surgical and neoadjuvant trials facilitate

the study of resistance with the collection of viable paired biopsies at baseline and at

surgery and the possibility of correlating different molecular characteristics with response

and outcomes, even years later (2,41,86--88).

b) Immunohistochemistry (IHC)-based biomarkers to guide treatment decisions. lHC

biomarkers are not always good predictors of response to the diff erent treatment options in
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early BC. For example, HER2+ overexpression or ER+ are not compelling predictors of 

response to anti-HER2 targeted therapy or ET respectively (19). Biomarker profiles that 

distinguish between responders and non-responders are usually based on pre-treatment 

tumour characteristics, without considering the effect of the drug on the tumour itself (89-

91 ). In the last decade, gene-expression profiling has improved our knowledge of the 

heterogeneity of BC biology (92). Supervised analysis has led to the development of 

predictive gene-expression signatures and new clinical assays. Unsupervised analysis has 

identified multiple signatures covering cell type origin, signalling pathway proliferation 

and included the "intrinsic subtypes" ofBC (6,8,12,92,93). 

Knowledge about the biology underlying BC has provided a way to sub-classify the disease 

with the ultimate goal of treatment personalisation. Since gene expression profiling 

technologies were introduced, grouping genes with similar expression profiles has been 

essential for a better interpretation and improvement of functional genome annotations. A 

critica! step in the gene expression datasets has been how to group genes into co-expression 

categories. The main signatures identified in BC group genes are based on similar biology, 

driven for example by ER and HER2 status and proliferation (5,94). There is a wide range 

of different approaches to group gene expression in pathways covering certain 

characteristics of cancer biology. However, clustering genes into signatures or modules has 

been the method most used as they include cancer pathway biology, identifying more 

homogeneous classes, and are also associated with a more uniform clinical outcome 

(5,50,95-97). Gene expression profiles have been previously categorised into molecular 

signatures covering the main pathways in BC, including tumour biology, immune and 

tumour microenvironment to facilitate the understanding of BC biology and differential 

behaviour (95). 

c) The impact of different lengths of Al treatment on molecular features has not been

directly compared, thus making it difficult to distinguish intrinsic resistance from de

novo or acquired resistance (22). Reduced ER-dependence and E2F-signalling activation

after short- and long-term neoadjuvant Al have been associated with poor response (43),

while the enrichment of ESRJ mutations has also been associated with resistance to Al in

patients treated with long-term neoadjuvant Al in primary BC (98). Based on these

differential mechanisms, for the comparison of the eff ect of different lengths of

neoadjuvant Al therapy on molecular features, it is necessary to elucidate the full impact

on molecular alterations that might limit response and lead to clinical resistance.
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d) HER2 status within ER+ BC tumours causes different patterns of recurrence and

response to Al, but it has been barely characterised. (18,94). In general, ER+/HER2+

BC is associated with a reduced antiproliferative effect of ET and lower response rates,

including lower pCR rates to anti-HER2 targeted therapy than ER-/HER2+ tumours.

However, sensitivity to Al treatment has barely been explored in this setting (51,70,99-

103). It is known that there is an impeded anti-proliferative response of HER2+ BC to ET

(90,104), but the underlying causes are still unknown. Identifying potential biomarkers of

response to ET beyond HER2 and ER may help clinicians to distinguish patient populations

and thus could avoid unnecessary treatments and their associated costs and toxicities.

e) Tumour immunity and resistance to Al. Previous research has identified key drivers in

a subtype-specific manner that are a direct result of copy number alterations rather than

somatic point mutations (6). The high heterogeneity in tumour architecture, cell

composition, abundance, and distribution also suggest that the tumour microenvironment

and immune cells shape tumour evasion, evolution, and response to different treatments,

promoting tumour durability and resistance to therapy (65). However, more studies are

needed to understand the differential role oftumour immunity in Al resistance and survival

in different subgroups ofpatients with ER+ BC, such as HER2 - and HER2+.

1.6 Ki67 changes and residual levels at surgery as markers of resistance to 

endocrine therapy and outcome 

Antigen Ki-67 is a protein encoded by the MKi67 gene, which is associated with cellular 

proliferation. The expression of Ki67 has been widely used as a surrogate marker of cell 

proliferation and growth in many cancer types. According to the International Ki67 in Breast 

Cancer Working Group, Ki-67 levels between 5% and 30% are subject to high interobserver 

and interlaboratory variability, thus recommending that only levels beyond this threshold 

should be considered clinically actionable (84,85). An accurate test-tool predicting prognosis 

in hormone receptor-positiveBC was developed based on response to neoadjuvant ET (105). 

The PEPI score is the sum of the risk points derived from the pT stage, pN stage, Ki67 level, 

and oestrogen receptor status of the surgical specimen following neoadjuvant endocrine 

treatment. This prognostic tool was developed based on data from the Z 1031 (21) and A TAC 

trials (91). In these trials, it was observed that the antiproliferative effect measured by Ki67 

after 2 and 12 weeks was significantly greater with anastrozole than with tamoxifen (P = 0.004 

and P < 0.001). Noteworthy, the suppression of Ki67 under Al treatment was associated with 
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a lower risk ofrecurrence (p<0.001 ). In addition, for patients with PEPI = O disease, the relapse 

risk over five years was only 3 .6% without chemotherapy, supporting the use of adjuvant 

endocrine monotherapy in this group (82,106). 

More recently, results from the phase III POETIC trial (Peri-Operative Endocrine Therapy­

Individualising Care), which randomised patients with ER+ BC 2:1 to receive either peri­

operative Al vs. no-treatment followed by standard of care, indicated that two weeks of 

preoperative therapy with an Al may significantly reduce tumour proliferation measured by 

Ki67 (82). The observed reduction in Ki67 was translated into an improvement in outcome in 

ER +/HER2- BC but not ER +/HER2+ BC (84,107) Patients with Ki67 high at baseline (2: 10%) 

remaining high at baseline (2: 10%) - i.e., baseline Ki67 higher than 10% and remaining so 

after 2 weeks of Al treatment- have significantly worse prognosis than tumours with baseline 

Ki67 high (2:10%) turning to low (<10%) and baseline Ki67 low (<10%) turning to low (<10%) 

at surgery. The POETIC trial clearly provided the validation of baseline Ki67 as a prognostic 

marker showing that patients whose Ki672w remains "high" (2: 10%) after two weeks of Al 

treatment have a substantially poorer prognosis than those with a "high" baseline Ki67, which 

is markedly reduced to "low" (<10%) (83). 

1.7 Importance of having a reference group of patients (control group) in 

biomarker research 

Beyond the identification of residual Ki67 at the two-week time point as a biomarker of 

resistance to Al (83), data from the POETIC trial has also shown that there are sorne 

unexpected but significant molecular changes between the baseline biopsy and the surgery 

specimen in the control arm, i.e., in the tumour of patients who did not receive Al treatment. 

For example, an increase in the expression of sorne genes, such as FOS and JUN in both arms 

(patients treated with IA and in controls) was reported for the first time in the POETIC trial 

(108,109). These genes are involved in mitosis and differentiation processes and the 

differences observed between baseline and surgery samples are not clearly understood as yet. 

Although the causes of these molecular differences that occur without any treatment are still 

uncertain, it has been suggested that they might be due to the stress occurring during sample 

manipulation. Sorne hypotheses ofthe causes that might explain this effect are different times 

of formalin fixation (longer in surgical samples than in biopsies) or exposure to pre-surgical 

procedures and drugs (i.e., mammography, anaesthesia . . .  ) that occur in both treated and 

control cohorts. 
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The upregulation of the expression of several genes related to FOS and JUN would likely be 

considered an exclusive effect of Al in the absence of a control group, which might be relevant 

to all archiva! collections ofER+ BC. Thus, the artefactual effect resulting from preanalytical 

sample processing needs a deeper characterisation for adequate correction; otherwise, those 

changes would be wrongly attributed to treatment and lead to biased results. 

1.8 Development of novel treatments to improve resistance to aromatase 

inhibitors 

Based on the molecular biology of ER+ BC in both HER2- and HER2+ populations, new 

treatments, and combinations, including drugs such as immunotherapy or CDK4/6 inhibitors, 

should be explored with the ultimate goal of improving response to current treatments and 

survival outcomes. 

There are two main critica! aspects in the development of new onco-specific drugs: 1) the lack 

of adequate endpoints in the design of the clinical trials testing them and 2) the limited use of 

biomarker-based selection and stratification strategies in their dosages. Emerging biological 

endpoints such as changes in Ki67 levels are mainly driven by the antiproliferative effect of 

certain drugs; however, the use of Ki67 in clinical trials evaluating the combination of, for 

example, immune-oncology agents with cytotoxic and targeted drugs should be explored. 

The POETIC trial (83) aimed to find an adequate and simple endpoint that served to identify 

patients with ER+ early BC with sufficiently good prognosis such that standard of care medical 

treatment ( often comprising adjuvant ET alone ), was sufficient and another group to be 

considered for additional therapies. Traditional approaches to this problem have used standard 

prognostic parameters including tumour size, histological grade, nodal involvement, and age, 

often integrated into a prognostic tool ( e.g., Nottingham Prognostic Index, Adjuvant Online, 

NHS PREDICT) (97,110), but these merely provide the predicted probability of benefit for a 

patient population with given tumour and demographic characteristics. Thus, Ki67 was 

developed as a reliable biomarker of ET efficacy, which also helps to predict long-term 

outcomes (84). A small neoadjuvant trial (IMPACT; N=330) had already suggested that this 

might be feasible; results showed that tumour Ki67 after two weeks (Ki672w) of ET predicted 

outcome better than at baseline, remaining significant in the multivariable analysis, whereas 

Ki67 at baseline did not (111 ). Similar results have subsequently been reported in other trials 
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assessing the effect of different ET strategies (91,105). The POETIC trial, with a much larger 

patient population (N=4480), aimed to build on these findings to provide definitive clinical 

evidence to inform future practice (83). 

Several genomic platforms have been developed to provide more accurate prognostic and 

predictive information for the individual patient with ER+/HER2-negative BC 

(91,93,112,113). In HER2-positive early-stage BC, a multivariable prognostic assay to guide 

systemic therapy has recently been developed. The HER2DX assay was generated from 

genomic and clinic-pathological data (including tumour size, nodal status, stromal TILs, 

PAM50 subtypes, and expression of 13 genes) from patients included in the Short-HER trial 

(the phase III study evaluating nine weeks vs. one year of adjuvant trastuzumab ). The HER2DX 

risk score was validated as a continuous variable in an independent dataset from adjuvant and 

neoadjuvant trials, showing a significant association with DFS and distant metastasis-free 

survival (DMFS), suggesting that in sorne HER2+ early BC, therapy could be de-escalated 

(114). Moreover, the new HER2DX test also estimates the likelihood to achieve a pCR (115). 

However, these genomic tests are expensive, not widely available, and differ in terms of the 

information they provide. A simple test after a short duration preoperative ET could therefore 

be helpful in accurately selecting appropriate treatment in patients if it also incorporated an in

vivo response to AL 

To recapitulate the applicability of the results obtained in this thesis, a manuscript has been 

included in the introduction. 

1.8.1 Manuscript l. Lights and shadows in immuno-oncology drug development 

Given the importance of immune features in BC but with an apparently different role in TNBC, 

HER2+, and ER+ tumours, there is a need for a better clinical trial design and choice of study 

endpoints. This was one of the training objectives of this Ph.D. project and my stay at the 

Institute of Cancer Research (ICR), in London, one of the world's most influential cancer 

research organisations. An opinion article was written to discuss the pitfalls of current clinical 

trial designs and to suggest several new biomarkers for biomarker-driven clinical studies, as 

well as the use of appropriate surrogate endpoints for efficacy. 
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Simple Summary: The introduction of immunotherapy has had a significant impact on the cancer 
treatment landscape, with unprecedented survival outcomes in sorne tumor types. However, clinical 
development of immune-oncology (10) agents presents both opportunities and challenges, and not 
all patients benefit to the same extent. Many factors influence trial designs and could potentially 
threaten the success of promising I0 drugs: l. Most I0 trials still rely on response evaluation criteria 
based on image assessment only, while new approaches including biomarkers tracking response 
should be incorporated. 2. Surrogate endpoints for efficacy are still inferred from classical anticancer 
drugs that have not been specifically validated for I0 trials. 3. There is a need for biomarker-driven 
clinical studies in order to select appropriated patients. 4. Long-term toxicity monitoring is needed, 
and dosage calculation should not rely on dose-dependent toxicities. 5. 0ptirnizing the design of 
new I0 agents with collaborative approaches assessing multiple drugs on a biomarker-based basis 
is needed. 

Abstract: The rapidly evolving landscape of immuno-oncology (I0) is redefining the treatment of 
a number of cancer types. 10 treatments are becoming increasingly complex, with different types 
of drugs emerging beyond checkpoint inhibitors. However, many of the new drugs either do not 
progress from phase I-II clinical trials or even fail in late-phase trials. We have identified at least 
five areas in the development of promising I0 treatments that should be redefined for more efficient 
designs and accelerated approvals. Here we review those critical aspects of I0 drug development 
that could be optimized for more successful outcome rates in all cancer types. It is important to 
focus our efforts on the mechanisms of action, types of response and ad verse events of these novel 
agents. The use of appropriate clinical trial designs with robust biomarkers of response and surrogate 
endpoints will undoubtedly facilitate the development and subsequent approval of these drugs. 
Further research is also needed to establish biomarker-driven strategies to select which patients may 
benefit from immunotherapy and identify potential mechanisms of resistance. 
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l. lntroduction

lmmuno-oncology (10) is redefining the cancer treatment landscape and the way 
that sorne solid tumors are treated. Almost 5000 new agents from six different main 
classes of immunotherapies have been in the drug development pipeline within 2020, 
including adoptive cell therapy, cancer vaccines, T cell-targeted immunomodulators, other 
immunomodulators, oncolytic viruses and antibody-based targeted therapies [1]. Overall, 
10 consists of a wide range of drugs with different mechanisms of action that ultimately lead 
to the enhancement of immunity against tumor cells. The immune checkpoint inhibitors, 
which reactivate T-lymphocyte mediated immune response against tumor cells, have been 
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the most successful type of IO developed since the beginning of the "IO era". Their use is 
now a standard of care across several solid tumors, including melanoma, non-small cell 
lung cancer (NSCLC), gastric cancer, head and neck squamous cell carcinoma, renal cancer, 
bladder cancer, cervical cancer and triple-negative breast cancer (BC) among others [2-6]. 

1.1. Which Are the Current Challenges with IO? 

A substantial number of IO therapies do not progress from phase I-II trials, and 
sorne fail in late-trial stages [7]. First, clinical trials testing novel IO drugs still rely on 
biomarkers and endpoints that are validated for conventional treatments such as cytotoxic 
agents, although their mechanisms of action are different [8]. Second, the adaptative 
imrnune response induced by imrnunotherapeutic agents is often sustained in time, as 
well as the inflamrnatory and autoimmune-related adverse events. Those long-term effects 
make the evaluation of clinical benefits and toxicities extremely difficult [9]. A wide 
range of exclusive toxicities to IO agents, mainly characterized by significant latency, 
has been underestirnated by many clinical trials as they are only evident in long-term 
follow-up or pharmacovigilance studies [10-12]. In addition, the calculation of the IO drug 
doses still relies on dose-limiting toxicities seen in the first cycles of classical anticancer 
treatments, which seems inadequate for IO treatrnent. Furtherrnore, the differences in 
the intrinsic biology between IO agents and conventional therapies further complicate 
their comparisons. Finally, sorne particular pathways in 10 are overcrowded with similar 
drugs within the same therapeutical setting but led by different pharmaceutical companies. 
However, these resources could be better relocated to the development of new biomarkers 
to select the best in class and to test mechanistically different drugs. 

BC, for example, is much in need of a paradigm shift of better IO drug development [13]. 
This cancer type belongs to a group of widely considered "cold tumors", characterized 
by low mutation and neoantigen burden and low counts of tumor-infiltrating cells (TILs). 
Although the number of clinical trials assessing the use of immunotherapy in BC is increas­
ing, to date, the approval of its use is only for a selected subset of advanced triple-negative 
(TN) BC patients with > 1 % of programmed death ligand 1 (PD-Ll) expression by immuno­
histochemistry (IHC) [6,14]. Overall, the main problem in the development of 10 agents in 
this type of cancer has been the lack of biomarker-guided patient selection for trials and 
the reliance on a reduced number of "classic" biomarkers such as PD-Ll. In particular, 
PD-Ll remains at least insufficient to fully explain the therapeutic success and durable 
clinical benefit seen in sorne patients with PD-Ll non-expressing tumors, especially when 
treated with other 10 agents beyond checkpoint inhibitors [15-19]. However, new genomic 
alterations such as those in DNA damage response or specific mutated gene pathways 
have shown promising results as immunomarkers in sorne translational studies, and their 
validation in clinical trials should be encouraged [20]. In addition, the main focus of 10 
development in BC has been put in TNBC due to its general enrichrnent of TILs and the 
lack of effective therapies other than chemotherapy. Although the use of IO agents in 
other subsets of BC, such as luminal B tumors or pretreated HER2-positive BC, has also 
been explored, there is still much controversy on its use in those settings [21-23]. It is still 
unclear whether a better design based on a more accurate selection and less pretreated 
patients would have led to positive results. The other main issue is the lack of assessment 
of IO agents' combinations, which is now believed to be an alternative strategy to achieve 
imrnune response enhancement in "colder turnors". Especially in BC, in which many 
different pathways, such as estrogen receptor signaling, seem to have majar implications 
for the tumor imrnune scape, and further combinations of different IO treatrnents with 
classical anticancer therapies could potentially help to overcome them [24,25]. 

1.2. How Can We Do Better? 

Despite the great improvement in the field of 10 in the past years, most new agents 
still offer a modest rate of objective responses and poor long-term outcomes compared to 
conventional treatrnents. In addition, immune-mediated serious adverse events remain a 
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potential issue [26]. In order to optimize new 10 trials' design to further improve survival 
outcomes and minimize toxicity rates, new strategies are needed. We have identified five 
main domains in the development of promising 10 treatments that should be redefined for 
more efficient results and accelerated approvals. 

First, there is a crucial need for a biomarker-driven selection of a patient population 
for each of the new 10 agents. Second, the evaluation of efficacy, toxicity and comparisons 
with current treatments should be based on surrogate endpoints and response criteria for 
those specific 10 agents and not just inferred from conventional drugs. Monitoring long 
term-outcome seems to be mandatory as 10 agent efficacy and toxicity may have long-term 
effects [27]. Finally, changing the current scenario of 10 clinical trial-design with more 
collaborative approaches that facilitate the assessment of multiple diseases and drugs on a 
biomarker basis seems crucial [28]. 

In this manuscript, we will analyze each of those points and suggest sorne potential 
improvements in the field. 

2. Challenges and Opportunities in 10 Drugs Development

A summary of the main critical aspects in 10 drug development and strategies for 
their optimization is illustrated in Figures 1 and 2, respectively. 

RESPONSE CRITERIA 

ENDPOINTS 

BIOMARKERS OF RESPONSE 

10 trials currently rely on image evaluation only 
lndependent evaluation of response by RECIST and iRECIST 

lnaccuracy of iRECIST for some particular responses 

lncreasing use of endpoints inferred from cytotoxic agents 
Lack of validation of surrogate endpoints for 10 trials 

Lack of surrogates with a component of duration of response 

Most trials do not rely on a biomarker-based selectlon 

Most 10 drugs are evaluated in unselected populations 

Current use of "old fashion biomarkers· 

Lack of long-term toxic.ity assessment 
10 agents do not fit dose/response-dose/toxicity relationship 

Lack of toxicity endpoints to establish initial dosages 

Designs inferred from classic anti-tumour drugs 

0versubscription of drugs in some particular pathways 

Lack of adequate strategies for multiple disease/treatments 

Figure 1. The major drawbacks found in immune-oncology trials designs to date. Abbreviations: 10: 

immuno-oncology, RECIST: response evaluation criteria in solid tumors, iRECIST: immune response 

evaluation criteria in solid tumors. 
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lntegration of RECIST ancl 

iRECIST imaging and 

ENDPOINTS 

Validation of biomarker­

driven surrogates 

considering duration of 

response and use of 

long-term efficacy 

endpoints 

BIOMARKERS OF 

RESPONSE 

Volidation of biomorker­

based selection strategies 

using advanced molecular 

approaches including 

multi-gene tests 

4 of 11 

Figure 2. Proposed strategies to optimize the clinical trial design for new immuno-oncology agents. 

Abbreviations: RECIST: response evaluation criteria in solid tumors, iRECIST: immune response 

evaluation criteria in solid tumors. 

2.1. Response Criteria 

From the beginning of the "IO era," researchers realized that the standard response 
evaluation criteria in salid tumors, namely RECIST alone, would not be suitable far im­
munotherapy due to the indirect effect caused by the participation of inflammatory cells 
and their interactions [29]. RECIST relies on the early suppression of tumor growth 
by chemotherapy and may consequently underestimate the benefit of immunotherapy. 
The immune RECIST (iRECIST) and other immune-specific related response criteria 
were developed to evaluate the heterogeneity of responsiveness in patients receiving 
immunotherapy [30]. Although iRECIST takes into account pseudoprogressions or hyper­
progressions, which are observed exclusively with IO agents, demonstration of actual 
response to treatment may not be distinguishable from such pattems far another several 
months. This particular timeline may have caused many clinicians to have considered 
patients as no treatment response and/ or stable when the patient may have conversely ob­
tained benefit from treatment since iRECIST still recommends that assessment of response 
durability may occur between 4 and 8 weeks [31]. 

Toe use of iRECIST far evaluation of response has mainly been used far studies 
evaluating the efficacy of immunotherapeutic agents only. It becomes rather complex 
when the primary objectives of trials are to perfarm head-to-head comparisons with non­
immunotherapeutic agents or combinations with other cytotoxic or molecular targeted 
treatments. 0n the other hand, particular responses observed in patients undergoing 
immunotherapy treatments are not well captured by iRECIST, such as dissociated responses 
with sorne lesions growing, sorne shrinking or the slow progressions, features linked 
with clinical benefit. In those cases, classic RECIST could still remain as a meaningful 
method of evaluation [32]. In addition, most IO clinical trials that compare immunotherapy 
with other cytotoxic antitumor agents are designed around the evaluation of response on 
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superiority, inferiority or equivalence [33]. These comparisons may not be appropriate 
when assessing two mechanistically different treatments, in which case integrative clinical 
benefit and long-term outcome should be taken into consideration. Although the American 
Society of Clinical Oncology-Society for Immunotherapy of Cancer (ASCO-SITC) has 
recently recommended reporting responses according to both the conventional RECIST 
and iRECIST criteria in parallel [34], this approach is still suboptimal as their evaluation is 
done independently. Harmonizing and integrating both measurement methods into an 
adequate tool rather than just separately considering both criteria is urgently warranted 
for more precise measurements of actual responses. 

It is worth noting that sorne methods beyond image evaluation have also shown 
promising results for the assessment of response in 10. Sorne biomarkers assessed in periph­
eral blood such as interleukin 8 (IL-8), tumor circulating DNA (cDNA) or CDS+ memory 
effector cytotoxic T cells have recently shown to assist in tracking immune response in 
different tumors like NSCLC cancer and melanoma [35-37]. Given the strong correla­
tion between detected changes on those biomarkers with subsequent clinical responses, 
biological assays exploring changes in their expression levels could lead to promising 
results. Based on that, decisions could be made on the basis of patient-specific immuno­
logical tracking biomarkers. Moreover, the pathological assessment of lymphocytes and 
immune infiltrating cells in tumor biopsies during treatment could also be considered as 
a useful monitoring tool of clinical response in clinical trials and help to gain a deeper 
understanding of the changes in tumor characteristics under immunotherapy. However, 
the application of on-treatment biopsies in clinical practice remains unclear and should be 
further investigated and refined as it could be considered invasive [38]. 

In summary, combining an integrative image tool with response markers such as 
liquid biopsies could become better tailoring of response evaluation in the future of 10. 

2.2. Long-Term Efficacy Endpoints and Surrogates 

Drug approval is generally based on safety and efficacy assessed by clinically rel­
evant endpoints in phase 3 randomized trials. Overall, survival (OS) is considered to 
be the gold standard as it reflects the ultimate survival benefit from cytotoxic and other 
targeted therapy regimens, and there are minimal measurement errors in OS. Meanwhile, 
progression-free survival (PFS) and objective response rate (ORR) are used as surrogate end­
points in cancer; these measurements provide inferred conclusions from clinical trials and 
facilitate accelerated approval of new drugs that fill an unmet clinical need [39,40]. Other 
emerging biological endpoint, such as changes in Ki67 level after short-term treatment with 
endocrine therapy in BC, has been validated as a surrogate of long-term benefit [41] and 
are increasingly becoming used as primary endpoints in clinical trials. Surrogate endpoints 
for the assessment of 10 agents' efficacy have primarily been adopted for cytotoxic and 
molecular targeted drugs; questions remain whether they are suitable to determine benefit 
from immunotherapy. In particular, there are increased doubts concerning the use of 
short-term benefit endpoints such as PFS or ORR as primary endpoints in most clinical 
trials of new 10 agents [7,42,43]. 

A recent meta-analysis of 60 published immunotherapy randomized clinical trials 
suggested that ORR could be a meager surrogate of response to evaluate the efficacy of 10, 
and the use of PFS as a surrogate of OS is still indeterminate [44]. Another meta-analysis 
of 12 randomized clinical trials did not find a significant positive correlation between the 
OS and PFS hazard estimates, suggesting that PFS assessment is not sufficient to capture 
the benefit of PD-1-inhibitors in patients with solid tumors [42]. This is not surprising as 
the unique mechanism of immunotherapy's impact on tumors shows different patterns 
of response and progression from other conventional agents [45]. Emerging biological 
endpoints such as changes in Ki67 level are mainly driven by the antiproliferative effect of 
certain drugs; however, its use in trials evaluating the combination of 10 agents with cyto­
toxic and targeted drugs should be further explored. Recent studies have also shown that 
endpoints taking into account a component of the duration of response such as milestone 
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survival or durable response rate may better capture the delayed and persistent responses 
derived from IO agents and should be further studied [46]. For instance, milestone survival 
is the survival probability at a given time point, defined a priori as two years, and durable 
response rate can be measured as a continuous response, such as complete or partial objec­
tive responses, beginning within 12 months of treatment and lasting 26 months [47]. The 
advantages of such types of integrative endpoints are that they take into account particular 
behaviors seen exclusively in IO and allow the use of predefined cutoff time intervals 
that lead to the rapid characterization of survival probability and inference to long-term 
survival data. 

To date, overall survival still remains the gold standard for the evaluation of clinical 
efficacy of IO agents in late-phase clinical trials, new biomarker-driven surrogate end­
points that capture the mechanisms of action in early phases of immunotherapy drugs 
development should be explored. 

2.3. Biomarkers of Response 

Despite the rapid advance and reduced cost of high-throughput sequencing technolo­
gies, most current trials in oncology have limited use of biomarker-based selection and 
stratification strategies in their designs. However, studies in IO treatments tested in unse­
lected populations are generally negative [48,49]. The lack of new and robust predictive 
markers is particularly concerning for the selection of the most appropriate subpopulations 
in relative "colder tumors" such as BC, in which most patients will not benefit from those 
new IO agents. 

In recent years more attention has been paid to the identification of predictive biomark­
ers of the efficacy of IO drugs to identify patients who benefit from those agents. Most ap­
proved immunotherapeutic treatments show efficacy only in selected populations, mainly 
based on the immunohistochemical (IHC) levels of PD-Ll checkpoint target leading to 
PD-Ll being the compulsory companion diagnostic assay for the administration of many 
checkpoint inhibitors in oncology. Many efforts are currently focusing on the reproducibil­
ity and standardization of laboratory protocols for the IHC assessment. However, the 
evaluation of single IHC biomarkers does not completely explain the heterogeneity of 
tumors, and their use seems to be suboptimal in the "genetics and omics era". In particular, 
multiplex diagnostic assays would be better, especially when testing IO agents beyond 
immune checkpoint inhibitors [14-19]. 

Emerging predictive biomarkers as defined by both the host and tumor factors are 
promising measurement for a clinical response; the use of these measurements are still in 
infancy stage due to a lack of standardization and harmonization of reporting methods [50]. 
Tumor mutational burden, microsatellite instability, and tumor neoantigen loads are sorne 
examples. Mutational burden and high microsatellite instability assessment based on 
mutations in mismatch repair genes have been associated with better response to im­
munotherapy, especially to anti-programmed cell death protein 1 (anti-PDl) agents [51,52]. 
Next-generation sequencing has led to a more accurate method of quantification, but it is 
still difficult to achieve a homogenization on their quantification. Thus, the implementation 
and standardization of robust bioinformatics methodologies and analytical techniques 
across laboratories are necessary [53]. Additional exploration to identify the type of muta­
tions is much needed for generating the most relevant neoantigen for recognition by the T 
cells. Other challenges are that these emerging predictive biomarkers assays for IO agents 
are usually expensive, technically demanding and not widely available. 

Multi-plex and multi-omics based biomarkers indicating higher tumor immune toler­
ance such as immune-related genes and signatures have thrown sorne light on the field 
of predictive biomarkers in IO [20,54]. Sorne studies have shown that high expression of 
sorne particular gene expression signatures is associated with response to PD-Ll inhibitors 
regardless of their PD-Ll status in NSCLC and melanoma [55]. Other signatures, including 
sorne targetable immune checkpoint components such as indoleamine 2,3-dioxygenase 
(IDOl), lymphocyte-activation gene 3 (LAG-3), or interferon-gamma (IFNy) genes can pre-
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dict benefit from immunotherapy in "colder tumors" such as luminal B BC patients [56,57]. 
Recent studies have also demonstrated that exhausted CDS+. T cell signatures can predict 
immunotherapy response in ER-positive BC [58]. These signatures are yet to be validated 
in clinical trials. 

Identification of robust pharmacodynamic biomarkers of 10 response remains a 
challenge [59], and it is likely that cornbinations of two or more biornarkers to capture 
immune status more accurately will be needed [20]. 

2.4. Definition of Toxicity and Treatment Dosage 

Irnmunotherapies have the potential to induce toxicity profiles distinct frorn those 
frorn other cancer treatments. Immune-related adverse events are often underdiagnosed, 
as patients can remain asymptomatic for long periods of time [10,12]. In addition, toxicity 
is rnostly inflarnrnatory-related, and assurnptions frorn cytotoxic or molecular targeted 
treatments are not appropriate for 10 agents. In particular, precise considerations must be 
taken during their developrnent [60] as they do not fit the dose-response/dose-toxicity 
relationships seen with cytotoxic therapies. 

In contrast to what usually happens with cytotoxic drugs, an increase in the dosage 
above the biologically optirnal does not always correlate with an increase in efficacy or 
toxicity in 10 [7]. Due to the lack of reliable toxicity endpoints to establish optimal dosages 
in immunotherapeutic trials, sorne FDA approvals on irnrnune-checkpoints inhibitors 
have been based on varying dosages and schedules across different tumor types. This 
has resulted in sorne confusion on the clinical irnplication and irnplementation for future 
trial designs [32]. The best approach to define the optirnal adrninistration dosages and 
schedules with the highest efficacy is still open-ended, and deficient toxicity profiles may 
have unfortunately an impinged on the results from several clinical trials assessing efficacy 
with 10 agents [61]. 

The optirnal design of early phase clinical trials should airn to evaluate doses and 
schedules at the rninirnal doses that are biologically active. Based on the distinct be­
havior of 10 agents, flat dosing adrninistration instead of weight-based dosing rnay be 
a better approach facilitating srnoother adrninistration and avoiding drug waste [62,63]. 
Long-terrn follow-up of 10 related adverse events is encouraged in trial designs evalu­
ating new-1O agents. Consensus guidelines for recognizing each of the adverse events 
under imrnunotherapy and specific rnanagernent of these reported events should also 
be incorporated. 

Aforernentioned, defining doses and schernes of 10 agents seern relatively more 
cornplicated than with cytotoxic drugs. New approaches in trial designs, including the 
hornogenization of the optirnal dosages that will be carried over later phases of drug 
developrnent, are urgently needed. Finally, the incorporation of additional endpoints 
especially validated for 10 agents in early phases of trials for <lose selection to irnprove 
efficacy and reduced toxicity, are also warranted. 

2.5. The Trial Design Itself 

Due to the particular impact on tumor biology by 10 treatments, conventional phase 3 
clinical trial designs to dernonstrate the effects of an experimental therapy cornpared to 
standard of care are unlikely to provide definitive answers on the efficacy of 10 within 
reasonable time and cost. The anti IDOl epacadostat, which was evaluated in a late­
phase trial in rnelanorna, is an exarnple of such a conundrurn [6]. This phase III trial 
ECHO-301 /KEYNOTE 252 trial was designed to assess the efficacy of IDOl inhibition in 
cornbination with pernbrolizurnab, but there were several problerns associated with the 
trial, including the use of endpoints such as PFS and ORR and no pre-planned translational 
studies to study the tumor biology leading no collection of biological samples that could 
be studied further to explain the unexpected clinical results [62,63]. This study has posed 
that translational studies are irnportant elernents to be incorporated in the trial design 
whenever possible. 

46 



Cancers 2021, 13, 691 8 of 11 

Furthermore, the field of 10 is currently overcrowded with several drugs competing 
for the same therapeutic space. Advancements in "precision oncology" urge therapy 
selection based on tumor molecular characteristics. The conventional trial designs, lack of 
pairing tumor characteristics with therapeutic targets, are not adequate to investigate the 
broad-spectrum of genetic makeup in tumors that may benefit from different 10 agents 
and targeted therapies. The incorporation of "master protocols" in collaborative clinical 
study designs can allow multiple disease assessments and multiple strategies at a time. 
Sorne "modern" strategies also include several trial designs that enable more personalized 
and adaptative assessment of new drugs, such as platform trials, which can be multi-arm, 
multi-stage adaptive studies, pairing targeted therapy with molecular characterization of 
tumors [64]. 0ther simpler approaches include umbrella trials, which evaluate multiple 
targeted therapies for a single disease as defined by specific molecular characteristic 
subgroups, and basket trials, which use biomarkers for molecular screening and allocation 
of patients into different trials according to their molecular biology [65,66]. 

These new approaches in trial designs alleviate the field of 10 by optimizing resources 
and improving the efficiency of the broad amount of emergent clinical trials. However, 
those new designs require considerable effort, cost and multidisciplinary collaboration. 
Regulatory approvals and standardization of their use warrant further exploration. The 
question remains whether a systematic implementation of renewed 10 drug designs and 
translational studies should be encouraged to avoid superfluous numbers of clinical trials. 

3. Conclusions

The current clinical development of 10 agents has both strengths and weaknesses that 
provide us with challenges and opportunities for improvement. Given the rapid growth 
in the 10 field, only a greater level of understanding of the underlying mechanisms of 
resistance, tumor heterogeneity and host and tumor microenvironment can shed light on 
10 for patient selection through robust biomarkers testing. The silhouette in clinical trial 
design and response evaluation criteria of 10 should be redefined with new approaches 
like amalgamating integrative tools with response biomarkers such as the use of liquid 
biopsies. Applying innovative but appropriate clinical trial designs, incorporating multiple 
robust biomarkers assays of response and surrogate endpoints, will lead to the best possible 
development and accelerated approvals of new 10 agents that are here to stay. Finally, the 
precise definition of adverse events following long-term evaluation and dosage definition 
is also needed for successful results. With advances in molecular sequencing technologies 
and development in machine-learning methods, biomarker-driven strategies to assist the 
selection of patients for future trials with immunotherapy will soon be a reality. 
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2. HYPOTHESIS

The main objective was to better characterise the mechanisms of Al resistance in early BC in 

both ER +/HER2- and ER +/HER2+ subtypes and determine whether they are driven by baseline 

and/or on-treatment genomic alterations. We aimed to find prognostic and predictive 

biomarkers of early response/resistance to Al which may help select the optimal treatment for 

each patient. 

In this thesis, we have used biological samples from different subsets of BC rece1vmg 

neoadjuvant AI-based treatment. We obtained gene expression data from both ER+/HER2- and 

ER+/HER2+ BC populations including the POETIC study. The POETIC clinical trial is the 

world's largest "window of opportunity" study that randomised nearly 4,500 patients to receive 

either preoperative Al (treatment arm) or no treatment (control arm) (85). We also analysed 

the molecular changes that occurred in an independent cohort of patients with RE+/HER2-

early BC who received neoadjuvant ET for more than one month (and up to two years) to 

compare them with the results ofthe POETIC study. 

The collection of viable paired tumour biopsies ( at diagnosis and surgery) has provided a huge 

resource of information on determinants of early response to short-term ET (Figure 1). 

Figure 3. Design ofthe POETIC trial 
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• Our main hypothesis was that mechanisms of Al resistance in patients with ER + early

BC may be driven not only by baseline genomic signatures but also by genomic

alterations that occur in response to therapy.
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• Our second hypothesis was that sorne of these genomic characteristics driving Al

resistance involve immune-related mechanisms and immune checkpoint-related

characteristics and, therefore, they could serve as predictive and/or prognostic

biomarkers.

• In ER+/HER2- early BC, we hypothesised that the impact of Al treatment on genomic

characteristics differs according to the length oftreatment (two weeks vs. >one month).

W e hypothesised that there would be more and deeper molecular changes after longer­

term Al treatment compared with a shorter treatment duration, and that those changes,

together with sorne baseline characteristics, would play a role in predicting response to

treatment and survival.

• In ER+/HER2+ early BC, our mam hypothesis was that the HER2-E subtype

determined in the pre-treatment sample (at baseline) predicts poor response to Al in

postmenopausal women. In addition, we expected that additional baseline gene

expression profiles and/or alterations beyond the HER2-E subtype would predict

response to treatment and are associated with different survival outcomes. These

findings may improve the identification of patients with ER+/HER2+ disease that

would benefit the most from anti-HER2 targeting therapy and ET.
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3. OBJECTIVES

3.1 Primary objective 

Our primary objective was to look for prognostic and predictive molecular biomarkers of early 

response to Al in postmenopausal women with early-stage ER+/HER2- and ER+/HER2+ BC. 

We also aimed to integrate the immune-related landscape of these tumours for a comprehensive 

molecular characterisation-c 

3.2 Objectives in ER+/HER2- early breast cancer 

We aimed to better characterise gene expression changes, including the molecular intrinsic 

subtypes, in ER+/HER2- BC patients treated with short-term Al within the POETIC trial and 

compare them to those occurring after longer neoadjuvant Al treatment (> 1 month). We also 

wanted to assess the predictive and prognostic role of these observed changes. 

3.2.1 Objective 1: To characterise changes within the intrinsic molecular 

subtypes induced by short-term Al treatment (two weeks) and by longer­

Al treatment (>one month). We would also evaluate any correlation 

between the length Al treatment exposure and the magnitude of changes 

in the intrinsic subtype. 

3.2.2 Objective 2: To characterise and compare molecular changes beyond 

the intrinsic subtypes (both at a  single gene and pathway level) induced 

by both short-term (two weeks) and longer-term Al treatment (>one 

month) in paired tumour biopsies (at baseline and surgery). 

3.2.3 Objective 3: To characterise tumour molecular differences observed in 

paired tumour samples from control patients (i.e., who <lid not receive 

any pre-surgical treatment in the POETIC trial) and compare them to 

those observed in the treatment arm: the artefactual effect. 

3.2.4 Objective 4: To evaluate the predictive value of Al response of both 

baseline gene-expression profiles and molecular changes induced by 

short-term and longer-term neoadjuvant Al therapy. We would correlate 

those molecular characteristics with Ki67 changes between the baseline 

biopsy and at the two-week time point (Ki672w) at surgery as a surrogate 

biomarker of response. 

3.2.5 Objective 5: To assess the impact on time to recurrence (TTR) of the 

significant molecular changes occurring under short-term and longer Al 

treatment. 
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3.3 Objectives in ER+/HER2+ early breast cancer 

We aimed to characterise baseline and on-treatment molecular expression profiles 

of the entire cohort ofER+/HER2+ BC within the POETIC trial. Our main objective 

was to identify early resistance mechanisms to ET in this understudied BC subgroup 

and determine whether they are driven by baseline genomic signatures or by 

genomic alterations that lead to Ki67 changes in response to two weeks of peri­

operative Al therapy at surgery. Our specific objectives within the ER+/HER2+ BC 

cohort were: 

3.3.1 Objective 6: To evaluate the ability of the HER2-enriched (HER2-E) 

intrinsic subtype to predict poor response to Al measured by 1) 

percentage of reduction of Ki67 levels from baseline to surgery and 2) 

tumour Ki67 at two weeks oftreatment (Ki672w) :?:10% or <10%. 

3.3.2 Objective 7: To identify both baseline single genes and gene signatures 

predicting early response to Al measured by 1) percentage of reduction 

ofKi67 levels and 2) tumour Ki67iwk at surgery 2: 10% or <10%. 

3.3.3 Objective 8: To identify new molecular subgroups beyond the intrinsic 

subtypes based on gene expression to predict response to AL 

3.3.4 Objective 9: To evaluate the prognostic value of molecular features 

including intrinsic subtypes, gene expression, and the new molecular 

subgroups in terms of TTR. 
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4. MATERIALS, METHODS, AND RESULTS

4.1 Manuscript 2. Impact of duration of neoadjuvant aromatase inhibitors on 

molecular expression profiles in oestrogen receptor-positive BCs. 
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Purpose: Aromatase inhibitor (Al) treatment is the standard of 

care for postmenopausal women with primary estrogen receptor­

positive breast cancer. The impact of duration of neoadjuvant endo­

crine therapy (NET) on molecular characteristics is still unknown. 
W e evaluated and compared changes of gene expression profiles 

under short-term (2-week) versus longer-term neoadjuvant Als. 
Experimental Design: Global gene expression profiles from 

the Periüperative Endocrine Therapy for Individualised Care 
(POETIC) trial (137 received 2 weeks of Als and 47 received no 

treatment) and targeted gene expression from 80 patients with 

breast cancer treated with NET for more than 1 month (NeoAI) 

were assessed. Intrinsic subtyping, module seores covering different 

cancer pathways and immune-related genes were calculated for 

pretreated and posttreated tumors. 

Results: The differences in intrinsic subtypes after NET were 

comparable between the two cohorts, with most Luminal B (90.0% 

lntroduction 

Breast cancer is molecularly and clinically heterogeneous, and 

approximately 60% to 80% of cases are estrogen receptor-positive 

(ER+). The standard of care for postmenopausal women with ER+ 

breast cancer includes aromatase inhibitors (Ais) over a 5- to 10-year 

period. However, 20% to 25% of patients with ER+ breast cancer will 

eventually relapse, and additional biomarkers to identify resistance 

mechanisms to Als are warranted (1-4). 
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in the POETIC trial and 76.3% in NeoAI) and 50.0% of HER2 

enriched at baseline reclassified as Luminal A or normal-like after 

NET. Downregulation of proliferative-related pathways was 
observed after 2 weeks of Als. However, more changes in genes 

from cancer-signaling pathways such as MAPK and PI3KIAKT/

mTOR and immune response/immune-checkpoint components 

that were associated with AI-resistant tumors and differential 
outcome were observed in the NeoAI study. 

Conclusions: Tumor transcriptional profiles undergo bigger 

changes in response to longer NET. Changes in HER2-enriched 

and Luminal B subtypes are similar between the two cohorts, thus 
AI-sensitive intrinsic subtype tumors associated with good survival 

might be identified after 2 weeks of AL The changes of immune­

checkpoint component expression in early Al resistance and its 

impact on survival outcome warrants careful investigation in 

clinical trials. 

Global gene expression analyses in breast cancer have shown 
molecular heterogeneity with a far more complex portrait beyond 

clinicopathologic classification (5-7). The elucidation of the molecular 
intrinsic subtypes has led to the categorization of breast cancer tumors 

into clinically relevant but molecular distinct subgroups that can be 
optimally defined by the 50 gene-based P AM50 classifier (8-10). 

These molecular subtypes are associated with different incidence and 
racial disparity, response to treatment and prognosis (8). However, 

there are still insufficient data about changes of those molecular 

characteristics under different lengths of Al treatment and whether 

pretreatment or posttreatment characteristics are better predictors of 

prognosis (11, 12). 

Preoperative and neoadjuvant trials involving the collection of 

viable paired biopsies at diagnosis and at surgery provide a valuable 

source to understand genes and pathways involved in resistance to 

therapy, with the possibility to use, for example, Ki67 proliferation 

markers as a valuable endpoint associated with prognosis (13, 14). Our 

group previously suggested that reduced ER dependence and E2F­

signaling activation after short- and long-term neoadjuvant Als are 

associated with poor response (15, 16). However, we also reported the 

enrichment of ESRl mutation with long-term neoadjuvant Al in 

primary breast cancer using a real-world cohort of patients treated 

in the Royal Marsden Hospital (RMH; London, United Kingdom; 

ref. 16). Therefore, the comparison of the effect of different lengths of 

neoadjuvant Al therapy in molecular features might be necessary to 

elucidate the full impact on molecular alterations that might limit 
response and lead to clinical resistance. 

In this study, the impact of short- and long-term neoadjuvant Al 

therapy on molecular changes, including intrinsic subtypes and sig­

naling pathways was comprehensively evaluated. Gene expression 
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Translational Relevance 

Our study shows that neoadjuvant treatment with short­
and longer-term aromatase inhibitors (Ais) in primary estrogen 
receptor-positive (ER+) breast cancer exerts comparable impact on 
changes in intrinsic subtypes between baseline and surgery. How­
ever, neoadjuvant Al treatment beyond 2 weeks leads more changes 
in molecular characteristics at a transcriptional level, such as genes 
involved in pathways like MAPK and PI3KIAKT/mTOR and 
characteristics for immune response landscape, including those 
covering immune-checkpoint component. These findings provide 
rationale for considering neoadjuvant Al therapy beyond 2 weeks 
in patients with high-risk ER+ breast cancer tumors. The role of 
immune-checkpoint component inhibition for endocrine therapy­
resistant ER+ tumors in this setting warrants careful investigation. 

profiles from two cohorts of patients with early primary ER+ breast 
cancer were analyzed: (i) the PeriOperative Endocrine Therapy for 
Individualised Care (POETIC) trial, in which patients were treated for 
2 weeks (15) and (ii) patients treated for more than 1 month, named in 
the current study as NeoAI (16). 

Materials and Methods 

Patients' populations 

Data from two different cohorts of postmenopausal women with 
primary ER+ breast cancer treated with different lengths of neoadju­
vant Al were analyzed (Supplementary Fig. Sl). 

POETIC subset 

The POETIC trial was a phase III, randomized study of 4,486 
postmenopausal patients with ER+ breast cancer. Patients were ran­
domized 2:1 to receive 2 weeks of preoperative Als (letrozole 2.5 mg, 
anastrozole 1 mg per day orally) versus no treatment to determine 
whether perioperative Als followed by standard adjuvant therapy 
would improve survival (15). The subset used in this study comprised 
184 patients with paired samples: 137 tumors treated with Als [86.1 % 
(118) were human epidermal growth factors receptor not amplified or
overexpressed (HERZ-) and 13.9% (19) HER2+] and 47 patients who 
did not receive perioperative Als as a control group. 

NeoAI study 

This was a retrospective cohort of patients treated with neoadjuvant 
Als (letrozole 2.5 mg, anastrozole 1 mg or exemestane 25 mg per day 
orally) for at least 1 month (mean, 6.24 months ± SD, 3.9) at the RMH 
between 2003 and 2016 (16). Data from 80 patients from this study 
were analyzed: 93.8% (75) were HER2- and 6.2% (5) HER2+. Seven 
patients with baseline Ki67% < 5% or lack of clinical data or gene 
expression were excluded. To provide a view of real-world AI­
resistance mechanisms in ER+ breast cancer, both HER2+ and HER2-
were included in this study, with subsequent subgroup analyses 
focused on ER+ HER2- tumors. 

Gene expression profiles 

In the POETIC subset, gene expression data from microarray were 
obtained as described previously (15). Probes targeting 16,528 
expressed genes (detection P < 0.01 in at least 20% of samples) were 
included in this analysis. Expression data were then log2 transformed 
and quantile normalized for downstream analysis, and probes were 
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collapsed to gene-level expression based on the highest SD across 
samples. Expression levels of 649 published modules covering different 
cancer, immune response, and proliferation-related pathways were 
generated by taking the median of the genes available within the 
normalized microarray data (17). 

In the NeoAI study, normalized log2 expression of 744 different 
genes covering the most important aspects ofbreast cancer-such as 
proliferation, invasion, PI3K-AKT-mTOR pathways, MAPK signaling, 
inflammation and the PAMS0 gene set-previously analyzed using 
NanoString technology, were included (16, 18). We also explored the 
changes in two immune-related pathway module seores that had 
previously been reported to be associated with Al resistance and to 
predict benefit from immunotherapy (19, 20). 

PAMSO intrinsic subtypes 

In the POETIC subset, each tumor sample was classified into one of 
the five intrinsic subtypes, namely Luminal A, Luminal B, Her2 
enriched (Her2-E), basal-1, ike and normal-like using the SO-gene 
P AMS0 classifier after subgroup-specific centering as reported 
previously (7, 15). 

In the NeoAI study, the 46 genes raw expression values used in 
Prosigna were first normalized to eight housekeeping genes (ACTB, 

GUS, MRPL19, PSMC4, PUMl, RPLP0, SF3Al, and TFRC) and then 
normalized to a cohort of229 sample ER+/HER2- tumors previously 
subjected to the Prosigna assay for subgroup-median centering. Sam­
ples were finally classified using the P AMS0 classifier applying the 
proper technical calibration factor as reported previously (21). 

Biomarker analysis 

ER status was measured locally and centrally reviewed by IHC. 
HER2 status was measured locally using IHC and/or ISH. Ki67 
proliferation rate was obtained by IHC from staining on formalin­
fixed samples using anti-MIB-1 (M7240, DAKO UK). Ki67 rate was 
categorized into High (2':10%) and Low (<10%) at baseline and 
surgery. Tumors were also classified into four classes according to 
Ki67 changes between the two time points: Highbaseline-Highsurgery 

(H-H), Highbaseline-LOWsurgery 
(H-L), Lowbaseline-LOWsurgery 

(L-L), and 
Lowbaseline-Highsurgery 

(L-H) as reported previously ( 22). 

Statistical and data analysis 

Statistical analysis was performed with R version 3.6.3 software. A 
two-tailed P value of less than O.OS was considered statistically 
significant. t tests were applied in all unpaired comparisons. Paired 
t tests followed by Benjamini-Hochberg corrections for multiple 
comparisons were carried out to compare the changes of P AMS0 
intrinsic subtype's correlation seores between baseline and surgery 
biopsies. For module score, a combined threshold of significance was 
defined as Padjusted < O.OS and log2 fold change (FC) > I0,37851161, For 
the single-gene analysis, a more restrictive fold-change threshold was 
applied (log2FC > l 11), Spearman rank correlation was used to explore 
the correlation of changes in intrinsic subtype classification, expression 
of sorne particular genes and/or module seores with duration of Al 
treatment in the NeoAI study. Significance Analysis of Microarrays 
(SAM analysis) was used to select key gene module seores associated 
with early Al resistance to evaluate the impact of Al on changes in their 
expression (23, 24). Survival analyses of time to recurrence (TTR) and 
overall survival (OS) in the POETIC and of OS in the NeoAI were 
performed respectively. Because of the lack of data of recurrence, 
within the N eoAI study, we also determined the association of changes 
in gene expression with risk of recurrence score (ROR score) at surgery 
as a surrogate biomarker of relapse. To do so, we previously assessed 
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the correlation between ROR score at surgery and TTR in the POETIC 
subset (P 0.03). Multivariable Cox regression models adjusted for 

standard clinicopathologic variables including PR, HER2 status, tumor 
grade, pathologic tumor size, histologic type, nodal status, and vascular 

invasion were performed to assess the independent prognostic value of 

changes in gene expression and intrinsic subtypes. 

Ethics statement 

The POETIC trial was approved by the London-South East 

Research Ethics Committee (reference 08/H1102/37). For the NeoAI 
study, ethical approval was received from an NHS research ethics 

committee (reference 17/EM/0145). Both studies were adopted by the 
Declaration of Helsinki and patients from both studies provided 
written informed consent to molecular analysis of their samples for 

research purposes. 

Data availability 

Gene expression data from POETIC study can be found at Gene 

Expression Omnibus with the accession number: GSE126870. Addi­

tional data are available u pon request by contacting the corresponding 

author or poetic-icrctsu@icr.ac.uk. 

Results 

Changes of intrinsic subtypes induced by short- and longer­

term neoadjuvant Al therapy 

The demographics and molecular characteristics of the patients of 

the two cohorts are shown in Supplementary Table SI. Baseline 

molecular characteristics were different between POETIC and NeoAI 

cohorts with the majority of samples being Luminal A (88/137; 64.2%) 

in the POETIC-treated samples subset and Luminal B (38/121; 47.5%) 

in NeoAI. The rest of the baseline clinicopathologic characteristics 

were similar among the two subsets. 
The differences of intrinsic subtype between baseline and surgery 

were more frequent in the POETIC treatment group than in the 

controls (38% vs. 23.4%). In the treated group, most Luminal B tumors 

at baseline (90.0%, 27/30) and 50.0% (6/12) of Her2-E were redesig­

nated as Luminal A or normal-like subtypes (Fig. IA and B), whereas 

41.7% of Her2-E and most Luminal A, 85.2% (75/88) and basal-like 
66.7% (2/3) tumors remained unchanged after 2 weeks of AL Figure 

IB illustrates the changes within Luminal B tumors at baseline after 

2 weeks of Al, and that the tumors were increasingly more similar 

to prototypical Luminal A and normal-like tumors at the 2-week time 

point. In the control group, although 33.3% (4/12) of Luminal B 

tumors were reclassified into Luminal A, the majority did not change 

(Fig. 1 C). The difference in intrinsic subtypes after 2 weeks ( untreated) 

was likely due to cases that had close similarity with more than one 

subtype. In particular, baseline Luminal B tumors that were reclassified 

into Luminal A had close proximity to prototypical Luminal A tumors 

as illustrated in Fig. ID, in contrast to the clear shift from Luminal B to 

Luminal A seen in the treatment arm. In addition, in the treated 

samples ali P AM50 intrinsic subtypes seores, defined as the correlation 

coefficient seores to each prototypical intrinsic subtype average gene 

expression profile (i.e., centroid) changed significantly after 2 weeks of 

Al, while there were no significant changes in the controls (Supple­

mentary Fig. S2A). 

Similar to the POETIC trial, in the NeoAI study, most Luminal B 
tumors (76.3%, 29/38) were redesignated as Luminal A or normal-like; 

only 13.2% remained unchanged, while 10.5% were classified as basal­
like or Her2-E. Fifty percent (5/10) of Her2-E tumors remained as 

Her2-E while 20.0% (2/10) were redesignated to Luminal A and 30.0% 
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(3/10) to normal-like (Fig. 1E and F). In this cohort, the changes of the 
correlation coefficient between baseline and surgery in all intrinsic 

subtypes were also significant except to basal-like, probably due to the 

low number of samples in that subtype (Supplementary Fig. S2B). 

To further investigate the impact of Al duration on intrinsic 

subtypes, we tested the correlation of duration of Al with changes of 

the intrinsic subtype, and there was no statistically significant observed 

relationship (P = 0.19; Supplementary Fig. S3). Overall, the differences 

in intrinsic subtype classifications were comparable after neoadjuvant 
endocrine therapy regardless of the duration of treatment, although 

the total numerical changes in the NeoAI study appeared higher 
compared with the treated samples in POETIC (67.5% vs. 38.0%), 

likely due to a higher proportion ofLuminal B tumors at baseline in the 

NeoAI study. 

Changes of gene expression profiles by short- and long-term 

neoadjuvant Al treatment 

Gene expression data in the POETIC subset were computed in 
module seores according to annotated pathways, immune-response, 

and selected drug-target response signatures. Two module seores 

(FOS-JUN modules) were significantly upregulated and 11 signifi­

cantly downregulated after short-term Al therapy, and these modules 

included protumorigenic signaling modules associated with prolifer­

ation, RB loss, and chromosome instability (Fig. 2A). Within Luminal 
A samples, 12 also showed a significant change including the upre­

gulation FOS and JUN. Within Luminal B tumors, eight modules' 
seores increased, and 19 decreased significantly posttreatment 

(Fig. 2B). As expected for a highly proliferative ER-dependent intrinsic 
subtype, Luminal B tumors showed a remarkable downregulation of 

module seores involving proliferation, RB-loss, p53 status, B-cell 
pathways, and the chemo-endocrine score (CES). Significant upregu­

lation of FOS and JUN module seores was also observed in this subset. 

As expected, there were only three module seores significantly 

different between baseline and surgery in POETIC controls, including 

the upregulation of FOS and JUN modules (Fig. 2C). 

Our group had previously identified the upregulation of POS and 

JUN expression in both treated and control samples as an artefactual 

effect resulted from preanalytic sample processing due to handling 

methodology (25, 26). In this study, the expression of the 17 genes from 
FOS and JUN module seores was explored. The expression of all those 

genes was strongly correlated at surgery in both POETIC-treated and 

control samples. Six genes-JUN, POS, POSB, EGRl, ZPP36, and 

DUSPl-showed significantly higher expression in surgical samples 

in relation to the paired baseline samples in both treated (P value 

ali genes < 0.0001, log2 FC = 0.5-1.8) and controls (P value all 

genes < 0.0001, log2 FC = 0.5-2.2; Fig. 3). 

Looking at the changes of expression profiles at a single-gene level 

from baseline to surgery in the two studies (Supplementary Table S2), a 

higher number of genes involving proliferation, keratin expression, 

and endocrine-related pathways like PGR, were downregulated in 

NeoAI when compared with POETIC. More genes from key pathways 

in breast cancer such as MAPK and PI3K-AKT (i.e., IGPl, NR4Al and 

NGPR) or mTOR (BTG2; ref. 15) were upregulated in the NeoAI study 

(Supplementary Table S3). 

The differential expression of genes in common between both 

datasets are shown in Fig. 4A and B. Genes from FOS-JUN modules 

(POS, JUN, and ERGl), MAPKIERK, PI3K-AKT and JAK/STAT path­

ways, and IGPl involved in tumor growth and resistance to Al, were 

upregulated in both studies. Consistent to the mechanisms of endocrine 

therapy, most of the downregulated genes in common were involved in 

cell-cycle regulation and proliferation. A higher number of genes 
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POETIC-treated samples (A); in POETIC Luminal B-treated samples (B); in POETIC control samples (C); in POETIC Luminal B control samples (D); in ali the NeoAI 
study samples (E), and in NeoAI Luminal B samples (F). Her2-E, Her2 enriched; LumB, Luminal B; LumA, Luminal A; 2 wk, 2-week time point. 

changed significantly from baseline to surgery after longer-term treat­

ment compared with shorter Al therapy in the overall populations 
(Fig. 4A) and in Luminal B tumors only (Fig. 4B). In addition, although 

fold changes were highly correlated between the two datasets, the 
magnitude of changes for individual genes in POETIC microarray data 

matrix was smaller compared with the NeoAI Nanostring data matrix. 
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To investigate gene expression changes under Al treatrnent relating 

to the biology of intrinsic subtyping and artefact effect, the list of genes 
were compared among the following subgroups: (i) All POETIC­

treated, (ii) POETIC Luminal A treated, (iii) POETIC Luminal B 

treated, (iv) POETIC controls, (v) all NeoAI, (vi) NeoAI Luminal A, 

and (vii) NeoAI Luminal B. Figure 4C shows the exclusive genes that 
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Module seores expression ehanges in the POETIC eohort. A, Barplots showing the signifieant module seores expression ehanges between baseline and after 2 weeks 
of Al in the POETIC dataset for all samples, for Luminal B samples only (B) and for eontrols (C). The x-axis shows the log2FC and the y-axis shows the signifieant 
module seores that ehanged. Bars are eolored by the degree of signifieanee of the P value by paired t test. FDR; false diseovery rate; log2 FC, log2 fold ehange. 

were found signifieantly different expressed between baseline and 
surgery in each particular subgroup and the genes in common with 

the other subgroups, namely interseetions. The four common genes 
that ehanged signifieantly in ali categories of patients treated with 

2 weeks of Al or longer-term Al were CD20, EGRl, TOP2A, and 
UBE2C, all being involved in eell-eycle regulation and proliferation. 
Noteworthy, only POS was eommon for all patients including treated 
and controls. 

In a separate analysis, gene expression levels in non-Luminal tumors 
ofN eoAI study were also significantly affeeted by Al treatment despite 
being thought to be associated with nonresponse to endocrine therapy. 
Those changes include the upregulation of POS and JUN and the 

downregulation of sorne proliferation and endoerine-related genes 
including BIRCS, MKl67, and PGR. 

Finally, to understand the impact of duration of Al on gene 

expression, multiple t tests eomparing the changes in gene expression 
between patients reeeiving shorter ( 1-2 months) versus longer 
(>2 months) Al treatment in the NeoAI dataset and Kruskall­
Wallis tests to compare patients grouped in 1-2 months versus 
>2-6 months versus >6 months, respectively. There were not signif­
icant differential changes in gene expression among those eategories.
W e also investigated whether there were positive correlations between
the length of Al treatment with the changes in the expression level of
those genes associated with an artefactual effect in POETIC control
samples. W e explored the expression of the significant genes within
FOS and JUN modules, namely POS, JUN, and EGRl, in the NeoAI
study. No correlation of gene expression ehanges (log2 FC) with length

of Al treatment was observed (P value range = 0.68-0.90; Supple­
mentary Fig. S4). 

lmpact of longer neoadjuvant endocrine therapy on gene 

module seores associated with early aromatase resistance 

between baseline and surgery 

Next, we explored whether there was an association between 

changes of intrinsic subtypes (i.e., from high-risk subtype to lower­
risk) with classes of Ki67-level changes (H-H/H-L). All intrinsic 
subtypes with the capacity of lowering the risk (all exeept LumA and 
normal) were classified into "changes" if they turned into a lower-risk 
intrinsic subtype or "not changes" ifthey remained the same subtype or 

turned into a higher-risk subtype. There was a statistically significant 
association between "no-changes or changes to a higher-risk intrinsic 
subtype" with H-H Ki67 response eategory in both subsets (POETIC­

treated cohort: 100% of no-ehanges were classified as H-H tumors and 
48.5% of ehanges being H-H and 51.5% being H-L; P = 0.0013; N eoAI 
study: 58.8% of no-changes were in the H-H group and 41.2% in H-L 
and 100% of ehanges in H-L; Fisher exact test P < 0.0001). 

Most treated Luminal B tumors in the POETIC subset (17 /27; 63%), 
and ali Luminal B tumors in the NeoAI study (33/33; 100%) that 
were reclassified as Luminal A or normal-like changed from high 
Ki67 at baseline to low Ki67 at surgery (H-L). These data support that 

these reclassified Luminal B tumors were Al sensitive (Fisher exact test 
P < 0.0001). 

Using SAM analysis, we selected 103 candidate gene modules at 
baseline that were associated with response to early neoadjuvant Al 

Figure 3. 

Differential single-gene expression 
ehanges between baseline and sur­
gery of the 17 genes ineluded in the 
FOS and JUN module seores in the 
POETIC eohort. Differential expression 
in the treated samples from POETIC 
subset (A) and in the eontrols (B). In 
red, there are the signifieant genes by 
P values by paired t tests and log2FC. 
FDR, false diseovery rate; log2 FC, 
log2 fold ehange; NS, nonsignifieant; 
P, signifieant by P val u e paired t tests; 
P&log2FC, signifieant by P value and 
1092 fold ehange. 
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among 105 ER+ HER2-negative tumors in the POETIC-treated group. 
As expected, baseline Ki67 was remarkably higher within Luminal B 

intrinsic subtype samples with a trend on retaining high Ki67 after 
2 weeks of Al compared with Luminal A tumors (Supplementary 
Fig. S5A). There were 24 immune-related gene modules covering 
immune-cell pathways, immune-checkpoint eomponent, and IFNy 
biology high-expressed at baseline that were associated with early 
Al resistance (Supplementary Fig. S5A). These gene modules 

include sorne genes that have been previously associated with 
Luminal B-resistant tumors such as IFNG, STATl, IDOl, LAG 3, 

and CTLA4 (19). Visualizing the gene expression changes in paired 
baseline-surgery samples following short Al treatment, there was a 
general trend observed for downregulation of proliferation-related 
module seores but otherwise, no changes on expression of the 

selected modules, including the 24 immune-related gene modules, 
were associated with differential response to Al (Fig. 5). To assess 

the differential gene expression changes between responder and 
nonresponder tumors (H-H vs. H-L), SAM analysis based on 
changes of the module seores from baseline to surgery was per­
formed in the POETIC subset. Changes in five module seores 
covering ER signaling, proliferation, and cell cycle were significant 
(Supplementary Fig. S5B). Supplementary Figure S6 demonstrates 
the overview of differential changes in gene expression levels (i.e., 
expression level at surgery minus expression level at baseline) 
selected by SAM on Ki67 response categories (H-H vs. H-L, n = 74) 
within the NeoAI dataset. Ninety-nine differentially expressed gene 
changes were selected by SAM (FDR < 0.001; Supplementary 

1222 Clin Cancer Res; 28(6) March 15, 2022 

Fig. S6). Gene Ontology enrichment analysis showed that genes 
related to proliferative and cell-cycle pathways were upregulated in 

the H-H group compared with H-L. 
To investigate further the changes of immune-related features 

associated with resistance to Al by duration of neoadjuvant endocrine 
therapy, two immune-related module seores were calculated: (i) The 
"durvalumab signature" (median of PD-Ll, LAG3, CXCL9), previously 
reported to predict response to immunotherapy in melanoma (20) and 
(ii) the "immune-tolerance signature" (median of PD-Ll, LAG3,

IDOl), a module seore reported by M.Ellis group as associated with
resistance to Al in Luminal B tumors in the neoadjuvant setting (19).

In the POETIC subset, the higher expression of"durvalumab signa­

ture" and "immune-tolerance signature" was associated with H-H 
tumors (Supplementary Fig. S7 A). In that setting no significant changes 

of the signatures' expression from baseline to surgery were seen in either 
H-H or H-L categories (Fig. 6A; Supplementary Fig. S7 A). On the other

hand, in the NeoAI cohort, there was also a higher expression of the
immune-related signatures in H-H tumors compared with H-L at

baseline (Supplementary Fig. S7B) with a differential increase in the
expression of "durvalumab signature" (P = 0.053) and "Immune­

tolerance signature" (P = 0.022) from baseline to surgery in H-L tumors
compared with H-H tumors (Fig. 6B). Although the expression of both
immune signatures at surgery remained significantly higher in H-H
tumors compared with H-L in the POETIC subset (Fig. 6C), it was not
significantly different after long-term Al therapy (Fig. 6D). The asso­

ciation of the changes of the individual genes included in the two
immune-related module seores with resistance to Al, was also assessed.
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expression changes: surgery-baseline). The module seores shown in this heatmap are those selected at baseline by two unpaired SAM analysis between Ki67 H-H 
versus H-L, categories in the POETIC subset and annotated by the main categories. ER, estrogen receptor; expression, gene expression; H-H, Ki67 Highbaseline- Ki67 
Highsurgery; H-L, Ki67 Highbaseline- Ki67 LOWsurgery

; Her2-E, Her2 enriched; LumB, Luminal B; LumA, Luminal A; 2 wk; 2-week time point 

Our results suggest that the enrichment on PDLl after longer Al might 

be the key driving the differences between responders and nonrespon­

ders in the NeoAl study (Supplementary Fig. S7C). 

Finally, to explore the impact of Al duration on the expression of 

these two early endocrine-resistance immune-module seores, we 

looked at the correlation of their expression with time under Al in 

the NeoAl study. There was no correlation between the changes on 
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their expression from baseline to surgery (log2FC) with duration of Al 

(Supplementary Fig. S8). 

lmpact of the significant molecular changes under neoadjuvant 

aromatase inhibitor treatment on survival 

To assess the clinical impact of the observed findings, we tested the 

association of the significant features described previously with patient 
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Figure 6. 
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response categories in the POETIC-treated subset (A) and in 
the NeoAI study (B). Boxplots showing gene signature 
expression of the two immune-related signatures at surgery 
stratified by H-H and H-L tumors in the POETIC-treated 
subset (C) and in the NeoAI study (D). H-H, Ki67 Highbaseline­

Ki67 Highsurgery: H-L, Ki67 Highbaseline- Ki67 LOWsurgery: Her2-E, 

Her2 enriched; LumB, Luminal B; LumA, Luminal A; 2 wk, 
2-week time point. 
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survival data, in each of the two datasets as follows: (i) changes in 
the correlation coefficient seores to prototypical intrinsic subtype 

centroids from baseline to surgery, (ii) significant changes that asso­
ciated with resistance to Al, (iii) significant changes from baseline to 

surgery in all tumors, (iv) significant changes from baseline to surgery 
in Lumina B tumors. 

Results are shown in Supplementary Table S4 (POETIC) and 
Supplementary Table SS (NeoAl). First, the increase of correlation 

score to Luminal B centroid was associated with worse survival in both 
datasets, while the increase of the correlation seores to Luminal A and 

normal centroids were associated with better survival. These findings 

are in line with the observed association of changes in intrinsic subtype 

with response to AL Meanwhile, most of the changes that were 
associated with resistance to Al (H-H tumors) and a subset of the 

reported significant changes from baseline to surgery found in both 
datasets, were associated with differential survival. There were no 

statistically significant associations of the immune features such as the 
increase of LAG3, and the increase of"durvalumab" signature expres­

sion with differential outcome. 
Our results suggest that sorne of the molecular changes that were 

associated with resistance to Al, particularly those associated with 

1224 Clin Cancer Res; 28(6) March 15, 2022 

significant patient survival may be evaluated further as predictive and 
prognostic biomarkers. 

Discussion 

Although Al treatment is the standard of care and most effective 

therapy for postmenopausal women with early ER+ breast cancer, 
recurrence to Als is still a main issue. Molecular characterization of 

gene expression profiles that occur in response to neoadjuvant Als 

is necessary to identify mechanisms of resistance. This study was 

designed to understand the complexities ofRNA-based expression 

changes under short time exposure to ET and to compare them 

with those that occur under longer-term Al therapy. The main 
observations from this study are: (i) most Al-sensitive Luminal B 

and Her2-E tumors change their intrinsic subtype within just 
2 weeks of treatment, mainly from Luminal B toward Luminal 

A or normal-like; these changes are associated with differential 

response to Al and outcome; (ii) in contrast, longer Al treatment 

may induce additional and greater gene expression changes than 
2 weeks only; (iii) confirmation that FOS- and JUN-related gene 

modules and single-gene expression upregulation might be 
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explained by sampling manipulation and not just by Al treatment; 
(iv) breast cancer tumors showing early resistance to Al are

characterized by a greater expression of immune-checkpoint com­
ponent, immune-cell enrichment and proliferation, and these

signatures were more impacted by longer Al treatment.

ER+ /HER2- tumors should not be considered and treated as a 

homogeneous disease; thus, the analysis of intrinsic subtypes may 

help to predict response to therapy even in early-stage breast 

cancer (27-29). Previous data have shown that exposure to ET might 

lead to profound changes on intrinsic subtypes, mainly from Luminal 

B or Her2-E to Luminal A (30). However, most of those studies used 

long-term treatment and included a low proportion of "high-risk" 
tumors-the majority were Luminal A at baseline. From a biological 

perspective, our study also shows that most Luminal B or Her2-E 
tumors with the potential of lowering their proliferative biology will 

change their intrinsic subtype to Luminal A or normal-like within just 
2 weeks of treatment, but more "endocrine-resistant" breast cancer 

such as basal-like and sorne Luminal B and Her2-E will not change 

despite prolonged Al treatment. On the basis of prior studies, Luminal 
A and Luminal B baseline tumors are more likely to respond to 

endocrine therapy than other intrinsic subtypes (30, 31); however, 

our study also suggests that changes toward a lower-risk subtype 

correlate with sensitivity to Al treatment and better survival, beyond 

baseline intrinsic subtypes. Thus, an early reassessment of the intrinsic 

subtype at the 2-week time point could be essential to distinguish those 

"sensitive" tumors from the "resistant" to optimize clinical manage­

ment following surgery. 
Clustering gene expression into signatures/modules catches the 

biology of main cancer pathways and can be more easily associated 

with clinical outcome (29, 32-35). In our study, gene expression 

changes were far more discrete after short-term Al compared with 

longer Al treatment. As expected, most of the downregulated 

module seores in the POETIC subset involved a decrease of the 

"high-risk" characteristics toward a "lower-risk" profile. The gen­

eral transition to a "lower proliferative" phenotype seen in the 
POETIC cohort with slight changes on the rest of the genes might 

be explained by the dominant impact of Al on proliferation and 

cell-cycle pathways, also in agreement with the rapid changes 

observed in intrinsic subtypes. For example, RB protein-a critica! 

protein in cell-cycle regulation, prevents unscheduled entry into the 

mitotic cell cycle. RB-loss would impede the antiproliferative effect 
of Al treatment and consequently, the downregulation seen under 

Al would revert this negative feedback (36, 37). Second, a PAM50-

based CES in ER+/HERZ- early disease is capable of predicting 

response to ET in comparison with chemotherapy (38). Higher CES 
values are associated with endocrine sensitivity and chemoresis­

tance, hence, the estrogen deprivation occurring under Al treatment 
would lead to a drop on this score. 

The common differential genes observed for both short- and 

long-term AI-treated cohorts were also involved mainly in cell­

cycle, dedifferentiation, and proliferation pathways, reflecting the 

main molecular features that would be affected by hormone dep­

rivation regardless duration of treatment. In agreement to previous 
studies, the effect of longer Al treatment was also seen as a general 

but deeper downregulation of proliferation and endocrine-related 

genes (15, 20, 24, 35). Noteworthy, only after longer-term neoad­

juvant Al, sorne genes involved in key signaling pathways associated 

with Al resistance, such as MAPK and PI3KIAKT/mTOR, showed 

increased expression, and thus a possible mechanism of ER acti­
vation in a ligand-independent manner (39-42). Prior studies have 

also suggested that ET could have an immune effect leading to an 
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enrichment of tumor-infiltrating cells and immune-related chara­

cteristics (43-45) as well as the importance of tumor microenvi­

ronment in cancer progression and therapeutic responses ( 46). 

Here, sorne stromal-related module seores and single genes 

within Luminal B samples increased their expression significantly 

at surgery in both datasets while only long-term Al had an immune­

enrichment effect with a significant upregulation of genes involving 

inflammatory chemokines or immune pathways such as SOCS3, 

JAK/ST AT signaling and other chemokines and ILs, as well as the 

two immune-related gene modules in H-L tumors. In this article, we 

have also reported the prognostic value of sorne of those gene 

expression changes induced by 2 weeks and longer Al treatment, 

respectively, suggesting that the clinical utility of these molecular 

changes as prognostic or predictive biomarkers to treatment should 

be studied further. The sample size was small and thus a bigger 
study is warranted. 

Furthermore, our group had previously characterized for the 

first time, the increase of expression of sorne genes, such as POS 

and JUN as an artefactual effect resulted from preanalytic sample 

processing (24). In the current study, we demonstrate that FOS­

and JUN-related module seores increase significantly from baseline 
to surgery in both NeoAI and POETIC-treated cohorts, as well as 

in surgical samples from POETIC nontreated patients. This con­

firms that the upregulation of the expression of severa! genes 

included in those module seores is induced by sample manipula­

tion rather than only by Al treatment. In the absence of a control 

group, these artefactual changes would likely be considered as an 

exclusive effect of Al what might be relevant to all archiva! 

collections of ER+ breast cancer. 

Finally, the POETIC trial has previously validated Ki67 as a 

prognostic marker showing that patients whose Ki67 remains "HIGH" 
(� 10%) after 2 weeks of Al treatment have substantially poorer 

prognosis than those with a "HIGH" baseline Ki67 which is markedly 
reduced to "LOW" ( <10%; refs. 15, 20). Thus, differential gene 

expression between H-H and H-L response groups is essential to 

distinguish those patients who might benefit the most from Al 

treatment from those who would not. Most of the H-H tumors in 
our PO ETI C cohort were Luminal B at baseline and in the N eoAI being 

Luminal B, basal-like, and Her2-E. As expected, the upregulation of 

cell-cycle and proliferation-related genes and modules from baseline to 

surgery was associated with resistance to Al as measured by changes in 
Ki67 value and worst patient survival outcome. 

Luminal tumors are usually known to be less immunogenic than 

Her2-E and basal-like subtypes (46), but those with higher immu­

nogenicity have been correlated with poor prognosis or response to 

ET therapy (3, 19). Anurag and colleagues have recently demon­

strated that immune checkpoint-related genes are upregulated in 

most Luminal B tumors that show poor response to ET as measured 

by higher Ki67 (19). Another study has shown association of Al 

treatment with a variety of autoimmune disorders in sorne patients, 

suggesting a clear effect on immune cells and tumor immunity of 

Al therapy (47). However, the magnitude of that effect is still 

unknown and a clinical study comparing changes on immune­

related features after different length of Al to understand the real 

impact of Al treatment could be important for clinical manage­
ment. In our study, we looked at both baseline characteristics and 

changes on immune-related features under different lengths of Al 
and observed an association of high expression of immune-related 

module seores measured at 2 weeks of Al with nonresponder 
tumors in POETIC but not at the surgical timepoint after longer 

term Al in the NeoAI, probably due to the significant upregulation 

Clin Cancer Res; 28(6) March 15, 2022 

64 

1225 



Bergamino et al. 

observed on the expression of those signatures after longer treat­
ment. There was no statistically significant association of the 

increase in sorne of those immune-related features with survival 
in the NeoAl cohort, but a larger study would be needed to properly 

refute the hypothesis. Taking together our results and those from 

the literature, a small subgroup of ER+/HER2- breast cancer could 
potentially benefit from immunotherapy, currently approved for 

metastatic triple-negative breast cancer and having been tested in 
other subsets (48-50). Although the assessment of immune char­

acteristics at baseline could be informative to detect mechanism of 
resistance to Al, further investigation is still necessary to under­

stand the utility of the analysis of immune-related module seores in 
surgical samples of patients treated with long-term Al and whether 

the enrichment of sorne immune-related signatures in H-L tumors 
after longer Al treatment has a role in acquired therapy resistance 

and survival. 
Our study has sorne limitations and strengths. First, we analyzed 

data from two subsets with very different backgrounds, data col­

lection and analytic methodology. However, our targeted analyses 
were focused on pathways/modules, facilitating the evaluation of 

changes under Al treatment and comparison among datasets. 
Moreover, we included a control group that enabled the distinction 

between real impact of Al therapy and artefactual effect derived 
from sample manipulation. Second, although we aimed to compare 

short- versus long-term Al treatment, the NeoAl dataset includes 
patients treated with a huge range of Al therapy duration in a 

presurgical setting. Additional whole transcriptome work in a much 
larger subset of the POETIC treatment arm is ongoing to better 

understand the diversity of intrinsic resistance mechanisms to Al 

treatment and to increase the power of our survival analyses. This 
work will also include genomic analysis to determine if there is 

subset of resistant Luminal patients with immune tolerance and 

high antigenicity that could benefit from immunotherapy. However, 
this is a modest but real-world cohort and has a unique value to 

assess global gene expression data from both pre- and post-Al 
treatment as defined in the clinical practice. Last but not least, this is 

the first study to our knowledge to investigate and compare the 
molecular changes from short- and long-term Al treatment. 

Conclusion 

Short- and longer-term Al treatment have similar effects to the 

changes of the intrinsic subtype's classifications. However, longer 

neoadjuvant Al treatment leads to deeper impact on molecular 
characteristics ( changes in gene expression) beyond intrinsic subtypes, 

including signatures covering immune-checkpoint component 
reported previously associated with Al early resistant tumors. Sorne 

of the observed changes, such as changes in the intrinsic subtypes or 
enrichment of immune features, were shown not only associated with 

response to Al but also with patient outcome, thus providing a 
supporting rationale to consider the continuation with ET for 
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4.1.1 Supplementary materials from manuscript 2 

Supplementary figure Sl. Overview of the study including POETIC and NeoAI cohorts. 

Abbreviations: n: number, GE: Gene expression, Al: Aromatase inhibitors, FFPE: Formalin­

Fixed Paraffin-Embedded samples 
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Supplementary figure S2. Changes on subtype correlation coefficients A. Changes on subtype 

correlation coefficients in treated and control samples in the POETIC cohort. Red lines: 

Tumours showing change in intrinsic subtype after 2-weeks (Treated: 38.0%; Controls: 

23.4%). B. Changes on subtype correlation coefficients in the NeoAI study. Red line: Tumours 

showing changes in intrinsic subtype after neoadjuvant treatment (NeoAI study: 67.5%). 

Abbreviations: Her2-E: Her2 enriched, LumB: Luminal B, LumA: Luminal A. 
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Supplementary figure S3. Association test of the median number of days under Al treatment 

and changes on P AM50 intrinsic subtype (yes/no). 

Abbreviations: Her2-E: Her2 enriched, lumB: luminal B, lumA: luminal A 
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Supplementary figure S4. Spearman Rank-Order Correlation test of the changes of expression 

from baseline to surgery (Log2FC) under Al treatment of available genes from FOS and JUN 

modules in the POETlC cohort (FOS, JUN and EGRI) with time in the NeoAl study. 

Abbreviations: FC: Fold change, Her2-E: Her2-enriched, lumB: luminal B, lumA: luminal A 
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Supplementary figure S5. A. Unsupervised hierarehieal clustering of module seores at 

baseline in the POETIC treated subset seleeted by two unpaired SAM analysis for Ki67 H-H 

vs H-L eategories and median eentered. B. Signifieant modules using two unpaired SAM 

analysis of the differential ehanges in module seores between H-H vs H-L in POETIC treated 

samples. Abbreviations: H-H: Ki67 Highbaseline- Ki67 Highsurgery, H-L: Ki67 Highbaseline- Ki67 

Lowsurgery, Her2-E: Her2 enriehed, lumB: luminal B, lumA: luminal A, 2wk: two-week time 

point, GE: Gene expression. 
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Supplementary figure S6. Unsupervised hierarchical clustering of single gene expression 

changes in the NeoAI subset selected by two unpaired SAM analysis for Ki67 H-H vs H-L. 

Abbreviations: H-H: Ki67 Highbaseline- Ki67 Highsurgery, H-L: Ki67 Highbaseline- Ki67 LOWsurgery, 

Her2-E: Her2 enriched, lumB: luminal B, lumA: luminal A, 2wk: two-week time point, GE: 

Gene expression. 
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Supplementary figure S7. Boxplots showing gene signature expression of the two immune­

related module-score ("Durvalumab" and "Immune-tolerance") at baseline and at surgery 

amongst H-H and H-L Ki67 response categories in A. POETIC and B. NeoAI; C. Differential 

changes in gene expression for each individual gene included in the two immune-related 

modules: "Durvalumab" and "Immune-tolerance" between H-H and H-L tumours in the NeoAI 

subset. Abbreviations: H-H: Ki67 Highbaseline- Ki67 Highsurgery, H-L: Ki67 Highbaseline- Ki67 

Lowsurgery, Her2-E: Her2 enriched, lumB: luminal B, lumA: luminal A, 2wk: two-week time 

point 
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Supplementary figure S8. Spearman rank order correlation ofthe changes in gene expression 

from baseline to surgery (Log2FC) under Al treatment of the two immune related signatures 

"Durvalumab" and "Immune-tolerance" with time in the NeoAI study. 

Abbreviations: FC: Fold change, Her2-E: Her2-enriched, lumB: luminal B, lumA: luminal 
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Supplementary table S1. Demographics and molecular characteristics in POETIC subset 

(treatment and control arms separately) and in the NeoAI study. Abbreviations: H-H: Ki67 

Highbaseline- Ki67 Highsurgery, H-L: Ki67 Highbaseline- Ki67 LOWsurgery, L-L: Ki67 LOWbaseline- Ki67 

LOWsurgery, L-H: Ki67 LOWbaseline-Highsurgery, Her2-E: Her2 enriched, lumB: luminal B, lumA: 

luminal A. 

:s2 

>2&:'S5

>5

Negative 

Positive 

NA 

Ductal 

Lobular 

Mixed ductal and lobular 

Mucinous 

Papillary 

Tubular 

Negative 

Positive 

Basal Like 

Her2-E 

LumA 

LumB 

Normal 

Yes 

No 

1-

1-

1-

,_ 

... 

... 

... 

1-

,_ 

POETIC 

(treatment 

arm) 

n=l37 

POETIC 

(control arm) 

n=47 

NeoAI study 

n=80 

Surgery Tumour size (cm) 

39 (28.5%) 

94 (68.6%) 

4 (2.90%) 

69 (50.4%) 

68 (49.6%) 

O (0.0%) 

109 (79.6%) 

25 (18.2%) 

O (0.0%) 

1 (0.73%) 

1 (0.73%) 

1 (0.73%) 

118 (86.1%) 

19 (13.9%) 

13 (27.7%) 

29 (61.7%) 

5 (10.6%) 

Nodal status 

27 (57.4%) 

20 (42.6%) 

O (0.00%) 

Histological type 

38 (80.9%) 

I 

I 

23 (28.8%) 

46 (57.5%) 

11 (13.7%) 

43 (53.8%) 

22 (27.5%) 

15 (18.7%) 

60 (75.0%) 

9 (19.1 %) l 12 (15.0%)

O (0.0%) 

1 (0.0%) 

2 (0.0%) 

3 (0.0%) 

HER2status 

39 (82.9%) 

8 (7.10%) 

I 

I 

I 

8 (10.0%)

O (0.0%) 

1 (0.0%) 

2 (0.0%) 

75 (93.8%) 

5 (6.2%) 

3 (2.2%) 

12 (8.80%) 

88 (64.2%) 

30 (21.9%) 

PAM50 subtype at baseline 

O (0%) 6 (7.5%) 

4 (2.9%) 

52 (38.0%) 

85 (62.0%) 

1 (2.10%) 1 10 (12.5%) 

33 (70.2%) 20 (25.0%) 

12 (25.5%) I 38 (47.5%) 

1 (2.1%) 

Change of subtype 

11 (23.4%) 

36 (76.6%) I 

6 (7.5%) 

54 (67.5%) 

26 (32.5%) 
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Ki67 changes 

H-H 42 (30.7%) 34 (72.3%) 
I

13 (16.3%) 

H-L 82 (59.8%) 6 (12.8%) 61 (76.3%) 
� 

l 
L-H O (0.0%) 6 (12.8%) 1 (1.2%) 

L-L 13 (9.5%) 1(2.1%) 5 (6.2%) 

Supplementary table S2. Number of genes significantly differentially expressed between 

baseline and surgery in each of the two cohorts according to diff erent subgroups within each 

cohort. 

Ali tumours 

Luminal tumours 

LuminalA 

Luminal B 

Controls 

POETIC subset 

21 genes 

26 genes 

27 genes 

54 genes 

8 genes 

NeoAI 

study 

54 genes 

100 genes 

77 genes 

109 genes 

Supplementary table S3. Significant differential changes for single gene level between 

baseline and surgery in the NeoAI study and in POETIC subset according to treatment arm and 

ranked by Log2FC values. Abbreviations: ID: Identification, Log2FC: Log2 Fold Change, 

FDR: False Discovery Rate. 

NeoAI POETIC (treated) POETIC (controls) 

p-
p-adjusted p-adjusted

Gene ID Log2FC 
adjusted 

Gene ID Log2FC value 
Gene 

Log2FC value
value ID 
(FDR) 

(FDR) (FDR)

Inhibited 

PGR -1.4 <0.0001 TFFJ -1.6 <0.0001 HBB -1.6 0.01 

TOP2A -1.3 <0.0001 TOP2A -1.4 <0.0001 HBA2 -1.5 0.01 

BIRC5 -1.0 <0.0001 UBE2C -1.4 <0.0001 HBAJ -1.3 0.017 

PKMYTJ -1.6 <0.0001 HBB -1.3 <0.0001 RNY5 -1.2 0.022 

MAPT -1.2 <0.0001 HBA2 -1.3 <0.0001 

UBE2C -1.8 <0.0001 CDC20 -1.2 <0.0001 

RRM2 -1.4 <0.0001 NUSAPJ -1.2 <0.0001 

MKI67 -1.8 <0.0001 HBAJ -1.1 <0.0001 

CENPF -1.2 <0.0001 NEK2 -1.1 <0.0001 

KIF23 -1.3 <0.0001 SUSD3 -1.1 <0.0001 

CDC2 -1.9 <0.0001 ASPM -1.0 <0.0001 

NATJ -1.2 <0.0001 UHRFJ -1.0 <0.0001 
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ANLN -1.5 <0.0001 PRCJ -1.0 <0.0001 

MYBL2 -1.1 <0.0001 FGFR3 -1.0 <0.0001 

KIFCJ -1.2 <0.0001 AGR2 -1.0 <0.0001 

CCNBJ -1.1 <0.0001 

MMPll -1.6 <0.0001 

CEP55 -1.5 <0.0001 

CDC20 -1.3 <0.0001 

CCNDJ -1.3 <0.0001 

TRIP13 -1.2 <0.0001 

Activated 

FOS 4.6 <0.0001 FOS 2.2 <0.0001 FOS 1.83 0.00051 

EGRl 2.0 <0.0001 RGSJ 1.8 <0.0001 RGSJ 1.55 0.0012 

NR4Al 2.7 <0.0001 DUSPJ 1.8 <0.0001 DUSPJ 1.54 0.00027 

OGN 2.7 <0.0001 FOSB 1.5 <0.0001 FOSB 1.12 0.021 

JUN 1.3 <0.0001 CYR61 1.3 <0.0001 

NR4A3 2.0 <0.0001 EGRJ 1.3 <0.0001 

CCDC80 1.2 <0.0001 

IL6 1.2 <0.0001 

CTSG 1.5 <0.0001 

C7 1.1 <0.0001 

BTG2 1.2 <0.0001 

1D4 1.0 <0.0001 

SFRPl 1.2 <0.0001 

KRT14 1.6 <0.0001 

IGFl 1.6 <0.0001 

COL3Al 1.4 <0.0001 

TNXB 1.2 <0.0001 

GASl 1.2 <0.0001 

DCN 1.3 <0.0001 

PDGFD 1.3 <0.0001 

TWISTl 1.1 <0.0001 

CCL4 1.4 <0.0001 

AKAP12 1.2 <0.0001 

CMAl 1.3 <0.0001 

ALDHlAl 1.1 <0.0001 

FHLl 1.1 <0.0001 

SOCS3 1.0 <0.0001 

TSPAN7 1.2 <0.0001 

MMP2 1.3 <0.0001 

CXCL12 1.1 <0.0001 

ClS 1.3 <0.0001 

SMAD9 1.1 <0.0001 

NGFR 1.3 <0.0001 

Supplementary table S4. Multivariable eox regression models for TTR and OS for eaeh of 

the signifieant findings in the POETIC subset: in blue ehanges in the eorrelation eoeffieient 

seores to prototypieal intrinsie subtype eentroids; in orange ehanges of the modules seores that 

were signifieantly different from baseline to surgery in all tumours including lumB, in green 
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those significant changes from baseline to surgery in lumB only, in grey those changes in 

modules score observed significant differentially expressed between H-H and H-L tumours by 

SAM analysis (light grey also includes modules significantly different expressed between 

baseline and surgery in lumB tumours and dark green in lumB and in all tumours ). The 

multivariable cox models were adjusted for the standard clinicopathological variables: PR 

status, HER2 status, tumour grade, pathological tumour size, histology subtype, nodal status, 

and vascular invasion. Abbreviations: TTR: Time to Recurrence, OS: Overall Survival, CI: 

Confidence Interval, FDR: False discovery rate, Her2-E: Her2 enriched, lumB: luminal B, 

lumA: luminal A, 2wk: two-week time point, H-H: Ki67 Highbaseline- Ki67 Highsurgery, H-L: 

Ki67 Highbaseline- Ki67 LOWsurgery, 

Basal_ centroid _ change 

Her2E _ centroid _ change 

LumA _ centroid _ change 

LumB _ centroid _ change 

Normal_ centroid _ change 

TCGABRCA1198 MYBL2 APOBEC 
- -

3B Ce 
Proliferation Cluster BMCMedGe 

CIN70 NatGenet2006 PMID169213 
- -

RB LOSS JC!inlnvest2007 PMID 
- - -

HS Red23 BMCMedGenomics2011 P 
- - -

Knudsen Neo common ClinCancerR 
- - -

MProliferation BMCMedGenomics 

bMYB _ Signature _ Oncogene2009 _PMI 

TCGABRCAl 198 immune FOS JUN 
- - -

IL 
FOS JUN Cluster BMCMedGenomic 

- - -

s 
Histological_ Grade _JPathol2017 

Stingl _ Up _ Proliferation _ NatCell 

MDACC _P53 _ ERPos _ CCR2011 _pMI 
D2 

MM_ Green! 9 _ BMCMedGenomics201 
1 

HS _ Greenl O_ BMCMedGenomics2011 

Chemo _ Endocrine _Score _ CC _ 2LumA 

MET _ DOWN _ Significant_ Genes_ LO 
W B  

HS _ Green9_BMCMedGenomics2011 
-

HS _ Red21_BMCMedGenomics2011 _P 

TCGABRCAl 198 COLLAGENl lA 
- -

Cell 
MDACCFNA2 JC!inüncol2010 PM 

- -

Multivariable cox models for TTR 

Hazard Ratio 95%CI p-value 

3.81 0.16 91.45 

4.12 0.12 138.19 

0.11 0.01 1.04 • 

10.66 1.03 110.8 •• 

0.1 0.01 0.72 •• 

12.23 3.51 42.54 ••• 

12.19 3.36 44.26 ••• 

15.78 3.99 62.36 ••• 

13.61 3.47 53.39 ••• 

14 3.55 55.17 ••• 

15.31 3.65 64.26 ••• 

18.63 3.93 88.25 ••• 

25.28 4.92 129.83 ••• 

0.32 0.15 0.67 ••• 

0.31 0.15 0.65 ••• 

32.64 4.94 215.45 ••• 

27.03 4.7 155.49 ••• 

26.36 4.06 171.29 ••• 

53.55 6.56 437.33 ••• 

48.32 6.45 362.14 ••• 

28.65 3.59 228.56 ••• 

0.57 0.2 1.59 

0.67 0.23 1.95 

0.67 0.25 1.79 

0.66 0.3 1.47 

0.5 0.16 1.59 

Multivariable cox models for OS 

FDR Hazard Ratio 95%CI p-value FDR 

0.07 0.01 0.82 •• • 

1.42 0.08 24.21 

• 1.21 0.2 7.2 

• 12.18 1.74 85.47 •• • 

•• 0.22 0.04 1.14 • 

••• 2.38 0.89 6.37 * 

••• 3.22 1.07 9.66 •• • 

••• 3.81 1.18 12.26 •• • 

••• 3.21 1.03 10 •• 

••• 3.13 0.98 9.98 * 

••• 5.54 1.67 18.37 ••• • 

••• 2.9 0.81 10.39 

••• 3.9 0.97 15.64 * 

••• 0.53 0.3 0.94 •• • 

••• 0.59 0.34 1.02 * 

••• 6.16 1.24 30.51 •• • 

••• 5.47 1.25 23.98 •• • 

*** 3.32 0.77 14.34 

*** 7.23 1.3 40.22 •• * 

*** 3.23 0.56 18.71 

*** 5.84 0.93 36.73 • 

0.58 0.27 1.26 

0.57 0.25 1.28 

0.58 0.28 1.21 

0.59 0.32 1.09 • 

0.48 0.2 1.2 
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Fibroblast_ Cluster_ BMCMedGenom 0.59 0.23 1.52 0.55* 0.27 1.1 * 

Nuclear _Pleomorphism _ JPathol20 32.76 3.24 331.64 ••• • •• 9.37 1.36 64.79 •• * 

Bcells _ Centroblast_JC!inüncol 21.27 3.77 119.83 ••• • •• 2.05 0.5 8.42 

7.07 2.62 19.08 ••• • •• 2.38 1.06 5.39 •• * 

23.14 4.76 112.49 ••• • •• 8.05 2.06 31.47 ••• * 

6.6 2.53 17.23 ••• • •• 2.28 1.02 5.1 •• 

*** p<0.01, ** p<0.05, * p<0.l 

Supplementary table SS. Multivariable cox regression models for Overall survival (OS) and 

multivariable linear regression models for risk of recurrence score (ROR) as surrogate of 

recurrence in the NeoAI subset: in blue changes in the correlation coefficient seores to 

prototypical intrinsic subtype centroids; in orange changes of the genes that were significantly 

different from baseline to surgery in all tumours including lumB; in green those significant 

changes in lumB only, in yellow, grey and purple the significantly different changes of gene 

expression between H-H and H-L tumours: in grey there are genes that also changed 

significantly from baseline to surgery in lumB only and in purple in all patients. The models 

have been adjusted for the standard post-surgery clinicopathological variables: PR status, 

HER2 status, diagnostic-tumour grade, surgical tumour size, diagnostic histological type, nodal 

status, and vascular invasion. Abbreviations: OS: Overall Survival, ROR: Risk ofRecurrence 

Score, CI: Confidence Interval, FDR: False discovery rate, Her2-E: Her2 enriched, lumB: 

luminal B, lumA: luminal A, 2wk: two-weeks time point, H-H: Ki67 Highbaseline- Ki67 

Highsurgery, H-L: Ki67 Highbaseline- Ki67 LOWsurgery, 

Adjusted cox models for OS 
Adjusted linear regression models for ROR at 

sur2ery 

95%CI 

Hazard Ratio 5% 95% o-value FDR Correlation Coefficient o-value FDR 

Basal centroid change 0.20 0.03 1.44 -0.25

Her2 centroid change 3.76 0.88 16.06 0.69 *** *** 

LumA centroid change 0.63 0.14 2.79 -0.49 *** *** 

LumB centroid change 3.60 1.25 10.35 ** 0.68 *** *** 

Normal centroid change 0.33 0.14 0.81 ** -0.71 *** *** 

CCL4 1.01 0.70 1.45 -0.39

CMAJ 0.75 0.53 1.07 -0.52 *** *** 

COL3Al 0.68 0.49 0.93 ** -0.59 *** *** 

CXCL12 0.63 0.45 0.89 ** * -0.57 *** *** 

DCN 0.61 0.45 0.82 *** ** -0.66 *** *** 

EGRJ 0.94 0.78 1.15 -0.60 *** *** 

GASJ 0.68 0.49 0.95 * -0.61 *** *** 

IL6 0.81 0.60 1.11 -0.47 *** *** 

JUN 0.87 0.66 1.14 -0.61 *** *** 
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KRT14 0.82 0.71 0.95 ** * -0.48 *** *** 

MMPJJ 1.22 0.91 1.63 0.09 

MMP2 0.75 0.53 1.05 -0.59 *** *** 

NATJ 1.32 0.98 1.78 0.40 *** ** 

NR4Al 0.91 0.76 1.10 -0.51 *** *** 

NR4A3 0.95 0.74 1.22 -0.42 ** ** 

PGR 1.02 0.80 1.31 0.31 

SOCS3 0.83 0.66 1.04 -0.45 *** *** 

ACTG2 0.61 0.44 0.84 ** * -0.58 *** *** 

CJR 0.70 0.51 0.96 * -0.63 *** *** 

CCL19 0.83 0.62 1.11 -0.19

CCNDJ 1.00 0.65 1.55 0.43 *** *** 

CCNE2 1.72 1.12 2.65 ** * 0.47 *** *** 

CDCAJ 1.30 0.79 2.13 0.47 *** *** 

CHITJ 1.10 0.80 1.50 -0.19

CNNJ 0.53 0.36 0.78 *** ** -0.58 *** *** 

COLJAJ 0.75 0.55 1.04 -0.48 *** *** 

COLJA2 0.71 0.52 0.96 * -0.58 *** *** 

COL6A6 0.64 0.44 0.93 ** -0.40 *** *** 

DPP4 0.90 0.62 1.31 -0.50 *** *** 

DUSP6 0.90 0.55 1.46 -0.45 *** *** 

ECM2 0.56 0.39 0.82 ** * -0.61 *** *** 

FGF7 0.53 0.35 0.80 ** * -0.53 *** *** 

FIGF 0.75 0.52 1.07 -0.47 *** *** 

GSN 0.54 0.38 0.78 *** ** -0.64 *** *** 

HELLS 1.79 0.96 3.33 0.46 *** *** 

JGFJR 1.37 0.77 2.42 -0.03

KRT17 0.79 0.64 0.96 ** -0.54 *** *** 

KRT5 0.83 0.68 1.01 -0.46 *** *** 

MCM4 1.50 0.85 2.66 0.56 *** *** 

MET 0.65 0.42 1.00 * -0.52 *** *** 

MS4Al 0.84 0.61 1.15 -0.28

NEFL 0.91 0.61 1.35 -0.38 ** ** 

NTRK2 0.78 0.58 1.06 -0.32 * * 

PROM] 0.81 0.59 1.12 -0.37 * * 

TNFAIP3 1.05 0.68 1.61 -0.34 ** ** 

WJFJ 0.73 0.52 1.02 -0.45 *** *** 

WNTll 1.22 0.75 1.99 -0.37 ** ** 

ZBTB16 0.97 0.75 1.25 -0.38 *** *** 

AKT3 0.42 0.25 0.69 *** ** -0.71 *** *** 

CACNA2Dl 0.45 0.30 0.68 *** ** -0.55 *** *** 

CDKN3 1.27 0.89 1.81 0.69 *** *** 

CHEKJ 1.78 0.98 3.21 0.67 *** *** 

DLCJ 0.54 0.34 0.86 ** * -0.55 *** *** 

DPYSL3 0.42 0.29 0.62 *** ** -0.61 *** *** 

ECSCR 0.43 0.27 0.68 *** ** -0.58 *** *** 

EMCN 0.52 0.34 0.80 ** * -0.59 *** *** 

ETSJ 0.27 0.15 0.47 *** ** -0.50 *** *** 

ETS2 0.59 0.37 0.94 * -0.54 *** *** 

FGFRJ 0.46 0.25 0.83 ** * -0.65 *** *** 

FOS 0.93 0.79 1.09 -0.57 *** *** 

FYN 0.37 0.23 0.61 *** ** -0.56 *** *** 

FZD7 0.38 0.22 0.68 *** ** -0.64 *** *** 

GPR124 0.54 0.38 0.78 *** ** -0.71 *** *** 
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JDJ 0.45 0.28 0.72 *** ** -0.58 *** *** 

JLJRJ 0.75 0.49 1.16 -0.42 *** *** 

ITGA8 0.55 0.35 0.86 ** * -0.58 *** *** 

ITGA9 0.45 0.26 0.79 ** * -0.61 *** *** 

KIFCJ 1.22 0.79 1.87 0.58 *** *** 

LIFR 0.55 0.33 0.92 * -0.49 *** *** 

MAD2Ll 2.69 1.31 5.50 ** * 0.56 *** *** 

MAML2 0.42 0.25 0.70 *** ** -0.63 *** *** 

MMRN2 0.43 0.25 0.74 *** ** -0.64 *** *** 

NPRJ 0.47 0.31 0.72 *** ** -0.53 *** *** 

NRPJ 0.44 0.27 0.72 *** ** -0.60 *** *** 

PDGFRA 0.47 0.29 0.74 *** ** -0.62 *** *** 

PLCB4 0.64 0.40 1.02 -0.55 *** *** 

ROB04 0.42 0.26 0.69 *** ** -0.57 *** *** 

RORA 0.83 0.48 1.43 -0.54 *** *** 

RUNXJTJ 0.68 0.47 1.00 * -0.66 *** *** 

SMAD3 0.78 0.37 1.64 -0.32 * * 

STMNJ 2.02 1.18 3.47 ** * 0.63 *** *** 

TCF4 0.56 0.33 0.95 * -0.65 *** *** 

TEK 0.41 0.23 0.72 *** ** -0.56 *** *** 

TGFBR2 0.41 0.26 0.67 *** ** -0.63 *** *** 

THBS4 0.82 0.63 1.07 -0.43 *** *** 

TIEJ 0.44 0.27 0.70 *** ** -0.63 *** *** 

TNSJ 0.39 0.23 0.67 *** ** -0.68 *** *** 

TPSABJ 0.89 0.68 1.17 -0.47 *** *** 

UBE2T 1.41 0.85 2.33 0.60 *** *** 

ZEBJ 0.48 0.32 0.73 *** ** -0.59 *** *** 

AQPJ 0.37 0.23 0.58 *** ** -0.59 *** *** 

BMP2 0.78 0.56 1.10 -0.56 *** *** 

CAVJ 0.52 0.33 0.81 ** * -0.60 *** *** 

CCNA2 1.08 0.68 1.73 0.69 *** *** 

CDC6 1.29 0.78 2.12 0.60 *** *** 

E2Fl 1.56 0.99 2.48 0.65 *** *** 

EGFR 0.68 0.46 0.99 * -0.55 *** *** 

FGF2 0.58 0.39 0.86 ** * -0.53 *** *** 

FLNC 0.57 0.40 0.82 ** * -0.60 *** *** 

FOXCJ 0.67 0.42 1.06 -0.59 *** *** 

FOXMJ 1.61 1.05 2.45 * 0.66 *** *** 

FSTLJ 0.54 0.36 0.82 ** * -0.57 *** *** 

HISTJH3H 1.26 0.84 1.89 0.62 *** *** 

JAM2 0.49 0.30 0.78 ** * -0.65 *** *** 

KIT 0.55 0.37 0.83 ** * -0.68 *** *** 

LHFP 0.52 0.35 0.78 *** ** -0.68 *** *** 

MS4A2 0.97 0.65 1.44 -0.56 *** *** 

MYHJJ 0.64 0.45 0.90 ** * -0.60 *** *** 

MYLK 0.53 0.36 0.76 *** ** -0.64 *** *** 

PTI'Gl 1.72 1.06 2.80 * 0.69 *** *** 

TWIST2 0.72 0.49 1.07 -0.51 *** *** 

TXNIP 0.89 0.56 1.41 -0.55 *** *** 

TYMS 1.41 0.91 2.17 0.62 *** *** 

AKAP12 0.49 0.33 0.72 *** ** -0.63 *** *** 

ALDHJAJ 0.67 0.49 0.92 ** * -0.66 *** *** 

ANLN 1.48 1.01 2.17 * 0.66 *** *** 

BIRC5 1.28 0.96 1.71 0.71 *** *** 
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BTG2 0.94 0.66 1.33 -0.52 *** *** 

CJS 0.63 0.45 0.90 ** * -0.64 *** *** 

C7 0.64 0.47 0.87 ** * -0.58 *** *** 

CCDC80 0.61 0.47 0.80 *** ** -0.64 *** *** 

CCNBJ 1.61 1.08 2.39 ** 0.66 *** *** 

CDC2 1.41 1.02 1.94 * 0.74 *** *** 

CDC20 1.38 0.90 2.13 0.62 *** *** 

CENPF 1.48 0.97 2.26 0.69 *** *** 

CEP55 1.71 1.16 2.53 ** * 0.63 *** *** 

CTSG 0.77 0.57 1.03 -0.53 *** *** 

FHLJ 0.64 0.47 0.87 ** * -0.60 *** *** 

ID4 0.73 0.57 0.94 ** * -0.63 *** *** 

IGFJ 0.61 0.45 0.85 ** * -0.55 *** *** 

KIF23 1.59 1.05 2.40 * 0.66 *** *** 

MAPT 1.29 0.94 1.77 0.58 *** *** 

MKI67 1.32 0.92 1.88 0.68 *** *** 

MYBL2 1.79 1.15 2.79 ** * 0.61 *** *** 

NGFR 0.53 0.37 0.75 *** ** -0.53 *** *** 

OGN 0.70 0.54 0.90 ** * -0.62 *** *** 

PDGFD 0.46 0.31 0.66 *** ** -0.63 *** *** 

PKMYTJ 1.42 1.05 1.93 * 0.68 *** *** 

RRM2 1.47 1.08 1.99 ** * 0.74 *** *** 

SFRPJ 0.68 0.52 0.89 ** * -0.56 *** *** 

SMAD9 0.58 0.39 0.88 ** * -0.63 *** *** 

TNXB 0.62 0.45 0.87 ** * -0.55 *** *** 

TOP2A 1.24 0.96 1.61 0.72 *** *** 

TRJP13 1.66 1.01 2.72 * 0.60 *** *** 

TSPAN7 0.44 0.27 0.70 *** ** -0.59 *** *** 

TWISTJ 0.83 0.58 1.18 -0.56 *** *** 

UBE2C 1.36 1.00 1.84 * 0.74 *** *** 

1.44 0.86 2.40 -0.27

2.23 1.27 3.95 ** * -0.22 

1.06 0.60 1.88 -0.20

1.08 0.80 1.47 0.09 

2.24 1.28 3.92 ** * -0.20 

1.68 0.81 3.48 -0.22

*** p<0.01, ** p<0.05, * p<0.l 
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4.1.2 Additional information on baseline gene expression in 

ER+/HER2- breast cancer and its predictive value (manuscript 2) 

Baseline biomarkers of resistance to Al in ER+/HER2-BC 

As part of manuscript 2 and beyond gene expression changes, we also explored baseline gene 

expression pattems amongst classes of Ki67-level changes between baseline and surgery 

following two weeks of Al treatment in ER+/HER2- early BC. We finally decided not to 

include this data in the manuscript as we wanted to perform the analysis in a larger subset of 

patients within the POETIC trial. 

Tumours were then classified into four classes according to Ki67 changes between the two 

time points: Highbaseline-Highsurgery (H-H), Highbaseline-LOWsurgery (H-L), LOWbaseline-LOWsurgery (L­

L), and LOWbaseline-Highsurgery (L-H). Tumours were categorised into 28 H-H and 77 H-L. 

Significance Analysis of Microarrays (SAM analysis) was performed to test the expression 

values against the appropriate response variable in an unpaired Two Class setting to compare 

(H-H/H-L settings) (116). The L-L category was not included due to the small number of 

patients. In each analysis, the identification of a specific delta parameter determined the False 

discovery rate (FDR) cut-off for significance. To further identify potentially interesting 

biological pattems associated with the outcomes of interest, hierarchical clustering of 

expression profiles at diff erent time points based on the results of the SAM analysis was 

performed (117). Each analysis was performed separately for each arm in the POETIC subset 

and the N eoAI study. 

RESULTS: Differential gene expression patterns amongst classes of Ki67-

level changes between baseline and surgery (H-H and H-L) 

We explored whether there was an association between changes ofintrinsic subtypes (i.e., from 

high-risk subtype to lower-risk) with classes of Ki67-level changes (H-H/H-L). All tumour 

subtypes with the capacity of lowering the risk ( all except luminal A and normal) were 

classified into changes (if they tumed into a lower-risk subtype) or not changes (if they 

remained as the same subtype or tumed into a higher risk one ). There was a statistically 

significant association between "No-changes or changes to a higher risk subtype" with the H­

H Ki67 response category in both subsets (POETIC treated cohort: 100% no-changes in H-H 

tumours, 48.5% no-changes in H-H, and 51.5% in H-L; p=0.001326; NeoAI study: 58.8% no-
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changes in H-H, 41.2% in H-L, and 100% of changes in H-L; Fisher's exact test p=8.127E-

07). 

In order to identify other baseline molecular characteristics involved in response to neoadjuvant 

Al therapy, we performed SAM analysis based on the Ki67 change categories from baseline to 

surgery (H-H and H-L) in the POETIC trial. Only HER2 negative tumours were included in 

this analysis. As expected, baseline Ki67 was remarkably higher within luminal B intrinsic 

subtype samples with a trend to retain high Ki67 after two weeks of Al compared with luminal 

A tumours. Twenty-four immune-related gene modules covering immune-cell pathways, 

immune-checkpoint component, and IFN◊ biology, were significantly more expressed in H-H 

tumours compared with H-L both at baseline (Figure 3) and surgery (Figure 4). These modules 

include sorne genes that have been previously associated with luminal B-resistant tumours such 

as IFNG, STATJ, IDO], LAG 3, and CTLA4 (60). A general trend in terms of gene expression 

stability in H-H tumours was also observed when looking at gene expression in paired 

(baseline-surgery) tumour samples following short Al treatment, with just a general 

downregulation of proliferation-related modules (Figure 4). 

To further investigate the role of immune-related features on resistance to Al, two immune­

related modules were calculated: (1) The "Durvalumab signature" shown in the SAM analysis 

(median of CD2 7 4, LAG 3, CXCL9 - durvalumab signature) and (2) a new module score defined 

by M. Ellis' group, including significant genes associated with resistance to Al in luminal B 

tumours in the neoadjuvant setting (median of CD274, LAG3, IDO] - Immune-tolerance 

signature)(60). In the POETIC subset, the expression of the "Durvalumab signature" 

(pbaseline=0.003; Psurgery=0.014) and the "Immune-tolerance signature" (Pbaseline=0.004; 

Psurgery=0.002) was significantly higher in H-H compared with H-L tumours at both baseline 

and surgery (Figure 3B). No significant changes in signature expression from baseline to 

surgery were seen in either H-H or H-L categories. As observed in short-term treated patients, 

in the N eoAI cohort, the expression of both immune signatures at baseline were significantly 

higher in H-H tumours compared with H-L (p=0.033 and 0.029, respectively; Figure 3C). 

However, this association was lost in surgical specimens of patients treated with long-term Al 

therapy. In addition, a significant increase in the expression of the "Durvalumab signature" 

(p=0.0098) and the "Immune-tolerance signature" (p=0.0011) at surgery was seen in H-L 

tumours but not in H-H tumours. 

84 



Finally, to explore the impact of Al duration on the expression ofthose ET-resistance immune­

related modules, we looked at the correlation of their expression with Al exposure time in the 

NeoAl study. No correlation was found between changes in their expression from baseline to 

surgery (Log2FC) and the duration of Al (Figure 5). 

Figure 4. Differential gene expression pattems amongst classes of Ki67-level response 

changes between baseline and surgery (H-H and H-L) A. Unsupervised heatmap of module 

seores at baseline in the POETIC treated subset selected by two unpaired SAM analyses by 

Ki67 H-H vs. H-L categories and median centred. B. Differences of the two immune-related 

signature expressions ("Durvalumab" and "lmmune-tolerance") between H-H and H-L Ki67 

categories according to the two different time points (baseline and surgery) in the POETlC 

treated subset. C. Differences of the two immune-related signature expressions from baseline 

to surgery in the NeoAl study. Abbreviations: H-H: Ki67 Highbaseline- Ki67 Highsurgery, H-L: 

Ki67 Highbaseline- Ki67 LOWsurgery, Her2-E: Her2 enriched, LumB: Luminal B, LumA: Luminal 

A, 2wk: two-week time point. 
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Figure 5. Baseline and paired surgery heatmaps of module score expression selected by two 

unpaired SAM analyses by Ki67 H-H and L-L categories at baseline in the POETIC subset for 

ER+/HER2- BC patients and median centred. Both heatmaps follow the order of the baseline 

module expression. Abbreviations: H-H: Ki67 Highbaseline- Ki67 Highsurgery, H-L: Ki67 

Highbaseline- Ki67 LOWsurgery, Her2-E: Her2 enriched, lumB: luminal B, lumA: luminal A, 2wk: 

two-week time point. 
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Figure 6. Speannan Rank:-Order Correlation of the expression changes from baseline to 

surgery (Log2FC) under Al treatment ofthe two immune-related signatures "Durvalumab" and 

"Immune-tolerance" with time in the NeoAI study 
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4.2 Manuscript 3: HER2-E subtype and novel molecular subgroups drive 
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HER2-enriched subtype and novel molecular 

subgroups drive aromatase inhibitor resistance and an 

increased risk of relapse in early ER+/HER2+ breast 

cancer 

Milano A. Bergamino,°' 1 Elena López-Knowles,b·c, 7 Gabriele Morani,° Holly Tovey,° Lucy Kilburn,° Eugene F. Schuste,,b,c 

Anastasia Alataki/•c Margaret Hills,b Hui Xiao,°·b Chris Holcombe/ Anthony Skene/ John F. Robertson/ tan E. Smith/ 
Judith M. 8/iss, ª Mitch Dowsett, b and Maggie C.U. Cheang ª*, on beha/f of the POETIC investigators2 

ªClinical Trials and Statistics Unit (ICR-CTSU)- Division of Clinical Studies, The lnstitute of Cancer Research, London, UK 
bRoyal Marsden Hospital, London, UK 
cThe Breast Cancer Now Toby Robins Research Centre, The lnstitute of Cancer Research, London, UK 
dliverpool University Hospitals Foundation Trust, Liverpool, UK 
euniversity Hospitals Dorset NHS-FT, UK 
rFaculty of Medicine & Health Sciences, Queen's Medical Centre, Nottingham, UK 

Summary 
Background Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER.2+) breast 
cancers (BCs) are less responsive to endocrine therapy than ER+/HER.2- tumours. Mechanisms underpinning the 
differential behaviour of ER+HER.2+ tumours are poorly characterised. Our aim was to identify biomarkers of 
response to 2 weeks' presurgical Al treatment in ER+ /HER.2+ BCs. 

Methods All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled 
using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to Al was 
assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki67

2wk)- Time-To-Recurrence (TTR) was esti­
mated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molec­
ular subgroups (MS) were identified using consensus clustering. 

Findings HER.2-enriched (HER.2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher 
Ki672w

k {p<o.0001) than non-HER.2-E BCs. High expression of ERBB2 expression, homologous recombination defi­
ciency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with 
High Ki672wk· Five new MS that were associated with differential response to Al were identified. HER2-E had signif­
icantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14-5.69; p=o.0222). The new MS were indepen­
dent predictors ofTTR, adding significant value beyond intrinsic subtypes. 

lnterpretation Our results show HER2-E as a standardised biomarker associated with poor response to Al and 
worse outcome in ER+/HER.2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive bio­
markers for poor response to Al. Lastly, novel MS identify additional non-HER2-E tumours not responding to Al 
with an increased risk of relapse. 

Funding Cancer Research UK (CRUK/07/015). 

Copyright © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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lntroduction 

Human epidermal growth factor receptor 2 positive 
(HER2+) breast cancer (BC) has been associated with 
an aggressive phenotype and poor patient outcome.' 
However, the introduction of HER2-targeted therapies 
dramatically changed the prognosis of these patients 
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Research in context 

Evidence befare this study 

Al treatment is the standard of care and most effective 

therapy for post-menopausal women with early oestro­

gen receptor positive (ER+) breast cancer (BC). ER+ BC 

tumours that also over-express HER2 are very heteroge­

nous with several treatment options but variable 

responses to the different available drugs. Prior studies 

have shown that ER+/HER2+ BC show limited antiproli­

ferative response to endocrine therapy and thus, are at 

a higher risk of recurrence. This may be PgR dependent, 

as many of those tumours do express low PgR levels. In 

addition, they have lower response rates to anti-HER2 

targeted therapy compared to ER-/HER2+ tumours. 

Most studies investigating mechanisms of resistance to 

endocrine therapy have been performed in ER+/HER2-

disease and are not well understood in HER2+ BC. 

Although endocrine-related gene expression has been 

previously associated with good response to aromatase 

inhibitors and high levels of ERBB2 with poor response, 

there is an overall lack of optimal biomarkers to pair 

with the optimal treatment for each patient within ER 

+/HER2+ BC. As such, identifying robust molecular fea­

tures and defining novel subgroups based on tumour 

biology is essential to identify the most adequate treat­

ment strategies for this particular BC subgroup. 

Added value of this study 

This study establishes HER2-enriched intrinsic subtype 

as one of the main components driving poor response 

to Al and higher risk of relapse in ER+/HER2+ BC. Our 

results indicate the importance of molecular subtyping 

of BC beyond the standard HR and HER2 assays. Beyond 

the intrinsic subtypes, ERBB2, DNA damage repair sig­

naling, p53 mutant surrogate signature and immune­

tumour tolerance related signatures are also associated 

with resistance to treatment. 

We also identified five new single gene based molec­

ular subgroups that can distinguish HER2-E and Luminal 

tumours responding or not to Al treatment and at a 

higher risk of relapse. Molecular subgroups characterised 

with high expression of immune related features drive an 

intrinsic lower risk of relapse despite predicting poor 

response to Al, while higher levels of ER882 and extracel­

lular matrix related genes lead to worse outcome. 

lmplications of al/ the available evidence 

Firstly, the worse response to treatment and poorer out­

come of HER2-enriched BC tumours highlights the 

potential need of treatment intensification for this 

intrinsic subtype with additional anti-HER2 targeted 

therapy, with the limitation, but also "real world" treat­

ment limitation, that not all the patients in the study 

received the current standard anti-HER2 therapy. The 

higher sensitivity to aromatase inhibitors and good 

prognosis associated with luminal tumours, in particular 

with Luminal A, provides a rational for de-escalation, 

which has been previously suggested for ER+HER2+ 

unselected population. 

Secondly, the new molecular subgroups show that 

immune-related features provide ER+/HER2+ BC 

tumours with an intrinsic good prognosis despite their 

association with early poor response to Al treatment 

and might also deserve a de-escalating approach. Fur­

thermore, the assessment of the novel molecular sub­

groups might be crucial for the identification of sorne 

HER2-E BCs patients at a lower risk of relapse and addi­

tional non-HER2-E BCs patients with an increased risk of 

relapse. The combined investigation of the intrinsic sub­

types and these new molecular subgroups might be 

key for the selection of candidate patients for escalated 

and de-escalated approaches in the future. 

and the natural history of the disease.2
•
3 Despite the 

improvement, long-term follow-up data indicate that 
approximately 15-23% of patients in early stage, still 
develop recurrent disease.4 

Fifteen percent of all BC overexpresses HER.2 and 
approximately 50% of these are also classified as hor­
mone receptor positive (HR+), which confers substan­
tial differences in biology and clinical outcome from 
HR+/HER2- disease. HR+/HER2+ BCs are molecularly 
heterogeneous and around 30% of them are HER2-
Enriched (HER2-E). This subtype is characterised by a 
high HER.2/EGFR pathway activation, increased prolif­
eration and an immune-activated stroma with elevated 
tumour infiltrating lymphocytes. It has a lower expres­
sion of luminal-related genes, than the Luminal A and 
B subtypes, potentially benefiting greatly from anti­
HER2 therapies but poorly from endocrine therapy 
(ET¡.s-7 

Resistance to endocrine therapies has been mainly 
studied in HR+/HER2- BC and includes down-regula­
tion of oestrogen receptor (ER) expression, altered 
expression of ER co-regulators, presence of ER muta­
tions, ligand-independent activation of ER and co-activa­
tors by growth factor receptor kinases.8•

9 However, 
those mechanisms might differ between HER2+ and 
HER2- tumours, in part due to the differential distribu­
tion of intrinsic subtypes within each BC subgroup. 
HER2-targeted therapies might be felt to negate the 
importance of development of resistance to Al but while 
anti-HER2 therapy is generally given for no more than r 
year to primary BC patients, ET is given for at least 
5 years. Thus, any residual HER2+ disease after the end 
of the HER2-targeted therapy remains at risk of an 
incomplete endocrine response. 

The PeriOperative Endocrine-Therapy for Individual­
ised Care (POETIC) trial'º is the framework used to 
study endocrine resistance mechanisms in a large set of 
ER+/HER2+ BC patients. In the context of POETIC, we 
hypothesised that resistance mechanisms to ET are 
driven by baseline genomic features. Gene expression 
profiles at baseline were assessed and the key genomic 
characteristics were tested for association with response 
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to Al, as measured by residual levels and changes of 
Ki67 after two weeks of treatment, and with clinical out­
come. We sought to develop predictive signatures of Al 
response and address the clinical challenge of identify­
ing patients who are likely to benefit from each of the 
specific therapies. 

Methods 

Patients and samples 
All available ER+/HER2+ BC turnours from the 
POETIC trial in which patients were assigned to 2 
weeks of peri-surgical Al or no Al (control) were 
included in this study. 1º A consort diagram of the study 
is shown in Supplementary Figure Sr. Ki67 staining of 
2-week samples from the control group was restricted to
a randomly selected subset due to the minimal expected
change on Ki67 from baseline to surgery. 11 In summary,
of 470 ER+/HER2+ patients included in POETIC, we
obtained successful results for 342 patients.

RNA extraction 
RNA was extracted from three adjacent macro-dissected 
rnµm formalin-fixed paraffin-embedded (FFPE) sec­
tions from the baseline block of the patients included in 
the study. The ROCHE High Pure miRNA isolation kit 
(Roche, Basel, Switzerland) was used following SOP 
Mo27 from The Cancer Genome Atlas (TCGA) Program 
developed by the Biospecimen Core Resource (BCR) at 
Nationwide Children's Hospital in Columbus, Ohio. 
Quantification was done using high sensitivity RNA 
Qubit assays (Thermo Fisher Scientific, Carlsbad, CA). 

Gene expression profiling 
Gene expression of 758 genes was assessed using the 
NanoString nCounter Platform (Nanostring Technolo­
gies, Seattle, WA) Breast Cancer 360™ codeset 
(BC360) covering intrinsic subtypes and 46 key biologi­
cal signatures (Supplementary Table S1). 15ong of RNA 
was run and processed on a NanoString nCounter™ 

FLEX Analysis System according to manufacturer's 
instructions. NanoString raw data was normalised by 
NanoString according to the BC360 pipeline using 18 
house-keeping genes. 

lmmunohistochemistry 
ER status was measured locally and was centrally 
reviewed by immunohistochemistry (IHC). HER2 sta­
tus was measured locally using IHC and/or fluores­
cence in situ hybridisation (FISH). Ki67 proliferation 
rate was obtained by IHC in FFPE tissues using the 
MIB-1 antibody (M7240, DAKO UK, RRID: 
AB-26312II).1

0•
12 Ki67 has been validated in our labora­

tory previously and we are part of the Intemational 
Ki67 in Breast Cancer Working Group. 
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Outcomes 
The primary endpoints of this study were based on Ki67 
as a measure of turnour's resistance to Al. Two Ki67 
endpoints were used: 1) Ki67 change was calculated as 
the difference between Ki67 expression at surgery and 
baseline (relative change) and was categorised into Ki67 
response categories defined as percentage-changes 
from baseline to surgery: poor response (PR) (reduction 
<50%), intermediate response (IR) (50-75%) and good 
response (GR) (>75%). This reflects the antiproliferative 
response to Al treatment which relates to the treatment 
benefit. 2) Residual Ki67 at 2-week timepoint (Ki672wk) 
High (2: 10%) and Low ( <10%) which correlated to the 
residual risk after Al treatment. The secondary endpoint 
was time to recurrence (TTR) (local and metastatic 
recurrence) to evaluate the prognostic significance of 
the molecular characteristics analysed. 

Statistical analysis 
Statistical analysis was performed using the R software 
(version 3.6.3). P values were considered significant if 
lower than 0-05. Wilcoxon tests were applied in 
unpaired comparisons and Kruskall-Wallis tests in ali 
multiple comparisons in both treated and control 
turnours. Spearman Rank correlation was used to 
explore the correlation between genes or signatures. 
Logistic and ordinal regression models were performed 
to identify signatures significantly associated with 
2-week Ki67 and Ki67 response categories respectively.
Multiple testing correction was undertaken by the Ben­
jamini & Hochberg (FDR) method. 13 Significance analy­
sis of microarrays (SAM analysis) was performed in
multiclass setting to compare the Ki67 response catego­
ries and in the unpaired Two Class to compare extreme
response classes (GR and PR) and Ki672wk High versus
Low. 14 Hierarchical clustering of the gene expression
profiles that were identified by SAM analysis was also
performed. 15 

Consensus clustering was used to identify new 
molecular subgroups and their association with Ki67 
response categories and outcome was tested. 16 Controls 
and treated patients were included to obtain the sub­
groups, but only the treated patients with Ki67 available, 
were used to assess their predictive value for Al resis­
tance. 

TTR was measured as time from randomisation to 
local, regional, or distant turnour recurrence or death 
from breast cancer without previous notification of 
relapse. Second primary cancers and intercurrent 
deaths were censored. TTR was estimated using 
Kaplan-Meier methods and Cox models. Multivariable 
Cox-regression models were adjusted for standard post­
surgery clinicopathological variables: grade, tumour 
size, nodal status and age. We included age as the main 
driver/surrogate for the adjuvant treatment choice as 
most patients :::70 years old <lid not receive 
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chemotherapy or trastuzumab (67-2%, 82/122) com­
pared to patients <70 years (14%, 31/221). The indepen­
dent prognostic value of those gene-expression based 
variables with differential survival in the univariate anal­
ysis were assessed. Both controls and treated patients 
were included in the survival analysis. The assumptions 
evaluated were: r. that the dependent variable was 
ordered; 2. that one or more of the independent varia­
bles were continuous, categorical or ordinal; 3. that no 
multi-collinearity i.e. independent variables were inde­
pendent from each other and the proportional odds. 
And 4. that the tests were done for the proportional 
odds assumptions for the ordinal logistic regression 
analysis for single gene and signature with the Ki67 
Change categories GR/IR/PR. All the assumptions 
were met without any assumptions' violations. Patients 
with missing data were excluded. Only one patient had 
a missing variable (which constituted only 0-29% of the 
entire cohort). 

Ethics 
The POETIC trial was approved by the London-South 
East Research Ethics Committee (reference 08/Hrro2/ 
37) and adopted by the Declaration of Helsinki. Patients
provided written informed consent to molecular analy­
sis of their samples for research purposes.

Role of funding source 
Funders did not have any role in study design, data col­
lection, data analysis, interpretation or writing of report. 

Results 

Patient clinicopathological characteristics 
In this study, 342 ER+/HER2+ patients with baseline 
gene expression were included: 237 AI-treated and 105 

TREATED 

Ann AH Basal HERl-E LumA LumB 

untreated controls (Supplementary Figure Sr). The 
demographics were well balanced between both groups 
(Supplementary Table S2). In summary, 93-3% of the 
tumours were ductal, 48-2% were grade 2 and 38-3% 
grade 3. At surgery 54-7% had a tumour diameter 
between 2 and 5 cm and 47-4% had positive nodal sta­
tus. 60-5 percent of patients received adjuvant chemo­
therapy and trastuzumab and 98-2% of patients were 
treated with adjuvant ET. 

PAMSO subtypes and Ki67 endpoints 
We evaluated whether intrinsic subtypes could predict 
response to ET. In the entire subset of patients, 44-7% 
of tumours classified as HER2-E, 36-3% Luminal B, 17-
2% Luminal A and r-8% Basal-Like. In addition, the 
proportion of intrinsic subtypes was comparable 
between control and treated groups with the controls 
slightly enriched with HER2-E (54% vs 41-4%) and 
reduced Luminal A tumours (8-0% vs 2r-r%), not statis­
tically significantly different (p>o-05), Within the 
treated subgroup, 31% achieved GR, 22-5% were IRs 
and 46-5% PRs, while 52-0% had Ki67

2wk High and 48-
0% Low, respectively. 

As expected, most control tumours were classified as 
PRs (96-0%) and Ki672wk High (96-0%) (Table r). In 
the treated group, there was a significant change in 
Ki67 values in all subtypes (Figure rA), except for Basal­
like, possibly due to the small sample number. Overall, 
the HER2-E subtype was associated with poorer 
response to Al compared to non-HER2-E, evaluated as 
Ki67 response category and residual Ki67. HER2-E 
tumours were associated with higher grade (68-6% 
grade 3 in HER2-E vs 30-9% in luminals, p<o-ooor, 
Fisher test) and larger tumours (50-3% >3 cm in HER2-
E vs 39-1% in luminals, p<o-ooor, Fisher test). How­
ever, the association of the HER2-E subtype and Ki67 
response remained significant in each of the categories 

CONTROLS 

AH Basal HER2-E LumA LumB 

226 (100.0%) 3(1.3%) 95(42.1%) 45(19.9%) 83(36.7%) 50(100.0%) 0(0.0%) 27(54.0%) 4(8.0%) 19(38.0%) 

Ki67 Response Categories 

GR 70 (31-0%) 0(0-0%) 15 (15-8%) 18(40-0%) 37(44-6%) 0(0,0%) 0(0·0%) 0(0,0%) 0(0,0%) 0(0·0%) 

IR 51 (22-5%) 0(0-0%) 17 (16-5%) 11 (24-4%) 23 (27-7%) 2(4-0%) 0(0-0%) 1 (3-80%) 0(0-0%) 1 (5-3%) 

PR 105 (46,5%) 3(100%) 63 (66-3%) 16(35-5%) 23 (27-8%) 48(96-0%) 0(0·0%) 26(96-3%) 4(100%) 18 (94,7%) 

Chi ·squared 27-69, P<0-00001 Fisher's exact test P>0-05 

Ki672wks 

HIGH 118 (52-0%) 3 (100-0%) 80 (84-2%) 7(15-6%) 28(33-7%) 48(96-0%) 0(0-0%) 27 (100%) 3 (75-0%) 18(94-7%) 

LOW 109 (48-0%) 0(0-0%) 15(15-8%) 38(84-4%) 55 (66-3%) 2(4-0%) 0(0-0%) 0(0-0%) 1 (25-0%) 1 (5-30%) 

Chi-squared 67-98, P<0-00001 Fisher's exact test P>0-05 

Table 1: Distribution of the 4 intrinsic subtypes within patients with Ki67 data and by Ki67 categories 

Abbreviations: HER2-E, HER2-Enriched Subtype; LumA, Luminal A subtype; LumB, Luminal B subtype; GR, Good response; IR, lntermediate response, 

PR, Poor response; Ki672wk. Ki67 at 2 weeks timepoint. 
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Figure 1. Ki67 changes from baseline to surgery stratified by intrinsic subtype at baseline within a. Treated and b. Controls. 

Abbreviations: HER2-E, HER2-Enriched Subtype; LumB, Luminal B subtype; LumA, Luminal A subtype. 

within those variables. In the control patients with Ki67 
data, no significant changes of Ki67 were observed 
amongst subtypes (Figure 1B). These findings suggest 
that HER.2-E might be one of the main components 
driving poor early response to Al in ER+/HER2+ BC 
tumours. 

Signature expression and Ki67 endpoints 
We then evaluated the association of other biological 
molecular features (46 signatures) with the defined 
Ki67 endpoints (Supplementary Table S3). High expres­
sion of endocrine related signatures such as ESR1, 
ER-Signaling, FOXA1 and PgR as well as Luminal A 
and B correlation coefficient seores were associated 
with GR and Low Ki672w

k (OR 0-05-0-82; FDR<o• 
0001-0-0015, ordinal logistic regression model). while 
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high ERBB2, Basal-like and HER2-E correlation coeffi­
cient seores were associated with PR and High Ki67

2w
k 

(OR 1-52-12-31; FDR<o-0001, ordinal logistic regres­
sion) (Figure 2). Noteworthy, the high expression of 
apoptosis signature (pro-apoptotic) was associated with 
GR (OR 0-26; 95% CI 0-12-0-54; FDR=o-0017, ordinal 
logistic regression) whilst high DNA-damage repair sig­
natures such as the homologous recombination defi­
ciency (HRD), hypoxia, and the TP53 mutational status' 
surrogate signature were associated with PR (OR 
2-18-2-65, FDR<o-0001-0-0059, ordinal logistic
regression). Additional high expression of signatures
involved in immune-checkpoint component and
tumour immunity such as ID01, IFN Gamma, PD-Li

and Tumour Inflammation Signature (TIS) as well as
the genomic risk score were associated with High
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a. Differential signature expression amongst Ki67 response categories
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Figure 2. Signatures significantly associated with differential response to Al. a. Ordinal regression models in treated patients with 
Ki67 data (n=227) coloured by FDR for Ki67 response categories and b. Logistic regression models for Ki67 iwk. Abbreviations: Al, Aro­
matase inhibitors; logOR, log Odds Ratio; FDR, False discovery rate; HER2-E, HER2-Enriched Subtype; LumB, Luminal B subtype; 
LumA, Luminal A subtype. 
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Ki67
2wk (OR 1-67-1-49, FDR<o-0001-0-0084, logis­

tic regression). Following prior evidence, we also 
assessed the correlation of the different signatures with 
Ki67 > or < than 20% to valida te our findings. '7 The 
same signatures were associated with differential 
response to Al based on this Ki67 threshold (Supple­
mentary Table S4). 

To assess the above associations according to the dif­
ferent subtypes, we tested them in the HER2-E and 
Luminal subtypes separately. The signatures were not 
significantly differently expressed between response cat­
egories amongst HER2-E tumours for any of the two 
Ki67 endpoints (Supplementary Figure S2A). However, 
in the Luminal tumours, proliferation, TP53 mutational 
score, genomic risk and the Basal-like and HER2-E coef­
ficient seores were associated with High Ki672wk (OR l· 

15-16-84; FDR=o-00056-0-013, logistic regression),
while high expression of AR signature and the Luminal
A coefficient seores were assodated with Low Ki672wk
(OR 0-25-0-77; FDR=ooo19-o-013, logistic regres­
sion) (Supplementary Figure S2B). Thus, beyond
HER2-E intrinsic subtype: ERBB2, TP53 mutational sta­
tus, HRD and sorne immune-related signatures were
also associated with early resistance to Al.

Single gene expression and Ki67 endpoints 
Multiclass SAM analysis of single gene expression for 
the three Ki67 response categories (GR/IR/PR) (.i=o• 
26, FDR<o-05) identified 8 genes with significantly dif­
ferent expression amongst groups (p<o-05). High 
expression of GRB7 and ERBB2 were associated with 
PR while high expression of others such as IGFIR, 

ESR1, CHAD and BCL2, were associated with GR 
(Figure 3A). Two unpaired class SAM analysis for GR 
versus PR (.i=1, FDR<o-05) showed the association 
of 31 genes with GR (p <0-05, Wilcoxon test) 
(Figure 3B)· Two class unpaired SAM analysis with 
Ki672wk categories: High versus Low (.i=1-63, 
median FDR=o) identified 128 genes associated to 
Low Ki67

2wk including genes involved in PI3K/AKT, 

MAPK and oestrogen signaling and 83 genes associ­
ated to High Ki672wk, including genes involved in 
immune-checkpoint component, proliferation and 
cell-cycle regulation (Figure 3C). 

To further investigate the biological differences 
between early Al responders and resistant tumours we 
evaluated the ESR1 gene expression levels amongst the 
four intrinsic subtypes. The highest levels of ESR1 were 
seen in Luminal B tumours. Noteworthy, within the 
Luminal A tumours a group of patients showed lower 
levels of ESR1 were assodated with higher levels of 
ERBB2 signaling, especially when compared with other 
subtypes (Supplementary Figure S3). 

Overall, at a single gene expression level, ER signal­
ling-related genes drive responses to Al treatment while 
HER2 and immune-related genes associates with early 
resistan ce. 
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ldentification of new molecular subgroups predicting 
Ki67 endpoints 
Using consensus clustering, we identified 5 novel 
molecular subgroups of samples based on single-gene 
expression that are associated with different Ki67 
response and Ki672wk (Figure 4 and Supplementary 
Table S5). Interestingly, these new molecular subgroups 
divided mainly HER2-E samples with lower response to 
Al, into three groups with differential expression of 
molecular features such as ERBB2, ER signaling or 
immune-related pathways. 

Figure 4 shows the molecular features of the clus­
ters (C): C1, C2 and C3 were characterised by PR to Al 
(60/m, 54-1%) and high Ki672wk (82/m, 73-9%) and 
an enrichment of HER2-E subtype (79/m; 71-2%) and 
Luminal B tumours (21/rr1, 18-9%) (Supplementary 
Figure S4A). C1 (29-2% of the total) showed higher lev­
els of immune and chemokine-related genes and lower 
levels of ESR1 (Supplementary Figure S4B). C2 (14-2% 
of the total) had higher levels of extracellular matrix 
organization (ECM) related genes, lower levels of ESR1 

and the highest levels of ERBB2 (Supplementary 
Figure S4C), also observed when distributed by sub­
types. C3 (5.7% of the total) had low expression of most 
genes but a slight upregulation of genes covering 
DNA-damage repair deficiency. C4 (22.1%) and C5 (28-
8%) were characterised by GR to Al and an enrichment 
of luminal tumours (Luminal B 81/165; 49-1% and 
Luminal A 57/165; 34-5%) (Supplementary Figure S4A 
and Supplementary Table S5). Both luminal subgroups 
overexpressed ER signaling-related genes. However, 
while C4 had the highest levels of ESR1 (Figure 5C), C5 

was enriched with genes involved in MAPK/PI3K and 
RAS signaling. Figure 4 also shows the signatures' 
expression within each of the single gene-based molec­
ular subgroups, thus confirming the biologic distinc­
tiveness of each of the new molecular subgroups. 

Time to recurrence analysis 
Median follow-up was 62-9 months (lQR 58-1-74•1). 
Univariate analysis was performed to evaluate the prog­
nostic value of each individual genomic feature ana­
lysed. There was no overall significant difference of 
TTR between intrinsic subtypes when all the subgroups 
were compared together (Figure 5A). However, HER2-E 
had significantly poorer TTR (HR 2-14; 95% Cl 1-rr-4• 
17; p=o-022, univariate regression model) compared to 
luminal tumours (Figure 5B). C2, which is characterised 
by low expression of immune-related genes and the 
highest ERBB2 expression, showed a significantly 
higher risk of recurrence compared to the rest of the 
molecular subgroups (HR 3-05; 95% Cl 1-31-7-15; p=o• 
01, univariate regression model) (Figure 5C). 

We performed a series of cox regression models for 
multivariable survival analysis including standard clini­
copathologic factors along with different molecular sub­
groups for TTR and compared the changes of chi-
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squared values between them to assess the added value 
of the different models (Supplementary Table S6). 
HER2-E subtype remained as an independent predictor 
of higher risk of relapse (HR 2.55, 95% CI I-I4-5-69; 
p=o-022, multivariable regression model). C2 was also 
an independent predictor of shorter TTR compared to 
C1, indicating that this model adds significant value 
beyond intrinsic subtypes (Likelihood ratio test, p= 

0.0025). (Supplementary Figure S5). 
To explore further the role of adjuvant HER2-tar­

geted treatment and chemotherapy on survival, we repli­
cated the same analysis but separately for those patients 
that had received both of these treatments and those 
that did not (Supplementary Figure S6). Noteworthy, 
among patients who had received adjuvant trastuzumab 
plus chemotherapy, there were no significant differen­
ces in TTR observed between HER2-E and other sub­
types (Supplementary Figure S6a). However, among 
patients who had not received trastuzumab and chemo­
therapy, HER2-E was still significantly associated with 
worse outcome compared to non-HER2-E (Supplemen­
tary Figure S6a). Por the new molecular subgroups, the 
survival outcome within the new molecular subgroup 2 
was worse compared to the others in those patients 
receiving adjuvant anti-HER2 treatment. In addition, in 
the multivariable models, the new molecular subgroups 
remained as independent predictors of TTR restricting 
to patients who received trastuzumab plus chemother­
apy (HR 3.95; 95% CI 1-04-14-94; p=o-0043, multivari­
ate regression model). 

Finally, a series of multivariable analyses for TTR of 
signature expression adjusted for the clinicopathological 
factors showed that severa! immune related signatures 
(HR 0.50-0-78, nominal p <0-0001-0-0430, multi­
variable regression model) as well as the apoptosis sig­
nature (HR 0-36, 95% CI 0-15-0-38; p=o-024, 
multivariable regression model) were independent pre­
dictors ofbetter TTR. By contrast, claudin-low signature 
showed independent worse prognostic value (HR 1.26, 
95% CI 1-06-1-56; p=o-031, multivariable regression 
model) (Supplementary Table S7). A final model includ­
ing all identified features was not performed due to the 
high collinearity amongst the main significant signa­
tures (Supplementary Figure S7). 

Discussion 

Al treatment is the standard of care and most effective 
therapy for post-menopausal women with early ER+ 
BC. However, ER+ tumours that also over-express 

HER2, show limited response to ET and thus, are at a 
higher risk of recurrence. 12 Most studies perforrned in 
ER+/HER2+ BC have focused on resistance to anti­
HER2 targeted therapy while mechanisms of resistance 
to ET are not well understood within this subgroup. 
This study investigated the predictive and prognostic 
value of molecular features at baseline in ER+/HER2+ 
BC treated with perioperative Al. 

Prior studies have revealed that HER2-E subtype is 
a predictor ofhigher sensitivity to anti-HER2 targeted 
therapy but worse outcome than other subtypes such 
as luminal tumours.5•17-

19 Nevertheless, the role of
the intrinsic subtypes in response to ET has not been 
well established yet. A prior single-arm, multicentric 
study (PerELISA) included 65 postmenopausal 
patients with HR+/HER2+ operable patients receiv­
ing 2 weeks of letrozole and then undergoing to re­
biopsy for Ki67 evaluation. 17 This study reported the
association of PAM50 intrinsic subtyping with molec­
ular responders (Ki67 relative reduction >20% from 
baseline). 92% of responders were luminal A and B 
versus 44% HER2-E and basal-like (P < 0-001). These 
results were aligned with ours; however, this is a 
small, single arm, non-randomised study, while 
POETIC was a randomised trial, enabling us to evalu­
ate the predictive value of the intrinsic subtyping). 
Within PerELISA trial patients classified as molecular 
responders continued letrozole and started trastuzu­
mab-pertuzumab for five cycles. They also reported 
that the pCR rate was significantly higher in HER2-E 
than in other subtypes (45-5% versus 13-8%, P=o• 
042). There was no association test of survival out­
come reported, nevertheless, these results are of clini­
cal significance as this provide a potential strategy for 
de-escaling the treatment management 

Our results identified HER2-E subtype as a predictive 
biomarker of resistance to Al in ER+/HER2+ BC with an 
additional higher risk of relapse. 2º·21 These findings
highlight two aspects. First, they suggest the potential 
need oftreatment intensification for HER2-E ER+/HER2 
+ BC tumours with intensive anti-HER2 targeted ther­
apy. Second, the higher sensitivity to Al and good prog­
nosis associated with luminal tumours, in particular with 
Luminal A, provides a rationale for testing de-escalation
approaches, such as the reduction of anti-HER2 blockade 
duration or avoiding chemotherapy, previously sug­
gested. 22 A related finding was published in 2021 as part
of the ADAPT HER2+ trial in which the pooled TDM1
arm of patients with HER2-E subtype had a higher pCR,
which was not observed in the trastuzumab arrn. 23 

of the 21 multigene signatures, ordered according to the new 5 molecular subgroups. Abbreviations: HER2-E, HER2-Enriched Sub­

type; LumB, Luminal B subtype; LumA, Luminal A subtype; GR, Good responders; IR, lntermediate responders, PR, Poor Responders; 

Ki672wk. Ki67 at 2 weeks timepoint, ER, Oestrogen receptor; HRD, Homologous recombination deficiency ECM, extracellular matrix; 

TIS, Tumour lnflammation Signature; TIGIT, T cell immunoreceptor with lg and ITIM domain; MHC, Major Histocompatibility complex 

APM, Antigen Processing Machinery, IFN-gamma, interferon gamma. 
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Nowadays, the biggest question is how to select 
patients for escalation and de-escalation strategies. 
Recent "chemotherapy-free" neoadjuvant studies have 
shown that the combination of HER2-E subtype with 
high ERBB2 mRNA expression may identify patients 
with HER2+ earll BC with higher sensitivity to double
HER2-blockade.1 However, only one third of ER+/HER 
+ BC patients are HER2-E/ ERBB2 high and their role as
prognostic biomarkers is still unknown. Using consen­
sus clustering, we identified new molecular subgroups
based on single gene expression at a higher risk of
relapse beyond HER2-E subtype. Results from the strati­
fied analysis by adjuvant treatment (chemotherapy plus
anti-HER2 treatment yes vs no) showed similar TIR
despite intrinsic subtype in those patients receiving tras­
tuzumab plus chemotherapy. This highlights the
hypothesised notion that patients with HER2-E subtype
benefit the most from anti-HER2 treatment. The inde­
pendent prognostic value for the new molecular sub­
groups for TIR in patients who received trastuzumab
plus chemotherapy suggests the potential clinical utility
of these new molecular subgroups to identify a set of
ER+/HER2+ patients, beyond intrinsic subtypes, who
may benefit from emerging treatment such as CDl<4,/6
inhibitors.

Noteworthy, tumours characterised by an enrich­
ment of immune features showed the lowest risk of 
recurrence despite immune features being predictive 
markers of resistance to Al and poor outcome in ER 
+/HER2- BC.24•

25 Due to its intrinsic good prognosis, 
BC patients within this molecular subgroup showing an 
enrichment of immune characteristics could potentially 
benefit the most from a de-escalating approach, using 
for example 6 month of trastuzumab plus Al without 
chemotherapy followed by 5 years of Al treatment alone. 
Severa! trials in HER2+ BC have shown that tumours 
with higher baseline tumour infiltrating lymphocytes 
(TILs) and other immune features achieve higher patho­
logical complete response rates and improved event-free 
survival.26 Our study confirms the association of higher 
expression of immune-features with a very low risk of 
recurrence in ER+/HER2+ BC. By contrast, tumours 
with higher levels of ERBB2 and lower associated 
immunity had a significantly higher risk of relapse, 
indicating that these patients may benefit from an 
intensified anti-HER2 treatment, using for example 
double anti-HER2 blockade or adjuvant TDM1.2

?-
28 

Therefore, these new molecular subgroups might be 
essential to identify candidates for new escalating and 
de-escalating strategies. 

The role of tumour immunity in response to ET has 
been mainly studied in ER+/HER2- BC disease, with 
higher expression of genes involved in immune enrich­
ment and targetable immune checkpoint components 
being correlated with higher risk such as Luminal B 
tumours. 24•

25 Our study shows that higher tumour 
immunity might also be a key driver of early resistance 

to ET in ER+/HER2+ BC. However, in this subgroup 
the association of higher expression of immune-features 
and lower risk of recurrence indicates the different role 
of tumour immunity between HER2+ and HER2- dis­
ease and may suggest a de-escalation approach. 

Furthermore, our study shows other striking molec­
ular associations such as high expression of HRD and 
TP53 signature predicting poor response to Al, and 
higher apoptosis signaling being associated with good 
response and survival. The association of DNA damage 
repair defects with resistance to ET has been previously 
reported.29 In addition, the inhibition of poly (ADP­
ribose) polymerase-1 (PARP), has shown anti-tumour 
effects with a strong synergism and good tolerance in 
combination with anti-HER2 targeted therapy or ET in 
vitro and in phase 1/11 trials independently of DNA 
repair deficiency.30 TP53 mutational status has also
been previously linked with poor survivaP' and overex­
pression of HER2,32 although its role in response to Al 
is still unclear. Previous data has shown that sorne 
molecular features related to apoptosis can be predic­
tive of adjuvant benefit from ET.33 Based on our 
results, the association of high expression of sorne of 
the signatures reported above such as immune-related 
signatures and TP53 mutational score with poor Al 
response could be explained by the high correlation 
with the HER2-E subtype. 

Our study has two main limitations. Firstly, we only 
analysed gene expression for 758 genes and intrinsic 
subtypes profiles using the BC360 platform and other 
important pathways may have been missed. Secondly, 
clinical practice is currently different to that imple­
mented in the recruited POETIC patients as high-risk 
tumours would be receiving additional pertuzumab and 
further anti-HER2 agents such as TDM1. It is notewor­
thy that one third of the patients in our cohort <lid not 
receive any adjuvant treatment apart from ET due to 
their advanced age, but we adjusted the survival analysis 
for age as a main surrogate of treatment choice. The 
major strengths of our study are that to our knowledge 
this is the largest cohort investigating response to pre­
surgical Al in ER+/HER2+ subgroup in a real-world 
cohort which has a unique value to assess global gene 
expression data at baseline as defined in the clinical 
practice. Lastly, we were able to analyse both the molec­
ular features associated to mechanisms of resistance 
and their prognostic value. 

In conclusion, HER2-E subtype and ERBB2 play a 
crucial role in ER+/HER2+ BC, driving resistance to ET 
and a higher risk of recurrence. Beyond them, new 
molecular subgroups enable the identification of 
patients at a higher risk of relapse. Altogether, the com­
bination of these biomarkers would lead to a better tai­
loring of treatment strategies, including escalation and 
de-escalation approaches, to improve resistance to treat­
ment in early BC. The appropriate new strategies need 
to be addressed in prospective clinical trials. 
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4.2.1 Supplementary materials from manuscript 3 

Supplementary figure S1. Consort diagram ofthe study 

Abbreviations: ER+, estrogen receptor positive; BC, Breast Cancer; IIT, insufficient infiltrating tumour· 

4480 ER+ BC patients in 

POETIC 1 

-----------

HER2+BC 

n= 468 patients 

-------------
CONTROLS 

n= 152 patients 

EXCLUSIONS: 

21 no blocks, ER negative or 

IIT 

22 insufficient RNA 

4 failed nanostring QC 

CONTROLS 

n= 105 patients 

50 patients with Ki67 data 

Total number of patients n= 342 

Total number of patients with Ki67 n= 277 

TREATED 

n= 316 patients 

EXCLUSIONS: 
- 56 no blocks, ER negative or

IIT
- 17 insufficient RNA
- 6 failed nanostring QC

TREATED 

n= 237 patients 

227 patients with Ki67 data 

104 



Supplementary table S1. Breast Cancer 360 Biological signatures 

PATHWAYS SIGNATURES SUMMARY 

AR exoression Gene encodin!! AR !!ene 

Breast Cancer Receptors 
ER exoression Gene encodin!! the estroeen recentor 

HER2 =ession Gene encodin!! ERBB2

PR exoression Gene encodin!! the oro!!esterone rerP.ntor 

CDK4 PYnrPSSion Gene encodinª CDK4

Breast Cancer Signaling CDK6=ssion Gene encodin!! CDK6

Pathways ER Si!!Ilalin!! Measures ER mediated si!!Ilalino 

PTEN exnression Gene encodin!!: PTEN

Basal-Like Correlation Correlation Coefficient for Basal-Like subtvoe 

Claudin-Low Molecular subtype characterized by low level ofluminal markers, high EMT 

HER2-Enriched Correlation Correlation Coefficient for HER2-Enriched subtvne 
Breast Cancer Subtyping Luminal A Correlation Correlation Coefficient for LuminalA subtvoe 

Luminal B Correlation Correlation Coefficient for LuminalB subhme 

PAMS0 Subtypes 50-gene signature classifying breast cancer into 4 distinct subtypes

TNBC SubtvnPs Si!!:nature identi:fies 4 distinct TNBC subtvnes 

Breast Cancer Prognosis Genomic Risk ofRecurrence 
Uses Subtype eorrelation and PAMS0 proliferation score to estímate genomic 
risk of distant recurrence 

CD8 T-cells Measures the abundance of CD8+ T cells 

Cytotoxic Cells Measures the abundance of cytotoxic cells in tumour microenvironment 
Immune Cell Population 

Macroohace Abundance Measures the abundance ofmacronh,.oes 
Abundance 

Mast Cells Measures the abundance of mast cells 

Treg abundance Measures Treg abundance by measuresing FOXP3 

Inhibitory Metabolism Hypoxia Measures genes associated with reduced oxygenation in the tumour 

B7-H3 Gene encodin!! B7-H3

Inhibitory Tumour IDO 1 expression Gene encoding Indoleamine 2,3 dioxygenase 1 

Mechanisms PD-Ll Gene encodin!! Prot>rnm cell death li!!and-1 

TGF-Beta e=ssion Gene encodinª TGF-Beta

Inflammatory Chemokines Measures chemokines that recruit myeloid and lymphoid populations to tumour 

Inhibitory Tumour PD-1 Gene encodin<> PD-1

Signaling PD-L2 Gene encodin!! Proornm cell death li!!and-2 

TIGIT expression Gene encoding T cell immunocreceptor and lg and ITIMS domains 

Endothelial cells Measures genes associated with vascular tissue and angiogenesis 
Stromal Factors 

Stroma Measures stromal eomponents in the tumour microenvironment 

Tumour Immunogenicity APM Measures abundance of genes in MHC Class I antigen presentation pathway 

Cytotoxicity Measures molecules used by natural killer and CD8+ T cells 

lnterferon !!amma si!!Ilallin!! Tracks the canonical resoonse to IFN f!amma 

Anti-Tumour Immune 

Activity MHC class II antigen presentation 
Measures the major human leukocyte antigens involved in MHC Class II antigen 
presentation 

TIS Measures the abundance of a peripherally suppressed adaptive immune response 

P53 mutational score 
It is a surrogate ofTP53 status: higher seores refer to a mutant-like status and 
lower seores to a wild-tvoe status· 

Tumour Mutational 

Response 
BRCAness Informs about defects in DNA damage repair-genes BRCAl and 2 

HRD 
It functionally asseses HR repair status· Higher score refers to higher damage 
reoair de:ficiencv· 

Apoptosis Captures genes associated with apoptotic processes, pro- and antiapoptotic genes 

Proliferation Measures genes involved in tumour proliferation 

Cell Adhesion Seores samples for downregulation in tight junction genes 

Tumour Regulation 
Differentiation Score Assigns a score of differentiation to the sample· 

FOXAJ =ssion Gene eneondin!! FOXAJ transcriotion factor 

Mammary Stemness Measures a cluster ofEMT genes upregulated in stem-cell-like tumours 

Rbl Exnression Gene eneodin!! retinoblastoma !!ene 

SOX2 Exnression Gene eneodin!!: SRY-box2 
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Supplementary table S2. Demography ofthe study population 
Abbreviations: n: number; G: Grade; ILC: Invasive lobular carcinoma; IDC: Invasive ductal carcinoma; ER, Estrogen 
receptor; PgR, Progesterone receptor, ET, Endocrine Therapy. 

ALL(n=342) TREATED (n=237) CONTROL (n=105) 

A11e of randomisation (vears 

50-5( 62 08·1%) 40 06·9%) 22 (21 ·0%) 
60-69 159 (46·5%) 110 (46·4%) 49 (46·7%) 
70-79 87 (25·5%) 63 (26·6%) 24 (22·9%) 

>80 34 (9·9%) 2400·1%) 10 (9·50%) 
Media11 66 (50-91) 66 (50-91) 66 (51-90) 

Sureerv Tumour size (cm) 

� 137 (40·0%) 90 (38·0%) 47 (44·7%) 
>2&<5 187 (54·7%) 137 (57·8%) 50 (47·7%) 
Media11 2·3 (0·6-16·5) 2·35 (0·6-8·40) 2·20 (0·8-16·5) 

Sureerv Nodal Status 

Positivd 163 (47·7%) 105 (44·3%) 58 (55·2%) 
Negativd 179 (52·3%) 132 (45·7%) 47 (44·8%) 

Pre-sureical Tumour Grade 

Gl 12 (3·50%) 10 (4·20%) 2 O ·90%) 
G2 165 (48·2%) 118 (49·8%) 47 (44·8%) 
G3 131 (38·3%) 85 (35·9%) 46 (43·8%) 

UnknoWl1 3400·0%) 2400·1%) 10 (9·50%) 
Histoloeical Tvoe 

ILC 21 (6· 10%) 15 (6·30%) 6 (5·70%) 
IDC 319 (93·3%) 220 (92·8%) 99 (94·3%) 

Mucinom 2 (0·60%) 2 (0·90%) O (0·0%) 
UnknoWl1 O (0·0%) O (0·0%) O (0·0%) 

ERstatus 

Positive 342 000·0%) 237 000·0%) 105 000%) 
Neeative O (0·0%) O (0·0%) O (0%) 

PP-Rstatus 

Positive 159 (46·5%) 111 (46·8%) 48 (45·7%) 
Negative 83 (24·3%) 70 (29·6%) 27 (25·7%) 

UnknoW11 100 (29·2%) 56 (23·6%) 30 (28·6%) 
Presureical ET 

Letrozole 153 (44·7%) 153 (64·6%) O (0·0%) 
Anastrozole 84 (24·6%) 84 (35·4%) O (0·0%) 

No treatmen1 105 (30·7%) O (0·0%) 105 000%) 
Adiuvant treatment theraoi 

Trastuzumab + chemotherapy 207 (60·5%) 135 (57·0%) 72 (68·5%) 

Chemotherapy alone 23 (6·70%) 16 (6·80%) 7 (6·7%) 

No chemotherapy 01 
112 (32·7%) 86 (36·2%) 26 (24·8%) 

trastuzumal 
Adiuvant ET 

Yes 336 (98·2%) 233 (98·4%) 103 (98·1%) 
Letrozole 174 (50·9%) 123 (51 ·9%) 51 (48·6%) 

Anastrozole 139 (40·6%) 91 (38·4%) 48 (45·7%) 
Exemestane 1 <0·30%) 1 <0·40%) O <0·0%) 
TamoxifeIJ 7 (2·0%) 7 (3·10%) O <0·0%) 

Sequential Al and tamoxifeIJ 15 (4·40%) 11 (4·60%) 4 (3·8%) 

No adjuvant endocrine 
4 (1 ·20%) 2 (0·80%) 2 (1 ·9%) 

theram 
UnknOWl1 2 <0·60%) 2 (0·80%) O (0%) 
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Supplementary table S3. Association analysis of signature expression and response to Al in treated patients (n=227) for 
the three response categories using ordinal logistic regression models with OR towards poor response and for the two 
Ki672wks categories: high vs low, using univariate logistic regression models with OR towards high· In bold FDR values 
are the significant signatures. Abbreviations: ESRI, Estrogen Receptor 1; ERBB2, gene HER2; FOXAI, Forkhead 
BoxAl; HRD, Homologous Recombination Deficiency; PGR: Progesterone Receptor; P D-LI, Programmed death-ligand 
1; Treg, Regulatory T cells; PTEN, Phosphatase and tensin homolog; IDO 1, Indoleamine 2,3-dioxygenase; AR, Androgen 
Receptor, IFN Gamma, Interferon Gamma; TIS, Tumour Inflammation Signature; PD-L2, Programmed death-ligand 2; 
TIGIT, T cell immunoreceptor with lg and ITIM domain; APM, Antigen Processing Machinery; BRCAness, Breast 
Cancer Gene deficiency; CDK6, Cyclin-dependant kinase 6; TGFB, Transforming growth Factor Beta; Rhl, 

Retinoblastoma; SOX2, SRY(Sex determining region Y)-box2; MHC2, major histocompatibility complex 2; PDI, 

Programmed cell death protein 1; CDK4, Cyclin-dependant kinase 4; CDS T cells, Cytotoxic T lymphocytes; HER2-E, 
HER2-Enriched Subtype; LumB, Luminal B subtype; LumA, Luminal A subtype; OR, Odds Ratio; FDR, False discovery 
rate, CI, Confidence Interval, Ki672w,Ki67 at 2 weeks timepoint. 

Signatures Ki67zwks Ki67 response categories 

Lower Upper Lower 

OR 95%CI 95%CI p-value FDR OR 95%CI Upper 95%C p-value FDR 

HER2-E score 120·53 34·88 481·42 <0·0001 <0·0001 12·31 5·02 31·43 <0·0001 <0·0001 

ESR1 0·57 0·46 0·69 <0·0001 <0·0001 0·65 0·55 0·75 <0·0001 <0·0001 

ER-Signalin11 0·38 0·26 0·55 <0·0001 <0·0001 0·44 0·31 0·60 <0·0001 <0·0001 

ERBB2 1·59 1·33 1·93 <0·0001 <0·0001 1·52 1·29 1·80 <0·0001 <0·0001 

LumB score 0·06 0·02 0·20 <0·0001 <0·0001 0·05 0·01 0·16 <0·0001 <0·0001 

P53 mutational score 11-11 5·98 22·46 <0·0001 <0·0001 2·65 1-78 4·04 <0·0001 <0·0001 

Basal score 460·36 93·08 2819·38 <0·0001 <0·0001 8·08 3·07 22·62 <0·0001 0·00026 

FOXA1 0·28 0·16 0·46 <0·0001 <0·0001 0·42 0·26 0·63 <0·0001 0·00046 

LumA score 0·02 0·01 0·06 <0·0001 <0·0001 0·25 0·11 0·53 0·00037 0·0017 

Apoptosis 0·15 0·06 0·35 <0·0001 <0·0001 0·26 0·12 0·54 0·00034 0·0017 

HRC 6·56 3.57 12·83 <0·0001 <0·0001 2·33 1·45 3·83 0·00061 0·0026 

PGll 0·74 0·64 0·85 <0·0001 <0·0001 0·82 0·72 0·92 0·0015 0·0057 

Hypoxia 2·84 1·67 5·03 0·00019 0·00050 2-18 1·36 3·60 0·0017 0·0059 

Proliferation 4·30 2·61 7.45 <0·0001 <0·0001 1·39 0·94 2·07 0·10 0·25 

Genomic Risk 1·06 1·04 1·08 <0·0001 <0·0001 1·02 1·00 1·03 0·04 0·12 

/001 1·67 1·36 2·08 <0·0001 <0·0001 1-19 1·01 1·42 0·04 0·12 

IFNGamma 1·76 1·37 2·29 <0·0001 <0·0001 1-14 0·91 1·42 0·26 0·42 

All 0·58 0·43 0·77 0·00022 0·00056 0·80 0·63 1·01 0·07 0·17 

PD-Ll 1·88 1·35 2·67 0·00029 0·00071 1·28 0·95 1·74 0·11 0·25 

TIS 1·64 1·26 2-16 0·00032 0·00073 1-12 0·88 1·42 0·35 0·56 

Endothelial Cells 0·37 0·21 0·63 0·00036 0·00080 0·71 0·43 1-14 0·16 0·30 

PD-L2 1·85 1·31 2·65 0·0006 0·0012 1-15 0·85 1·57 0·37 0·57 

Tre11 1·73 1·26 2·43 0·0010 0·0020 1·24 0·93 1·65 0·14 0·28 

Macrophages 1·92 1·26 2·99 0·0029 0·0053 1-10 0·74 1·62 0·64 0·72 

APM 1·42 1-13 1·80 0·0029 0·0053 1·03 0·83 1·26 0·81 0·83 

Cytotoxici� 1·52 1-16 2·03 0·0032 0·0056 1-10 0·86 1·41 0·43 0·61 

TIGIT 1·41 1-12 1·80 0·0045 0·0077 1·06 0·86 1·32 0·58 0·70 

lnflammatoll 

Chemokines 1·56 1-15 2·15 0·0051 0·0083 1·22 0·92 1·62 0·18 0·33 

CVtotoxic Cells 1·49 1-13 1·98 0·0053 0·0084 1·09 0·85 1-40 0·48 0·63 

PTEri 0·45 0·24 0·85 0·016 0·024 0·63 0·34 1-15 0·13 0·28 

SOX2 1·25 1·01 1·56 0·041 0·061 1·08 0·89 1·32 0·44 0·61 

Mast Cells 0·78 0·61 0·99 0·045 0·065 0·92 0·73 1-15 0·45 0·61 

CDS-T-Cells 1·31 1·00 1·73 0·049 0·069 1·06 0·83 1·36 0·63 0·72 

BRCAness 1·75 1·00 3·14 0·055 0·072 1·82 1·08 3·15 0·03 0·09 

CDK6 expression 1·47 1·00 2·21 0·056 0·072 1·33 0·92 1·94 0·14 0·28 

Claudin Low 0·79 0·61 0·99 0·054 0·072 0·94 0·76 1-17 0·59 0·70 

87-H3 0·63 0·38 1·02 0·066 0·082 0·92 0·59 1·43 0·71 0·76 

TGF-Beta 0·67 0·42 1·08 0·10 0·12 0·75 0·48 1-17 0·21 0·36 

Stroma 0·75 0·53 1·06 0·11 0·13 0·94 0·68 1·30 0·71 0·76 

Mammall 

Stemness 0·87 0·71 1·05 0·15 0·18 0·99 0·82 1-19 0·89 0·89 

PD-1 1·26 0·91 1·77 0·17 0·19 1·09 0·80 1·49 0·58 0·70 

CDK4 expression 1·50 0·80 3·04 0·23 0·25 1-19 0·67 2·19 0·55 0·70 

Rb1 0·70 0·36 1·33 0·28 0·30 0·69 0·37 1·28 0·25 0·42 

Differentiation 0·87 0·59 1·26 0·45 0·48 0·70 0·48 1·02 0·07 0·17 

MHC2 1·05 0·82 1·35 0·67 0·69 1-10 0·87 1·38 0·43 0·61 

Cell Adhesion 0·96 0·77 1-19 0·71 0·71 1·03 0·84 1·26 0·76 0·80 
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Supplementary table S4. Association analysis of signature expression and response to Al in treated patients (n=227) 
for the two Ki67 response categories: >20% vs <20%, using univariate logistic regression models with OR towards 
high. Abbreviations: ESRJ, Estrogen Receptor 1; ERBB2, gene HER2; FOXAJ, Forkhead BoxAl; HRD, 
Homologous Recombination Deficiency; PGR: Progesterone Receptor; PD-Ll, Programmed death-ligand 1; Treg, 
Regulatory T cells; PTEN, Phosphatase and tensin homolog; IDO], Indoleamine 2,3-dioxygenase; AR, Androgen 
Receptor, IFN Gamma, Interferon Gamma; TIS, Tumour Inflammation Signature; PD-L2, Programmed death-ligand 
2; TIGIT, T cell immunoreceptor with lg and ITIM domain; APM, Antigen Processing Machinery; BRCAness, 
Breast Cancer Gene deficiency; CDK6, Cyclin-dependant kinase 6; TGFB, Transforming growth Factor Beta; Rbl, 

Retinoblastoma; SOX2, SRY(Sex determining region Y)-box2; MHC2, major histocompatibility complex 2; PDJ, 

Programmed cell death protein 1; CDK4, Cyclin-dependant kinase 4; CDS T cells, Cytotoxic T lymphocytes; HER2-
E, HER2-Enriched Subtype; LumB, Luminal B subtype; LumA, Luminal A subtype; OR, Odds Ratio; FDR, False 
discovery rate, CI, Confidence Interval, Ki67 2w, Ki67 at 2 weeks timepoint. 

Lower95%CI Upper95%CI 
Si1mature OR o-value FDR 

ER Si1malin11 4·06 2·56 6·77 <0·0001 <0·0001 

ESRl 1·61 1 ·37 1 ·92 <0·0001 <0·0001 

LumB 40·76 10·86 173·92 <0·0001 <0·0001 

ERBB2 0·56 0-44 0·70 <0·0001 <0·0001 

HER2E 0·04 0·01 0·13 <0·0001 <0·0001 

Basal 0·07 0·02 0·23 <0·0001 <0·0001 

Hvooxia 0·29 0·16 0·51 <0·0001 <0·0001 

PGR 1·46 1·23 1-77 <0·0001 <0·0001 

LumA 6-41 2-47 17-76 <0·0001 0·0011 

P53 mutational SCOTl 11 ·11 0·26 0·68 <0·0001 0·0018 

BRCAness 0·39 0·20 0·74 0·0046 0·019 

CDK6 Exoression 0·51 0·31 0·81 0·0056 0·020 

HRD 0-44 0·24 0·78 0·0057 0·020 

FOXAl 1·79 1 ·20 2·88 0·010 0·034 

Mast Cells 1·43 1 ·08 1 ·91 0·013 0·039 

Aoootosis 2·71 1·14 6·71 0·027 0·077 

IDOl 0·80 0·65 0·98 0·037 0·100 

Proliferation 0·61 0·37 0·99 0·051 0·13 

CDK4 Exoression 2·18 0·97 5·44 0·079 0·19 

PTEJ\ 1·86 0·91 3·90 0·093 0·21 

Stroma 1·38 0·94 2·02 0·10 0·22 

Genomic Risk 0·98 0·96 1·00 0·11 0·22 

Differentiation 1·36 0·87 2·16 0·18 0·36 

APM 0·85 0·66 1 ·10 0·22 0-42

Trel! 0·81 0·56 1 • 16 0·25 0-45

Cvtotoxicitv 0·84 0·62 1·13 0·26 0·45 

PD-Ll 0·81 0·56 1 ·17 0·27 0·46 

Rbl 1·46 0·70 3·09 0·31 0·51 

AR 1·15 0·87 1·50 0·32 0·51 

Cvtotoxic Cells 0·87 0·64 1 ·17 0·36 0·54 

TIS 0·88 0·65 1 ·17 0·36 0·54 

TIGIT 0·89 0·68 1 ·16 0·38 0·54 

Claudin-Lo" 1·13 0·87 1·55 0·39 0·54 

IFNGamma 0·89 0·68 1 • 17 0·40 0·55 

Mammarv Stemness 1·09 0·87 1·37 0-43 0·57 

SOX2 0·91 0·72 1 ·16 0·46 0·58 

TGF-Beta 1·20 0·71 2·01 0·50 0·62 

Inflammatorv Chemokines 0·90 0·64 1·26 0·52 0·63 

PD-L2 0·90 0·62 1·30 0·57 0·64 

PD-1 0·90 0·62 1 ·31 0·57 0·64 

Endothelial Cells 1·18 0·66 2·13 0·57 0·64 

B7-H3 1·15 0·66 2·03 0·62 0·67 

MHC2 0·93 0·70 1·24 0·63 0·67 

Cell Adhesion 1·06 0·83 l ·33 0·64 0·67 

CDS T-Cells 0·95 0·70 1 ·29 0·75 0·7108 

Macroohal!'es 0·94 0·59 1·50 0·80 0·80 



Supplementary figure S2. Differential signature expression by subtypes including HER2-E BC (n=95) and Luminal BC 

tumours (n=128)· Toe scatterplots show the logORs from the logistic regression models calculated for the expression of 

the 46 signatures for a. Ki67 response categories and b. Ki67 2 weeks categories. Abbreviations: HER2-E, HER2-

Enriched Subtype; LumB, Luminal B subtype; LumA, Luminal A; OR, Odds Ratio. 
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Supplementary table S5. Association analysis of the new molecular subgroups based on single gene expression and 

response to Al by different endpoints. Abbreviations: GR, Good Response, IR: Intermediate Response, PR: Poor 

response. 

Single gene based clusters 

Cl C2 C3 C4 C5 

Response Categories 

GR 15 (22·7%) 6 (18·8%) 4 (30·7%) 26 (52·0%) 19 (29·2%) 

m 14 (21 ·3%) 9 (28·1%) 3 (9·4%) 8 (16·0%) 17 (26·2%) 

PR 37 (56·0%) 17 (53·1%) 6 (46·2%) 16 (32·0%) 29 (44·6%) 

Chi-squared statistics 15·9263, p-value 0·043 

Ki672wks 

LOW 15 (23·7%) 9 (29·1%) 5 (38·5%) 35 (70·0%) 44 (67·7%) 

HIGO 51 (77·3%) 23 (71 ·9%) 8 (61 ·5%) 15 (30·0%) 21 (32·3%) 

Chi-sauared statistics 42·23 o-value <0·0001 
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Supplementary figure S4. Differential expression of A. Ki67 percentage changes B. ERBB2 and C. ESRJ by the 5 new 
subgroups in the entire cohort. Abbreviations: C, Cluster; HER2-E, HER2-Enriched Subtype; LumB, Lwninal B subtype; 
LurnA, Lwninal A subtype. 
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Supplementary table S6. Multivariable cox regression analysis for TTR for selected prognosis factors and other variables 

driving differential adjuvant chemotherapy and HER2 treatment choice. Abbreviations: HR, Hazard Ratio; FDR, False 

discovery rate, CI: Confidence Interval; N, nodal; EMC: Extra celular matrix, HER2-E, HER2-enriched. 

HR LowerCI95% UpperCI95% p-value Significan ce 

IAoe >70 2·29 l ·17 4·49 0·016 * 

Nodal status Nl-3 l ·14 0·48 2·74 0·765 
Nodal status N4+ 2·75 1·27 5·95 0·01 * 

MODELl Post tumour size l ·13 1 l ·28 0·052 

Post tumour grade 1 o o Inf 0·99 

Post tumour grade 3 l ·86 0·95 3·65 0·071 

Likekihood Chi sauare ratio test: 30·48 on 6 df n<0·000l 

HR Lower CI 95% Upper CI 95% p-value Significance

1Aoe>70 2·43 l ·23 4·79 0·011 * 

Nodal status Nl-3 l ·15 0·48 2·76 0·76 
Nodal status N4+ 2·68 1·24 5·77 0·012 * 

l>ost tumour size l ·16 1·02 l ·33 0·024 * 

MODEL2 Post tumour grade 1 o o Inf 0·99 

Post tumour grade 3 l ·52 0·75 3·06 0·24 

llntrinsic subtype: HER2-E vs 
l ·98 0·97 4·02 0·059 Luminals 

Lik.ek.ihood Chi sauare ratio test: 34·2 on 7 df n<0·000l 
1Aoe>70 2·24 l ·14 4·41 0·019 *

Nodal status Nl-3 1·55 0·63 3·82 0·35 

Nodal status N4+ 3·89 l ·76 8·59 0·00078 *** 

l>ost tumour size l ·14 1 1·3 0·042 * 

Post tumour grade 1 o o Inf 1 

Post tumour grade 3 l ·85 0·91 3·77 0·089 

tiuster 2 EMC + highest 
4·82 l ·93 12·05 0·00075 *** 

MODEL3 
fRBB2 

Cluster 3 DNA-damage repair 
2·29 0·59 8·85 0·23 �ficiency

Puster 4 Endocrine signalling l ·29 0·45 3·71 0·64 

tiuster 5 Endocrine signaling 
ft PI3K, MAPK and RAS 1·35 0·47 3·91 0·58 
signalling 

Lik.ek.ihood Chi souare ratio test: 43·58 on 10 df n<0·000l 
IAoe >70 2·36 l ·19 4·68 0·014 *

Nodal status Nl-3 1·53 0·62 3·8 0·36 
Nodal status N4+ 3·65 l ·65 8·05 0·0014 ** 

Post tumour size l • 16 1·02 l ·32 0·028 * 

Post tumour grade 1 o o Inf 1 

Post tumour grade 3 1·65 0·8 3·41 0·18 

llntrinsic subtype: HER2-E vs 
1-76 0·76 4·06 0·19 

[.,uminals 

MODEL4 
�luster 2 EMC + highest 

4·6 1·84 11·46 0·0011 ** 
f:RBB2 

tiuster 3 DNA-damage repair 
2·39 0·62 9·21 0·21 �ficiency

Puster 4 Endocrine signalling 1·75 0·56 5·52 0·34 

tiuster 5 Endocrine signaling 
ft PI3K, MAPK and RAS 1-71 0·56 5·16 0·35 
signalling 

r ik.ek.ihood Chi souare ratio test: 45·39 on 11 df n<0·000l 
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Supplementary figure S5. Barplots comparing the multivariate chi-square likelihood test for each multivariable model. 

Abbreviations: p: p-value; DF: degrees offreedom. 
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Supplementary figure S6. Kaplan Meier curves stratified by adjuvant treatment (trastuzumab + chemotherapy yes vs 

no) for TTR according to a. PAM50 Intrinsic Subtypes and b. to the new molecular subgroups. Abbreviations: HER2-

E: HER2-enriched, CT:Chemotherapy, TTR: Time To Recurrence. 
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Supplementary table S7. Series of multivariable analysis for TTR of signature expression adjusted by the basic 

clinicopathological factors ( age, nodal status, post tumour size, post tumour grade). Abbreviations: ESRJ, Estrogen 

Receptor 1; ERBB2, gene HER2; FOXAJ, Forkhead BoxAl; HRD, Homologous Recombination Deficiency; PGR: 

Progesterone Receptor, BC: Breast Cancer Signature; PD-Ll, Programmed death-ligand 1; Treg, Regulatory T cells; PTEN, 

Phosphatase and tensin homolog; IDOJ, Indoleamine 2,3-dioxygenase; AR, Androgen Receptor, IFN Gamma, Interferon 

Gamma; TIS, Tumour Inflammation Signature; PD-L2, Programmed death-ligand 2; TIGIT, T cell immunoreceptor with lg 

and ITIM domain; APM, Antigen Processing Machinery; BRCAness: Breast Cancer Gene deficiency; CDK6, Cyclin­

dependant kinase 6; TGFB: Transforming growth Factor Beta; Rbl, Retinoblastoma; SOX2, SRY(Sex determining region 

Y)-box2; MHC2, major histocompatibility complex 2; PDJ, Programmed cell death protein 1; CDK4, Cyclin-dependant 

kinase 4; CDS T cells, Cytotoxic T lymphocytes; HR, Hazard Ratio; FDR, False discovery rate, CI: Confidence Interval. 

Si1matures HR Lower95%CI Unner95%CI n value FDR 

Cvtotoxic cells 0·50 0·36 0·70 <0·0001 0·0014 

Cvtotoxicin 0·50 0·36 0·71 <0·0001 0·0014 

CDS T-Cells 0·53 0·39 0·73 <0·0001 0·0014 

TIS 0·60 0·44 0·82 0·0011 0·013 

PD-Ll 0·58 0·41 0·82 0·0020 0·019 

PD-1 0·58 0·39 0·86 0·0070 0·052 

APM 0·71 0·55 0·92 0·0096 0·052 

PD-V 0·60 0·41 0·89 0·0099 0·052 

TIGIT 0·70 0·54 0·92 0·010 0·052 

IFNGamma 0·71 0·53 0·94 0·019 0·087 

Apoptosis 0·36 0·15 0·88 0·024 0·10 

Claudin Low 1 ·26 1·02 1 ·56 0·031 0·11 

IDOl 0·78 0·62 0·98 0·032 0·11 

MHC2 0·73 0·54 0·99 0·043 0·14 

Inflammatorv Chemokines 0·70 0·48 1 ·02 0·066 0·20 

Macronha«>es 0·64 0·39 1·06 0·085 0·24 

HER2-E score 3·11 0·80 12·15 0·10 0·26 

LumB score 0·43 0·15 1 ·20 0·11 0·26 

Hvpoxia 1 ·59 0·90 2·81 0·11 0·26 

ER si1malinl! 0·76 0·54 1 ·07 0·12 0·28 

ERBB2 1 • 17 0·95 1·44 0·13 0·29 

AR 0·82 0·64 1·07 0·14 0·30 

SOX2 1 ·18 0·94 1·48 0·15 0·30 

Stroma 1 ·39 0·87 2·23 0·17 0·31 

P53 mutational score 1 ·43 0·86 2·37 0·17 0·31 

Mammarv Stemness 1 ·19 0·91 1 ·56 0·21 0·36 

FOXAl 0·85 0·66 1 • 10 0·21 0·36 

CDK6 exnression 0·76 0·49 1 • 18 0·22 0·36 

Tr"° 0·81 0·57 1 ·15 0·24 0·38 

Endothelial Cells 0·67 0·34 1 ·33 0·25 0·38 

Mast Cells 0·87 0·65 1 ·16 0·34 0·50 

TGF Beta 0·78 0·44 1·38 0·39 0·57 

PTEN 1 ·31 0·64 2·66 0·46 0·64 

CDK4 exnression 1·24 0·64 2·39 0·52 0·71 

Rbl 0·80 0·38 1·69 0·56 0·73 

Basal score 1·24 0·41 3·79 0·70 0·87 

Differentiation 0·92 0·58 1·46 0·72 0·87 

B7-HJ 1·12 0·60 2·07 0·73 0·87 

LumA score 0·83 0·27 2·56 0·75 0·87 

ESRl 0·98 0·84 1 ·13 0·75 0·87 

PGR 0·98 0·82 1 ·16 0·78 0·87 

HRTI 1·08 0·56 2·10 0·82 0·89 

BRCAness 1·07 0·56 2·02 0·84 0·90 

Genomic Risk 1·00 0·97 1·02 0·87 0·91 

Proliferation 0·96 0·53 l ·74 0·90 0·92 

Cell adhesion 1 ·01 0·79 1 ·28 0·96 
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Supplementary figure S7. Spearman correlation tests ofthe significant signatures by nominal p-value in the series of 

multivariablee analysis using each ofthe signatures in the baseline clinicopathological model. 
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4.2.2 Additional information on new molecular subgroups based on BC360 

signature expression (manuscript 3) 

In addition to the new molecular subgroups based on single gene expression, we identified 

four new molecular subgroups based on the nCounter Breast Cancer 360 panel. This work 

was not included in the final manuscript due to lack of space and sorne overlap with 

single gene expression signatures. However, we presented this data at the San Antonio BC 

Symposium 2021 and I was awarded the Coltman Scholar Award for it. The work was highly 

rated by the committee. 

ldentification of new molecular subgroups predicting response to aromatase inhibitors 

Using consensus clustering, we also identified four novel molecular subgroups based on 

signature expression predicting significantly different responses to Al in tumour samples. 

These clusters were also associated with Ki67 at the two-week time point (Table 1). 

Interestingly, this set of clusters mainly divided HER2-E subtype samples with lower response 

to Al into three groups with differential expression of molecular features such as ERBB2, ER 

signalling, or immune-related pathways. 

For the four new clusters based on signature expression (Figure 7A): Cluster 1 (41.8%) was 

characterised by overexpression of immune features and lower ER signalling; Cluster 2 

(15.5%) by low immune but significantly higher levels of ERBB2 expression regardless of 

subtype (Figures 7B and 7C); Cluster 3 (4.1%) was characterised by high ESRJ and low 

PgR expression, and Cluster 4 (38.6%) by high endocrine signalling and the lowest 

ERBB2 expression. PAM50 subtype distribution varied among these subgroups with 

enrichment of Cluster 1 with HER2-E (62.2%) and luminal B (26.6%), Cluster 2 HER2-E 

(73.6%), Cluster 3 luminal B (64.3%) and Cluster 4 Luminal B (55.3%) and luminal A 

(29.5%). The highest overlap between single gene and signature-based subgroups and the 

single gene molecular subgroups defined in the manuscript was in the single gene-based 

Cluster 1 (89.5%) and signature-based Cluster 1 (68.6%) (Table 2), followed by signature­

based Cluster 4, in which 77.2% of patients were included in single gene clusters 4 and 5. 

To assess the independent prognostic value of these gene-expression-based variables with 

survival outcomes in terms of TTR, we performed a series of Cox regression models for 

multivariable survival analysis and compared the changes in chi-square values between them 

to assess the added value of the different models (Table 3). In the multivariable analysis 
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adjusted for post-surgery clinicopathological variables (histological grade, tumour size, nodal 

status, and age ), clusters 2 and 4 were also independent predictors of shorter TTR compared 

with aingle gene based cluster 1, adding significant value beyond intrinsic subtypes 

(Likelihood ratio test, p<0.001). Two additional models: one including all clusters from both 

sets together and a second with all clusters and P AM50 <lid not add any additional value than 

when just considering one set of clusters and PAM50. 

Table l. Association analysis of the new molecular subgroups based on signature expression 

and response to aromatase inhibitors by different endpoints. 

Abbreviations: GR: Good Response, IR: Intermediate Response, PR: Poor response. 

Signature-based new molecular subgroups 

1 2 3 4 

Response Categories 

GR 21 (24.4%) 7 (20%) 3(23.1%) 39 (42.4%) 

IR 19 (22.1%) 6 (17.1%) 4 (30.8%) 22 (23.9%) 

PR 46 (53.5%) 22 (62.9%) 6 (46.2%) 31 (33.7%) 

Chi-square statistics 13.780. p-value is 0.032 

Ki672wks 

IDGH 61 (74.4%) 22 (62.9%) 7 (53.8%) 28 (30.4%) 

LOW 25 (25.6%) 13 (27.1%) 6 (46.2%) 64 (69.6%) 

Chi-square statistics 31.1665. p-value is <0.0001 

Figure 7. New molecular subgroups based on gene expression signatures. A. Consensus 

clustering using signature expression at baseline in all patients (treated and controls). The 

heatmap shows the single gene expression by the five new clusters in treated patients with Ki67 

data only (n=226). B. Boxplots of differential ERBB2 expression by new signature-based 

clusters in the entire cohort and C. in HER2E and Luminals separately. 

Abbreviations: HER2-E: HER2-Enriched Subtype, lumB: luminal B subtype, lumA: Luminal 

A subtype, GR: Good responders, IR: Intermediate responders, PR: Poor Responders, Ki672wk: 

Ki67 at the two-week time point, HRD: Homologous Recombination Deficiency. 
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Table 2. Association analysis of the new molecular clusters based on single gene expression 

and signature expression and response to aromatase inhibitors by different endpoints. 

Abbreviations: GR: Good Response, IR: Intermediate Response, PR: Poor response. 

5 single gene clusters 

�- Endocrine and 
1-Immune �-EMC+ �- DNA-damage �- Endocrine 

IPI3K, MAPK, and 
high 'BRBB2 highest repair deficiency �ignalling 

IRAS signalling 

"' 1-Immune high + ER 59 (89.4%) S (9.40%) 8 (16.0%) � 
5 (38.5%) (5.80%) 11 (16.9%) (12.8%) 

= 
signalling low (68.6%) (3.50%) K9.30%) 

.g/l 2-Immune low + µ (6.06%) 14 (43.8%) "' 

kl (O.O%) (O.O%) � (4.0%) (5.70%) lo, 15 (23.1%) (42.9%) � 
ERBB2 highest (11.4%) (40.0%) 

"' 

= 

3- ESRJ high + PGR � (3.04%) 1 (3.1%) r (14.0%) 
""" � (15.4%) (15.4%) 1 (1.50%) (7.70%) 

low (15.4%) (7.70%) 53.8%) 

4- Endocrine signalling (1.5%) (1.1%)
14 (43.7%) 

Kí (46.1%) (6.5%) 
�3 (66.0%) 

�8 (58.5%) (41.3%) 
(15.2%) 35.9%) 

Table 3. Multivariable cox regression analysis for time to recurrence for selected prognosis 

factors and other variables driving differential adjuvant chemotherapy and HER2 treatment 

choice. 

Abbreviations: HR: Hazard Ratio, FDR: False discovery rate, CI: Confidence Interval, N: 

nodal, EMC: Extracellular matrix, HER2-E: HER2-enriched, DF: degrees of freedom. 

HR LowerCI95% UpperCI95% p-value Significan ce 

Age >70 2.41 1.18 4.92 0.016 * 

Nodal status Nl-3 1.3 0.53 3.16 0.562

Nodal status N4+ 3.54 1.59 7.87 0.0019 ** 

Post tumour size 1.12 0.98 1.28 0.096

Post tumour grade 1 o o Inf 1 

Post tumour grade 3 1.73 0.84 3.55 0.14 

Cluster 2 Immune low + 
4.32 1.76 10.61 0.0014 ** 

MODEL 4 highest ERBB2 

Cluster 3 ESRJ high + 
1.63 0.35 7.66 0.53 

PGRlow 

Cluster 4 Endocrine 
3.46 1.43 8.4 0.0061 ** 

signalling high 

Baseline-suhtype: 
2.55 1.14 5.69 0.022 * 

HER2-E vs. Luminals 

Likelihood Chi square ratio test: 47.37 on 10 df, p<0.0001 
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theoutcome of the HRA 
assessment has been 
confinned. 

25 April 2017 
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The Royal Mersden NHS Foundation Trust 
London and Surrey BreastUnlt 
The Royal Mersden NHS Foundation Trust 
Fulham Road, London 
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09 February 2017 
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Ethical 111011 
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5. DISCUSSION

5.1 Summary of the main results 

Around 70% ofBCs are ER+ and the standard of care for patients with early-stage BC includes, 

among others, ET for 5-1 O years depending on their risk of recurrence and tolerance. Although 

Al treatment is the most effective ET for postmenopausal women with early ER+ BC, 15-20% 

of them still recur (22). In particular, ER+ BC tumours that also overexpress HER2 show 

limited response to ET (19,88,105). 

The search for predictive biomarkers in breast cancer has mainly been limited to baseline 

tumour characteristics. Baseline or pre-treatment gene expression profiles are useful to 

distinguish those tumours more likely to respond to neoadjuvant therapy from those that do not 

(85). However, biological changes that occur in the tumour and the tumour' s microenvironment 

in response to therapy may identify new mechanisms of response and resistance to treatment, 

that ultimately may improve patient management and prognosis (118). Furthermore, the effect 

of different lengths of neoadjuvant ET on BC' s molecular features is still unknown. 

This Ph.D. project was designed to provide a comprehensive characterisation of RNA-based 

expression in ER+ early-stage BC treated with perioperative AL This thesis consists of two 

main studies that investiga te the predictive and prognostic value of baseline molecular features 

and the changes that occur under short and longer times of Al treatment exposure in both 

ER+/HER2- and ER+/HER2+ tumours. Molecular characterisation includes not only the 

intrinsic subtypes but also other key BC signalling pathways and compares the impact of 

different durations of neoadjuvant ET on BC characteristics. It also evaluates the association 

of those baseline characteristics and changes that occur under Al treatment with treatment 

resistance and patient outcome. To our knowledge, both studies included in this thesis are 

unique and include patients from the largest cohort to date investigating response to pre­

surgical Al in ER+ BC. 

In ER+/HER2- early BC, this work shows the similar impact on intrinsic subtype modulation 

following different lengths of Al treatment, but with more and larger molecular changes at the 

single gene expression and pathway levels with longer Al exposure. An artefactual effect based 

on the upregulation of FOS and JUN gene expression is also described in patients with 
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ER+/HER2- BC tumours following no treatment (control arm). Finally, sorne of the observed 

changes after Al treatment had an impact on BC patient outcomes. 

In ER+/HER2+ BC, our results established the HER2-E subtype as the first standardised 

biomarker driving poor response to Al and worse outcome. Signature expression of DNA 

damage response, TP53 mutational status, and immune-tumour tolerance are also predictive 

biomarkers of early resistance to Al in this setting. Lastly, novel molecular subgroups identify 

additional non-HER2-E tumours not responding to Al with an increased risk ofrelapse. 

5.1.1 Mechanisms of resistance to aromatase inhibitors m ER+/HER2-

breast cancer (manuscript 2) 

The main observations from this study were: 

5 .1.1.1 Most AI-sensitive luminal B and HER2-E tumours change their intrinsic subtype 

within just two weeks of treatment, those changes being mainly from luminal B 

or HER2-E towards luminal A or Normal-like. These changes are similar between 

short and longer-term Al treatment, therefore, treatment length seems to not be 

associated with changes in intrinsic subtypes. 

5 .1.1.2 Longer Al treatment induces more and a larger magnitude of gene expression 

changes than two-week treatment only, involving sorne key BC pathways such as 

PJ3KlmTORIAKT 

5.1.1.3 There is an upregulation of FOS and JUN related genes and pathways from 

baseline to surgery in the control samples. These differences were observed in 

both treated and control samples, thus they might be caused by sample 

manipulation (i.e., time to formalin fixation) and not by Al treatment itself. 

5 .1.1.4 Changes from a "high-risk" intrinsic subtype to "low-risk" based on proliferation 

levels are associated with better response to Al compared with those remaining 

as high-risk. BC tumours showing early resistance to Al are characterised by a 

greater expression of immune-checkpoint component molecular features, 

immune-cell emichment, and proliferation genes. These characteristics are 

increased by longer Al treatment. 

5 .1.1.5 Sorne of the significant changes that occur under Al treatment, particularly those 

associated with significantly different responses to Al, have an impact on TTR. 
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5.1.2 Mechanisms of resistance to aromatase inhibitors m ER+/HER2+ 

breast cancer (manuscript 3) 

The main observations from this study were: 

5.1.2.1 HER2-E is one of the main components driving resistance to Al and is associated 

with a higher risk of relapse in ER+/HER2+ BC. 

5.1.2.2 Beyond the association ofER-related signature expressions with good response to 

Al and ERBB2 with poor response, DNA damage response, the p53 mutant

surrogate signature and immune-tumour tolerance-related signatures are associated 

with resistance to AL Similarly, genes involved in PJ3KIAKT, MAPK, and 

oestrogen signalling are associated with good response to Al while genes involved 

in immune-checkpoint component, proliferation, and cell-cycle regulation are 

associated with poor response. 

5.1.2.3 Five single gene-based new molecular subgroups can distinguish HER2-E and 

Luminal tumours responding or not to Al treatment but at a higher risk of relapse. 

5.1.2.4 The combination ofthe new molecular subgroups and the intrinsic subtypes might 

be a key tool to distinguish patients with differential responses to Al therapy and 

at a higher risk of relapse. Interestingly, immune-related molecular features drive 

an intrinsic lower risk of relapse despite predicting poor response to Al, while 

higher levels of ERBB2 lead to worse survival outcomes. 

5.2 New findings 

The predictive and prognostic value of changes in Ki67, measured by IHC after two weeks of 

Al treatment has been validated in the POETIC trial (83,119). In this study, Smith et al., 

showed that patients whose Ki67 remains "HIGH" (2: 10%) after two weeks of Al treatment 

have a substantially poorer prognosis than those with "HIGH" baseline Ki67 that is markedly 

reduced to "LOW" (<10%). Beyond its main objectives, the POETIC trial was designed to 

conduct multiple translational sub-studies to assess the differential gene expression between 

"H-H" and "H-L" response groups, aiming to distinguish those patients who might benefit the 

most from Al treatment from those who would not. 

Decreased tumour cell expression of Ki67 and other clinical and pathological endpoints have 

often been used as a proxy for treatment response, including assessing the early effect of ET 

within pre-surgical windows of opportunity and neoadjuvant treatment trials (17,120,121). 

However, these clinical and pathological characteristics are not always sufficient to evaluate 
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the risk of recurrence and decide the patient's management (122). In the last decade, multi­

parameter gene expression-based prognostic signatures have been developed to estimate the 

residual risk of recurrence after surgery in order to guide the patient' s systemic adjuvant 

treatment. Amongst the most widely used prognostic signatures in ER+ breast cancer are the 

Oncotype DX Recurrence Score (RS), Mammaprint, EndoPredict (EP/EPclin), and Prosigna® 

Risk Of Recurrence score (ROR). Each one has been endorsed for prognostic use within 

authoritative guidelines (11,113,123,124). Another proposed approach was the combination of 

parameters such as the conversion from luminal B to luminal A type and/or the reduction of 

ROR seores as altemative measures of treatment activity in the CORALLEEN study (125). 

This study evaluated the activity of neoadjuvant treatment with either standard combination 

chemotherapy ( doxorubicin and cyclophosphamide plus paclitaxel) or an investigational drug 

combination with letrozole plus ribociclib. The primary endpoint was to evaluate the 

proportion of patients with P AM50 low-risk-of-recurrence measured by the molecular 

downstaging of luminal B/ER+HER2- tumours (125). Although the use of this biological 

endpoint is supported by the assumption that luminal A subtypes have a good prognosis, 

approximately 20-30% of luminal/ER+HER2- can be classified as either A or B even at a 

boundary of luminal A/B subtype assignments, so the long-term effect of this biological 

conversion of luminal B to A remains to be validated before it can be widely adopted. In line 

with this approach, we evaluated the predictive and prognostic value of the changes in intrinsic 

subtypes after Al treatment and identified a high correlation between the conversion of "high 

proliferative intrinsic subtypes" such as luminal B or HER2-E to "lower proliferative" subtypes 

such as luminal A with a Ki672wk endpoint <10% and better TTR. 

Moreover, as mentioned before, most translational studies investigating biomarkers of 

response to ET have focused on the baseline characteristics after a pre-defined period. Little is 

known about molecular changes happening after different lengths of ET or whether pre­

treatment or post-treatment characteristics are better predictors of prognosis. It has been 

suggested that reduced ER dependence and E2F-signalling activation after short- and long­

term neoadjuvant Als are associated with poor response to Al, respectively (126,127). 

However, an association was reported for an enrichment in ESRJ mutations with long-term 

neoadjuvant Al in primary BC using a real-world cohort of patients treated at the Royal 

Marsden Hospital, London (127). Therefore, an in-depth characterisation of the effect of 

different lengths of neoadjuvant Al therapy on molecular features is necessary to elucidate the 

full impact on molecular alterations that might limit response and lead to clinical resistance. 

127 



Our study provides unique results from a direct comparison of the impact of different lengths 

of Al treatment on ER+ early BC molecular biology. 

On the one hand, our study addresses the important clinical question of the differential effect 

of short- and long-term neoadjuvant treatment with ET on the molecular characteristics ofER+ 

BC and whether these changes would have an impact on patient outcomes. To our knowledge, 

this is the first study to directly compare the effect of different lengths of Al treatment. It used 

a new approach based on activity module seores covering different cancer pathways including 

immune-related features and advanced statistical analysis methods to identify differential gene 

expression according to response to AL It provides evidence supporting that there is a similar 

impact on the changes of intrinsic subtype classification after short and longer-term treatment 

with Al, contrary to the conventional hypothesis. However, there is a greater impact on the 

transcriptional level of cancer-signalling pathways such as MAPK and PJ3KIAKT/mTOR and 

immune response with a longer duration of neoadjuvant AL 

On the other hand, most studies performed in ER+/HER2+ BC have focused on resistance to 

anti-HER2 targeted therapy while mechanisms of resistance to ET are not well understood in 

this subgroup yet. We have investigated and characterised the predictive and prognostic value 

of molecular features at baseline in patients with ER+/HER2+ BC treated with peri-operative 

AL To our knowledge this is the largest and first cohort investigating the response to pre­

surgical Al in this BC subgroup, integrating comprehensive molecular profiles with short-term 

response to Al, and modelling these biological data with outcome. Beyond the expected 

association of the HER2-E subtype as the first biomarker of early resistance to Al, this study 

shows other interesting molecular associations, such as high expression of HRD and TP53

mutant status surrogate signature predicting poor response to AL 

Furthermore, this thesis throws light on the role oftumour immunity on response to ET in ER+ 

early BC, in both HER2- and HER2+ populations. Recent data suggested that immune­

enrichment and immune-checkpoint-related characteristics are upregulated in most luminal B 

tumours with poor response to ET as measured by higher Ki67 and poorer outcome ( 41,60). 

These studies have shown an association of high expression of severa! immune-related 

characteristics at baseline with early resistance to Al treatment measured by different Ki67 

endpoints, including sorne features involved in immune-checkpoint component and immune­

cell enrichment. Luminal tumours are usually known to be less immunogenic than other 

subtypes, but those with higher immunogenicity have been correlated with poorer prognosis or 
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response to ET therapy (60,128). Here we demonstrated that the enrichment of immune-related 

characteristics plays a key role in early resistance to Al in ER+ early BC, either HER2- or 

HER2+. Although the association of the high expression of these characteristics with survival 

in ER+/HER2- is not conclusive, our results suggest an association ofhigh expression of these 

immune features with an intrinsic lower risk of recurrence in ER+/HER2+ early BC. These 

findings suggest a de-escalating approach in this setting and indicate the different roles of 

tumour immunity in HER2+ and HER2- disease. 

Based on our results, the assessment of immune characteristics at baseline could be informative 

to detect mechanisms of resistance to AI.However, further investigations are still necessary to 

understand the utility of the analysis of immune-related characteristics in surgical samples of 

patients treated with long-term Al, and whether the enrichment of sorne immune-related 

signatures in Al sensitive BC tumours after longer Al treatment play a role in acquired 

resistance to ET. Further investigation on the use of immune-checkpoint component inhibition 

in this setting is also warranted. Taking together our results and those from the literature, a 

small subgroup of patients with ER+/HER2- and ER +/HER2- BCcould potentially benefit from 

immunotherapy-based treatments currently approved for a subset oftriple-negative BC that is 

currently being tested in other BC subsets. 

5.3 Impact and applicability of the results 

Nowadays, the biggest question is how to select patients for escalation and de-escalation 

strategies. This work provides a rationale for the assessment of both baseline molecular 

characteristics and changes that happen under treatment to guide clinicians on the patient' s 

treatment selection. W e demonstrated that changes in the intrinsic subtype classification after 

just two weeks of neoadjuvant Al can serve as a biomarker of early resistance or efficacy to 

ET in ER+ early BC. Results also indicated the importance ofBC molecular subtyping beyond 

the standard assays such as hormone receptor and HER2 to optimize treatment. F or example, 

patients with ER+ HER2- and basal-like tumours by gene expression will obtain little or no 

benefit from neoadjuvant ET treatment. 

The observed association of molecular changes (including changes in immune-checkpoint 

component and other immune-related pathways) with resistance to Al treatment and patient 

outcome, provides evidence for their evaluation as predictive and prognostic biomarkers in 

prospective clinical studies. Our results provide evidence that neoadjuvant Al therapy beyond 
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two weeks could be considered for high-risk ER+ BC, endocrine sensitive intrinsic subtypes. 

The molecular changes observed in ER+/HER2- BC might be crucial in the future to identify 

more vulnerable BC patients with a higher risk of relapse, who could benefit from additional 

treatments in combination with ET or the chance to include them in clinical trials. 

Another main finding presented in this work is the identification of the HER2-E intrinsic 

subtype as the first predictive biomarker of resistance to Al in ER+/HER2+ BC with an 

additional higher risk of relapse. These findings highlight two aspects: firstly, the potential 

need for further anti-HER2 combinations to improve the outcome of patients with HER2-E 

ER+/HER2+ BC tumours, with additional anti-HER2 targeted therapy; secondly, the higher 

sensitivity to Al and good prognosis associated with luminal tumours, in particular with 

luminal A ER+/HER2+, provides rationale for the assessment of de-escalation approaches in 

this selected subgroup of patients (94). Recent "chemotherapy-free" neoadjuvant studies have 

shown that the combination of HER2-E subtype with high ERBB2 mRNA expression may 

identify patients with HER2+ early BC with higher sensitivity to double HER2- blockade (94). 

However, only one-third of ER+/HER+ BC patients are HER2-E/ERBB2 high and their role 

as prognostic biomarkers is understudied. 

Using consensus clustering, we have identified new molecular subgroups based on single gene 

expression at a higher risk ofrelapse beyond the HER2-E subtype. Noteworthy, in ER+/HER2-

BC, tumours characterised by an enrichment of immune features presented the lowest risk of 

recurrence despite immune features associated with Al resistance and poor outcomes ( 41,60). 

Data showed that the higher expression of genes involved in immune cells and targetable 

immune-checkpoint components correlated with higher-risk tumours, such as luminal B 

tumours. In addition, several trials in HER2+ BC have shown that tumours with higher baseline 

tumour infiltrating lymphocytes and other immune features achieve higher pathological 

complete response rates and improved event-free survival (129). Our study confirms the 

association of higher expression of several immune features with resistance to Al but with a 

very low risk of recurrence in ER +/HER2+ BC. Due to its intrinsic good prognosis, BC patients 

belonging to this molecular subgroup, showing an enrichment of immune characteristics, could 

potentially benefit the most from a de-escalating approach using, for example, six months of 

trastuzumab plus Al without chemotherapy followed by five years of Al treatment alone (130). 

By contrast, tumours with higher levels of ERBB2 and lower association of immunity have a 

significantly higher risk ofrelapse, indicating a need for intensified anti-HER2 treatment, such 

as dual-HER2 blockade plus chemotherapy (73,89). Other molecular subgroups characterised 
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by high ER signalling might also benefit from the addition of treatments that enhance the 

efficacy of ET, such as CDK4/6 inhibitors. Therefore, the new molecular subgroups 

identified in this work might be useful for the identification of candidates for escalating and 

de-escalating 

strategies. Altogether, the combination of new biomarkers of early resistance to peri­

operative Al with the intrinsic subtypes could be essential for individualizing therapy, 

including escalation and de-escalation treatment approaches, to improve treatment response 

and survival outcomes in early BC. 

5.4. Future lines of research 

To continue with the investigation iniciated m this doctoral project, we are currently 

developing a series of studies on the field: 

5.4.1 Sub-study in extreme responder ER+/HER2+ breast cancer patients 

V arious studies using three diff erent techniques are being carried out in a subset of patients 

with ER+/HER2+ disease from the POETlC study that are extraordinary responders 

based on the highest and lowest reductions of Ki67 after Al treatment (not all techniques 

overlap in the same samples): 

5.4.1.1 Whole exorne sequencing (WES) has been performed in 41 samples at 

baseline. WES has been used from both selected baseline tumour samples and 

matched blood samples for technical validity and correlation. Our aim is to assess 

clonal heterogeneity and copy number alterations and correlate these molecular 

features with response to Al and survival. 

5.4.1.2 RNA-sequencing in paired tumour samples (baseline and at surgery) 

from ali extreme responders (n=41). We aim to assess copy number alterations, 

gene expression, and mutations and correlate them with response to Al and survival 

outcomes. 

5.4.1.3 Immunohistology-phenotyping in 30 paired tumour samples (baseline 

and at surgery) from extreme responders (n=30). Our aim is to characterise 

and correlate immune cell type abundance based on four different immune markers 

(CD3, CD20, CD68, and FOXP3) stained on the same slide for ER+ and Ki67 and 

correlate these features with response and survival. We will associate the number of 

immune cells with Ki67 and the immune-related signatures assessed in the present 

work. 
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5.4.2 Gene expression changes in ER+/HER2+ breast cancer 

A secondary study in the ER+/HER2+ BC patient cohort, from the POETIC study, focusing 

on gene expression changes that occur from baseline to surgery is being developed. 

We hypothesize that mechanisms of Al resistance and outcome are not only driven by 

baseline molecular alterations but also by changes that occur in response to therapy. 

We also hypothesize that gene expression changes are different between responders and non-

responders and between those patients with a poorer and higher risk of relapse. 

5.4.3 Deeper characterisation of baseline immune features in ER+/ 

HER2- early breast cancer 

Additional whole transcriptome work in a much larger subset ofthe POETIC treatment arm is 

ongoing to better understand the diversity of intrinsic resistance mechanisms to Al treatment 

and to increase the power of our survival analyses. We are currently developing a more 

refined algorithm capturing the biological effect ( conversion of subtypes ). 

5.4.4 Project on the investigation of genomic biomarkers of resistance to 

CDK4/6 inhibitors - Rio Hortega grant 

I have been awarded with a Rio Hortega Grant to begin in 2022 with a project searching for 

genomic biomarkers of resistance to CDK4/6 inhibitors in advanced ER+ BC, in which we 

aim to investigate the role of different gene expression signatures in treatment efficacy with a 

focus on tumour immunity. 

5.4.5 SEOM grant with a project on the characterisation of molecular 

differences between baseline and surgery seen in early breast cancer 

without treatment 

I have been awarded with a grant to begin in 2022 funded by the Spanish Society of 

Oncology (SEOM). The project will consist in a study to further investigate and characterise 

the molecular differences observed in the control arm of the POETIC trial despite not having 

received any treatment - the artefactual effect - described in manuscript 1. 

W e aim to investigate the diff erences that occur between baseline and surgery samples in all 

clinical BC subgroups (ER+, triple negative (TN), and HER2+), and characterise and 

compare them. 
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We also aim to generate a hypothesis regarding the causes of these molecular changes (i.e., 

drugs administered before surgery, formalin/paraffination processes .. .  ) by exploring the 

differences in molecular characteristics across different types of sample collections and types 

ofBC. 

In this project, we will propose a method of handling this data artefact- i.e., adjustment. We 

aim to explore further differences/heterogeneity observed between baseline and surgery 

beyond gene expression (prognostic IHC factors). Based on these differences observed in our 

previous studies, we will also investigate whether it is more accurate to assess prognostic 

markers in the surgery excision instead of just in the baseline sample. 

6. Conclusions

1. This work highlights the importance of the identification of strong biomarkers for

patient selection for different treatments, including the newly emerging immune-therapeutic 

agents and the use of adequate endpoints, such as Ki67, as a surrogate marker of treatment 

response and survival benefit. 

2. No single factor determines early resistance to ET, but diverse mechanisms including

baseline characteristics and molecular changes that occur early on-treatment should be 

considered. Factors such as length of Al treatment and HER2 status also drive the differential 

response to AL 

3. In ER+/HER2- early BC, high expression of immune related genes are associated with

early resistance to AL 

4. In ER+/HER2- early BC, longer Al treatment induces more and a larger magnitude of

gene expression changes than two-week treatment only, involving sorne key BC pathways 

such as PI3K/mTOR/AKT. However, changes on intrinsic subtype are similar between short 

and longer Al treatment. 

5. An upregulation ofFOS and JUN related genes from baseline to surgery are observed

m the control samples, despite no treatment being administered. These molecular 

differences might be caused by sample manipulation (i.e., time to formalin fixation) and not 

by Al treatment itself. 
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5. In ER+/HER2+ BC, the HER2-E subtype and high ERBB2 gene expression, as well

as proliferation-related pathways and high tumour immunity drive early resistance to AL 

6. Beyond HER2-E and proliferation pathways, the new molecular subgroups identified

m early ER+/HER2+ BC enable the identification of patients at a higher risk of 

relapse beyond the HER2-E intrinsic subtypes. 

7. The findings exposed in this work suggest a huge variety of mechanisms being

involved in Al resistance at a gene expression level and differing across the different BC 

tumour type. It also highlights the important and differential role of immune-related features 

in ER + BC in the response to Al, according to the different BC characteristics, for example, 

HER2 status. 

9. The association of immune-related features with early resistance to Al suggests

that high tumour immune-tolerance could be associated with early resistance to Al in both 

ER+/HER2- and ER+/HER2+ BC patients, however, the impact of these features on 

survival might differ amongst BC subtypes. 

1 O. Overall, this project focused on the identification of strong molecular biomarkers 

that facilitate the identification and stratification of patients for the optimisation of diff erent 

treatment options that may improve patient outcomes and their quality of life. 
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