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A B S T R A C T   

Gas-Chromatography coupled to Ion Mobility Spectrometry (GC-IMS) based metabolomics is an emerging technique for obtaining fast, reliable untargeted metabolic 
fingerprints of biofluids. The generated raw data is highly dimensional and complex, suffers from baseline problems, misalignments, long peak tails and strong non- 
linearities that must be corrected to extract chemically relevant features from samples. In this work, we present our GCIMS R package, which includes spectra 
loading, metadata handling, denoising, baseline correction, spectral and chromatographic alignment, peak detection, integration, and peak clustering to produce a 
peak table ready for multivariate data analysis. We discuss package design decisions, and, for illustration purposes, we show a case study of sex discrimination on the 
basis of the volatile compounds in urine samples. The GCIMS package provides a user-friendly workflow for non-code developers to process their raw data samples.   

1. Introduction 

Volatilomics studies the fraction of volatile metabolites (the vola-
tilome) present in biological systems [1]. The human volatilome in-
cludes more than 1000 volatile organic compounds (VOCs) present in 
our body excretions [2,3]. Typical proportions of VOCs in the volatilome 
lead to what we consider normal smells for breath, saliva, sweat, milk, 
blood, semen, urine, faeces, etc. It is a well-known fact that health 
condition modifies human volatilome [4]. For this reason, the smell of 
biofluids has been used to diagnose diseases since the antiquity. For 
instance, fruity scented breath can indicate diabetes [5], typhus skin 
infection smells like fresh-baking bread [6], bladder infection (cystitis) 
by E. coli causes cloudy, foul-smelling urine [7], and so on. Several ap-
plications of volatilomics for early diagnose of disease been reported in 
recent times [8–10]. Also, volatilomics can be used to infer drug con-
centration in human body. More specifically, breath analysis enables a 
non-invasive but indirect monitoring of intravenous drugs based on the 
correlation of drug concentration in blood and breath [4]. 

Volatilome analysis is usually performed acquiring data from 

samples using hyphenated analytical chemistry techniques. Note that, 
for ‘hyphenated’, we understand a technique that is a combination of 
two independent analytical techniques. Commonly, chromatographic 
techniques to separate gas mixtures are coupled to spectrographic 
techniques to characterize the different compounds of the mixture. The 
most popular characterization techniques in volatilomics are gas 
chromatography-mass spectrometry (GC-MS), gas chromatography with 
flame ionization detection (GC-FID), two-dimensional gas chromatog-
raphy combined by high resolution time of flight spectrometry (GC x GC- 
TOF-MS), and more recently, gas chromatography ion mobility spec-
trometry [11–13]. 

GC-IMS is a fast, sensitive and moderate-cost analytical technique for 
VOCs separation and detection [14]. In such type of instruments, 
chromatographic separation is generally achieved using multi-capillary 
columns (MCC) operating at isothermal conditions [15]. Then, the 
sample is ionized and accelerated by a constant electric field against a 
constant drift gas flow (typically nitrogen). As a result, the ions in the 
sample travel through the drift tube of the instrument at a constant 
speed that is proportional to the applied electric field. The constant of 
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proportionality between the speed of the ion and the electric field is 
known as mobility, and it characterizes the ion. A sequence of ion 
mobility recordings constitutes an ion mobility spectrum. Alternatively, 
one can characterize the volatiles in a mixture by determining the time 
required for the different ions to traverse the drift tube (that is deter-
mining their drift time) [16,17]. GC-IMS has recently been explored in 
biomedical applications such as the recognition of bacterial growth and 
pathogen differentiation in blood cultures [18], the detection of bacte-
rial respiratory tract infection in breath [19], as well as for COVID-19 
diagnosis [20], among others [21,22]. The technique has been also 
successfully employed for assessing the quality of alimentary products 
such as honey, wine, olive oil, and for preventing labelling frauds 
[23–26]. 

Despite the advantages of GC-IMS, the technique still presents 
several drawbacks that limit its usability, especially if volatilome anal-
ysis is not performed by highly trained personnel. First, GC-IMS data are 
highly dimensional, and their chemical information content sparse [27]. 
The previous statement means that a single sample measurement can 
contain thousands of features, with only a small fraction of which 
providing chemical information (the two-dimensional peaks associated 
to ions). Second, peaks in GC-IMS spectra can be masked by high levels 
of noise for low ion concentrations [28]. Third, data readings can be 
affected by uncontrolled changes of experimental conditions such as 

humidity and temperature. That is, humidity modifies the shapes of 
peaks in IMS spectra [29], while temperature changes the position of 
peaks both in chromatographic and drift time axes [30]. So, daily and 
seasonal environmental variations make the instrument drift over time. 
Forth, GC-IMS data suffers from baseline problems due to several fac-
tors, namely, background contamination, chromatographic column 
bleeding, reactant ion peak tailing [28,30–32]. And fifth, the instrument 
response to metabolite concentration is highly non-linear [33], 
hampering the quantification of the volatilome. To overcome these 
problems, signal pre-processing techniques for feature extraction fol-
lowed by machine learning are required [34,35]. The available tools for 
data treatment are usually provided by the instrument vendors (e.g. GAS 
Dortmund - VOCal Software [36]). However, commercial tools are 
non-versatile closed solutions linked to the instrument and offer 
simplified data processing workflows. Few attempts have been made to 
improve the quality of GC-IMS data processing by providing full work-
flows that take raw data and provide complete peak tables for further 
statistical analysis and the development of machine learning based 
predictive models. The authors previously described a full workflow for 
GC-IMS data processing implemented in MATLAB and demonstrated the 
application in foodomics [31]. Recently, a solution has been disclosed as 
open source for the research community as a Python package [37]. This 
package implements a simple pre-processing workflow to use the full 

Fig. 1. A) Main steps of the GCIMS R package workflow; B) Image of the ROIs detected for all the samples, where each sample is represented by a different color; C) 
Score plot of the second and third Principal Components of the processed urine data. Red and green markers correspond to female and male individuals, respectively. 
The First Principal Component is mostly aligned with a batch effect in the dataset and it is discarded (see Fig. 3). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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GC-IMS raw data points as features for further analysis. This possibility 
was already explored by the authors, but it provides extremely high 
dimensionality that includes a large fraction of irrelevant characteris-
tics, and it is very sensitive to misalignment errors. According to our 
previous experience, there is a need for open-source GC-IMS data pro-
cessing tools that provide a more powerful approach with selective and 
robust extraction of chemical information. 

In this work, we present the GCIMS R package, which is publicly 
available on GitHub (https://github.com/sipss/GCIMS), a general- 
purpose, customizable, open-source workflow for GC-IMS data treat-
ment. The workflow includes a series of signal processing steps to correct 
nonidealities in data (denoising, chromatographic and spectral align-
ment and baseline correction), peak detection and matching, segmen-
tation of regions of interest (peak boundaries), and finally peak 
integration. 

2. Materials and methods 

The proposed workflow for GC-IMS data analysis is a seven-step 
sequential process (Fig. 1A). In step 1, data are uploaded and anno-
tated. GCIMS R package accepts data in three different input formats: . 
mea, .csv, and.mat. After that, signal to noise ratio is improved by using 
optimized Savitzky-Golay filters [38] in step 2. This task is performed in 
both drift and retention time axes. An optional but often recommended 
decimation process to reduce data dimensionality can be done at this 
point [31]. Note that the decimation factors in the two different time 
axes are usually different since drift time axis tends to have more reso-
lution than retention time axis. To amend the effect of instrumental 
shifts on peak location among samples, spectral and chromatographic 
aligment is implemented in step 3. The alignment in retention time is a 
piecewise linear correction according to a set of reference peaks (e.g. 
internal standards) [39]. Drift time axis aligment is achieved through a 
linear correction. This technique transforms the spectra so that the po-
sitions of all Reactant Ion Positive (RIP) peaks coincide with the position 
of RIP of the reference spectrum [40]. It is worth to mentioning that the 
previous signal pre-processing step is crucial for the subsequent clus-
tering task that will take place in step 5. Regions in data susceptible to 
containing chemical information (Regions of Interest: ROIs) are detec-
ted, that is peaks and their boundaries, in step 4. Each of these ROIs is a 
rectangle enclosing a peak. Peak detection is based on the continuous 
wavelet transform [41]. Next, we match the ROIs across samples to 
ensure that they belong to the same chemical species in step 5 (Fig. 1B). 
This can be done by applying hierarchical clustering [42] to the drift 
time – retention time coordinates of ROI representatives. Alternatively, 
it can be done with k-medoids [43]. Beyond peak clustering, a specific 
ROI size consensus is determined whose dimensions are the median of 
all the sample ROI’s. In this manner, the area support for all the peak 
integrations is the same for all samples. Be aware that ROI size is 
different for each peak to accommodate specific peak shapes. Step 6 
removes baselines in drift and retention time axes. Baselines are esti-
mated as the lowess curves [44] obtained from the local minima of 
spectra and chromatograms. The volume of ROIs is computed in step 7 
for all samples. Volume estimation consists of the double Riemman sum 
of peak intensities within the consensus ROI centered at each original 
peak position. The outcome of this workflow is a peak volume/ROI table 
with as many rows as samples and as many columns as distinct ROIs 
have been determined. Finally, a missing data imputation step is carried 
out by doing data integration on the consensus ROI in case the peak is 
not detected for a particular sample. Peak table rows can be normalized 
to reduce the effects of sample dilution and instrumental drift on peak 
intensities. This is done by using Probalilistic Quotient Normalization 
(PQN) [45], and normalization with respect to the Reactant Ion Positive 
(RIP) peak height [46] methods. The package provides several support 
functions to visualize the effect the different signal pre-processing steps 
on data. More specifically, the user can select and visualize the image of 
sample, plot all the chromatograms/spectra corresponding to a given 

drift/retention time, and check the results of the peak picking and 
clustering processes. A final machine learning predictive model can be 
developed for an ulterior classification of new samples according to their 
chemical signature. For a better understanding of GCIMS package 
functionality, please refer to the package vignette (https://sipss.github. 
io/GCIMS/articles/introduction-to-gcims.html). Also, you can find a 
detailed help for package functions and methods at https://sipss.github. 
io/GCIMS/reference/index.html. 

3. Results and discussion 

Urine is a very promising biofluid for volatilome analysis, due to its 
abundant availability and easy, non-invasive sample collection [47,48]. 
In the urine, there are many metabolites that can be sex, age, and con-
dition dependent [49–51]. The effect of sex on the volatile phase of the 
urine metabolome has been previously studied with Gas Chromatog-
raphy – Mass Spectrometry (GC-MS) [52,53], but to the best of our 
knowledge, there are no sex influence studies with GC-IMS. 

To illustrate the operation of the GCIMS software, we conducted a 
subject discrimination study based on sex, using urine samples analysed 
with GC-IMS. A total of 56 urine samples were collected from 29 subjects 
(13 females and 16 males) in two different measurement campaigns, 
where the age, the size, and the weight of the subjects, were balanced 
among the 2 groups. The study protocol was approved by the Ethics 
Committee of Hospital de Reus (study approval no. 074/2018). The 
urine samples were obtained from the subjects at Hospital Universitari 
Sant Joan de Reus, and after collection, they were stored at − 80 ◦C and 
transported to Barcelona with dried ice. For the sample preparation, 300 
μL of a stock solution containing hydrochloric acid (HCl) 5 M, sodium 
chloride (NaCl), and sodium azide (NaN3) were added to each urine 
sample. The HCl was used to reach pH = 2 [54], as this pH captures more 
volatile organic compounds (VOCs) [55]. The NaCl was added to favour 
the volatile extraction, and the NaN3 served as a bacteriostatic agent, 
preventing bacterial growth in the urine samples [56]. Subsequently, the 
samples were incubated for 15 minutes at 60 ◦C, just before the GC-IMS 
analysis. The GC-IMS measurements were performed using a Fla-
vourSpec® instrument from G.A.S. Dortmund (Dortmund, Germany). 
The flow rate of the drift gas was 200 ml/min, and the flow rate of the 
carrier gas was 11 ml/min, both using Nitrogen 5.0. The GC and IMS 
temperature were set at 60 ◦C, and the total analysis time lasted 33 
minutes. Each sample acquired from the GC-IMS equipment resulted in a 
numeric matrix containing all the drift time spectra on one axis and all 
the retention time chromatograms on the other axis. Data collection was 
randomized. The dataset used in this study is available at Zenodo (http 
s://zenodo.org/record/7941230). 

Fig. 2 shows a raw GC-IMS urine sample from the dataset. The image 
exhibits the intrinsic complexity of GC-IMS data, where chemical in-
formation of volatiles is encoded in the form of two-dimensional peaks. 
Please observe the presence of the Reactant Ion Positive (RIP) peak for a 
drift time around 7.76 ms. This peak is responsible for transferring 
change to the rest of ions in a spectrum. Therefore, a reduction/incre-
ment in RIP peak height entails and increment/reduction of the height of 
peaks associated to volatile compounds. Interestingly, ion stability de-
pends on volatile concentration in GC-IMS instruments [57]. At low 
concentrations, the most stable ion is the monomer. The height of the 
monomer peak increases with volatile concentration until a second ion 
generated from the same compound is the most stable (the dimer). Then, 
the dimer peak appears in the spectrum at a higher drift time value and 
the monomer peak suddenly vanishes. On some occasions, trimer ions 
can be also generated [58]. If volatile concentration is reduced, dimer 
peak disappears because the dominant ion is the monomer. Conse-
quently, each time a volatile compound elutes from the chromato-
graphic column the presence of their corresponding monomer and dimer 
peaks can be seen through adjacent spectra. From the figure, it is also 
evident that raw GC-IMS data are affected by baseline problems in both 
chromatographic and drift time axes. We can identify long peak tails in 
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the retention time axis, but also strong variations in baselines of spectra, 
specially right after a new compound is eluting from the column. Finally, 
the position of peaks associated to volatiles varied considerably across 
samples (not shown). 

After applying our pre-processing workflow on the dataset, raw data 
was denoised, aligned, and the baselines were corrected. Peak picking, 
peak clustering and peak integration stages were employed to extract 
data features. Therefore, a peak table summarizing all chemically rele-
vant information from data was obtained. The total process for the 65 
samples takes about 60 minutes to complete. We conducted an explor-
atory Principal Component Analysis [59] in order to identify trends in 
the corrected data. Fig. 1C shows the scores of the second and third 
principal components of a PCA analysis, coloured by sex. A certain 
tendency to separate the classes can be observed. Fig. 3 shows a 
remarkable batch effect in PC1 but negligible for higher Principal 
Components. Next, we conducted a classification task to assess the 
quality of the information extracted by the workflow. A leave one sub-
ject out (LOSO) double cross-validation process [60] was performed to 
train PLS-DA models [61] from urine data, that were able to reject the 
batch effect on this dataset. To optimize model complexity the area 
under the Receiver Operating Characteristic (ROC) curve was used in 
cross-validation [62]. The area under the curve (AUC) for the test 
samples was equal to 0.76 (CI 95% = 0.64–0.89). From these results, we 

concluded that with the GCIMS workflow proposed, differences between 
male and female urines can be detected. These conclusions were also 
validated with a permutation test which p-value was 0.005, fact that 
suggest that these results cannot be obtained by chance (Fig. 4). To 
compare the performance of our workflow with existing tools, we ana-
lysed the data with the gc-ims-tools for Python, and an AUC equal to 
0.57 (CI 95% = 0.41–0.72) was obtained (Fig. 5). The AUC of both ROC 
curves were significantly different according to the DeLong’s test 
(p-value = 0.03) [63]. The main differences between the two workflows 
were that gc-ims-tools Python package 1) did not correct chromato-
graphic peak misalignments across samples, and 2) used the whole set of 
features in a matrix to characterize a sample [64] instead of a feature 
vector containing only the volumes of the detected peaks [65,66]. This 
showcases the importance of a proper signal processing/feature 
extraction workflow in the analysis of GC-IMS data. 

In conclusion, the study showed promising results regarding the 
possibility of discriminating sex based on the volatile phase of the urine 
metabolome using GC-IMS, providing valuable insights for future 
research and potential diagnostic applications. For further information, 
the reader can consult the scripts used to perform this analysis at http 
s://github.com/sipss/GCIMS_Case_Study. 

Fig. 2. Image of the raw GC-IMS data for a urine sample X-axis is the normalized drift time, and the Y-axis is the chromatographic retention time. The Reactant Ion 
Positive (RIP) appears as a strong intense (red) band parallel to the Y-axis. Visual inspection reveals the presence of numerous ion peaks. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4. Independently tested by Dr. Jia Yan 

The GCIMS R Package was reviewed by Dr. Jia Yan, an outside 
reviewer from our institution. During the review process, Dr. Jia Yan 
used the GCIMS R package available in GitHub https://github.com/si 
pss/GCIMS with the dataset, also public available at https://zenodo.or 
g/record/7941230. 

After his review, Dr. Jia Yan declare. 
Declaration and comments 
With the provided code and guidance from authors’ documents, I am 

able to implement the authors’ program and obtain identical results. The 
code structure is clear, emphasizing code quality, and the program 
design is reasonable with a logical flow. This demonstrates that the 
authors are profound understanding of the problem and showcases their 
proficiency in applying solutions. 

Dr. Jia Yan, Associate professor, Master supervisor, Director of 
Experimental Center. 

College of Artificial Intelligence, Southwest University. 
Address: No.2 Tiansheng Rd., Beibei District, Chongqing, 400715, P. 

R. China. 
Telephone: +86 23 68250728 Cell phone: +86 15023308330. 
Email: yanjia119@163.com yanjia119@swu.edu.cn. 

5. Conclusion 

GCIMS R package provides a fully automated, open-source workflow 
for GC-IMS data processing. This workflow is aimed at enhancing 
chemical information from the raw data. We have applied the package to 
a set of 29 subjects urine samples acquired with a GC-IMS instrument 
and corresponding two different measurement campaigns. The resulting 
ROI table was used to perform a LOSO double cross-validation process 
(AUC = 0.76, CI 95% = 0.64–0.89, p-value of the permutation test equal 
to 0.005). This result suggests that the proposed workflow was able to 
capture trends in data responsible for sample sex separation, that are 
hidden in simpler data processing approaches. 

Availability 

Source code is freely available at https://github.com/sipss/GCIMS 
under the GPL license. Dataset used in the presented case study is 
available at https://zenodo.org/record/7941230. 
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Fig. 3. Score plot of the first two Principal Components for the PCA model built 
from the complete set of samples after pre-processing and extracting data fea-
tures. Batch effect is evident when colouring PC1 and PC2 scores according to 
the measurement campaign at which samples were acquired. 

Fig. 4. Histogram of the Permutation test for the AUCs of PLS-DA models. The 
red line shows the value for quantile 0.95 (0.68) of the null hypothesis distri-
bution, and the yellow one the AUC obtained after the LOSO double cross- 
validation process (0.76). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Plot comparison of the ROC curves of the GCIMS R v0.1.0 package in 
blue (AUC 0.76 95%CI 0.64–0.89); and in red the ROC curve of the gc-ims-tools 
v0.1.2 for Python (AUC = 0.57 95%CI 0.41–0.72). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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López-García, M. Hernández-Córdoba, Untargeted Headspace Gas 
Chromatography-Ion Mobility Spectrometry Analysis for Detection of Adulterated 
Honey, (n.d). 

[26] R. Garrido-Delgado, L. Arce, A.V. Guamán, A. Pardo, S. Marco, M. Valcárcel, Direct 
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