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Bell’s theorem proved that quantum theory cannot be fully explained with local
hidden variable models. This led to the emergence of the field of nonlocality, which
has been generalized to more sophisticated scenarios than the standard Bell scenario,
called network scenarios. This thesis focuses on the characterization of the correlations
in the simplest nontrivial bilocal scenario. While correlations in the standard Bell
scenario form a convex set, in networks the set of correlations is non-convex, making
the problem challenging. We construct an oracle that tells us whether a correlation
is bilocal or not. We study analytically the geometry of the bilocal set. Finally, we
describe two different ways of generating nonlocality and give a intuition of what is
genuinely nonbilocal.
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1 INTRODUCTION
In 1935 a paper was published by Einstein, Podolsky and Rosen (EPR) that sparked

a debate on the completeness of quantum theory viewed as a local-realistic (LR) model
[EPR35]. According to this paper, any physical theory has to satisfy:

• Locality, in the sense that there cannot be a causal relationship between space-like
separated events.

• Reality: it must be possible to predict a physical quantity with certainty without
disturbing the system.

• Completeness, i.e., every element of the physical reality must have a counterpart in
the physical theory.

In 1964, J. Bell published a paper ending the debate. In it, he formalized the conditions
that must be fulfilled by any local hidden variable theory and proposed an experiment that
was quantum in nature and violated these conditions [Bel64]. These conditions are the so-
called Bell inequalities. The first experimental violations of Bell inequalities ([AGR81] and
[TBZG98] among others) put an end to the EPR conflict.

Bell established a theorem according to which no physical theory based solely on local
variables can fully explain all the quantum theory predictions. Because of it, in recent
years, research has been developed in the nonlocality field [BCP+14]. Its relevance is
two-fold. First, from the foundational point of view to understand quantum theory in
scenarios such as those proposed by Bell and in more sophisticated ones. Second, developing
quantum information theory to use it in networks towards information processing tasks
leading to different applications such as the quantum Internet or quantum cryptography
[BCP+14, TPKR+21].

1.1 BELL SCENARIO
The standard Bell scenario consists of several non-communicating observers measur-

ing in their respective shares of a system emitted by a single physical source. Consider
two observers, Alice (A) and Bob (B). They can choose which measurement they perform,
labelled as x and y, respectively, and they can obtain different outcomes, respectively de-
noted a and b [TPKR+21] (Fig. 1). If the experiment is repeated many times, we will

Figure 1: Representation of the standard (bipartite) Bell scenario

obtain the relative frequencies of (a, b) given (x, y). This will result in a probability distri-
bution p(a, b|x, y), which is the correlation shared by the parties A and B. A correlation is
local, i.e., it satisfies Bell’s local causality assumption, if it can be written as:

p(ab|xy) =
∫
dλµ(λ)pA(a|xλ)pB(b|yλ), (1)
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where λ, the so-called hidden variable, contains all the information about the common past
of the shares and it is subject to some unknown probability density µ(λ). Note that Alice’s
and Bob’s inputs are independent from the hidden variable (µ(λ|x, y) = µ(λ)) [TPKR+21].

The output of each party does not depend on the input of the other one. This assump-
tion is called the no-signaling principle (NS) and it is written as

∀b, x, y :
∑

a

p(a, b | x, y) = p(b | x, y) NS= p(b | y),

∀a, x, y :
∑

b

p(a, b | x, y) = p(a | x, y) NS= p(a | x).
(2)

The set of correlations that satisfy the NS principle, N S, strictly contains the set of local
correlations, L. If the number of inputs and outputs is finite, L can be characterized in
terms of a polytope known as the local polytope. Without loss of generality, the response
functions pA and pB can be assumed to be deterministic functions (they provide output
in function of the inputs and the hidden variable λ), as any randomness in them can be
absorbed in µ(λ). Because of that, each deterministic function corresponds to a vertex
of the polytope. Moreover, we can set λ to belong to a finite set and, then, replace the
integral by a summation because, as the number of inputs and outputs is finite, the number
of deterministic responses is also finite. The local correlations form a local polytope as they
are convex combination of the vertices because of the freedom of varying µ(λ). The facets
of the polytope can be determined and correspond to the Bell inequalities (Fig. 2). Hence,
one can infer if a correlation is local or not by checking if all these inequalities are or not
satisfied, respectively. The violation of one Bell inequality is sufficient to determine that a
correlation is nonlocal [TPKR+21].

Figure 2: Representation of the local, quantum and no-signalling set.

The simplest and best known Bell inequality is the Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality [CHSH69]. Let’s consider a scenario with 2 parties which have binary in-
puts x, y ∈ {0, 1} and binary outputs a, b ∈ {−1,+1}. The inequalities that represent the
non-trivial facets of the polytope can be written as:

SCHSH = ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2, (3)

up to relabellings, with ⟨AxBy⟩ =
∑

a,b a · b · p(a, b|x, y) (proof in Appendix A).
To see a violation of the CHSH inequality, imagine that A and B share

∣∣ϕ+〉
=

1√
2(|00⟩ + |11⟩) (the maximally entangled state) and that A and B performs the following

measurements: A1 = σx, A2 = σz, B1 = (σx + σz)/
√

2 and B2 = (σx − σz)/
√

2. These
conditions make SCHSH = 2

√
2 > 2. Indeed, 2

√
2 corresponds to the maximal violation of
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the CHSH [Cir80] (proof in Appendix B). The first experimental verification of a CHSH
violation was in 1972 [FC72].

It is important to notice that the CHSH inequality can be violated in quantum theory,
in which the correlations are given by the Born rule [TPKR+21]:

p(a, b|x, z) = Tr(Aa|x ⊗Bb|y · ρ), (4)
where {Aa|x} and {Bb|y} are measurements acting on HA and HB, respectively, and ρ, a
quantum state acting on HA ⊗ HB. These form the set Q, which satisfies No-Signalling
and which strictly contains L (see Fig. 2).

1.2 BEYOND THE STANDARD BELL SCENARIO:NETWORKS
The study of nonlocality can be extended to the multipartite Bell case in which more

than two parties are connected to one source (Fig. 3a). Moreover, in recent years, non-
locality has been extended to the case of generic networks, whose difference with respect
to the former is the presence of more than one source. These sources are assumed to be
independent between them and that independence is translated into the association of a
hidden variable to each source. Each source gives a share of a physical system to some
parties of the network. Hence, each party can receive one or more shares from different
sources [TPKR+21].

(a) (b)

Figure 3: Representation of the Bell scenario with three parties (a) and the triangle network (b).

Generalizing Eq. (1), a correlation with m sources and n parties is local for a given
network if it can be written as:

p(ā|x̄) =
∫
dλ1µ(λ1) · · ·

∫
dλmµ(λm)pA1(a1|x1λ̄1) · · · pAn(an|xnλ̄n), (5)

where ā = (a1, ..., an) are the outputs of the n different parties given their inputs x̄ =
(x1, ..., xn) and λ̄j corresponds to the set of the different hidden variables associated to the
sources that send a share to the party j. In order to clarify this definition, let us consider
one of the most studied networks which is the triangle network (Fig. 3b). This scenario
gives a local correlation if it can be written as follows:

p(a, b, c|x, y, z) =
∫
dλ1µ(λ1)

∫
dλ2µ(λ2)

∫
dλ3µ(λ3)pA(a|x, λ1, λ3)pB(b|y, λ1, λ2)pC(c|z, λ2, λ3).

(6)
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The independence of the sources makes the set of local network correlations more complex
than a polytope. The set of such correlations satisfies:

• It is inside the n-partite local polytope (Fig. 4a).

• It is nonconvex [BGP10].

• It is connected, closed and defined by a finite number of polynomial inequalities
[Fri12].

(a) (b)

Figure 4: Representation of the local and quantum set. In the first image (a), the local set of the
network within the local set is represented. In the second (b), the local set of the network is shown
within the network quantum set which is in turn inside the quantum set.

In quantum networks, the independence of the sources is equivalent to have independent
quantum states ρj . In that case, the correlations are:

p(ā | x̄) = Tr
[(
A

(1)
a1|x1

⊗ . . .⊗A
(n)
an|xn

)
· (ρ1 ⊗ . . .⊗ ρm)

]
, (7)

where A(j)
aj |xj

is the measurement performed by the party j, and has support on the Hilbert
space of each share of the ρi that is sent to party j. Analogous to the classical definition,
let us consider the triangular network. The quantum correlations for this case are

p(a, b, c|x, y, z) = Tr
[(
A

(A1A2)
a|x ⊗B

(B1B2)
b|y ⊗ C

(C1C2)
c|z

)
·
(
ρ

(A2B1)
1 ⊗ ρ

(B2C1)
2 ⊗ ρ

(C2A1)
3

)]
,

(8)
where the respective Hilbert spaces are ordered according to the network configuration.
Like the set of local network correlations, the set of quantum network correlations is closed
and it is not convex. The quantum network correlation set contains the local network set
but it is not contained in the Bell-local polytope (Fig. 4b) [TPKR+21].

1.3 BILOCAL NETWORK
This work is focused on the study of the simplest quantum network which is the bilocal

network. This scenario is very interesting, not only from a fundamental perspective, but
also from a quantum information point of view in which the understanding of this network
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might help in designing protocols for the use of quantum phenomena, such us entanglement
swapping, cryptography, and other information processing tasks.

This scenario consists of 3 parties on a line –Alice(A), Bob(B) and Charlie(C)– and
two sources between Alice-Bob and Bob-Charlie. Each party receives an input (x, y and z,
respectively) and gives an output (a, b and c), as it is shown in Fig. 5, thus giving rise to
correlations of the form p(a, b, c|x, y, z) [TPKR+21].

Figure 5: Representation of the bilocal scenario

The independence of the sources makes A and C uncorrelated, i.e., they are condition-
ally independent, which is rendered by∑

b

p(a, b, c|x, y, z) = p(a, c|x, z) = p(a|x)p(c|z). (9)

The correlation p(a, b, c|x, y, z) admits a bilocal model, i.e., it admits a network local
model, if it can be written as

p(a, b, c|x, y, z) =
∫ ∫

dλ1dλ2µ(λ1)µ(λ2)pA(a|x, λ1)pB(b|y, λ1, λ2)pC(c|z, λ2). (10)

Determining if a correlation is bilocal or not is nontrivial. There are some necessary but
not sufficient inequalities for certain bilocal scenarios [BRGP12].

One of the phenomena that produces nonlocality in the bilocal scenario is the entan-
glement swapping[BGP10, BRGP12]. Such process makes it possible for two particles that
have never interacted with each other to be nonlocally correlated [BGP10].

1.4 SUMMARY OF THE CONTRIBUTIONS
This section describes the work that has been done on this master thesis, which you

will find in the following sections. Section 2, tells how an oracle has been obtained to
determine whether a correlation is bilocal or not. In subsection 2.1, the problem to address
this goal is presented and analytically characterized, while in subsection 2.2 we describe
the implementation of the oracle via linear and bilinear optimization software, as well
as various tests that were carried out for its verification. In section 3, the bilocal set is
analysed. First, in section 3.1, we try to better understand its geometry by formulating a
conjecture relating the bilocal set to standard Bell bipartite scenario, and testing its falsity.
In section 3.2, we study different scenarios in which non-bilocality can be produced with
quantum sources. Some of the bilocality violations can be directly related to an underlying
bipartite nonlocality, therefore posing the question of what are the quantum phenomena
that are "genuinely new" in the bilocal scenario. In addition, considering convex mixtures
of these examples, we find quantumly feasible nonbilocal correlations that do not show
straightforward hidden locality violation. Finally, the appendices contain technical details
and derivations.
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2 BILOCAL ORACLE
The main objective we address in this thesis is the characterization of the “easiest”

nontrivial network that can exhibit nonlocality. Although simplicity is not a characteristic
that can be quantified, we consider a minimal bilocal scenario which corresponds to the
one in which Alice and Charlie have binary inputs (x, z ∈ {0, 1}) and everyone has binary
outputs (a, b, c ∈ {0, 1}) (Fig.6).

Figure 6: Representation of the simplest bilocal scenario

2.1 THEORY OF THE ORACLE
The correlation p(a, b, c|x, z) will be bilocal if it can be written as Eq. (10). The response

functions in it can be assumed to be deterministic, as any randomness in them can be
absorbed in µ(λ1) and µ(λ2). Furthermore, λ1 and λ2 can be taken as flat distributions
from 0 to 1 (then, µ(λ1) = 1 = µ(λ2)), by rescaling the response function of each party.
Hence, the bilocal equation (Eq. (10)) becomes:

p(a, b, c|x, y, z) =
∫ 1

0

∫ 1

0
dλ1dλ2pA(a|x, λ1)pB(b|λ1, λ2)pC(c|z, λ2). (11)

This means that correlations can be represented in a square as it is showed in Fig. 7a.
Moreover, λ1 and λ2 are taken to be between 0 and 1 and their order can be permuted
without loss of generality. Hence, we obtain Fig. 7b.

(a) Before ordering. (b) After ordering

Figure 7: Representation of a bilocal correlation. The coloured part corresponds to p(a, b = 1, c|x, z).

This way of visualising local strategies divides the square into 16 rectangles (RJ with
J = 1, 2, ..., 16) each corresponding to one of the 16 possible deterministic strategies that
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Alice and Charlie decide upon receiving λ1 and λ2 respectively. In each rectangle, there
can be a coloured part (which we will call SJ) and an uncoloured part that represent the
probability of Bob outputting 1 or 0, respectively:

SJ = p(b = 1 ∧ {λ1, λ2} ∈ RJ). (12)

Moreover, there are two more variables that are unobservable, α and β, which correspond
to another two degrees of freedom that can be visualized in the Fig. 7b. So, in order to
fulfill the locality condition, the variables SJ must fulfill certain conditions.

First, since the variables SJ corresponds to probabilities, they all have to fulfill posi-
tivity and have to be less than one,

SJ ≥ 0 for J = 0, 1, ..., 16. (13)

SJ ≤ 1 for J = 0, 1, ..., 16. (14)

Secondly, the variables SJ have to be smaller than the rectangles they are contained in,

SJ ≤ RJ for J = 0, 1, ..., 16. (15)

Eq. (15) makes Eq. (14) redundant. All these conditions can be translated in terms of
probabilities:

S1 ≤ α · β
S2 ≤ [p(a = 1, b, c|x = 0, z = 0) − α] · β
S3 ≤ [p(a = 1, b, c|x = 1, z = 0) − α] · β
S4 ≤ [p(a = 1, b, c|x = 1, z = 0) − p(a = 1, b, c|x = 0, z = 0) + α] · β
S5 ≤ α · [p(a, b, c = 1|x = 0, z = 0) − β]
S6 ≤ [p(a = 1, b, c|x = 0, z = 0) − α] · [p(a, b, c = 1|x = 0, z = 0) − β]
S7 ≤ [p(a = 1, b, c|x = 1, z = 0) − α] · [p(a, b, c = 1|x = 0, z = 0) − β]
S8 ≤ [p(a = 1, b, c|x = 1, z = 0) − p(a = 1, b, c|x = 0, z = 0) + α] · [p(a, b, c = 1|x = 0, z = 0) − β]
S9 ≤ α · [p(a, b, c = 1|x = 0, z = 1) − β]
S10 ≤ [p(a = 1, b, c|x = 0, z = 0) − α] · [p(a, b, c = 1|x = 0, z = 1) − β]
S11 ≤ [p(a = 1, b, c|x = 1, z = 0) − α] · [p(a, b, c = 1|x = 0, z = 1) − β]
S12 ≤ [p(a = 1, b, c|x = 1, z = 0) − p(a = 1, b, c|x = 0, z = 0) + α] · [p(a, b, c = 1|x = 0, z = 1) − β]
S13 ≤ α · [p(a, b, c = 1|x = 0, z = 1) − p(a, b, c = 1|x = 0, z = 0) + β]
S14 ≤ [p(a = 1, b, c|x = 0, z = 0) − α] · [p(a, b, c = 1|x = 0, z = 1) − p(a, b, c = 1|x = 0, z = 0) + β]
S15 ≤ [p(a = 1, b, c|x = 1, z = 0) − α] · [p(a, b, c = 1|x = 0, z = 1) − p(a, b, c = 1|x = 0, z = 0) + β]
S16 ≤ [p(a = 1, b, c|x = 1, z = 0) − p(a = 1, b, c|x = 0, z = 0) + α] ·

· [p(a, b, c = 1|x = 0, z = 1) − p(a, b, c = 1|x = 0, z = 0) + β] .
(16)

Additionally, some conditions on the Bob’s response function have to be fulfilled. It is
sufficient to look at p(a, b = 1, c|x, z) (the coloured part in Fig. 7), since p(a, b = 0, c|x, z) =
p(a|x)p(c|z) − p(a, b = 1, c|x, z). These conditions can be represented by the Fig. 19 of
Appendix C and can be written as follows:

7



S1 + S2 + S5 + S6 = p(a = 1, b = 1, c = 1|x = 0, z = 0)
S3 + S4 + S7 + S8 = p(a = 0, b = 1, c = 1|x = 0, z = 0)
S9 + S10 + S13 + S14 = p(a = 1, b = 1, c = 0|x = 0, z = 0)
S11 + S12 + S15 + S16 = p(a = 0, b = 1, c = 0|x = 0, z = 0)
S1 + S3 + S5 + S7 = p(a = 1, b = 1, c = 1|x = 1, z = 0)
S9 + S11 + S13 + S15 = p(a = 1, b = 1, c = 0|x = 1, z = 0)
S1 + S2 + S9 + S10 = p(a = 1, b = 1, c = 1|x = 0, z = 1)
S3 + S4 + S11 + S12 = p(a = 0, b = 1, c = 1|x = 0, z = 1)
S1 + S3 + S9 + S11 = p(a = 1, b = 1, c = 1|x = 1, z = 1).

(17)

Finally, observing the pictorial representation (Fig. 7b) the last conditions are:

α ≥ 0
α ≤ p(a = 1|x = 1)
α ≤ p(a = 1|x = 0)
α ≥ p(a = 1|x = 1) − p(a = 0|x = 0)
β ≥ 0
β ≤ p(c = 1|z = 1)
β ≤ p(c = 1|z = 0)
β ≥ p(c = 1|z = 1) − p(c = 0|z = 0),

(18)

but the third, the fourth and the last two equations of (18) are redundant with the other
constraints. Then, we have 18 variables and 45 constraints. Notice that there are some
constraints that are bilinear (Eq. (16)), as some of them have the term αβ. Then, it is a
bilinear problem.

This problem can also be approached from another formalism, that uses a decompo-
sition onto deterministic correlations with weights qᾱβ̄γ̄ [BGP10]. That is, a determistic
strategy by Alice is defined by the output αx that she assigns to each possible input x. This
means that each deterministic strategy can be represented by the string ᾱ = α0, α1, ..., αN ,
where N corresponds to the number of possible inputs of Alice. Her corresponding response
function will be Pᾱ(a|x) = δa,αx . Analogously, if we do the same for Bob and Charlie by
calling β̄ and γ̄ their respective strategies, Eq. (11) can be rewritten as follows:

p(a, b, c|x, y, z) =
∑

ᾱ,β̄,γ̄

qᾱβ̄γ̄Pᾱ(a|x)Pβ̄(b|y)Pγ̄(c|z) (19)

where qᾱβ̄γ̄ =
∫ ∫

Λ12
ᾱβ̄γ̄

dλ1dλ2 with Λ12
ᾱβ̄γ̄

the set of all pairs (λ1, λ2) that determine the

ᾱβ̄γ̄-strategy. It follows that
∑

ᾱ,β̄,γ̄ qᾱβ̄γ̄ = 1. In this notation, a bilocal correlation
satisfies:

qᾱγ̄ = qᾱqγ̄ (20)

So, an equivalent implementation to the previous one can be done in these terms. Now
the variables would be qᾱβ̄γ̄ and the constraints would be qᾱβ̄γ̄ ≥ 0 and Eq. (19) and (20).
This results in a bilinear program that can be solved with Gurobi [Gur22]. In this way,
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we obtain completely equivalent results to those obtained with the previous formalism.
Moreover, this new approach is interesting because it can be easily generalized to other
possible cases in the bilocal scenario including, for instance, more than one input for Bob.

2.2 IMPLEMENTATION AND TESTS
There are two possibilities to address the problem set out in subsection 2.1. The first

one is to linearize the problem by taking, for example, β as a given constant (it would be
equivalent to do it with α) and solving the problem for the different possibilities of β. So,
by this way, the program becomes an "infinite set" of linear programs. However, a fairly
good approximation is to solve a finite number of linear programs, i.e., discretizing the
interval to which β belongs, defined by Eq. (18). A linear program is one that optimises
a linear function (objective function) given linear constraints. Our linear program is a
feasibility problem and can be written as:

max
SJ ,α,β

1

s.t. (16), (17), (18).
(21)

where we are optimizing a scalar function because in a feasibility problem, every solution
is optimal.

The second possibility is to make use of a program that allows us to solve bilinear prob-
lems. In our case, we have used Gurobi [Gur22], but there are other equivalent programs
such as BMIBNB [BMI22]. Gurobi is a solver that uses the Branch and Bound method.
This method makes it possible to find the optimal solution, after exploring different solu-
tions. It is based on two tools: branching and bounding. First, the problem is solved by
adding a linear relaxation. From the solution obtained, the problem is branched by adding
constraints to the model. In this way, the process is repeated, obtaining different solutions
that form a tree. As the tree is branched, the bounding is performed, thus discarding
possible branches that are of no interest. Finally, the solver tells you whether or not it has
found a solution and if it has, it gives you the values of the variables corresponding to it.

Using both methods, we succeed in obtaining an oracle that allows us to determine
wheter a correlation is bilocal or not.

Several tests are carried out to benchmark the oracle. Using the bilinear program, one
of them is to obtain the visibility (V) for which a solution begins to exist, i.e., to quantify
the nonbilocality of a correlation by its resistance to noise. This means finding the visibility
for which the following probability becomes bilocal:

p(a, b, c|x, y, z) = V · pnonbilocal + (1 − V ) · puniform, (22)

where pnonbilocal corresponds to a nonbilocal correlation and puniform, to the uniform prob-
ability.

For this purpose, we use a scenario that produces nonbilocal correlations. It is the
entanglement swapping scenario in the cases in which Bob has one input and two, three
or four outputs. First, we compute the problem in which Bob has two outputs that is
defined in section 3.2.1 and we find a visibility of V = 0.707 ≃ 1/

√
2, which is what

we expected. Notice that in this case the puniform will be biased because of the coarse
grained in Bob measurements, which corresponds to have p(a, b = 0, c|x, z) = 1/16 and
p(a, b = 1, c|x, z) = 3/16. Then, we compute the analogous problem for the case in which
Bob has three and four outputs and we obtain V = 0.666 ≃ 2/3 and V = 1/2, respectively.
These two last visibilities coincides with what is expected from Ref. [BRGP12]. Notice that
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in these cases, the pictorial representation is equivalent to the one described in section 2.1
but adding one or two more colours, respectively (see appendix D).

Then, these tests are carried out with the linear program which certified that it obtains
the same results as the bilinear program. In addition, a plot can be generated to show
whether or not there is a bilocal solution (with yellow or purple, respectively) depending
on the visibility and the given β to see how it behaves. For the case in which Bob has two
outputs, Fig. 8a is obtained. We can see the abrupt cutoff at V = 0.707 from which there
are no more bilocal correlations.

Similarly, an equivalent study can be carried out for the case in which Bob has three
outputs obtaining the Fig. 8b. In that plot, we can see that the bilocal solutions end for
V = 0.66. It is remarkable that this plot is completely different from the one obtained for
the case of Bob with 2 outputs. For completeness, the study for the case in which Bob has
4 outputs is shown in the Fig. 8c.

(a) 2 outputs for Bob (b) 3 outputs for Bob

(c) 4 outputs for Bob

Figure 8: Representation of the solutions for the correlation given by Eq. (22) for each value of β and
visibility in the entanglement-swapping scenario.

In order to test our program in a different scenario, we reproduce the results of the
paper [TGB21] to compare our results with them. In that paper, they construct a plot
equivalent to Fig. 8a for the Elegant Joint Measurement (EJM) in the bilocal scenario.
This study does not go directly back to the standard quantum nonlocality as the ones
based on Bell State Measurement. In an EJM (Fig. 9), Bob distributes different states to
Alice and Charlie than in the Bell State Measurement case. To study the (non)bilocality
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Figure 9: Representation of the scenario used for test the (non)bilocality with the Elegant Joint
Measurement.

in that case, we use a bilocal scenario in which Alice and Charlie have three inputs and two
outputs (x, z ∈ {1, 2, 3} and a, c ∈ {±1}) which corresponds to measurements of the three
Pauli observables (σ1, σ2 and σ3). Bob has one input and four outputs that corresponds to
the result of the EJM (b ∈ {1, 2, 3, 4}), which is defined with more detail in Appendix E.

Furthermore, the two sources emit pair of qubits corresponding to the so-called Werner
states:

ρi = Vi

∣∣ψ−〉 〈
ψ−∣∣ + 1 − Vi

4 1, (23)

where i ∈ {0, 1} and Vi is the visibility of each singlet. When Bob applies the EJM on pure
singlets, an entangled state arises between Alice and Charlie. Moreover, the paper shows
an analytical inequality:

S

3 − T
biloc
≤ 3 + 5Z, (24)

where:

S =
∑
y=z

⟨ByCz⟩ −
∑
x=y

⟨AxB
y⟩ , T =

∑
x ̸=y ̸=z ̸=x

⟨AxB
yCz⟩ , Z = max (Cother ), (25)

where Cother = {|Ax|, |AxB
y|, ..., |AxB

yCz|} and all the correlators are given in Appendix E.
Implementing this scenario in our program, we can obtain a plot showing whether or

not there is a solution as a function of V1 and V2 (Fig. 10). In this plot, we also show the
analytical inequality they obtained. Moreover, the red dots corresponds to the results of
[TGB21] observing that we obtain equivalent outcomes.

3 ANALYSIS OF THE BILOCAL SET
As the scope of this thesis is studying the simplest bilocality scenario defined in section 2,

here we try to understand the shape of the set formed by the bilocal correlations of that
scenario. Moreover, we are also interested in what is genuinely new with regard to the
standard bipartite Bell scenario and in different ways of generating nonlocality.

3.1 UNDERSTANDING THE GEOMETRY OF THE SET
All the violations that have been discussed above for the “simplest” bilocal scenario

(Fig. 6) correspond to quantum correlations that are nonlocal between Alice and Charlie
(in the standard bipartite Bell scenario) when conditioning on Bob’s output. Therefore it
is natural to ask whether the following conjecture is true:
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Figure 10: Representation of the feasibility for a bilocal solution for the scenario in Fig. 9. The purple
area shows when there is no solution, the yellow area, when there is and such a solution can be obtained
by means of the analytical inequality and the blue area, where there is solution but it cannot be obtained
by the analytical inequality. Finally the red dots corresponds to the paper data [TGB21].

p0 ≡ p(a,b=0,c|x,z)
p(b=0) ∈ LBell

p1 ≡ p(a,b=1,c|x,z)
p(b=1) ∈ LBell

pApC ≡ p(a|x)p(c|z) = w0p0 + w1p1

 ⇔ p(a, b, c|x, z) ∈ B. (26)

where wi = p(b = i) for i = 0, 1 and w0 +w1 = 1. We prove that the implication ⇐ is true
as follows.

Let us consider a bilocal distribution p. As it is bilocal, it can be written as equation
10. Hence, p0 will be:

p0 ≡ p(a, b = 0, c|x, z)
p(b = 0) =

∫
dλ1

∫
dλ2µ(λ1)µ(λ2)p(a|xλ1)p(b = 0|λ1, λ2)p(c|z, λ2)∑

a,c

∫
dλ1

∫
dλ2µ(λ1)µ(λ2)p(a|xλ1)p(b = 0|λ1, λ2)p(c|z, λ2) ,

(27)
as p(b = 0) =

∑
a,c p(a, b = 0, c|x, z). Using the fact that

∑
a p(a, x|λ1) = 1 and, analo-

gously,
∑

c p(c|z, λ2) = 1, we get

p0 =
∫
dλ1

∫
dλ2µ(λ1)µ(λ2)p(a|xλ1)p(b = 0|λ1, λ2)p(c|z, λ2)∫

dλ1
∫
dλ2µ(λ1)µ(λ2)p(b = 0|λ1, λ2) . (28)

Moreover, we know that the set of bilocal correlations is inside the set composed by the
local correlations of network with three parties. This can be easily seen as follows. A
tripartite distribution is local if it can be written as∫

dλµ(λ)p(a|xλ)p(b|λ)p(c|z, λ). (29)

Furthermore, any distribution of the form 10 is also of the form above, by choosing λ =
{λ1, λ2}, p(a|xλ) = p(a|xλ1), p(b|λ) = p(b|λ1, λ2) and p(c|z, λ) = p(c|z, λ2).

Then, if any bilocal correlation is also network local we can rewrite equation 28 as:

p0 =
∫
dλµ(λ)p(a|xλ)p(b = 0|λ)p(c|z, λ)∫

dλµ(λ)p(b = 0|λ) . (30)
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In the numerator of this equation we can redefine the probability distribution µ(λ) ab-
sorbing p(b = 0|λ) and normalizing this probability distribution with the denominator,
so

p0 =
∫
dλg0(λ)p(a|x, λ)p(c|z, λ), (31)

where g0(λ) = µ(λ)p(b=0|λ)∫
dλµ(λ)p(b=0|λ) . The form of the previous equation corresponds to the local

decomposition (Eq. 1), so this complete the proof for the first condition of Eq. 26.
The second condition of equation 26 is completely analogous changing b = 0 to b = 1.
Finally, for the third condition of equation 26, we start from the definition of p(a, c|x, z)

and we only have to reorder the terms as follows:

p(a, c|x, z) =
∑

b

p(a, b, c|x, z) =
∑

b

∫
dλ1

∫
dλ2µ(λ1)µ(λ2)p(a|x, λ1)p(b|λ1, λ2)p(c|z, λ2) =

=
∫
dλ1µ(λ1)p(a|x, λ1)

∫
dλ2µ(λ2)p(c|z, λ2) = p(a|x)p(c|z)

(32)
Hence, the implication ⇐ of the conjecture (Eq. 26) is proven. ■

However, we find later the conjecture to be false because of the implication ⇒, it is:

B ⊊ B′

B′ := {p(abc|xz) such that p(ac|xz) = p(a|x)p(c|z) ∧ p(ac|xz, b = i) ∈ L}
(33)

and we prove the following lemmas to understand the shape of B inside B′ and how they
do not coincide.

Lemma 3.1. Given a convex combination of p0 and p1 which results in pApC , such that
the resulting p(abc|xz) is bilocally feasible:

pApC = w0p0 + w1p1, (34)

we can always reproduce bilocally any combination between two points that lie, one on the
segment joining p0 and pApC (p′

0) and the other on the segment joining p1 and pApC (p′
1)

(see Fig. 21 in Appendix F), which also results in pApC :

pApC = w′
0p

′
0 + w′

1p
′
1, (35)

where w′
i = p′(b = i) for i = 0, 1 and, naturally, w′

0 + w′
1 = 1. See proof in Appendix F.

Lemma 3.2. Given two bilocal distributions p′(a, b, c|x, z) and p′′(a, b, c|x, z) that factorizes
in pApC , we can always construct a probability p(a, b, c|x, z) that also factorizes in pApC

making a convex combinations between p′, p′′ and pApC .

pApC = w0p0 + w1p1. (36)

See proof in Appendix G.

Intuitively, this last lemma allows us to explore the points that join p′
0 and p′′

0 and p′
1

and p′′
1 pictorially represented in Fig. 11. Hence, mixing these two previous lemmas we are

able to explore the blue region of Fig. 11. We also studied the optimal choice to obtain
the largest posible blue region.
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Figure 11: Representation of the different possibilities of convex combinations between p′(a, b, c|x, z)
and p′′(a, b, c|x, z) which result in pApC .

Lemma 3.3. Given a convex combination between p0 and p1 which results in pApC ,
w0p0 +w1p1 = pApC with w0 +w1 = 1 is satisfied. Therefore, if pApC , p1 and w1 are given,
all the rest is fixed. The lemma states that we can choose p1 to be any local distribution as
far as w1 = ε is small enough (see Fig. 23 in Appendix H).

See proof in Appendix H.

3.1.1 Disproving the conjecture

We can use the last lemma to try to find a counterexample. If we look for the maximum
ε for a probability distribution to be bilocal two things can happen: that the ε for which
p(a, b, c|x, z) ceases to be bilocal coincides with the one for which p0 ceases to be local (in
this case the conjecture could be true) or that the ε for which p0 ceases to be local is greater
than the one for which p(a, b, c|x, z) ceases to be bilocal (we would have a counterexample).
Indeed, making use of this, several counterexamples can be found. Notice that, although
with that counterexamples we know that the previous conjecture is not true, it might still
be true if p is constrained to be feasible in quantum bilocality.

Numerically, exploring each of the 16 vertices of the local polytope (corresponding to
the 16 deterministic strategies) in this way, no counterexamples are found, but if we define
p1 as the convex combination of two of these vertices,

p1 = µp′
1 + (1 − µ)p′′

1, (37)

we find counterexamples. One counterexample is found for the case in which p1 corresponds
to the convex combination between the following deterministic strategies:

This can be seen in Fig. 12, as the plots show a gap between the maximum ε for which p1
is local and the maximum ε for which p(a, b, c|x, z) is bilocal.

14



Figure 12: Comparation between the maximum ε for which p1 is local and the one for which p(a, b, c|x, z)
is bilocal in function of µ.

We can see if what we are obtaining numerically for the bilocal prediction corresponds
to what is expected. For this purpose, imagine that p1 corresponds to the following deter-
ministic strategy:

This strategy refers to the coloured square of Fig. 13a. The maximum ε for which
p(a, b, c|x, z) is still bilocal corresponds to the maximum area that the square (correspond-
ing to the deterministic strategy) can take as a function of α and β. Hence, the maximum
ε will be:

max{ε} = max
α,β

{α(p(c = 1|z = 0) − β)}, (38)

such that α and β fulfill their corresponding bounds:

max{0, p(a = 1|x = 1) − p(a = 0|x = 0)} ≤ α ≤ min{p(a = 1|x = 1), p(a = 1|x = 0)}
max{0, p(c = 1|z = 1) − p(c = 0|z = 0)} ≤ β ≤ min{p(c = 1|z = 1), p(c = 1|z = 0)}

(39)
The ε obtained with the numerical simulation and with the above formula coincides for

any given pApC .
In the case where p1 is defined as the convex combination between two deterministic

strategies (Eq. (37)), the maximum ε corresponds to the sum of the maximum possible
coloured area in the two squares corresponding to these deterministic strategies. If we
study the case that gives us a counterexample above, this is to have one of the squares
completely coloured and the other partially coloured (Fig. 13b). For this specific case, the
maximum epsilon is:

max{ε} = 1
µ

max
α,β

{
min

[
αβ,

µ

1 − µ
(p(a = 1|x = 1) − α)(p(c = 1|z = 1) − β)

]}
. (40)
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(a) Before ordering. (b) After ordering

Figure 13: Representation of a bilocal correlation. The coloured part in the square corresponds to
p(a, b = 1, c|x, z). The coloured part in the bars corresponds to output a = 1 for the horizontal ones
and c = 1 in the vertical ones.

Figure 14: Comparation between the numerical and the analytical prediction for the maximum ε for
which for which p(a, b, c|x, z) is bilocal in function of µ.

That equation also reproduces what we obtain numerically (Fig. 14).
Notice that this can be generalize for a convex combination of any number of determin-

istic strategies.

3.2 GENUINE NONLOCALITY
In order to understand better the bilocal set, we study two different ways of producing

nonbilocality (we call them “cheating scenarios”) that are based on standard Bell nonlocality
and, therefore, might be seen as nongenuine. It is hard to define what is or not genuine.
We understand that a scenario is genuinely nonlocal when you cannot trace back to the
standard Bell scenario, but some authors have different definitions (see [ŠBCB22]). Then,
we mix these cheating scenarios and we find genuine nonbilocality. The overall picture
shows that not only the geometry of the bilocal set is complex, but also that genuine
nonbilocality that can be achieved with quantum sources is highly nontrivial.
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3.2.1 Entanglement-swapping

Entanglement-swapping is one of the most popular phenomena that produces nonlocal-
ity in the bilocal scenario. It consists in making two particles that have never interacted
to be nonlocally correlated. Let us consider a scenario as the one depicted in Fig. 6. In
it, both sources emit a maximally entangled state, say

∣∣ϕ+〉
. Bob makes a coarse grained

Bell basis measurement on the shares he receives from the sources. That is, given the
four maximally entangled states

∣∣ψ+〉
, |ψ−⟩ ,

∣∣ϕ+〉
, |ϕ−⟩, he makes a projective measure-

ment that outputs 0 when the result is
∣∣ψ+〉

, while outputs 1 elsewhere. Then, his two
measurement operators are B̂0 =

∣∣ψ+〉 〈
ψ+∣∣ and B̂1 = 1 −

∣∣ψ+〉 〈
ψ+∣∣. This means that

when Bob outputs 0, he performed entanglement swapping, and Alice and Charlie will
be sharing a maximally entangled state. On the other hand, Alice and Charlie perform
the measurements such that when Bob outputs 0, they can violate the CHSH inequality.
Concretely, they can perform measurements that maximally violate the CHSH inequality,
it is Â0 = (σx − σz)/

√
2, Â1 = (σx + σz)/

√
2, Ĉ0 = σx and Ĉ1 = σz. In this sense, we are

violating bilocality by violating locality (according to Eq. (33) and Appendix A).

3.2.2 Fritz argument

There exists another way to generate nonlocality considered by T. Fritz in [Fri12]
(Fig. 15). In that case, Bob and Charlie share a source λ that can give 0 or 1. Bob’s
measurement is determined by λ and Charlie directly outputs that λ and ignores z. So, it
can be interpreted as an scenario in which Charlie’s output becomes Bob’s input. Moreover,
in this scenario conditioning on Charlie, Alice and Bob violates the CHSH inequality. Thus,
we can construct the following correlation:

p(a, b|x, c, z) = p(a, b, c|x, z)
p(c|z) ≡ pz(a, b|x, c). (41)

Figure 15: Representation of the cheating scenario without entanglement swapping.

We can test the CHSH in the previous correlation:

−2 ≤ SCHSH =
∑
a,b

(−1)a+b (pz(a, b|0, 0) + pz(a, b|0, 1) + pz(a, b|1, 0) − pz(a, b|1, 1)) ≤ 2 ⇒

−2 ≤
∑
a,b

(−1)a+b
(
p(a, b, 0|0, z)
p(c = 0|z) + p(a, b, 1|0, z)

p(c = 1|z) + p(a, b, 0|1, z)
p(c = 0|z) − p(a, b, 1|1, z)

p(c = 1|z)

)
≤ 2.

(42)

Notice that this inequality is nonlinear in p. We can check if this inequality is satisfied by
all bilocal scenarios or not. Furthermore, we can study in our previous counterexamples if
there is a gap between the previous considered condition (the locality of p0 and p1) and this
inequality. Looking for the maximum ε for which Eq. (42) is satisfied, it is found that all
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bilocal correlations fulfil this inequality, as already known, but there are certain correlations
that fulfil this inequality without being bilocal, so again it would be a necessary but not
sufficient condition. Moreover, it is observed that there is a gap between the condition
discussed in the previous section and this inequality, so there are correlations that violate
one without violating the other and vice versa (Fig. 16).

Figure 16: Representation of the dependence of ε with µ. The green line represents the maximum ε
for which p1 is local, the blue one, the maximum ε for which Eq. (42) is fulfilled and the red one, the
maximum ε for which p(a, b, c|x, z) is bilocal.

3.2.3 Mixing cheating scenarios

In the previous sections, we have found necessary conditions and some examples that
fulfill that conditions being nonbilocal. However, it is not known wether these examples are
quantumly feasible or not. What is known to be quantumly feasible are the entanglement-
swapping scenario, described in the subsection 3.2.1, and the one depicted by Fig. 15.
Moreover, another way to get information is to know which one of the previous conditions
are fulfilled if we do a convex combination between these two scenarios. Despite of the
fact that the quantum bilocal set is nonconvex and, therefore, a convex combination of
two correlation can be quantumly nonbilocal, this mixing can be made because it relies in
a convex combination between two of the three parties.

For this purpose, let us define:

p(a, b, c|x, z) = µ · pent + (1 − µ) · pF ritz, (43)

where pent corresponds to the correlation of the entanglement swapping scenario and pF ritz,
to the correlation of the one of Fig. 15. In Fig. 17, it is shown for which µ these conditions
are or not satisfied. Those conditions are: bilocality of p(a, b, c|x, z), locality of p(a, c|x, z, b)
(where b becomes a parameter), and locality of p(a, b|x, c, z) (where z becomes a parameter).

These plots show us that there are examples that can be done quantumly in which
without being bilocal, the conditions can be satisfied, either separately or both at the
same time.
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Figure 17: Representation of the bilocality, the locality condition and the Fritz condition in function of
µ. One means that the condition is satisfied and zero, that is not.

4 CONCLUSION
The concept of nonlocality, which arises from the Bell Theorem and the standard Bell

scenario and extends to more complex network scenarios, has been studied. The study of
network nonlocality becomes challenging by the fact that the correlations originating from
it form a non-convex set. In particular, this thesis focuses on the problem of characterising
the simplest non-trivial bilocal network, whose complete characterization remains an open
problem.

The first objective was to compute an oracle that tells us whether a correlation is bilocal
or not. This was done by two methods with which we achieved equivalent results: solving
a bilinear problem using the Gurobi solver and linearizing the problem and dealing with
it by solving an array of the linear programs. Moreover, an alternative formalism to pose
the problem was studied and thanks to that formalism, the oracle can be generalized to
any bilocal scenario. Both methods and formalisms were checked by carrying out several
tests.

After getting this tool to explore the bilocal set, we tried to analysed the geometry of
that set. Observing the tests, we conjectured that a correlation is bilocal if and only if it
factorizes when marginalising on Alice-Charlie and it is Bell-local when conditioning on
Bob’s output. We stated and proved different lemmas that helped us finding counterex-
amples to such conjecture and explore the geometry of the bilocal set. In general, even in
such simple scenario we saw that the bilocal set is nontrivial.

Finally, we asked ourselves what is genuinely new in nonlocality related to the stan-
dard bipartite Bell scenario. We studied two scenarios that generate nonbilocality using
quantum sources, relying on hidden violations of the standard bipartite CHSH inequality.
Both of them can be seen as nongenuine, as their nonbilocality can be traced back to the
standard Bell scenario. But, what is really surprising is that when we mixed these two
scenarios, we find nonbilocality that cannot be traced back to either of the two, showing
that the concept of genuine nonlocality is nontrivial at all.

The problem of the characterization of the bilocal set of correlations is still open, even
if we have achieved an approach from inside. Currently, we are exploring different methods
to get analytical inequalities. Furthermore, the tools obtained in this work can be used
to explore more complicated bilocal scenarios (by adding inputs and/or outputs) or even
different scenarios, such as the star network scenarios.
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A Proof of the CHSH inequality
We will prove the CHSH inequality (Eq. 3) which is fulfilled if the correlation is local. Let
us consider the standard Bell scenario with binary inputs and outputs (Fig. 18), where λ
denotes a classical source of randomness. Without loss of generality λ can be a uniform
random number between 0 and 1.

Figure 18: Representation of the standard Bell scenario with binary inputs and outputs

Moreover, without loss of generality the response functions are deterministic functions
of λ. Ax(λ) = ±1 denotes the output of the party A given λ and an input x and, analo-
gously, for the party B, By(λ) = ±1. Let us define the correlators:

⟨AxBy⟩λ =
∫ 1

0
dλAx(λ)By(λ). (44)

The CHSH inequality with this definition can be rewritten as:

|SCHSH | =
∣∣∣∣∫ 1

0
dλA0(λ)B0(λ) +

∫ 1

0
dλA0(λ)B1(λ) +

∫ 1

0
dλA1(λ)B0(λ) −

∫ 1

0
dλA1(λ)B1(λ)

∣∣∣∣.
(45)

Defining A+(λ) ≡ A0(λ) + A1(λ) and A−(λ) = A0(λ) − A1(λ), the previous equation
becomes:

|SCHSH | =
∣∣∣∣∫ 1

0
dλA+(λ)B0(λ) +A−(λ)B1(λ)

∣∣∣∣, (46)

and using the triangular inequality:

|SCHSH | ≤
∫ 1

0
dλ|A+(λ)B0(λ)| + |A−(λ)B1(λ)| =

∫ 1

0
dλ|A+(λ)||B0(λ)| + |A−(λ)||B1(λ)|

(47)
It is known that |Ax(λ)| = 1 for x = 0, 1 and |By(λ)| = 1 for y = 0, 1. This implies that
A+(λ) and A−(λ) can take the values 0,2 and -2 and if the former is ±2, the latter is 0 and
viceversa. Then, |A+(λ)| + |A−(λ)| = 2. Hence, taking into account all these statements,
we get to the CHSH inequality:

|SCHSH | ≤ 2 ⇒ −2 ≤ SCHSH ≤ 2 ■. (48)

B Maximal violation of the CHSH
We will prove here the maximal violation of the CHSH inequality inside the quantum set.
Let us rewrite the inequality with a slightly different notation:

⟨ψ|A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1 |ψ⟩ ≤ 2
√

2, (49)
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where |ψ⟩ is a generic quantum state and A0, A1, B0, B1 ∈ Cd ⊗ Cd for any dimension d.
Let us now define the following equation:

(
1 −A0 ⊗ B0 +B1√

2

) (
1 −A0 ⊗ B0 +B1√

2

)
+

(
1 −A1 ⊗ B0 −B1√

2

) (
1 −A1 ⊗ B0 −B1√

2

)
≥ 0,

(50)
which is satisfied because it has the form C2

1 +C2
2 and this is by definition positive semidef-

inite. Manipulating that equation and using the fact that A2
0 = A2

1 = B2
0 = B2

1 = 1, we
finally arrives to:

A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1 ≤ 2
√

2. (51)

Hence, this proves that the maximal violation of the CHSH inequality inside the local set
is 2

√
2.
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C Pictorial representation of the conditions on Bob’s outputs

Figure 19: Representation of the conditions in Bob’s response function. The red crosses indicate the
redundant conditions.
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D Pictorial representation when Bob has 3 outputs

(a) Before ordering. (b) After ordering

Figure 20: Representation of a local correlation for the bilocal scenario when Bob has 1 input and 3
outputs. The blue area part corresponds to p(a, b = 1, c|x, z).

E Elegant Joint Measurment

To apply the EJM, Bob applies the projectors Bb =
∣∣∣ϕθ

b

〉 〈
ϕθ

b

∣∣∣ with b = 1, 2, 3, 4 and

θ ∈ [0, π/2] and where
∣∣∣ϕθ

b

〉
is defined as follows:

∣∣∣Φθ
b

〉
=

√
3 + eiθ

2
√

2
|m⃗b,−m⃗b⟩ +

√
3 − eiθ

2
√

2
|−m⃗b, m⃗b⟩ . (52)

|±m⃗b⟩ =
√

1 ± ηb

2 e−iφb/2|0⟩ ±
√

1 ∓ ηb

2 eiφb/2|1⟩. (53)

m⃗b =
√

3
(√

1 − η2
b cosφb,

√
1 − η2

b sinφb, ηb

)
. (54)

For our specific case, we have:

m⃗1 = (+1,+1,+1), m⃗2 = (+1,−1,−1),
m⃗3 = (−1,+1,−1), m⃗4 = (−1,−1,+1) . (55)

On the other side, the correlators used in the inequality take the following values:

⟨Ax⟩ = ⟨By⟩ = ⟨Cz⟩ = ⟨AxCz⟩ = 0

⟨AxB
y⟩ = −V1

2 cos θδx,y, ⟨ByCz⟩ = V2
2 cos θδy,z

⟨AxB
yCz⟩ =


−V1V2

2 (1 + sin θ) if xyz ∈ {123, 231, 312}
−V1V2

2 (1 − sin θ) if xyz ∈ {132, 213, 321}
0 otherwise

.

(56)
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F Proof lemma 3.1
To prove this lemma, we assume that we have a distribution p which is bilocal (it satisfies
the conditions of the left-hand side of the equation 26) and can, therefore, be written as
equation 11.

Moreover, Bob chooses to follow this distribution p with probability α and with prob-
ability (1 − α), he behaves following another strategy p̃(b), that is independent on λ1 and
λ2. Thus constructing a new probability distribution p′ which also gives pApC when we
marginalize in Bob:

p′(a, b, c|x, z) =
∫ 1

0

∫ 1

0
dλ1dλ2pA(a|xλ1)

 α pB(b|λ1λ2)
+

(1 − α) p̃(b)

 pC(c|zλ2). (57)

Hence, p′
0 is determined by a convex combination between p0 and pApC (Eq. 58) and,

analogously, p′
1, between p1 and pApC (Eq. 59). Intuitively, the points p′

0 and p′
1 will lie in

the segment between p0 and p1 and will be determined by two degrees of freedom, α and
p̃(b) (see Fig. 21).

Figure 21: Representation of the different possibilities of convex combinations which result in pApC ,
where all the points belong to L.

p′
0 = γap0 + γ′

apApC

with γa = αp(b = 0)
αp(b = 0) + (1 − α)p̃(b = 0) and γ′

a = (1 − α)p̃(b = 0)
αp(b = 0) + (1 − α)p̃(b = 0)

(58)

p′
1 = γbp1 + γ′

bpApC

with γb = αp(b = 1)
αp(b = 1) + (1 − α)p̃(b = 1) and γ′

b = (1 − α)p̃(b = 1)
αp(b = 1) + (1 − α)p̃(b = 1) ,

(59)

where naturally γi + γ′
i = 1 with i = a, b.

A convex combination of these p′
0 and p′

1 give us pApC , as the lemma states (Eq. 35) with
the following weights:

w′
i = αpB(b = i|λ1, λ2) + (1 − α)p̃(b = i) for i = 0, 1. (60)

■

G Proof lemma 3.2
Proof: due to the fact that p′(a, b, c|x, z) and p′′(a, b, c|x, z) are bilocal distributions, they
can be written as equation 11. Furthermore, we can assume that there is a coin that with
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probability µ decides that λ1 follows the first strategy (p′(a, b, c|x, z)) and with probability
(1 − µ), the second (p′′(a, b, c|x, z)) and, similarly another coin, decides with probability
ν and (1 − ν) whether λ2 follows the first or the second strategy, respectively (Fig. 22).
We can impose that when both sources indicate the same strategy, the correlation will
follow the indicated distribution, while when they indicate different ones, Bob will behave
according to p̃(b), which is independent of λ1 and λ2.

Figure 22: Representation of the behaviour of the sources.

Analogous to the proof of the previous lemma, p0 is given by the convex combination
of p′

0, p′′
0 and pApC :

p0 = γ′
0p

′
0 + γ′′

0p
′′
0 + γ̃0pApC , (61)

where

γ′
0 = µνp′(b = 0)

µνp′(b = 0) + (1 − µ)(1 − ν)p′′(b = 0) + (µ+ ν − 2µν)p̃(b = 0) ,

γ′′
0 = (1 − µ)(1 − ν)p′′(b = 0)

µνp′(b = 0) + (1 − µ)(1 − ν)p′′(b = 0) + (µ+ ν − 2µν)p̃(b = 0) ,

γ̃0 = (µ+ ν − 2µν)p̃(b = 0)
µνp′(b = 0) + (1 − µ)(1 − ν)p′′(b = 0) + (µ+ ν − 2µν)p̃(b = 0)

and analogue expressions for p1. Thus finding the p0 and p1 whose convex combination
gives us pApC .

■

H Proof of lemma 3.3
Proof: We prove this lemma by taking p1 as one of the 16 possible deterministic strategies
(corresponding to one of the 16 vertices of the local polytope) and p0 as a point ε-close
to pApC . As a consequence we can always push p0 up to an epsilon corresponding to the
maximum ε for which the distribution is bilocal (Fig. 23). The proof can easily generalizes
to the case in which p1 is not deterministic because, as we are in the bilocal set, this p1
can always be written as a convex combination of deterministic strategies.

As we explained in section 2.1, any bilocal correlation can be represented as in Fig. 24,
so every distribution represented in this picture can be factorized as pApC . p1 is a deter-
ministic strategy, i.e. it can be written as p1 = δ(a−A(x))δ(c−C(z)), and it is represented
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Figure 23: Representation of the convex combination which results in pApC and has a quasi-deterministic
strategy. The polygone represents the local set L.

by one of the 16 squares in the figure. Thus, ε ≡ p(b = 1) corresponds to the coloured
area. Knowing that, p0 can be constructed as:

p0 = pApC − εp1
1 − ε

. (62)

ε can be increased up to a limit that corresponds to the maximum area that the square

Figure 24: Representation of a bilocal correlation where the coloured part (p(a, b = 1, c|x, z)) corresponds
to a deterministic strategy.

representing the deterministic strategy p1 can have, which corresponds to the limit of the
bilocal set.

■
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