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Abstract

The goal of this thesis is to study the collective behavior of active mat-
ter by numerical simulations, specifically microswimmers dynamics in
a semi-dilute suspension. We want to explore the capabilities of basic
physical ingredients to generate emergent structures on scales much
larger than those of individual agents. The aim is to improve the un-
derstanding of the phenomenon of active turbulence as a paradigmatic
and fascinating example of self-organized motion at large scales in
active matter.
Some massive hydrodynamic simulations of suspensions of resolved
model microswimmers, using an open source code based in Lattice-
Boltzmann Methods (LBM), are presented. We mesure the kinetic en-
ergy spectrum studying the energy flows through the different scales in
which the system breaks down and we also calculate the mean squared
displacement and polar order of the system, showing that there are
significant differences in the behavior of the so-called pushers and
pullers.
Furthermore, we propose a dynamical deterministic model for active
turbulence, inspired to shell models for classical turbulence. Several
computational simulations have been performed using the implement-
ation of this model in a specific code, whose numerical and analytical
study confirms the spectrum power-law predicted by theory and ob-
served in the LBM simulations.
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When I meet God I will ask him two questions:

Why relativity? And why the turbulence?

I’m sure he will get the answer of the first one.

Werner Heissenberg
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Outline of the Thesis

This doctoral thesis deals with the study of the collective behavior of active

particles using computacional simulations of semi-dilute solutions of microswim-

mers. Results are obtained for the polar order parameter, the diffusion and the

energy spectrum among others as a function of the concentration and the degree

of orientation of the particles. Our main interest is to improve the understand-

ing of the relation between energy flows through the scales of the system and the

characteristic collective movements that occur spontaneously and that can be easily

recognized in a wide range of situations in different fields (banks of fish, flocks of

birds, bacterial cultures, polymer solutions, etc) into a regime that we can refer to

as soft active turbulence.

Shell models are deterministic dynamical systems that reduce the complexity of

the full field equations, though retaining some of their essential features. Origi-

nally introduced as a proxy of the Navier-Stokes equations, and therefore charac-

terized by a quadratic nonlinearity and the same inviscid invariants (energy and

helicity). Since GOY-model is the original shell model that reproduces aspects of

inertial turbulence through a modeling of the system as a sort of Fourier ampli-

tudes of velocity fluctuations over a length scale with associated wavenumber kn
[22-25], our main aim is to propose a new generalized shell model that can cap-

ture some basic properties of the active turbulence dynamics but not trajectories or

any other geometric aspect. In the bibliography one can find an improved version

of GOY called SABRA-model [34][36][37] and other variations of the original idea

[28][29], although all performed the interaction of shells on a single field. For this

reason, our goal is to perform simulations with a generalized SABRA-model devel-

oped from the interaction and self-action of two fields. The nature of these fields
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as well as the form of the model equations places the theoretical framework in the

field of active matter and this is the reason why we refer to the proposed model as

SabrActive-model. In this sense, several simulations have been carried out with a

specific code to quantify the impact of the variations of the main parameters of the

model: the concentration and orientation of the active particles (squirmers).

On the other hand, with the intention of knowing better the collective behavior of

the active matter and, to a certain extent, to validate the results obtained with the

shell model, several computational simulations have been carried out with Ludwig

code, which is an open source code based on the Lattice-Boltzmann method for

simulating complex three-dimensional fluids. With this code it is possible to con-

figure multiple models with different values of free energy and other parameters.

The program allows for the creation of periodic boundary conditions, interaction

between suspended colloids, liquid crystals and binary fluids.

Therefore, there are two very well differentiated parts in this work, which is struc-

tured in six chapters.

Chapter 1 is a topic introduction that defines what are the active systems and

the consequence to have a set of active particles. In this chapter, we also explain

the theoretical framework.

Chapter 2 explains the numerical methodology that we use to simulate the fluid

that interact with active particles. A full review of the Lattice-Boltzmann method

is depicted here. Some specific aspects of the code that we have used to carry out

the simulations, whose results are presented in the following two chapters, are also

commented on.

Chapter 3 shows some results of massive hydrodynamic simulations of sus-

pensions of resolved model microswimmers using the Lattice- Boltzmann method.

Parametric variations of the concentration and orientation of the particles are made.

From the obtained results we study the mean squared displacement and the polar

order, concluding that in a certain range of the parameter space a clear increase in

diffusion linked to a spontaneous increase in the polar order of the system can be

observed. This chapter also studies how collectively affects whether the self-driven
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displacement of the active particles is carried out in the direction of the individual
orientation or in the opposite direction (puller or pusher particles).

In Chapter 4 the same simulation results from the previous chapter are used to
calculate the mean and normalized energy spectrum. In Fourier space the system
breaks down into a superposition of modes that are interpreted as different scales.
The energy flows towards the higher scales are defined as inverse cascade phenom-
ena, and in the opposite direction we speak of direct cascade. We try to better
understand the flow of energy through the scales by studying the local slope of the
inertial zone of the spectra.

The second part of the thesis, the one that deals with shell models, is developed
in Chapter 5. First, there is a brief introduction of the concepts that motivate the ap-
pearance of this type of models. The GOY-model and SABRA-model are described
below as a basis from which to generalize towards models applicable to active mat-
ter. Starting from two vector fields, one of velocities and the other of individual
orientations of the particles, a set of differential equations that include different
terms with the interaction and self-action between the fields are proposed as gen-
erators of the system dynamics. The key of SabrActive-model is the function that
relates different scales of both fields in a bound way, expressing them as modes in
Fourier space. As such, it offers the possibility to investigate the chaotic dynamics
and multiscale correlations of turbulence with obvious computational advantages.
So SabrActive-model is described in this chapter at the structure, dynamics and
parameter level. Various computational simulations are performed with this model
implemented in a specific code. The processing and study of the results allows us to
observe direct and inverse cascade phenomena in the energy spectrum demostrat-
ing that this model is a useful tool to generate in a simple way and help understand
certain collective behaviors of the active matter.

Finally in Chapter 6 the conclusions and future directions of the research.
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CHAPTER

1
Introduction

In this chapter, we give a general definition of active matter and active parti-

cles. We refer specifically about a type of particles that since they interact with the
fluid to self-propel themselves, they are called microswimmers. We present below
a selection of the theoretical background generated in the recent years for active
matter focusing on those aspects on which they are based the set of equations that
we used along the computational study through which we explore the capabilities
of basic physical ingredients to generate emergent structures on scales much larger
than those of individual agents.

1.1 Active Matter
Forms of self-organized motion show in nature how disparate systems can ex-
hibit a number of common phenomena from mesoscopic to large scale. Several
researchers have been working to understand the fundamental mechanisms that
generate the collectivity between particles, like clustering, polar order or phase
separation [14-18]. The term active first appeared in a paper by Ramaswamy and
Simha (2006) as the appellation of a fledgling research field that has been rapidly
expanding since then. Active systems can be defined as materials which are made
of many interacting units, where each unit consume energy and generate motion.

1



1. INTRODUCTION

Figure 1.1: Bacteria suspensions and schools of fish can be considered examples of
active matter with common dynamic properties.

Figure 1.1 shows two representative examples of this behavior, applicable to many

more living beings, objects and systems of all kinds.

There are two essential classifications of the active matter. The first distinguishes

between living organisms and artificial objects. The second classification is based

on the relationship between the active particle and the fluid medium in which it is

embedded. If there is a significant exchange of energy with the environment, main-

taining conservation of momentum, the system is called wet. If, on the other hand,

the fluid is merely testimonial and the dynamics of the particles develop without

significant interference from the medium, then the system is classified as dry. Note

that the first classification (live-artificial) refers to the nature of the particles while

the second (dry-wet) arises from the type of modeling. All these kinds of systems

are intrinsically out of equilibrium.

Some aspects of the behavior of diluted microswimmer suspensions are remi-

niscent, on a visual level at least as we can see in FIG.1.2, of the behavior of fluids

in a turbulent regime at low Reynolds numbers [1][3]. In both types of systems

cooperation occurs spontaneously, and it is regulated with a relatively small set of

parameters making mesoscopic structures emerge. So we could assume that a de-

scription based on scale overlap (and on the transfer of energy through them) can be

useful to describe the collective dynamics that is generated in active turbulence sys-

tems. Although, in the case of active turbulence, self-driven movement of the par-

2



1.1 Active Matter

Figure 1.2: Soft hydrodynamic turbulence shows visual aspects also present in the
active matter. Image from ref [3]

ticles replaces the mere inertia, increasing the complexity of the problem because

a hybrid description of the active suspension is needed, which should combine the

individual dynamics of particle with a kinetic model for the solvent. Power-law

decays of kinetic energy spectra over unexpectedly wide ranges of wavenumbers

have been identified as a signature of turbulent behaviour [13]. With the aim of

analyzing multi-scale interactions and energy transfer, recent studies have focused

on the spectral properties of continuum models [32][42] where the active fluid is

described as an effective medium [11][14].

The range of applications in this field is very wide, in general active matter

can be a good approach as long as activity is the innate feature of the particles

that compose (and subcompose) the system:”they are machines consisting of ma-

chines, and themselves parts of greater machines, which are already beyond the

realm of mere matter” [51]. The study of the equations proposed to model the

active interaction between particles through computational simulations is frequent

[9][10][41][57-61]. The level of calculation required is very high, since the sim-

ulation must include the maximum number of particles possible and the greatest

range of interaction with the environment and the rest of the particles to represent

the physical reality of the solution with guarantees. It could be said that supercom-

puters are the particle accelerators necessary to discover the emerging structures

and mechanisms of active matter: the greater the power of the machine, the smaller

3



1. INTRODUCTION

the range of interaction that can be observed with good resolution, so Active Matter

could flourish only in this century.

What we can consider a particle is something difficult to specify, so that we

can define active particle as each one of the components of a system considered

active matter. Marchetti et al (2013) , in an all-round review co-authored by seven

physicists [23], define active matter as “composed of self-driven units, active par-

ticles, each capable of converting stored or ambient free energy into systematic

movement”, referring to Schweitzer (2003), who did not use this term, however.

Note that in this definition, the interaction with the environment is included almost

like an intrinsic feature. Several recent studies have led to significant theoretical

advances in the understanding of these systems in continuous interaction with the

environment that surrounds them [14-16][18-20] and they observe that collective

movements or associations frequently take place. The collective behaviour of a lot

of particles point to a correlation whose understanding is one of the main objectives

of research.

It should be noted also that self-driven does not mean autonomous movement be-

cause it is always subject, at least to some degree, to external forces and/or collec-

tive interactions. Active particles are not free particles. We are not talking about

shark but about plankton, about jellyfishes that propel themselves by absorbing and

expelling the same water that drags them in the current. It could be a microbe wan-

dering around looking for nutrients. It can be a bird or a fish, a part of a herd or

shoal. It could be one person in a crowd 1.

Another feature of active particles is the presence of a dissipative range layer

similar to convective structures in the oceans or atmosphere. Active gels, bacterial

suspensions or liquid crystals are specific models of active particles. All this kind

1Leonardo da Vinci had called turbulence the process of the random movement of fluids for
the first time in history from the Latin term turba meaning people. Turbulence therefore means
movement of people. In fact, as can be seen in figure 1.3, Leonardo was already speculating with
the idea of describing the turbulent regime as a superposition of different relatively simple curves,
an idea that was perhaps already present in his time.

4



1.1 Active Matter

Figure 1.3: Drawing of Leonardo da Vinci describing turbulence as a superposition.

of particles can be called microswimmers because they extract energy from the en-

vironment to self-driven themselves. In this work we are going to be focused on

one type of them, an artificial spherical microswimmers, called squirmers.

Live organisms commonly move by deforming their body, something inanimate

particles cannot do, but squirmers can to swim even without external appendages,

and even with no deformation, just by inducing tangential flow along the particle’s

surface [52][53]. In contrast to Brownian particles subject to thermal fluctuations,

squirmers take up energy from the medium and convert it into net motion. Inertia

plays no role in the motion of microscopic particles because self-velocity is great

enough to consider Reynolds number close to unity.

Active particles are often assigned certain intrinsic characteristics, most com-

monly, their orientation. The orientation may determine their preferred direction

of motion, e.g., with respect to gradients of an external field, or the character of

their interactions, the tendency to align with their neighbours. The basic types of

orientation are vector (denoting the direction) or nematic (implying an alignment

without a definite direction, as in a vector without an arrow). Both kinds of ori-

entation may or may not be qualified by their strength. The notion of intrinsic

orientation comes from the physics of condensed matter [21], which engaged with

directed interactions in solids and fluids long before studies of active matter came

on the scene.

5



1. INTRODUCTION

1.2 Field theory approach
Field theory used in this study is based on the interaction of the active particles
with each other and with the environment in which they are located. This relation
gives rise to correlated movements and mechanical stresses. The energy that takes
the system out of equilibrium is, therefore, of local origin, each particle consumes
and dissipates energy, and general patterns can be formed that are repeated in dif-
ferent experiments and simulations [14]. Hydrodynamic theories describe active
suspensions in terms of the relevant field variables, namely the concentration field
of bacteria, c(x, t), the (incompressible) fluid velocity field, u(x, t), and an order
parameter quantifying the degree of local orientation.

In the simulations performed in this work, semi-dilute squirmer suspensions can
develop alignment depending on the hydrodynamic signature, and this alignment
has been measured by the polar order (vectorial) parameter, P (x, t), representing
the average, within a fluid element, of either the particle intrinsic swimming direc-
tor, Pi ∝ ⟨êi⟩. The results are presented in Chapter 3.
Order paramenter can be also tensorial (nematic), Q(x, t), using the dyadic product,
Qhk ∝ ⟨êhêk⟩, to generate a tensor Qhk which quantifies the degree of alignment of
the axes of the particles of the system without distinction between head and foot.
Systems as those considered in this work can have nematic order without polar
order [13-20] therefore, additionally to the polar order parameter, we also should
consider the nematic order parameter, defined by the usual method [65] using the
3D nematic order

Qhk =
1

N

N∑
i=1

(
3

2
eih (t) eik (t)−

δhk
2

)
(1.1)

where h and k are x, y, z and N the total amount of swimmers.

Active nematics theory is one of the most popular models in this field, although
it is not the only one and it is not the most relevant in our work. In the shell model
explained in chapter 5, a tensor field is not used, but a vector one.
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CHAPTER

2
Numerical modeling

Lattice Boltzmann methods are a class of computational methods for simulating
fluid dynamics. Instead of solving the Navier-Stokes equation, the discrete Boltz-
mann equation is used from the simulation of collision models of a Newtonian
fluid. From a long and large enough iteration of a finite number of virtual particles
that propagate and collide on a grid a microcosm of viscous fluid extrapolable to
much larger masses is shown.
In first section we make an introduction; next we talk about Squirmer Model like a
kind of self-propelled swimmer-model by simply inducing a tangential flow along
the surface of the particle; third the Boltzman equation and its discretization is in-
troduced as as a mathematical foundation; the Lattice Boltzmann method itself is
explained also and, finally, we talk about the main characteristics of Ludwig (the
code that we run in the simulations presented in chapters 3 and 4).

2.1 Introduction
When you want to model a large set of particles in hydrodynamic interaction, there
are broadly two perspectives: describe the macroscopic behavior of the system or
generate a series of rules that reproduce the interaction between the particles at a
local (microscopic) level.

7



2. NUMERICAL MODELING

On a macroscopic scale, partial differential equations (PDE) like Navier-Stokes

equation are used. Since these kind of equations are difficult to solve analytically

due to non-linearity, complicated geometry and boundary conditions. A lot of nu-

merical schemes such as finite difference method (FDM), finite volume method

(FVM), finite element method (FEM) or spectral element method (SEM) are used

to convert the PDE to a system of algebraic equations. These macroscopic method-

ology is based on the discretization of the PDE. However, we can lose details of

the dynamic of the mesoscopic elements.

Another approach to the problem is to consider a microscopic scale where the mo-

tion of all the particles of the system can be simulate. The fact of the large disparity

between the time-length scales of the solvent and the mesoscopic components make

technically impossible to simulate complex fluids. To close the gap between macro-

scale and micro-scale, coarse-grained models have been developed. These methods

reduce the degrees of freedom of the solvent but capture the collective modes of the

fluid. For example, in Brownian Dynamics the solvent is represented implicitly by

random forces and frictional terms (it is a simplified version of Langevin dynamics

where particle inertia is neglected). Lattice Boltzmann Method is another exemple,

it is based on microscopic models and mesoscopic kinetic equations. The funda-

mental idea of the LBM is to construct simplified kinetic models that incorporate

the essential physics of microscopic processes so that the macroscopic averaged

properties obey the desired macroscopic equations [58]

LBM originated from cell automaton-based models with the goal of eliminat-

ing statistical noise by replacing the Boolean particle with the average motion of

numerous particles in the same direction through the so-called probability density

function. Discrete collisions are replaced by a continuous function called the colli-

sion operator. LBM places the fluid at a mesoscopic level, between the microscopic

and the macroscopic level, trying to ensure that the collective dynamic recovers as

it moves to the continuum. Even though the LBM is based on a particle picture, its

principal focus is the averaged macroscopic behaviour. The kinetic equation pro-

vides many of the advantages of molecular dynamics, including clear physical pic-

tures, easy implementation of boundary conditions, and fully parallel algorithms.

Because of the availability of very fast and massively parallel machines, there is a

8



2.2 Boltzmann Equation

current trend to use codes that can exploit the intrinsic features of parallelism. The
LBM fulfills these requirements in a straightforward manner [58].

2.2 Boltzmann Equation
To investigate fluxes in a dilute solution, it would be necessary to describe the
dynamics of large numbers of particles, but it is clearly impossible to a tackle the
displacement of each individual particle. However, when we focus on the meso
and macro scales, the description of the motion of each individual particle is no
longer necessary because macroscopic fields of interest [FT], such as e.g. densities,
velocities, temperature, etc., can be calculated through hydrodynamic quantities
given by local averages over numerous molecules.
The kinetic theory of gasses describes exactly how to perform this averaging, as
well as how the hydrodynamic quantities evolve in time, via the introduction of the
probability distribution function f(x,v, t), a function of the position x, velocity v

and time t, giving the probability of finding a molecule close to the position x, at
time t, and with a velocity close to v. From this mesoscopic quantity, f , it is then
possible to define how hydrodynamics fields such as the density ρ and the fluid
velocity u can be derived as moments of f(x,v, t). In particular, the density of the
fluid can be computed by first looking at the probability of finding a particle in a
given position x with any velocity v and thus by finally integrating over the full
velocity space:

ρ(x, t) =

∫
f(x,v, t)dv (2.1)

Similarly the macroscopic flow momentum is computed as:

ρ(x, t)u(x, t) =

∫
f(x,v, t)vdv (2.2)

And also the temperature, T , and the heat flux, q, could be calculated as:

T =
1

kBρ

∫
(v − u)2f(x,v, t)dv (2.3)

q =
1

2

∫
(v − u)3f(x,v, t)dv (2.4)

9
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To describe the evolution of the distribution function, f(x,v, t), the Bolzmann

Equation (BE) can be used

∂tf + v∇xf + a∇vf = Ω(f) (2.5)

In this equation, we can find a time evolution operator, ∂tf , a transport term,

v∇xf , a forcing term modeling the external force contribution (a = F
m
), a∇vf

and, on the other hand, the collision operator, Ω(f) describing all the interacions

occuring between the particles.

This equation cannot be solved until the collision operator is properly defined. The

collision operator can be complicated to describe as it depends upon many param-

eters including the intermolecular force occurring between particles. One way to

simplify the treatment of the collision operator is the usually applied BGK (Bhatna-

gar - Gross - Krook) approximation. Such BGK collision operator corresponds to

a first order Taylor expansion with respect to equilibrium, and it can be expressed

in the form of

Ω = −1

τ
(f − f eq) (2.6)

τ represents the relaxation time, while f eq is the function describing the local

equilibrium. In the BGK collision operator, the local equilibrium is assumed to

be the usual Maxwell-Boltzman equilibrium which is given, per unit mass, by a

Gaussian distributed (∼ N (u, T )) function

f eq(x,v, t) =
ρ(x, t)

(2πkBT )
3/2

e
−(v(x,t)−u(x,t))2

2kBT (2.7)

Collisions must conserve the quantities of mass, momentum and energy, as ini-

tially assumed for the probability distribution function. The conservation constrains

as moments of the collision operator, are expressed as:

mass conservation ∫
Ωf eqd3v = 0 (2.8)

conservation of the moment ∫
Ωf eqvd3v = 0 (2.9)

10
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energy conservation ∫
Ωf eqv2d3v = 0 (2.10)

2.3 Lattice-Boltzmann-Method
As FIG.2.1 and FIG.2.2 show, the Lattice-Boltzmann model (LBM) simulates the

Boltzmann equation with linearized collisions on a lattice . Both the changes in po-

sition and velocity are discretized. It can be shown that, at sufficiently large length

and time scales, LBM simulates the dynamics of nearly incompressible viscous

flows. For the simplest case of a one-component fluid, it describes the evolution of

a discrete set of particle densities on the sites (or nodes) of a lattice:

fi(r+ ci, t+ 1)− fi(r+ ci, t) = −ω (f eq
i (r, t)− fi(r, t)) (2.11)

The quantity fi(r, t) is the density of particles with velocity ci resident at node

r at time t. This particle density will, in unit time increment, be convected (or

propagate) to a neighboring site r+ ci. Here ci is a lattice vector, or link vector, and

the model is characterized by a finite set of these velocities. The quantity f eq
i (r, t)

is the equilibrium distribution of fi(r, t), and is one of the key ingredients of the

model. It characterizes the type of fluid that the code that we use to perform the

experimental results, Ludwig, will simulate, and determines the equilibrium prop-

erties of such a fluid. The right hand side of equation describes a mixing of the

different particle densities, or collision: the fi distribution relaxes towards f eq
i at

a rate determined by ω, the relaxation parameter, which is related to the dynamic

viscosity of the fluid, and gives us control of its dynamics: η = (2ω
−1−1
6

)

Various types of grids, triangular or cubic, can be used in the discrete distribu-

tion function to apply LBM . The most common way to classify each method is the

form DnQm. Dn represents the n dimensions and Qm represents the m possible

directions of motion at each step through the virtual particle, that is, m different ve-

locities. For example, D3Q19 is a three-dimensional Lattice Boltzmann model on a

cubic grid where particles can rest or change position. Each node has the shape of

a lattice crystal and can pass particles to any of the eight adjacent nodes located in

11
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Figure 2.1: Discretization of the movement of the particles in the grid with the LBM,
describing the evolution of a discrete set of particle densities on the sites (or nodes) of
a lattice.

Figure 2.2: Graphic representation of a 3D grid with 19 possible changes of position.
Each node has the shape can pass particles to any of the eight adjacent nodes located
in the same plane, with the ten nodes located in the immediately upper or lower plane
or can stay in the same node.

12
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the same plane of the lattice, with the five nodes located in the immediately upper
plane, with the five nodes located in the immediately lower plane and with the same
node (rest).

2.4 Interaction between moving particles and fluid flow
In the particle transport problems concerned, the solid particles are mainly driven
by the hydrodynamic forces exerted by the fluid, and the body forces if considered.
In the context of LB methodology, fluid particles impact the boundary of the solid
particle, and they exchange momentum to alter their motion. It is important to
correctly model the interactions between fluid and solid particles so as to capture
the essential physical behaviour of the problem under consideration. This requires a
physically correct ”no-slip” boundary condition to impose at the interface between
the fluid and the particle, i.e. the fluid adjacent to the particle surface should have
the velocity identical to the particle surface. For stationary particles the bounce-
back rule (which means a reflection in the same direction but in different sense)
can be imposed to accomplish

f−i(x, t+ 1) = fi(x, t) (2.12)

The first step to model fluid and solid particle interaction is to represent the
particle by lattice nodes. In a lattice discretization of a spherical particle there will
be nodes interior and exterior to the particle , i.e., solid and fluid nodes. These
nodes are further classified into three categories:

• Fluid boundary node. A fluid node connected at least with one solid node

• Solid boundary node. A solid node connected at least with one fluid node.

• Interior solid node. A solid node not connected to any fluid node.

A link between a fluid boundary node and a solid boundary node is called a
boundary link. The surface of a solid particle is assumed to be located in the mid-
dle of the boundary links. Clearly, the stepwise lattice representation of the surface
of a spherical particle is neither accurate nor smooth unless a sufficiently small lat-
tice spacing is used. More seriously, when the particle is in motion, its boundary

13
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nodes will continually change, so an effective algorithm needs to be in place to

update the boundary nodes at each time step.

For modelling the interaction between a moving particle and fluid Ladd [60]

proposed a modification to the original bounce-back rule so that the movement of

a solid particle can be accommodated. For a given boundary link i, the modified

”no-slip” rule is given by

f−i(x, t+ 1) = fi(x, t) + αixivb (2.13)

where αi is a parameter calculated by several hydrodynamic quantitities and

vb is the velocity in the middle of the boundary link i computed as combination

of the translational and angular velocities at the mass centre of the solid particle.

This model is a very general technique for simulating solid–fluid in which its most

important feature is that the computational cost scales linearly with the number of

particles. This method combines Newtonian dynamics of the solid particles with

a discretized Boltzmann equation for the fluid phase. The many-body hydrody-

namic interactions are fully accounted for, both in the creeping-flow regime and

at higher Reynolds numbers. Brownian motion of the solid particles arises spon-

taneously from stochastic fluctuations in the fluid stress tensor, rather than from

random forces or displacements applied directly to the particles.

From the collision rule, the impact force on each solid particle from the link can

be computed and from them the total hydrodynamic force exerted on the particle is

obtained by summing up the forces of all the related boundary links.

Another approach available for modelling the interaction between a moving

particle and fluid is the immersed moving boundary (IMB) method, which is a

general numerical technique for the modelling of interaction between fluid and de-

formable structures. The LB algorithm is modified to include a term that depends

on the percentage of the cell saturated with fluid. The method is useful for mod-

elling suspended obstacles that do not conform to the grid. Another application is

to simulations of flow through reconstructed media that are not easily segmented

into solid and liquid regions. The basic ideas behind this approach of Noble and

14
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Torczynski [61] include the establishment of a more accurate and smooth lattice
representation of solid particles to reduce the fluctuation of the computed hydro-
dynamic forces, as well as the modification of the fluid density distribution at the
nodes covered by a solid particle to enforce the ”no-slip” condition. It introduces
a control volume/cell for each lattice node and a local fluid/solid ratio is also de-
fined, which is the area fraction of the nodal cell covered by a particle.
Then, the LB equation for those lattice nodes (fully or partially) covered by a solid
particle is given by

fi(r+ ci, t+ 1)− fi(r+ ci, t) = −1

τ
(1− β) (fi(r, t)− f eq

i (r, t)) + βfi
m (2.14)

where β is a weighting function depending on the local fluid/solid ratio and fi
m

is an additional term that accounts for the bounce back of the non-equilibrium part
of the distribution function. In this way, the total hydrodynamic force exerted on a
particle over n particle-covered nodes can be computed.

2.5 Squirmer Model
This model considers a spherical particle, with radius equal to R, with a fixed di-
rector that moves with the particle, ê. The internal activity of the particle generates
an axysimmetric velocity at its surface, which produce the self-driven movement
of the particle. This velocity can be written in terms of two independent terms,
one radial vr and another polar vθ. Both components can be written as the special
functions [52-56]:

ur|rs=R =
∞∑
n=0

An(t)Pn

(
ê · rs
R

)
(2.15)

uθ|rs=R =
∞∑
n=0

Bn(t)Vn

(
ê · rs
R

)
(2.16)

where rs represents the position vector with respect to the squirmer’s center of
mass, which is always pointing to the particle surface and thus rs = |rs| = R. ê

describes the intrinsic self-driven direction (|ê| = 1), which moves rigidly with the
particle and determines the direction along which a single squirmer will displace.
Pn stands for the n-th order Legendre polynomial and Vn is defined as [65]
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Vn(cos θ) =
2

n(n+ 1)
sin θP ′

n(cos θ) (2.17)

Note that cos θ = ê·rs
R

if θ is the angle between the vectors ê and rs.

An(t) and Bn(t) are the amplitudes of the radial and polar components of the

axisymmetric velocity imposed at the particle surface. We will disregard the radial

changes of the squirming motion, An(t) = 0, in this way the velocity field gener-

ated by a squirmer will depend only on the polar part of the slip velocity and not

in the size of the squirmer. We are going to calculate the approximation of the se-

ries up to the third order but considering that the frequency of the impulse is much

greater than the proper time of the movement, so that the temporal dependence of

the amplitude Bn(t) can be replaced by the constant value of the average Bn.

n Pn(cos θ) Vn(cos θ)
0 1 0
1 cos θ sin θ
2 1

2
(3 cos2 θ − 1) cos θ sin θ

uθ|rs=R = B1 sin θ +B2 cos θ sin θ (2.18)

Another feature in this squirmer model is that squirmer swims in a non-inertial

medium, hence the velocity u and pressure p of the fluid are given by the Stokes

and continuity equations:

∇p = ν∇2u

∇u = 0 (2.19)

Taking in count the boundary conditions specified by the slip velocity in the

surface of its body and the constraints we specified above, we have that the mean

fluid flow induced by squirmer, from the general solution for n < 3, is the vector

field over a point with position x and in a time t given by the equation
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U(x, t) = −1

3
B1

(
R

r

)3

ê+B1

(
R

r

)3

(ê · r̂)r̂ (2.20)

−1

2
B2

(
R

r

)2

(3(ê · r̂)2 − 1)r̂+ o

((
R

r

)4
)

where Xp is the position of the center of mass of the particle, r = x (t)−Xp (t),

r = |r| and r̂ = r
r
. The coefficient B1 > 0 determines the self-propulsion velocity,

Vp = 2
3
B1, and B2 is related to the amplitude of the stress exerted by the mi-

croswimmer on the surrounding fluid. The sign of B2, or equivalently of the ratio

β = B2

B1
, determines the classification [65-66]:

• Pushers (β < 0) obtain their thrust from the rear part of their body.

• Pullers (β > 0) obtain their thrust from the front part of their body.

2.6 Ludwig Code
Lattice Bolzmann Method (LBM) is the most popular theory to use in computer

simulations because it is solved locally and i t has high degree of parallelization,

hence it is ideal for parallel machines (computational clusters). In this thesis we

have performed several simulations using the Ludwig Code, which is a LB open-

source code for D3Q19 lattice [58] and some results are presented in chapters 3

and 4 of this work.

Ludwig is a code written in ANSI C based on the LBM for simulating com-

plex three-dimensional fluids through a set of routines and communications [41].

Time evolution of modelled quantities takes place on a fixed regular discrete lat-

tice. The preferred method of dealing with the corresponding equations is by using

finite difference. However, for the case of a binary fluid, a two-distribution lattice

Boltzmann approach is also maintained for historical reference. With this code it is

possible to configure multiple models with different values of free energy and other

parameters. This is a particularly interesting code because given the relative sim-

plicity of execution in relation to the power of simulation is ideal to be able to draw
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physical conclusions without having to deal with a complicated programming sit-

uation, so that the user may concentrate on the physics of the problem, rather than

on parallel computing issues. Ludwig is structured as a library of preconfigured

models that can be affected at the parametric level through the input file [57]. The

underlying physics is within the framework of active nematics and the program

allows creating periodic boundary conditions, interaction between colloids in sus-

pension, liquid crystals (using the Landau-de Gennes equations [21]) and binary

fluids.

Ludwig has been developed with a modular and hierarchical structure in mind.

The current version of the package is composed of 258 functions (over 25,000 lines

of code) split in three main components: models (D3Q19, D3Q15), common and

utilities. The code has been developed over a number of years to address spe-

cific problems in complex fluids. The underlying hydrodynamic model is based

on the lattice Boltzmann equation [41]. This itself may be used to study simple

(Newtonian) fluids in a number of different scenarios, including porous media and

particle suspensions. However, the code is more generally suited to complex flu-

ids, where a number of options are available, among others: symmetric binary

fluids and Brazovskii smectics, polar gels, liquid crystals, or charged fluid via a

Poisson-Boltzmann equation approach. These features are added in the framework

of a free energy approach, where specific compositional or orientational parameters

are evolved according to the appropriate coarse-grained dynamics, but also interact

with the fluid in a fully coupled fashion.

Users control the operation of the code via a plain text input file; output for var-

ious data are available. These data may be visualised using appropriate third-party

software. Specific diagnostic output may require alterations to the code. Potential

users should note that the complex fluid simulations enabled by Ludwig can be time

consuming, prone to instability, and provide results which are difficult to interpret.

By default, the run time expects to find user input in a file located in the current

working directory. When an input file is located, its content is read by a single MPI

task, and its contents then broadcast to all MPI relevant tasks. Input file consists of

a series of key values, each of which controls at least one parameter in the code,
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such as system size, number of cycles in iteration, output file frequency, parallel

decomposition data, etc. These key values can be scalar, vector, tensor, or floating

point nomenclature numbers. If some key values do not need to be present for a

particular program run, the code uses default values that affect execution as little

as possible. Input file also includes explanations and clarifications throughout its

script. This file must be in the same directory as the Ludwig.exe executable, which

was previously compiled using serial or parallel configuration. The execution of

the executable produces a set of data files also in the same directory, if the decom-

position has been used in parallel of the calculations, that is to say, if they have

been done by different volumes of the grid, it will be necessary a post-production

data procedure to recombine the results of the different volumes. As a convenience,

it is possible to specify that sets of plane walls are present in the system in one or

more co-ordinate directions with periodic conditions. The code produces a series

of output files that give information about the velocity field, density, momentum,

or integrated free energy. Precisely, free energy is possibly the most categorical

parameter of a given model [41][58].

We have performed simulations using a D3Q19 lattice, which includes moving

particles via domain decomposition and message passing using the message pass-

ing interface MPI. A simulation in a cubic box with an edge length of 512× 512×
512 (largest ones that we have done) needs a RAM memory of almost 20 Gb and it

the requirement of memory grows linearly with the growth of the volume.

Due to the magnitude of the system size required, it became obvious from the early

stage of the design that Ludwig would have to be parallelized in order to provide

the required scalability. Fortunately, the symmetry of the underlying cubic lattice

guarantees a uniform data distribution and hence an equal amount of computations

per lattice site. Indeed, the collision and propagation stages will take place over all

lattice sites, which restricts possible causes of load imbalance to the introduction of

solids objects non-uniformly distributed across the simulation box. This pseudo-

uniform distribution of the computations added to the intrinsic locality of the LB

algorithm made Regular Domain Decomposition the most suitable decomposition

strategy. In this approach, the data is geometrically decomposed in equal volumes,

which are then distributed to each processing element.
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Although periodic boundary conditions are applied to the model by default, these
can be modified by explicitly adding solid surfaces at the boundaries. In the pre-
vious subsection we have shown how to add them, ensuring stick boundary condi-
tions. This is enough for a mono-component simple fluid. However, for complex
fluids it is also in general necessary to specify the behaviour of additional fields at
solid boundaries, whether these are at the edges of the system or internal bound-
aries between fluid and solid phases. The implementation of static solid objects and
moving walls in parallel is also quite simple making it suitable to exploit the capa-
bilities of supercomputers, with a modular structure, which allows its use without
the need to know its computational details.
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CHAPTER

3
Diffusion and polar order in
active particles suspensions

In this chapter an exploration of the (ϕ, β) parameter space has been performed

for evidence of collective behaviour in several simulations with microswimmers

using Ludwig code on a cubic grid of size 128 × 128 × 128, 256 × 256 × 256

and 512× 512× 512.

ϕ represents the concentration of particles in the fluid and β is the relationship be-

tween the order parameter and the self-propulsion velocity for each particle. Some

graphical results are shown and, through their interpretation, our objective is to

find numerical evidence of how these parameters affect the behaviour of the fluid,

specifically to mean squared displacement of particles and to spontaneous increase

in the level of collective orientation.

3.1 Introduction
This study was performed from the results of several simulations with Ludwig code

with a size of 400000 iterations at least, carried out in the Albeniz cluster of the

Fundamental Physics department of the Barcelona University. We want to explore
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the parameter space (ϕ, β). ϕ is the bacteria (microswimmers for us) volume frac-

tion, for N spheric particles with radius 2.5 into a cubic grid of length equal to 128

units. β = b2
b1

is the ratio between b1, which corresponds to a parameter of the self-

propelled (proper) particles velocity , and b2, which corresponds to a parameter of

particles orientation (in a nematic sense)

Differences are expected to be observed between pushers (β < 0) and pullers

(β > 0), due to the differentiated behaviour at a dynamic level that has been ob-

served in other studies [43]. In this sense, the most significant difference that we

have detected, emerges in the dependence of the particle’s mean squared displace-

ment (MSD) on the swimmers concentration: in the pullers case a sharp increase

is observed for lowers values of ϕ as a result of a clear exponential change of the

underlying behaviour. This surprising effect is associated with an increase in the

degree of orientation (polar order) of the system that is much higher than the rest

of the simulations, even though their b2 values are the same.

The reference [44] ascribe this change in MSD behaviour to the formation of large

scale coherent motions, so the formation of clusters is also expected. This situa-

tion could produce collective movements of sets of the particles grouped in signifi-

cant percentage fractions and should be possible to detected them on the parameter

space (ϕ, β).

Finally, some results of our simulations reproduce behaviours published in a previ-

ously article [44], helping to verify and expand the knowledge about some essential

aspects of the phenomenon.

3.2 Mean Square Displacement
Mean squared displacement (MSD),

⟨∆r2⟩(t) = 1

N

N∑
i=1

|ri(t)− ri(0)|2

is calculated in order to quantify the movement capacity of the particles within the

grid and to be able to study how it is affected by concentration ϕ and level orienta-

tion b2. Some differences in the behaviour of pullers (β > 0) and pushers (β < 0)

are also studied.
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Figure 3.1: MSD calculated for different β values (b1 = 0.01 b2 = ±0.01,±0.1) with
ϕ = 0.12 and 4 × 105 iterations. MSD increase in relation to the parameter b2. No
clear differences between pullers and pushers are observed.

In statistical mechanics, the mean squared displacement is a measure of the devia-

tion of the position of a particle with respect to a reference position over time.

3.2.1 Variation of β parameter

We performed several simulations at cluster Albeniz to study how the variation of

β affects the MSD. All of them were done it in a cubic grid with size 1283 and

ϕ = 0.12.

In FIG. 3.1 there are β values that have been obtained by varying b2 for a con-

stant value b1. Increasing the orientation level also results in an increase in MSD.

From the four curves with b1 = 0.01 (β = ±1,±10) it is easy to observe that MSD

increase slowly in relation to the parameter b2.

Another characteristic of these curves is that they point to the possibility that a

higher level of orientation produces a clearer difference between the corresponding

pushers and pullers because the larger b2, the greater the separation between the

corresponding pullers and pushers lines seems to be for the same value of |β|.
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Figure 3.2: MSD calculated for different ϕ values and for pullers and pushers β =

±1 (b2 = ±0.01). A transition from a diffusive regime (
〈
∆r2

〉
∼ t) to a ballistic

regime (
〈
∆r2

〉
∼ t2) can be obseved only for pullers. This effect is stronger for

ϕ = 0.03, 0.06

3.2.2 Variation of concentration

The most surprising result of how many are shared in this chapter is found in the

calculation of MSD for different concentrations, ϕ, keeping constant |β| = 1

(b1 = 0.01, b2 = ±0.01). It can be seen that for low concentrations in the pullers

case there is a clear change in the increasing trend of the curve showing a strong

asymmetry between pullers and pushers (FIG.3.2).

In FIG.3.2 a clear effect of increasing the mean displacement of puller parti-

cles is shown at low concentration and with relatively low orientation levels. It is

observed, for a concentration ϕ = 0.012, that the MSD increases with a change

in slope if β = 1 , but if β = −1 this phenomenon is not present. This change

from a diffusive regime (⟨∆r2⟩ ∼ t) to a ballistic regime (⟨∆r2⟩ ∼ t2) is stronger

in the case of ϕ = 0.03 or ϕ = 0.06. Likewise, for the lowest concentration, by

increasing β = ±5 through the orientation parameter, b2 = ±0.05, any change in

the increasing trend of MSD disappears.

In the following panel (FIG:3.3) it is possible to observe each isolated case of

interest and appreciate more precisely the position of the crossover. The immediate
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Figure 3.3: MSD as a function of concentration, ϕ. It is possible to observe each
isolated case of interest and appreciate more precisely the position of the crossover.

questions to be solved is to know how the size of the grid affects this phenomenon

and, if it is prolonged in time, another regime traversal will take place. However,

first of all, it is interesting to see if this abrupt change in the displacement of the

particles is due to or has caused any change in the mesoscopic properties of the

particles.

3.3 Polar order
To better understand the corssover explained in previous section and assuming that

a higher orientation level favours the displacement of the particles, the mean orien-

tation, P (t), is calculated for different β and ϕ values according to the expression:

P (t) =

∥∥∥∑N
i=1 ei (t)

∥∥∥
N

(3.1)

where ei(t) represents a 3-dimensional orientation vector of a particle i at the

time step t of execution of a simulation with N particles for a determined printed
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iteration step, t.

At long-times, the suspension reaches a steady state P (t >> 0) = P∞. If P∞ = 1

the system is completely polarized (all squirmers point in the same direction), while

P∞ ∼ 1/
√
N means the system is isotropically oriented [77].

In figure 3.4 it can be seen that simulations that behave differently from the

rest in regard to MSD also behave differently for P (t). In FIG. 3.5 we can see

that the simulations that presented a crossover when studying the evolution of their

MSD, now they also have a much longer transitory state, reaching a value of the

mean square orientation much higher than the rest(FIG. 3.4). In these cases, the

P∞ parameter is calculated for the times within the steady state. These values of

ϕ and β show a transition to the ballistic regime at the same point that the steady

state of the mean orientation, P (t), is reached.

The fact is that a degree of ordering has been generated spontaneously (not through

the execution parameters of the program) which greatly facilitates the displacement

of the particles as they are dragged by the fluid. This effect only occurs in the case

of pullers.

Figure 3.4: P (t), calculated for diferent ϕ and β. TIME STEP represents each simu-
lation step as a time variable.Simulations that behave differently from the rest in regard
to MSD also behave differently for P (t). The increase of the orientation parameter
b2 (β) does not seem to have any effect in relation to the polar order.
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Figure 3.5: Different values of the polar order, P∞, (calculated for the times
within the steady state) depending on the concentration. From left to right P∞ ∼
0.5, 0.6, 0.2.P∞. These values of ϕ and β show a transition to the ballistic regime at
the same point that the steady state of the mean orientation, P (t), is reached. Other
simulations with other values of ϕ and β show no increase in P (t).

Polar order parameter P∞ is calculated for ϕ = 0.12 and different values of

β in figure 3.6 The plot does show some similarity with the reference [45][66] in

presence and position of the peak.

Figure 3.6: Polar order parameter, P∞, for different β values and ϕ = 0.12 Note the
peak for β values around one.

in FIG. 3.7 it can be seen that, for other concentration values, P∞ reach values

similar to that of the reference [45] for β = 1.
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Figure 3.7: Polar order parameter, P∞, for different ϕ values. Note the peak for β

values around one.

Figure 3.8: Long-time polar P∞ and nematic order λ∞ parameter for different values
of β ranging from −3 to 4. P∞ is plotted with black circles, while λ∞ is represented
by red squares. Particles with isotropic orientation will have a P∞ ∼ 1/

√
N hence

we also show the blue dashed line that represent 1/
√
N . P∞ has a linear behaviour

in the region where 0 ≤ β ≤ 3, similarly λ∞ has a quadratic behaviour in the same
region of β, thus we plot also this linear and quadratic behaviour with a pink and cyan
curve respectively.

In Fig. 3.8 (provided by Dr. Francisco Alarcón) we show the value of P∞ (black
circles) as a function of β. We observe that pushers with β

<∼ −1/10 are isotropi-
cally oriented (P∞ ∼ 1/

√
N ). For β > −1/10, P∞ increases abruptly, signalling
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the emergence of a polar order, up to a maximum P∞ ≈ 1 at β = 0, and then

decreases again, linearly. For β ≥ 3 the suspension is isotropic again.

3.4 Clustering
Squirmers can develop another interesting collective phenomenon, which is the

emergence of flocking: clusters of particles moving coherently together can spon-

taneously aggregate, disgregate and aggregate again in time. These processes gen-

erate particle density fluctuations across the system [45]. In this situation, accord-

ing to the bibliography reference [44], it would be reasonable to think about the

formation of clusters or flocks, but the data do not show the existence of either of

the two things. particles are distributed forming a cluster around 60% and the rest

is distributed in a residual way in more than ten different groups.

The formation of this macroscopic cluster is driven by the competition between

the hydrodynamic interactions (hence, the swimming characteristics), responsible

of particle reorientations, and the volume fraction, controlling the particle collision

rates.

3.5 Root Mean Square fluid velocity
A result that does agree with the bibliography is the study of average root-mean-

square fluid velocity, URMS , analysed following the procedure described in refer-

ence [44] with the aim to compare the results with the reference’s image where

URMS is represented, as a function of the swimmer concentration. There is an

increasing trend as might be expected (FIG. 3.9) but with a much lower energy

level and without observing the characteristic slope change that is showed in the

reference because it may not have high enough particle densities.

3.6 Super-Ballistic Diffusion
The transition to the long time ballistic regime, driven by the macroscopic flock for-

mation, can lead to transient super-ballistic diffusion. To highlight this behaviour,
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SUSPENSIONS

Figure 3.9: Urms of the fluid for different ϕ values for pullers and pushers

we report in Fig. 3.10 the local slope of the MSD, defined as

γ(t) =
d log⟨∆r2⟩
d log t

together with the time evolution of the polar order parameter P (t), for pushers

(β = 1) at ϕ = 0.06 in a smaller system (L = 128).

As long as P (t) ≪ 1 (no polar order), the particle dispersion is diffusive

(γ ∼ 1). The growth of P (t) is followed by a steep increase of the local slope,

which even overshoots the ballistic value (γ = 2), reaching γ ∼ 4, as P (t) ap-

proaches the steady state value P∞, and then relaxes asymptotically to the ballistic

regime again.

3.7 System size analysis
Next, we will analyse how the size of the grid affects the results. For this, a

simulation has been carried out in the machine Mare Nostrum of Spanish Su-

percomputer Net (RES) with a grid of size 512× 512× 512, a concentration of

ϕ = 0.012, 0.06, 0.12 and β = 1,−5 (b1 = 0.01, b2 = 0.01,−0.05).

As can be seen in the figures, the increase in the size of the grid seem to change
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Figure 3.10: (a) Local slope, γ(t) = d log⟨∆r2⟩
d log t , for squirmers with ϕ = 0.06 and

β = 1 in a system of size 1283. Inset: MSD shows a second cross-over at long times.
(b) Polar order parameter, P (t) = 1

N

∣∣∣∑N
i=1 ei(t)

∣∣∣.
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Figure 3.11: MSD calculated for ϕ = 0.06 with β = 1 (b2 = 0.01) in a grid of size
512×512×512 and 2×106 iterations achieving a ballistic regime. INSET: P (t) does
not reach a steady state in which polar order can be measured, a continued decrease
is observed.

some substantial aspect in the behaviour of the particles in terms of displacement
dynamics. The figures corresponding to a concentration ϕ = 0.06 and β = 1

(b1 = 0.01, b2 = 0.01) for grid sizes 512× 512× 512 and 256× 256× 256 (FIG.
3.11, FIG. 3.15) show a local slope equal to 2. Even despite a quantitative differ-
ence in respect to the case 128×128×128 for the same concentration and values b1
and b2 (FIG. 3.3 ), qualitatively it should be noted that there is still a clear deviation
from the linear growth of MSD for this concentration in all grid sizes. Furthermore,
comparing the same figures with the values in figure 3.5 , it can be seen that the
polar order increases to values close to 0.5 in the three sizes of the grid.
The rest of the figures correspond to concentrations ϕ = 0.12, 0.06, 0.12 with
β = −5 (b1 = 0.01, b2 = −0.05) show the local slope close to one (FIG. 3.12,
FIG. 3.13, FIG. 3.14) like most of the curves presented earlier in the figures at a
grid size of 128× 128× 128 (FIG. 3.1, FIG. 3.2)
Therefore, according to these results it can be said that in the case ϕ = 0.06 and
β = 1 (b1 = 0.01, b2 = 0.01) there is a change in the behaviour of the particles
that are reflected in a significant increase and an essential change in behaviour in
the time evolution of the mean square displacement accompanied by an increase in
the polar order of the system up to a value close to 0.5.
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Figure 3.12: MSD calculated for ϕ = 0.06 with β = 1 (b2 = 0.01) in a grid of size
256 × 256 × 256 and 2 × 106 iterations achieving a ballistic regime. INSET: P (t)

reach a steady state in which polar order can be measured about 0.5

Figure 3.13: MSD calculated for ϕ = 0.06 with β = −5 (b2 = −0.05) in a grid of
size 512× 512× 512 and 2× 106 iterations. It stay in a diffusive regime. INSET: P(t)
remains at values close to zero.
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Figure 3.14: MSD calculated for ϕ = 0.12 with β = −5 (b2 = −0.05) in a grid of
size 512× 512× 512 and 2× 106 iterations. It stay in a diffusive regime. INSET: P(t)
remains at values close to zero.

Figure 3.15: MSD calculated for ϕ = 0.012 with β = −5 (b2 = −0.05) in a grid of
size 256× 256× 256 and 2× 106 iterations. It stay in a diffusive regime. INSET: P(t)
remains at values close to zero.
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3.8 Conclusions of the chapter
We have used Lattice-Boltzmann methodology to carry out simulations of semi-
dilute squirmer suspensions, where hydrodynamic interactions are taking in count
explicitly. A substantial change in mean squared displacement, MSD, is observed
for certain relatively low concentrations of swimmers in the puller case. This in-
crease is also related to a spontaneous increase in the level of particles orientation.
Our explanation is that higher concentrations favour particles collisions and in-
crease the number of short displacements, then all these truncated movements, that
do not manifest in kinetic form, must contribute to the internal energy of the sys-
tem. So the observed behaviour of strong increase in MSD is due to the fact that a
greater part of the internal energy of the system is transformed into kinetic energy
by an increase in the orientation level.
In the next section of this work, the energy spectra of the simulations are explored
with the aim of finding quantitative evidence of this supposed accumulation of in-
ternal energy as a result of an increase in the dynamic stress.
There is a point in the parameter space (ϕ, β) that favours an almost resonant in-
crease in MSD related to spontaneous orientation of the suspended particles as a
way to relax the tension of the fluid transforming the internal energy accumulated
into kinetic energy.
In general, we observe that aligned suspensions develop a multi-crossover Mean
Square Displacement, where suspensions reach a super-diffusive motion at long-
times. Our group has presented a publication on this subject in which results are
offered in a more extensive way [64]. Ishikawa and Pedley [62][63] also found
anomalous diffusion for small |β|, they studied the spreading of squirmers in non-
uniform suspensions and they said that this ordering phenomenon may be inter-
preted as a taxis towards lower cell concentration.
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CHAPTER

4
Active Turbulence

In this chapter, the energy spectrums, E(k) of several large scale direct numer-

ical simulations are analyzed

E(k) =
1

2

〈
ũ∗ · ũ

〉
(4.1)

where ũ is the Fourier transform of the fluid velocity field and the overlined

brackets, ⟨·⟩, indicate a surface integral on spheres of radius k, in spectral space,

and time averaging over the statistically stationary state.

Our main purpose is to find indications of energy flows through the different

scales (represented by different values of k in the Forurier space), in particu-

lar, the flow from the smallest scales (high values of k) towards the largest scales,

known as the inverse cascade phenomenon. As a signature of turbulence we ex-

pect to observe that, as the volume fraction decreases , the energy spectrum at low

wavenumber should be broadened, distributing the energy of the system in an in-

creasingly homogeneous way through an increasing range of scales until reaching

the diffusive level where a sudden fall would occur. In particular, in the limit of

ϕ → 0 one should observe E(k) ∼ const., with a steep decay at high k [44].
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This chapter presents the results obtained in different simulations from the varia-

tion of the orientation parameter and the concentration of the solution. However,

first there is a brief introduction to the theoretical framework and a reminder of the

basic principles governing isotropic hydrodynamic turbulence.

4.1 Introduction
In active matter, the characteristic activity of some kind of systems called wet,

may be expressed not in autonomous motion but in forces applied by agents on the

medium they are immersed in. This kind of systems are complex and deterministi-

cally unstable.

On a basic level of description, both the medium and the agents can be lumped into

a continuous active fluid, where the agents are characterized only by their symmetry

and the matching action. A particle with nematic symmetry can exert a force along

its axis that produce a motion which we can consider slow, so inertia is neglected.

Then the model is based on the Stokes equation of viscous motion supplemented

by the effects of nematic elasticity and activity. The mechanical stress driving pas-

sive flows is of external origin; internally, it includes only viscous dissipation. The

motion induced by activity is counterbalanced by the elastic stress and dissipated

by the bulk and wall friction.

In active suspensions, whatever the origin of activity (which may come from ac-

tive particles, bacterial suspensions, filaments driven by molecular motors, or liv-

ing cells), can be modeled by viewing them as homogeneous fluids and solving

hydrodynamic equations of motion amended by adding the force exerted by mi-

croscopic particles uniformly distributed in the fluid where they are advected by

the collectively generated flow. We could say that its local movement is cause and

consequence of itself. The continuous approach is justified by the assumption that,

similar to passive liquid crystals, the flow and alignment patterns develop on a scale

far exceeding the size of individual.

At this point it is impossible not to relate the dynamics, topology and complex-

ity of the behaviour with the inertial turbulence at low Reynolds number. Under
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proper parameterization, active matter systems can reproduce these behaviours, re-
ceiving the name of active turbulence. Simulations, such as those in the preceding
chapter, are carried out on a lattice with the purpose of observing some character-
istic that reveals the existence of a turbulent behavior. In this sense, it should be
remembered that inertial turbulence is described as a competition between an en-
ergy flow from the smallest to the largest scales (inverse cascade) and the opposite
process in which the energy flows from the interactions of greater characteristic
length towards microscopic type (direct cascade). If the scales are defined through
a superposition of Fourier modes, the energy spectrum should show, for different
values of the parameters, a variation in the shape that could reveal the existence
of energy transmissions through the scales in one or the other sense recording the
phenomenon of active turbulence.

4.2 Locally isotropic turbulence
Andrei N. Kolmogorov 1 devoted his research interests to the area of turbulence
[2], where his publications from 1941 onwards had a significant influence on the
field [1][6][8]. Based on the work of Taylor and Richardson [4][5], he postulated
three hypotheses to formulate his theory.

4.2.1 Kolmogorov’s first hypothesis
The randomness of a perturbation increases with larger Reynolds numbers, it is
a process with an isotropic tendency. However, the boundary conditions mean
that perturbations of order L0, close to the characteristic size of the whole system,
cannot be considered isotropic.
Since the influence of the average motion of the fluid decreases with scale, by
λ << L0 can be considered a locally isotropic turbulence, in a region Uλ far from
the borders by sufficiently high Reynolds numbers .

1Andrei Nikolayevich Kolmogorov, in addition to making contributions to turbulence and clas-
sical mechanics, is known for his work in the theory of probability and topology. He structured the
axiomatic system of probability theory, using the language of set theory, and founded the theory of
algorithmic complexity.
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4. ACTIVE TURBULENCE

Variations in perturbations under these scale conditions are significantly faster than

global changes in fluid parameters so that it can be considered a quasi-steady state.

R = ||x′ − x|| << L0 |x, x′ϵUλ =⇒ τ = t′ − t = r
v̄
<< T = L0

v̄

4.2.2 Kolmogorov’s second hypothesis

In a locally homogeneous and isotropic region the fluid is determined solely by the

forces of inertia and friction.

Let ελ be the energy dissipated per unit mass and unit of time through the scales

then how to fulfill ελ ∼ µλv
2
λ

λ2 , dimensionally [ελ] = L2T−3 =⇒ [µλ] = L2T−1. At

a given scale the energy injected into the perturbation must be equal to the energy

dissipated: ελ0 ∼ (vλ0 )
3

λ0
From the dimensional analysis, Kolmogorov defined the

following relations corresponding to length, velocity and time of this characteristic

scale known as Kolmogorov scale, λ0

(
ελλ

2

µλ

) 1
2 ∼ (ελλ)

1
3 =⇒ λ0 =

(
µ3
λ0

ελ0

) 1
4

(vλ)
3

ελ
∼
(

µλv
2
λ

ελ

) 1
2
=⇒ vλ0 = (ελ0µλ0)

1
4 τλ0 =

λ
vλ

= (
µλ0

ελ0
)
1
2

4.2.3 Kolmogorov’s third hypothesis

Up to the Kolmogorov scale, λ0, the energy flow has passed without significant

losses from the upper scale L0. In the inertial range λ0 << λ << L0 there is no

significant influence of viscosity.

The total constant energy dissipated by the Kolmogorov scale perturbations is

of the order of ε ∼
v3L0

L0
seeds

λ0 ∼
(

µ3
λ0

L0

v3L0

) 1
4

=
(

L4
0

Re3

) 1
4
= L0Re−

3
4

vλ0 ∼
(

v3L0
µλ0

L0

) 1
4

=
(

v4L0

Re

) 1
4

= vL0Re−
1
4
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4.2 Locally isotropic turbulence

Kolmogorov’s characteristic length and velocity decrease with increasing Reynolds
number,Re, that is, the radius of influence of the frictional force decreases with in-
creasing Re.

Navier-Stokes equations are invariant under scale transformations

xλ ⇒ xλ vλ ⇒ vλr tλ ⇒ tλ1−r

Then, if in the inertial range ε is constant at any scale:

ε ∼ v3λ
λ
∼ λ3r−1 =⇒ r = 1

3
=⇒ t ∼ λ

2
3

This result indicates the time evolution of smaller scales of the perturbation, at
which the structures of that scale are deformed.

With their hypotheses, Kolmogorov is placed in an ideal framework where the
fluid within the inertial range recovers the symmetries of the Navier-Stokes equa-
tions lost in the turbulent transition, the energy injected from the macroscopic
scales is transmitted without loss until to reach the Kolmogorov scale where the
frictional forces represented by the viscosity dissipate the energy. Under these con-
ditions a structure function S2(R) is postulated.

S2(R) measures the quadratic variations of the velocity in the longitudinal di-
rection between two points separated by a distance |R| = R, assuming that the
fluid is self-similar by sufficiently high Reynolds numbers [1].

S2(R) =
〈
(δv (x))2

〉
=
〈(

[v(x+R)− v (x)] R
R

)2〉
Since there can be no dependence on viscosity α must be 2

3
.

S2(R) = Cv2λ0
( R
λ0
)α

v2λ0

λ
2
3
=

(
vλ0

λ
1
3
0

)2

=
(
ε

1
3

)2
= ε

2
3

→ S2(R) = Cε
2
3R

2
3

This result is known as Kolmogorov’s law 2
3

and has been experimentally vali-
dated.
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In a general sense, the p-th order longitudinal structure function, for two points

located at the positions x and (x+R) is given by

Sp(R) = ⟨(δv (x))p⟩ =
〈(

[v(x+R)− v (x)]
R

R

)p〉
(4.2)

A generalization of Koomogorov’s 2/3 law is given by

Sp (R) = Cpϵ
p
3R

p
3 (4.3)

The universal nature of the structure function, and in particular the constant C

postulated by Kolmogorov, was objected to by Landau and Lifshitz who postulated

that the turbulent transition occurs when the system gradually gains degrees of

freedom until it reaches a state that, despite being deterministic, is complex and

difficult to deal with. The problem of the universality of the turbulence generation

mechanism remains open pending a solid experimental verification.

4.3 Variation of β parameter
The following figure (FIG. 4.1) show the normalized energy spectra of 2000 par-

ticles in suspension in a fluid within a cubic lattice whose edge has 128 units,

which corresponds to a concentration of ϕ = 0.06, and β = b2
b1

= 1. The curve

is calculated from the Fourier transform of the average over 4 × 106 iterations,

performed in Mare Nostrum Supercomputer with Ludwig code. The spectrum dis-

plays a plateau at small wavenumbers, consistently with theoretical predictions [44]

for very dilute systems, followed by an algebraic decay, k−3, which is a value in

agreement also with the value obtained with the shell model, explained in the next

chapter.

We show now a set of curves (FIG. 4.2) that correspond to values of val-

ues β = ±1,±10 are the consequence of the combination b2 = ±1,±0.1 with

b1 = 0.01. For β = ±10 the energy spectrum is broader, which means that the total

energy of the system is distributed on more scales, although it is still concentrated

in the upper range. Compared to the case with β = 1, a lower incidence of the

inverse cascade phenomenon is observed and therefore a significantly softer active
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4.3 Variation of β parameter

Figure 4.1: Time averaged energy spectrum for ϕ = 0.06 into a grid of size 128 ×
128 × 128 with β = 1. We can see a plateau at small wavenumbers followed by an
algebraic decay, k−3.

turbulence is occurring: as higher orientation level of the system is, lower turbu-

lence level for a given active particles self propelling velocity is produced. There

are not differences between pullers and pushers. There is also a significant increase

in the value of the local slope of the inertial range, propitiated by a more abrupt

diffusivity.

In other words, the displacement difficulties produced by the low correlation

of the particles orientation vectors strain the systems, favouring a powerful phe-

nomenon of inverse cascade that accumulates most of the energy on the upper

scales in form of internal energy. Fluids with a great correlation (b2 >> 0.01)

between suspension colloids fails to inject as much energy into the larger scales

because movement is easier and dissipates the internal energy of the system in the

form of kinetic energy.

Another example is found in the figure when comparing different beta values

for phi=0.012. In this figure it is worth noting the severe change in shape as the

absolute value of beta increases, the difference between pullers and pushers being

much more marked for the higher value.
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Figure 4.2: Averaged energy spectrum for different β values (b1 = 0.01 and b2 =

±0.01,±0.1). The energy spectrum is broader for β = ±10 and show a significant
increase in the value of the local slope of the inertial range. There are not differences
between pullers and pushers.

Figure 4.3: Averaged energy spectrum for different β values (b1 = 0.01 and b2 =

±0.01,±0.05). The energy spectrum presents a clear shape change for different values
of b2.There are differences between pullers and pushers.
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Figure 4.4: Normalized averaged spectrum for different values of concentration, ϕ.
β = ±1 corresponds to b1 = 0.01, b2 = ±0.01.There is a difference in the value of
local slope but no significant topological changes are observed.

4.4 Variation of concentration

The results obtained by calculating the normalized energy spectrum for different

concentrations, ϕ, keeping the value |β| = 1 constant, for pullers and pushers, are

shown in FIG. 4.4.

For different values of the concentration, ϕ , the spectrum do not significantly mod-

ify its shape so there is not a change in the energy distribution at different scales.

However, there is a difference in the value of local slope, which reveal a change in

the dynamic of the particles. As no significant topological changes are observed,

no evidence is found that the decrease in concentration, at least in the numerical

range studied, moderates or increases the inverse cascade phenomenon.

It is interesting to note that in relation to the previous chapter, the strong change

in behaviour between pullers and pushers observed in terms of MSD and polar

order is not reflected in a change in the shape of the energy spectrum. The energy

distribution is therefore the same, which makes us think that the energy level is the

same regardless of whether it manifests itself in the form of kinetic energy or not.
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Figure 4.5: Time average energy spectrum for ϕ = 0.06 into a grid of size 256 ×
256 × 256 with β = 1. The value of local slope in the inertial range is the same as
that observed for smaller systems.

4.5 System size analysis
Next, we will analyse how the size of the grid affects the results (FIG. 4.5). For
this, a simulation has been carried out in the Mare Nostrum Supercomputer with
a grid of size 256 × 256 × 256, a concentration of ϕ = 0.06 and β = 1 (b1 =

0.01, b2 = 0.01). We run the simulation until 2 × 106 time steps (TSTEP ). No
significant changes are observed with respect to the first one case, where the size
of the grid was smaller. The most notable fact is the value −3 in the local slope
of the spectrum in the inertial range, which is obtained also for the smaller grid
128× 128× 128, remain as theoretical framework predicted.

In Fig. 4.6 we report the energy spectrum of a numerical simulation in triperi-
odic cubic box of side L = 512 lattice points, with N ≈ 2.6 × 105 pushers of
radius R = 2.3 lattice units (corresponding to a volume fraction of ϕ ≈ 0.1) and
β = −5. The first squirming parameter is set to b1 = 1.5× 10−3 [65]. We observe
the scaling E(k) ∼ k−3 in the inertial range.
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Figure 4.6: MAIN PANEL: Energy spectrum (time-averaged over the statistically
stationary state) of the fluid velocity field, normalized by the mean square velocity
u2rms, in a suspension of pushers (β = −5) at a volume fraction ϕ ≈ 0.1; the solid line
indicates the scaling E(k) ∼ k−3. INSET: Snapshot of the velocity field in the plane
z = L/2 from a simulation: the in-plane vectors (ux, uy) are depicted as arrows and
the out-of-plane component uz (rescaled by the characteristic swimming speed Vp) as
a color map. Notice the size of correlated regions as compared to the microswimmer
size ∼ R; in particular, the occurrence of a jet extending on a scale of several particle
radii is highlighted by the green ellipse.
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4.6 Conclusions of the chapter
We showed that the energy spectrum develops decays with the power-law k−3 over
a range of intermediate wavenumbers. It was posited that, given the lack of a
Richardson-Kolmogorov energy cascade as in classical turbulence, the excitation
of motion at large scales should be ascribed to the coupling between fluid velocity
gradients and active particles orientation, i.e. to the flow alignment mechanism.

Through the energy spectrum, it is found that a low level of orientation in the
suspended particles favours the appearance of the inverse cascade phenomenon,
which is directly related to soft active turbulence. Higher levels of collective ori-
entation lead to a more even distribution of energy across the scales. This fact is
corroborated comparing the local slope and the shape of several energy spectrums
performed for different b2 values.

The decrease in concentration, ϕ, has no effect in this regard. We could spec-
ulate that although the proportion of energy that manifests itself kinetically with
respect to that accumulated internally is clearly greater for pullers than for pushers,
the energy distribution across the different scales is similar. In other words, the
clear effect of increasing MSD and polar order shown in the previous chapter is not
reflected in the energy spectrum.

We do not observe differences between pullers and pushers in any case.
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5
Shell-model

Shell-models are deterministic dynamical systems based on the discrete itera-
tion of different modes of the same function, this highly repeated self-action aims
to reproduce the essential features of complex continuous systems reducing the
complexity of the full field equations. In no case does the shell-model try to model
any physical reality, that is, it is not intended to be a mathematical description of
a certain phenomenon or dynamics, but rather they offer the possibility to investi-
gate the chaotic dynamics and multiscale correlations of turbulence with obvious
computational advantages and, sometimes, even amenability of analytic treatment
being a tool capable of producing universally applicable results. The great ad-
vantage of shell-models is their simplicity and their great versatility to introduce
greater or lesser complexity into the equations, allowing the effect of each term or
function added to the model to be quantified. In essence, they allow us to model the
ingredients of the underlying fundamental physics shared by a given set of systems.

In this chapter, the characteristics of the classic shell-models (GOY-model and
SABRA-model) will be explained. In this sense, a description of a novel model de-
veloped during the process of preparing this doctoral thesis will be made. We call
this model SabrActive-model and it relates two fields: the velocity field and the
orientation field. The interactions between both represent an attempt to reproduce
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results in the field of active turbulence.

We will discuss, then, some results of simulations carried out with SabrActive-

model, whose numerical and analytical study confirms the spectrum power-law

observed in the previous simulations and reveals hints of a non-Gaussian, inter-

mittent, physics of active turbulence. Direct numerical simulations and modelling

also agree in pointing to a phenomenological picture whereby, in the absence of an

energy cascade à la Richardson forbidden by the low Reynolds number regime, it

is the coupling between fluid velocity gradients and particles orientation that gives

rise to a multiscale dynamics.

5.1 Classical Shell-models

5.1.1 GOY-model

The basis of this shell model is found in Gledzer’s article [22] (based on Obukhov’s

1971 equations, published two years earlier to try to describe ocean mechanics) and

in Yamada and Ohkitani’s articles [23-25] proposing an improvement of the model

using a complex variable. In fact, the name of the model includes the initials of the

three authors. It is a turbulence shell model, which has a low chaotic attractor with

which it shares statistical properties similar to real inertial turbulence.

The equations of a shell-model do not carry any of the geometrical information

contained in the original system. The purpose of the GOY-model is not to justify

the equation of the model with, for example, an asymptotic analysis but with the

scaling exponents of the structure functions, ξNS (p), that match the model and

the experiments. The exponents of low-order functions reproduce the situation

described by Kolmogorov in 1941. The structure functions follow the law (4.3),

in particular for the case p = 2 follow the law 2/3 that in terms of shells can be

expressed as [1]

E (kn) = Cϵ
2
3k

− 5
3

n (5.1)
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On the other hand, the anomalous exponents, ξSM (p), that determine the predicted

deviation in Kolmogorov’s theory and that give rise to the phenomenon known as

intermittency [7], are found in the model. Following the power law predicted by the

model for the energy spectrum and determining the approximate numerical values

of the anomalous exponents are the two most commonly used checks to validate

computational simulations of models of the Navier-Stokes equations. The approxi-

mation to these results is made from the calculation of the Lyapunov exponents to a

phase space defined by the index j, which determines the Lyapunov vector, situat-

ing it in the spectrum of Fourier modes (expressed as components of the Lyapunov

vector). In both 2D and 3D simulations there are clearly located peaks that indicate

a form of correspondence between the two bases (FIG.5.2). A strong correspon-

dence to the dissipative range and a weak correspondence to the inertial range are

observed.

Describing the time evolution of complex variables, un(t) (with n = 1, 2, ..., Ns),

that can be thought of as a sort of Fourier amplitudes of velocity fluctuations over

a length scale with associated wavenumber kn, the general equations governing the

process are a system that links each equation corresponding to a given shell with its

predecessor and successor, Gn, and giving two conserved quadratic integrals that

are physically identified by energy, E, and vorticity, Ω.(
d

dt
+ νk2

n

)
un = iGn [u] + fn (5.2)

E =
1

2

∑
u2
n (5.3)

Ω =
1

2

∑
k2
nu

2
n (5.4)

The complex variable un represents the temporal evolution of the variation of

the velocity in different scales equispaced by a value λ that normally takes the value

2:

kn = k0λ
n
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5. SHELL-MODEL

Figure 5.1: Image from reference [24]. Inertial rang in the energy spectrum calcu-
lated by GOY-model

Figure 5.2: Image from reference [24]. Lyapunov exponents located peaks as they
were represented in the original article.
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5.1 Classical Shell-models

This evolution is determined by the energy injected into the system, represented
by the external force fn which is usually nonzero only on the upper scale (n ≤ L0);
by the degree of dissipation, related to the viscosity ν which begins to be effective
below the Kolmogorov scale (n ≥ λ0); and by the interaction between the different
scales, determined by the function G [u] which is taken in the form:

G [u] = [akn+1un+2un+1 + bknun+1un−1 + ckn−1un−1un−2]
∗ (5.5)

5.1.2 SABRA-model
Subsequently to the works of Yamada, Gledzer and Ohkitani, other authors [34]
introduce a modification in the GOY-model that affects the number of complex
conjugate operators but not the fundamental properties of the model. This improved
model is called SABRA-model and is given by the function

ϕ [u] = akn+1un+2u
∗
n+1 + bknun+1u

∗
n−1 − ckn−1un−1un−2 (5.6)

so SABRA-model will behave analogously to GOY-model in terms of scaling
law. This statement is supported by the results of several numerical simulations
[37] in which the clearest conclusion is a behaviour consistent with a direct cas-
cade image for a = 1, b = −2 and c = −1 in a SABRA-model reproducing the
results obtained with GOY-model in an equivalent situation.

Since second and third order structure functions are defined as a time average
in the following way

S2 (kn) = ⟨unu
∗
n⟩ (5.7)

S3 (kn) = Im
〈
un−1unu

∗
n+1

〉
(5.8)

if the system is studied in inertial mode, this is fn = 0 and ν = 0, we get the
expression

d

dt
S2 (kn) = akn+1 |S3 (kn+1)|+ bkn |S3 (kn)| − ckn−1 |S3 (kn−1)| (5.9)

53



5. SHELL-MODEL

5.1.3 Energy flux equilibrium

The steady state dEn

dt
= d

dt
S2 (kn) = 0 can be expressed with the balance equation

[34]:

C (kn) =
akn+1 |S3 (kn+1)|+ bkn |S3 (kn)| − νk2

nun

ckn−1 |S3 (kn−1)|
= 1 (5.10)

This balance describes the turbulent phenomenon as a competition between the

energy flow from the upper to the lower scales and the energy flow in the opposite

direction. If C (kn) > 1 then there is a net flow of energy to the lower scales (direct

cascade). If 0 < C (kn) < 1 then there there is a net flow to the upper scales

(inverse cascade).

In the above equation, in the inertial range the term with coefficient c is offset

by the first two terms of the right member, since the viscosity is zero and fn only

acts on the upper scales, n ≤ L0. In the viscous range, that is, for scales below the

Kolmogorov scale, n ≥ λ0, the term with coefficient c is offset by the term viscous,

which acts as a cutoff, because the structure functions of order 3 of coefficients a

and b go to zero quickly. Within the inertial regime (no input or loss of energy) the

total energy of the system must be conserved and, therefore, the total variation of

the energy must be zero:

dE
dt

=
∑

n
dEn

dt
= 0

Indeed, if we add the n equations 5.6 and group the terms with the same value

of k, we obtain n terms of the form

(a+ b− c)kn |S3 (kn)|

in order to guarantee this conservation law, it must comply with a+ b− c = 0.

It is also necessary to guarantee the stationary regime the condition of contour at

the ends:

b0 = bN = c0 = c1 = aN−1 = aN = 0.
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5.2 SabrActive-model

The equilibrium constant 0 ≤ C (kn) ≤ 1 (5.10) can be interpreted as a flow of
energy, ΠE (kn) between the scales n−1, n and n+1 [40]. Since a+b−c = 0 is a
general constraint of the SABRA model we consider a = 1, b = −ϵ and c = (1−ϵ)

with 0 ≤ ϵ ≤ 1, [33] without loss of generality, so

ΠE (kn) ≡ (C (kn)− 1) |S3 (kn−1)| (1− ϵ) kn−1 =

|S3 (kn+1)| kn+1 − ϵ |S3 (kn)| kn − |S3 (kn−1)| (1− ϵ) kn−1 (5.11)

ΠE (kn) < 0 =⇒ 0 < C (kn) < 1 =⇒ InverseCascade(IC)

ΠE (kn) > 0 =⇒ C (kn) > 1 =⇒ DirectCascade(DC)

(5.12)

In this way, a model is developed for the N-S equations within the context of
the SABRA-model

d

dt
S2 (kn) = ΠE (kn) + pn (5.13)

d

dt
C (kn) = (1− λ)ϕB

n − λϕF
n − γC (kn) (5.14)

SABRA-model equations are validated as a model that reflects the basic char-
acteristics of the turbulent regime. The function ϕF

n represents a forward energy
flow (Direct Cascade) and the function ϕB

n represents a backward flow (Inverse
Cascade). The coefficients λ and (1 − λ) come from an idea proposed in [18]. If
λ = 1 a regime of direct cascade is obtained and if λ = 0 a cascade inverse regime,
any other value of λ ϵ [0, 1] gives a mixed dynamics. −γC (kn) is a self-advection
term determined by a relaxation time of the γ−1 system.

5.2 SabrActive-model

5.2.1 Model equations
The generalized version of the SABRA-model, which has been developed in this
doctoral thesis, is based on relating two fields (instead of one as usual) through the
function
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5. SHELL-MODEL

ϕ(b)
n [u, υ] = kn+1

[
(1− b)un+2υ

∗
n+1 + (2 + b)u∗

n+1υn+2

]
+

kn
[
(2b+ 1)u∗

n−1υn+1 − (1− b)un+1υ
∗
n−1

]
+ (5.15)

kn−1 [(2 + b)un−1υn−2 + (2b+ 1)un−2υn−1]

This function ϕ
(b)
n [u, υ] [35][38] is a generalization of the ones seen above to

quantify the nonlinear terms in the equations. If there is only one field present,
u = υ, the above equation returns to the usual SABRA-model form with the pa-
rameterization a = 3, b = 3b, c = −3(b+ 1)

ϕ(b)
n [u, u] = 3kn+1un+2u

∗
n+1 + 3bknun+1u

∗
n−1 + 3(b+ 1)kn−1un−1un−2 (5.16)

From references [46-50] we take the equations of motion that are appropriate to
define the situation that interests us. Obviously they are not the only valid system
of equations, there are other options in the literature that, although they share the
general lines and approaches, refer to other theoretical and experimental situations
[12][26-31].

ρ (∂tu+ u∇)u = −∇p+ η∇2u+∇σ(a) (5.17)

∂tP+ (u+ ωP)∇P = ΩP− ΓP+ D∇2P (5.18)

The active stress, σ(a), appearing in the Navier-Stokes equation (5.17) is given
by σ(a)ij = ξPiPj [47], where the parameter ξ is proportional to the swimmers
volume fraction and to the amplitude of the generated stress and, therefore, quan-
tifies in some sense the level of activity. Ω denotes the antisymmetric part of the
velocity gradient tensor, Ωij =

1
2
(∂iuj − ∂jui) and η and D are the fluid dynamic

viscosity and the orientation field diffusion coefficient, respectively. Except for the
term ω(P∇)P , Eqs. (5.17-5.18) closely resemble the Oldroyd-B equations for the
polymer conformation in vectorial form.

From the general form of the equations, a shell model must be formulated for
which the appropriate terms must be chosen. Each term can refer to the interaction
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5.2 SabrActive-model

or self-action of the two fields involved and can generate an energy flow in two

directions (towards large values of k or towards small values) Different variations

will presumably produce different results and, in fact, the study of them is a line

of research of interest for the future. Superindex ϵ may represent a backward and

forward energy transfer respectively modulated by the coefficients ω. Different

theoretical and phenomenological considerations, several conjectures and various

previous tests eventually lead to the following structure for the sought shell model:

dun

dt
=

i

3
ϕ(ϵ)
n (u, u)− γu(kn)un + f (a)

n (5.19)

dPn

dt
=

i

3
ϕ(ϵ)
n (u, P ) +

iω

3
ϕ(ϵ)
n (P, P )− i

3
ϕ(ϵ)
n (P, u)− γP (kn)Pn − ΓPn (5.20)

The dynamic equations of our shell model have to be similar to GOY-model

equations (5.2) but also try to reproduce, or at least capture the essence, of the

(5.17-5.18) equations since it combines the self-action of the particles, P, with the

movement of a fluid that surrounds and transports them, u. Therefore the equations

above can be related to the study of active matter and this is the reason why we refer

to this model as SabrActive-model for active turbulence modelling.

From a first formal inspection of the equations proposed by the model, the

following characteristics can be deduced:

• The set of wave numbers is taken to be kn = k02
n

• un represents the velocity field relative to the general motion of the (incom-

presible) fluid.

• Pn represents an order parameter quantifying the degree of local orientation.

It can be caused by a suspension of active particles witch intrinsic swimming

director could cause changes in the topology and overall functioning of the

fluid.

• We enforce a zero Reynolds number regime and do not account for non-linear

momentum transfer, setting Φ
(ε)
n (u, u) = 0 ∀n in (5.19).
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5. SHELL-MODEL

• γP = νu,Pk
2
n + µu,Pk

−4
n where νu,P are the actual viscosity and diffusion

coefficient, acting at small scales (large wavenumbers), whereas µu,P are

large scale drag coefficients, mimicking friction with the boundaries.

• The velocity of active fluids is governed by a scale-matched balance of active

forcing and viscous dissipation [42]; accordingly, the divergence of the active

stress σ(a) is described by a local-in-scale (or, equivalently, in wavenumber)

force in the shell model, ∇ · σ(a) → f
(a)
n = iknζP

2
n .

• Flow alignment, whereby velocity gradients are coupled to microswimmers

orientations [46, 48, 49], provides a different mechanism, related to the emer-

gence of collective motion (involving P ), that excite multiple scales in the

fluid, generating turbulence. Consistently, we assume that the rotation term,

P∇u, is responsible for the upwards transfer, and set ε = εb < εc in the oper-

ator Φ(ε)
n (P, u) in (5.20). Moreover, the advective, u∇P , and self-advective,

P∇P , terms have mixing properties that tend to disrupt spatial orientational

coherence and, therefore, to transfer downwards; we set, then, ε = εf > εc in

the operators Φ(ε)
n (u, P ) and Φ

(ε)
n (P, P ) in (5.20). Interpreting εc as a critical

value in the continuous variation of the balance of flows in a similar way to

the description of the equation 5.10.

• In equation (5.18) the term ΓPn is related to diffusion and is therefore ex-

pected to be only significant for large values of n in a net straight cascade

regime.

• These equations model a competition between the two energy cascades. It

is known that there are channels where the two flows are present (direct or

inverse) but there are also situations that allow a clear action in one direction

in both directions.

• In the literature you can find publications that expose models similar to the

SabrActive-model such as the reduction of the viscosity of a solution with the

addition of polymers [39]
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5.2 SabrActive-model

These mechanisms lead eventually to the SabrActive shell model

u̇n = −γu(kn)un + iζknP
2
n

Ṗn =
i

3
Φ

(εf )
n (u, P ) +

i

3
wΦ

(εf )
n (P, P )− i

3
Φ(εb)

n (P, u)− γP (kn)Pn − ΓPn + δn,nB
|Pn|−1PnPB.

(5.21)

5.2.2 Validation of the phenomenological assumptions from the
numerics

We have seen in the previous section how the development of a shell model relies

crucially on the knowledge of the transfer of dynamical fluctuations of a field across

scales. Lacking a Richardson cascade, we had to conjecture the direction of fluxes

in spectral space of non-linear terms involving the orientation and velocity field on

the basis of phenomenological arguments. Here, we want to justify these conjec-

tures, benchmarking them against direct numerical simulations. Since our numeri-

cal method couples a Lagrangian dynamics for colloids with a Eulerian description

of the fluid, though, first we need a procedure that maps the particle positions and

orientations to the field P. To this aim we divide ideally the computational box

in (L/∆)3 subdomains I
(m)
∆ = {x ∈ L3 : |xi − X

(m)
i | < ∆/2, i = 1, 2, 3} and

introduce the following representation of P

P∆(X
(m), t) =

1

N
(m)
∆ (t)

N
(m)
∆ (t)∑
i

êi(t), (5.22)

on the lattice defined by the set of points Xm = ∆/2+m∆, with m = (mx,my,mz)

a vector of integers ranging from 0 to L/∆ − 1. The sum in (5.22) runs over the

N
(m)
∆ particles contained in I

(m)
∆ at time t. Analogously we construct a velocity

field that lives on the coarse lattice as:

u∆(Xm, t) =
1

∆3

∑
x∈I(m)

∆

u(x, t). (5.23)

At this point by projecting the second of Eqs. (5.19, 5.20), with u and P replaced by

u∆ and P∆, onto the Fourier mode k, multiplying both sides by P̃∗
∆ (the complex
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conjugate of the Fourier transform of P∆), averaging over shells of radius k and

summing with the complex conjugate equation, we get:

(∂t + Γ +Dk2)P∆ = Fadv + Fself + Frot, (5.24)

where P(k, t) = ⟨|P̃∆|2⟩. The terms on the right hand side read as follows:

Fadv(k, t) = −⟨
(
P̃∗

∆(k, t) · JuP(k, t)
)
⟩+ c.c. (5.25)

Fself(k, t) = −⟨
(
P̃∗

∆(k, t) · JPP(k, t)
)
⟩+ c.c.

Frot(k, t) = ⟨
(
P̃∗

∆(k, t) · R(k, t)
)
⟩+ c.c.

where JuP(k, t), JPP(k, t) and R(k, t) are the Fourier transforms of the non-linear

terms of the orientation field equation, namely u∆ ·∇P∆, wP∆ ·P∆ and Ω∆ ·P∆,

respectively, and ”c.c.” stands for the complex conjugate terms. Eqs. (5.25) are

fluxes across k-shells in spectral space and whether a direct or inverse cascade of

magnitude of orientation, depending on their sign, takes place. We measured them

in then numerical simulations and the results, averaged in time over the statistically

stationary state are plotted in Fig. 5.3. Although the coarse-graining procedure re-

duced the range of accessible scales, a clear qualitative difference appears: while

Fadv and Fself (A and B panels) are negative at intermediate and large wavenum-

bers, signalling that they transfer orientation fluctuations towards small scales (i.e.

they tend to disrupt coherence), the rotational spectral flux Frot (C panel) is pos-

itive (and in magnitude larger than the previous two), therefore confirming our

phenomenological conjecture that it is the term responsible for the upward cascade

that eventually pumps energy into the large scales.

5.2.3 Code description

The code evolves iteratively through the time step, T , parameter. The ultimate goal

is to obtain convergent values for the fields, U [n] and B[n]. These fields have a

complex vectorial character, each of its components being the value of the field on

a given scale, denoted by the parameter n, and showing separately the real, .R, and

imaginary, .I components. There are three relevant functions in this code:
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5.2 SabrActive-model

Figure 5.3: Spectral fluxes, Eq. (5.25), measured from the numerical simulations
(time-averaged over the statistically stationary state): Fself (A), Fadv (B) and Frot (C);
the dashed lines depict a spline interpolation to the data. In the inset of panel (C) the
flux per unit area (in spectral space), k−2Frot is shown, highlighting the presence of
constant flux range of scales.
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• The ϕ function, located at the beginning of the code, is the function of in-

teraction between the U and B fields at N different scales. This is a gen-

eralization of the SABRA model, which should be recovered when U = B

as we explained in the previous section. In fact, for a proper choice of the

parameter b, the function ϕ would coincide with the one used in the classic

SABRA-model.

• The functions U [n] and B [n] calculate the value of the n components of each

field in each iteration. To do this, an iteration model composed of the value of

the field in each iteration and its time derivatives in the present and previous

iteration, is used. The recurring equation is of the fourth-order Runge-Kutta

method.

• The equations of the model that we are studying relate the time derivative

of the fields B [n] and U [n] to the other parameters of the model. In these

equations lies the physics of the system. The theory predicts a large-scale

region, an inertial range, and a dissipative region. This physical aspect is

clearly imposed in the code by dividing the N scales into three levels. There

is an initial level, corresponding to the first two scales, where the equations

of the model are truncated and only the terms related to energy injection and

large-scale drag are present. Then an intermediate level where all the terms

of the model equations (5.21) are present. And a final level, corresponding

to the last two scales, where only the dissipative terms are found.

In each iteration with certain values of U [n; t] and B[n; t] the function ϕ, which

mixes the fields at different scales, is calculated. From the values of ϕ, U [n; t] and

B[n; t] obtained, the time derivative of the fields is calculated through the equations

of the model by certain values of the parameters. The value of the fields, at the

different scales, is then calculated for the next iteration, U [n; t+1] and B[n; t+1].

To get U [n; t] = U [n; t + 1] and/or B[n; t] = B[n; t + 1] the corresponding time

derivatives must be zero (stationary state) and this happens for null value of the

function ϕ. It is possible to run the code in no-active mode, B[n] = 0 .

62



5.3 Energy Spectrum

Figure 5.4: MAIN PANEL: Time-averaged (over the steady state) energy spectrum
from the simulation of the shell model for active turbulence, Eq. (5.21). INSET: Total
energy, Etot(t) =

∑
n |un|2 vs time in units of integral scale characteristic time TL =

(kmaxurms)
−1 (kmax location of spectrum maximum and urms =

(∑
|un|2

) 1
2 )

5.3 Energy Spectrum
We integrated the system with Ns = 20 shells by means of a fourth-order Runge-
Kutta scheme for T = 6 × 1011 time steps (with integration step δt = 10−4). The
following numerical values are used for the parameters:

k0 = 2−4, εf = −0.4, εb = −1.8, νu = 10−6, µu = 10−10, ζ = 1.25× 10−2,
w = 1.25× 10−2, νP = 8.5× 10−13, µP = 10−10, Γ = 10−6,

PB = 5× 10−11(1 + i), nB = Ns − 1

We plot the time average energy spectrum in the statistically stationary state.
FIG. 5.4 shows that the energy spectrum develops decays with the power-law k−3

over a range of intermediate wave numbers, as we have seen before in chapter 4 for
direct numerical simulations.

Esm(kn) =

〈
|un|2

kn

〉
∼ k−3

n (5.26)

It is possible to derive the power law decay of the energy spectrum, E(k) ∼
k−3, from the shell model. The evolution of the orientation magnitude, |Pn|2, is
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obtained multiplying the second of Eqs. (5.21) by P ∗
n and the complex conjugate

by Pn and summing the two, and reads

∂t|Pn|2 ≈ P ∗
nΦ

(εb)
n (P, u) + Pn(Φ

(εb)
n (P, u))∗ − Γ|Pn|2 − γ(kn)|Pn|2, (5.27)

where the advective and self-advecting terms are neglected, consistent with the
DNS results, see Fig. 5.3. Assuming statistical stationarity and focusing on inter-
mediate kn, where the flux dominates over dissipation (i.e. we look at the general-
ized inertial range), we see immediately that, dimensionally, kuP 2 ∼ cte whence,

P ∼ k−1/2u−1/2. (5.28)

From the first of Eqs. (5.21) we get analogously that k2u2 ∼ kuP 2, whence

u ∼ k−1P 2. (5.29)

Plugging Eq. (5.28) into Eq. (5.29) yields un ∼ k−1
n , therefore the energy spectrum,

k−1
n |un|2, should indeed behave as

Esm(kn) ∼ k−3
n . (5.30)

5.4 Statistical properties
To provide a further insight on the statistical properties of the SabrActive-model,
we measure the PDFs of velocity variables un; representing fluctuations on a length
scale ∼ k−1

n , they are the shell model counterpart of the velocity increments PDFs
in the direct numerical simulations.
In Fig. 5.5 we plot the properly normalized PDFs of the real part of the shell
velocity variable, uR

n = Re(un) (divided by its root mean square value, σn), with
n = 10, n = 12 and n = 19.
For n = 19, corresponding to the smallest scales (interpretable with approximately
that of a microswimmer), the data lie on a Gaussian (dashed line). At smaller n
(larger scales, falling within the generalized inertial range), the PDFs maintain a
Gaussian core, but the emergence of power-law tails at large uR

n (≥ 4σn) can be
appreciated (solid lines).
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5.4 Statistical properties

Figure 5.5: PDFs of the real part of the shell model velocity variables (in units of
their root mean square values, σn) with three different shell indices, corresponding to
length scales within the generalized inertial range (n = 10 and n = 12) and down to
the microswimmer scale (n = 19). The dashed line depicts the Gaussian probability
density function with zero mean and standard deviation σ = 1.5, whereas the solid
lines highlight power law tails of the form ∼ |uRn |−α with α = 2.5
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5.5 Conclusions of the chapter
We have presented a massive computational study aimed at revealing the presence
of active turbulence in diluted suspensions of finite size squirmers. We showed
that the energy spectrum develops decays with the power-law k−3 over a range of
intermediate wavenumbers. It was posited that, given the lack of a Richardson-
Kolmogorov energy cascade as in classical turbulence, the excitation of motion at
large scales should be ascribed to the coupling between fluid velocity gradients and
particle orientation, i.e. to the flow alignment mechanism. Based on this picture
and on phenomenological arguments, we developed a reduce order dynamical de-
terministic model (or shell model) of active turbulence, dubbed SabrActive-model.
Numerical simulations and theoretical analysis of the model confirmed the k−3

scaling of the spectrum.

The introduction of this new model pushes forward the reach of quantitative
tests of how actually ”turbulent” is active turbulence, allowing to measure, e.g.,
Lyapunov exponents, higher order structure functions, multiscale statistics, etc, on
”physically” much longer runs. A flavour of this capability can be grasped in the
observation of intermittency in the PDFs of shell model velocity variables. Inves-
tigating the dynamical and statistical properties of the model and the sensitivity of
the system response to changes in the control parameters (for instance, the onset of
active turbulence at changing the activity parameter), as well as exploring a wider
region of the volume-fraction/squirming-parameters space in direct numerical sim-
ulations are foreseen as natural follow-ups of the present work.

The detection of intermittency signatures in the shell model simulations is in-
triguing and should motivate further computational studies as well as dedicated
experiments.
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CHAPTER

6
Conclusions and perspectives

6.1 Summary of results
In this doctoral thesis a study has been made on the active matter, specifically on
the semi-diluted suspensions of microswimmers. The work has been structured
in five chapters. After a brief introduction, the results and methodology of a set
of computational simulations have been described and, finally, these results have
been compared with other simulations performed with a code that implements a
shell model that we propose in the last chapter.

The first chapter presents the basic elements for describing the active matter.
Some careful definitions are made and the type of particles that will be used in
the simulations is selected, categorizing it and classifying it within all the possible
ones in the body of the theory. A summary of the most relevant aspects of the theo-
retical framework that dominates the interactions and dynamic evolutions of active
systems is also given.

The second chapter is based on the explanation of the Lattice-Boltzmann method
(LBM) as an essential tool to carry out computational simulations. The movement
mechanism of the particle model used is also explained, as well as its relationship
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with the environment.

The third chapter presents results obtained with simulations performed with

Ludwig code (LBM) varying the quotient between the self-driven velocity, b1 and

the level of orientation of the particles, b2. It is seen that the variation of the con-

centration, ϕ causes a very significant increase of the mean squared displacement,

MSD, by an orientation in the direction of the speed of self-conduction, such is

for pullers (β = b2
b1

> 0).

This same chapter shows how the increase in MSD is linked to a strong growth in

the polar order of the system, P∞. It is hypothesized that under these parametric

circumstances the system relaxes by transforming internal energy into movement

through an overordering of particles, encouraging them to flow without colliding

with each other while being dragged by the fluid in which they are suspended.

In the fourth chapter, the energy spectrum calculated from the data produced

by the same simulations as in the previous chapter have been studied. Each en-

ergy spectrum, properly normalized, represents the distribution of the energy of the

particles in various Fourier modes that represent the scales of the system. Accord-

ing to theories for inertial turbulence, spectrum should typically consist of three

parts. The lower k order scales, those related to larger interaction distances, usu-

ally accommodate the energy injection forces of the system and can be defined as

macroscales where the whole of the fluid is considered as a whole or almost as a

whole. Next, we can expect to observe an inertial range of scales whose scaling

law can be predicted. It is therefore a linear variation on a logarithmic scale whose

slope remains constant in this set of intermediate scales that one can refer to as a

mesoscale. Finally, the logarithmic scale spectrum decays sharply, indicating the

beginning of the set of microscales in which energy dissipation takes place.

There is a flow of energy from the upper scales (k ∼ 0) to the lower scales called

direct cascades, likewise there is also the inverse cascade, that is, the flow of en-

ergy in the opposite direction. Both energy currents are in a competitive regime.

The system can evolve in a relaxed way, favouring the movement of the particles

in a self-conducted way, or on the contrary, the level of interaction can be greater,

shortening the average distance that a particle can travel in the suspension. Going
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from one situation to the other, depends largely on measure of the polar order of

the system. When there is a great correlation between the particles in terms of ori-

entation, the system disperses the energy in the form of kinetic energy.

Our simulations reproduce the parts of the spectrum described by the theory and

even fit the same local slope that they predict.

The clearest case is that of pullers with a low concentration, being of special interest

the fact that the behaviour of pullers and pushers is clearly different, demonstrating

a different physical behaviour in the relationship of the particle with the fluid de-

pending on whether the orientation and velocity vectors on the particles are parallel

or antiparallel. However, this behaviour that is clearly shown in the results of the

third section of this doctoral thesis is not reflected in the results obtained for the

energy spectrum, which makes us think that in the spectrum it is not possible to

distinguish the part of the energy total that is invested in kinetic form of the part

that accumulates internally.

In the fifth chapter are exposed the advantages, at the computational and con-

ceptual level, of using a shell model to reproduce asymptotic properties of the type

of systems to which this work refers. After describing the structure of classical

shell models, SabrActive-model is described, which is an original generalization

of SABRA-model. It has been studied and tested for the first time in this doctoral

thesis. The results generated by the simulations with this code are compatible with

the results obtained in the previous chapters as well as the theoretical framework.

6.2 Perspectives
• We hope that with the results presented in this doctoral thesis, SabrActive-

model would be a model accepted which would allow will our group and

other researchers to continue exploring the processes that regulate active sys-

tems, both at a parametric and dynamic level.

• The study initiated with this work should continue with the search for struc-

tures and groups formed intrinsically by the system as clusters or flocks.
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• Intermittency is associated with rare events, whose statistical incidence to be
appreciated needs, therefore, long observation times. The detection of inter-
mittency signatures in the shell model simulations is intriguing and should
motivate further computational studies as well as dedicated experiments.

• The introduction of this new shell model, SabrActive, pushes forward the
reach of quantitative tests of how actually turbulent is active turbulence, al-
lowing to measure, on much longer runs, Lyapunov exponents, higher order
structure functions, multiscale statistics, etc.

• It would also be of great interest to add new terms to the SabrActive equations
and study their impact on the results both in microswimmers suspensions and
in other types of active systems.

• Investigating the dynamical and statistical properties of the model and the
sensitivity of the system response to changes in the control parameters as well
as exploring a wider region of the volume-fraction/squirming-parameters
space in direct numerical simulations are foreseen as natural follow-ups of
the present work.

• In short, our intention behind this work is to delve into the results obtained,
generalize the application of the shell model described in this doctoral thesis
and apply it to other areas of active matter.

If I may adopt a very general (and somewhat romantic) view of the subject of
this thesis to finish it, I would say that all researchers who, in one way or another,
delve into the mystery of active matter do so with the intention to understand how
the phenomenon of self-organization occurs in very disparate systems that sponta-
neously and, apparently, stochastically manage to create structures that are so easy
to recognize and so difficult to explain. The intuition that there is a fundamental
and universal law that organizes matter and serves as a link between complex mi-
croscopic interactions and deterministic macroscopic reality is the big question that
we all want to answer. This has been my main motivation to carry out this work
and it is my main objective to continue researching.
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CHAPTER

7
Resumen en castellano

Esta tesis doctoral trata del estudio de la materia activa, en particular de la
dinámica de los micronadadores en suspensión semidiluida. Queremos explorar
las capacidades de los ingredientes fı́sicos básicos necesarios para generar estruc-
turas emergentes en escalas mucho mayores que las de los agentes individuales.
Se han realizado varias simulaciones usando dos software: código Ludwig (LBM)
y SabrActive-model (modelo shell). El objetivo es mejorar la comprensión del
fenómeno mediante el estudio de la transmisión de energı́a a través de las difer-
entes escalas que, caracterı́sticamente, se dan con la aparición de movimientos cor-
relacionados. La turbulencia activa suave es la parametrización óptima del modelo
para poder estudiar la complejidad del problema en el momento en que se presenta.
Para tal fin se estudia el desplazamiento cuadrático medio, el espectro de energı́a y
la evolución del orden polar del sistema.

GOY-model reproduce aspectos de la turbulencia hidrodinámica a través de una
modelización del sistema como una superposición de campos de velocidad com-
plejos a diferentes escalas. A partir de modelos de capas más actuales y generales,
conocidos como variaciones de SABRA-model hemos realizado simulaciones con
un código original tipo SABRA-model generalizado a donde se hace interaccionar
dos campos a través de diferentes escalas. Este modelo original, al que llamamos
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SabrActive-model, reproduce resultados experimentales además de ser congruente

con teorı́as consolidadas y aceptadas por la comunidad cientı́fica en el ámbito de

Active Matter. En este sentido se han realizado simulaciones producidas por Lud-

wig que es un open code, basado en el método Lattice-Boltzmann, utilizado para

realizar simulaciones de fluidos complejos en tres dimensiones a través de un con-

junto de rutinas y comunicaciones. Con este código es posible configurar múltiples

modelos con distintos valores de energı́a libre y otros parámetros. Se trata de un

código especialmente interesante porque dada la relativa simplicidad de ejecución

en relación con la potencia de simulación es ideal para poder extraer conclusiones

fı́sicas sin tener que enfrentarse a una complicada situación de programación. Lud-

wig se estructura como una biblioteca de modelos preconfigurados sobre los que

se puede incidir a nivel paramétrico a través de un input file. La fı́sica subyacente

se encuentra dentro del marco de la teorı́a active nematics y el programa permite

crear condiciones periódicas de fronteras, interacción entre coloides en suspensión,

cristales lı́quidos (utilizando las ecuaciones de Landau-de Gennes ) y fluidos bi-

narios. Todas las simulaciones se han llevado a cabo en el cluster Albeniz de la

Facultad de Fı́sica en la Universidad de Barcelona y en los superardenadores Mare

Nostrum y Finisterrae de la Red Española de Supercomputación (RES).

Ası́ pues, este trabajo se estructura en dos partes. En la primera (capı́tulos 2,

3 y 4) se explica la estructura y parametrización del código Ludwig ası́ como el

análisis de los resultados de las simulaciones realizadas. En la segunda parte se

hace una descripción del SABRA-model generalizado y el correspondiente análisis

de resultados (capı́tulo 5).

La estructura por capı́tulos es la siguiente:

• El primer capı́tulo define los conceptos básicos en el estudio de active matter

y se centra en el marco teórico.

• En el Capı́tulo 2 explicamos la metodologı́a numérica que utilizamos para

simular el fluido que interactúa con las partı́culas, ası́ como una descripción

del modelo de partı́cula utilizado y sus mecanismos de movimiento autocon-

ducido.
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• El Capı́tulo 3 muestra algunos resultados sobre la orientación y desplaza-
miento de las partı́culas desde un punto de vista estadı́stico, estableciendo
diferencias notables para distintas parametrizaciones en las simulaciones.

• En el Capı́tulo 4 estudiamos los espectros de energı́a y las distribuciones de
velocidad para mejorar el conocimiento de la interacción entre escalas.

• Shell-model en general y SabrActive-model especı́ficamente se describen en
el Capı́tulo 5 y también explicamos el correspondiente análisis de los resul-
tados de las simulaciones.

• Finalmente, se encuentran las conclusiones y perspectivas que nos permiten
validar a partir de los resultados las ecuaciones propuestas como hipótesis de
esta tesis.
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Simulation log table

ϕ size b1 b2 β TSTEP

0.12 128 0.01 0.01 1 1.2× 106

0.12 128 0.01 -0.01 -1 4× 105

0.12 128 0.05 0.01 0.2 4× 105

0.12 128 0.05 -0.01 -0.2 4× 105

0.12 128 0.1 0.01 0.1 4× 105

0.12 128 0.1 -0.01 -0.1 4× 105

0.12 128 0 0.01 +∞ 4× 105

0.12 128 0 -0.01 −∞ 4× 105

0.12 128 0.01 0.1 10 4× 105

0.12 128 0.01 -0.1 -10 4× 105

0.12 128 0.01 0.2 20 4× 105

0.12 128 0.01 -0.2 -20 4× 105

0.12 512 0.01 -0.05 -5 2× 106

0.06 128 0.01 0.01 1 4× 106

0.06 128 0.01 0.01 1 2× 106

0.06 128 0.01 0.01 1 1.2× 106

0.06 128 0.01 -0.01 -1 4× 105

0.06 256 0.01 0.01 1 2× 106

0.06 512 0.01 0.01 1 2× 106

0.06 512 0.01 -0.05 -5 2× 106

0.03 128 0.01 0.01 1 1.2× 106

0.03 128 0.01 -0.01 -1 4× 105

0.012 128 0.01 0.01 1 1.2× 106

0.012 128 0.01 -0.01 -1 4× 105

0.012 128 0.01 0.05 5 4× 105

0.012 128 0.01 -0.05 -5 4× 105

0.012 512 0.01 -0.05 -5 2× 106
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Publications

The work presented throughout this thesis will be published as the following
articles. As of the date of presentation of this thesis (September 2023), both have
been submitted to the review of the referees.

• ALARCÓN, F; GASCÓ. A; SCAGLIARINI, A; PAGONABARRAGA, A (2023) Flocking,
macroscopic clusters and super-diffusion in 3D microswimmer suspensions

• GASCÓ. A; SCAGLIARINI, A; PAGONABARRAGA, A (2023) Three-dimensional active
turbulence in microswimmer suspensions: simulations and modelling.
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[45] ALARCÓN, F; PAGONABARRAGA,I. (2013) Spontaneous aggregation and global polar
arrangement in squimer suspensions , Journal of molecular liquids 185, 56

[46] ADITI SIMHA, R; RAMASWAMY, S. (2002)Hydrodynamic fluctuations and instabilities
in ordered suspensions of self-propelled particles Phys. Rev. Lett. 89, 058101.

[47] HATWALNE, Y; RAMASWAMY, S; RAO, M; ADITI SIMHA, R (2004)Rheology of active-
particle suspensions Phys. Rev. Lett. 92, 118101

[48] SAINTILLAN, D. ; SHELLEY, M.J.(2008) Instabilities, pattern formation, and mixing in
active suspensions Phys. Rev. Lett. 100, 178103.

[49] SAINTILLAN, D. ; SHELLEY, M.J.(2008) Instabilities and pattern formation in active par-
ticle suspensions: kinetic theory and continuum simulations Phys. Fluids 20, 123304.

[50] BASKARAN, Q; MARCHETTI, M. (2009) Statistical mechanics and hydrodynamics of
bacterial suspensions. Proc. Natl. Acad. Sci. USA 106, 15567.

[51] PISMEN, LEN (2021) Active Matter whitin and around us. Switzerland: Springer

[52] LIGHTHILL M. J. (1952) On the squirming motion of nearly spherical deformable bod-
ies through liquids at very small reynolds numbers Communications on Pure and Applied
Mathematics, 5, 109–118

[53] BLAKE, J. R. (1971) A spherical envelope approach to ciliary propulsion. Journal of Fluid
Mechanics, 46, 199–208

[54] ISIKAWA, T. (2009) Suspension biomechanics of swimming microbes. Journal of The
Royal Society Interface, 6, (39), 815–834

[55] LAUGA, E; POWERS T. R.(2009) The hydrodynamics of swimming microorganisms. Re-
ports on Progress in Physics, 72, (9), 096601

[56] PAK, O; LAUGA E. (2014) Generalized squirming motion of a spher. Journal of Engineer-
ing Mathematics, 88, (1), 1–28

[57] Ludwig User Manual (2017)

[58] CHEN, S; DOOLEN G.D. (1998) Lattice Boltzmann Method for fluid flows. Annu. Rev.
Fluid Mech., 30, (1), 329–364

[59] FENG, Y.T; KOOK, N.H; OWEN, D.R.J (2007) Coupled lattice Boltzmann method and dis-
crete element modeling of particle transport in turbulent fluid flows: Computational issues.
International Journal for Numerical Methods in Engineering, 72, 1111-1134

86



LIST OF FIGURES

[60] LADD A. (1994) Numerical simulations of fluid particulate suspensions via a discretized
Boltzmann equation (Parts I-II). Journal of Fluid Mechanics, 271, 285–339

[61] NOBLE D, TORCZYNSKI J.(1998) A lattice Boltzmann method for partially saturated
cells. International Journal of Modern Physics C, 9, 1189–1201

[62] ISHIKAWA, T; PEDLEY, T. (2014) Dispersion of model microorganisms swimming in a
nonuniform suspension Phys. Rev. E, 90, 03308

[63] ISHIKAWA, T; PEDLEY, T. (2007) Diffusion of swimming model micro-organisms in a
semi-dilute suspension Journal of Fluid Mechanics, 588, 437
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