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Abstract

Climate variations at annual to decadal time scales affect many regions
around the globe, causing direct impacts on the economy, ecosystems and
society in several sectors, such as renewable energy, agriculture, food se-
curity, water management, fisheries, health, insurance and urban planning.
Knowing these variations ahead of time allows for implementing measures
to adapt, mitigate and build resilience to the consequences of a changing
climate. At annual to decadal time scales, climate variations are caused
by both externally generated forcings (which can be natural, e.g. volcanic
eruptions and solar radiation, or anthropogenic, e.g. greenhouse gases emis-
sions) and internal climate variability (which is generated by interactions
between different components of the climate system and triggers slow, nat-

ural oscillations that are connected to regional climate conditions).

Climate models were developed as tools that aim to assess climate dy-
namics and anticipate climate variations by solving the physical equations
that govern the climate system. Climate projections incorporate external
forcing information based on different socio-economic scenarios to project
possible pathways the climate system would follow. The same models are
used to predict climate variability and change at annual to decadal time
scales by also incorporating information on the current climate state. This
is done through a model initialisation process in which observation-based
data, referred to as initial conditions, is included in the models to phase

the modelled simulations with the observed climate state.

However, climate predictions do not necessarily capture climate variations
correctly, as model inefficiencies, errors in the initial conditions and math-
ematical approximations degrade the forecast quality, thus limiting the po-

tential usefulness of the predictions for decision-makers. Besides, not all



variations might be predictable due to chaotic characteristics of the cli-
mate system. Therefore, the forecast quality assessment is an essential step
prior to using any climate information derived from models to ensure that
such information is trustable and beneficial for decision-making. Forecast
quality assessment involves comparing the climate hindcasts (i.e. retro-
spective climate predictions) to past observations to evaluate their degree
of agreement, thus having an estimate of how the models could perform in

predicting future climate variations.

In addition to evaluating the forecast quality, climate hindcasts also allow
for applying post-processing techniques to the predictions in order to correct
their systematic biases through calibration techniques (e.g. the modelled
and observed climatologies may differ) or downscale the climate information
to provide regional information (as the original spatial resolution may be
too coarse for regional decisions), among others. Besides, estimating the
quality of different models (or a combination of them, i.e. a multi-model
ensemble) allows for selecting the best climate information for each specific

variable, region and forecast period.

The work developed within this Ph.D. thesis has focused on the evaluation
of the forecast quality for predictions of several variables, indices and in-
dicators relevant for decision-making in several sectors, with a particular
focus on agriculture. The evaluation has been performed globally, for the
individual models and multi-model ensemble, and different forecast periods
in order to identify windows of opportunity for which the climate predic-
tions show enough quality to be used for decision-making. Furthermore,
the historical forcing simulations (i.e. retrospective climate projections)
can be considered an alternative prediction system that simulates climate
in response to forcing changes, and have been included in all analyses to es-
timate the impact of model initialisation and find the best source of climate

information for climate variations during the next years.

First, the quality of multi-model forecasts of temperature, precipitation, the
Atlantic Multidecadal Variability index (AMV) and Global near-Surface Air
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Temperature anomalies (GSAT) generated from all decadal hindcasts con-
tributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6)
were evaluated, finding high skill for predictions of temperature, AMV and
GSAT, and limited skill for predictions of precipitation. The skill of several
approaches for building a multi-model ensemble were compared, identi-
fying only small differences between them, and the impact of calibration
on the predictions. The multi-model ensemble was also compared to in-
dividual forecast systems, finding that the best system for each particu-
lar location usually outperforms the multi-model ensemble. However, the
multi-model provides higher skill than at least half of the systems. There-
fore, the best system can be selected to provide the highest-quality climate
information. However, the multi-model ensemble is the best choice for a
systematic forecast provision where several variables, forecast periods and
regions are included. The decadal multi-model ensemble was also com-
pared to the CMIPG6 historical simulations multi-model, finding an added
value from model initialisation over several ocean and land regions for tem-
perature, and for AMV and GSAT. Given the low availability of timely
decadal forecasts in near-real time, the full multi-model was compared to a
sub-ensemble of predictions generated from forecast systems that provided
timely forecasts to assess the impact of the ensemble size in an operational

climate services context.

Second, the representation and prediction of the Euro-Atlantic weather
regimes by the EC-Earth3 model were assessed identifying the dominating
atmospheric circulation patterns in this region by applying the k-means
clustering algorithm to daily fields of sea level pressure. Skilful predictions
of weather regimes could be used as a source of predictability for local cli-
mate conditions, and thus translated into useful climate information for
decision-making. The Euro-Atlantic weather regimes are the positive and
negative phases of the North Atlantic Oscillation (NAO+ and NAO-, re-
spectively), Blocking, and Atlantic Ridge in winter; and the NAO-, Block-
ing, Atlantic Ridge, and Atlantic Low in summer. The EC-Earth3 correctly
represents the spatial patterns and climatological frequencies of all weather

regimes. However, the skill in predicting the annual to decadal variations
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of the weather regimes’ frequency of occurrence is low, and the model ini-

tialisation does not improve such prediction skill.

Third, the multi-model forecast quality of the CMIP6 decadal hindcasts
is evaluated for multi-annual predictions of a set of indices related to the
frequency and intensity of daily temperature and precipitation extremes.
Such predictions are essential to develop adaptation plans and anticipate
the impacts of extreme events ahead of time in several climate-sensitive
sectors. The multi-model ensemble is skillful in predicting temperature ex-
tremes over most land regions, while the quality is lower for precipitation
extremes. Comparing the skill with that for mean temperature and pre-
cipitation, extremes are predicted with lower skill, especially those related
to the most extreme days. Compared to the historical forcing simulations,
decadal predictions show only small and region-dependent skill improve-

ments from model initialisation.

Finally, this Ph.D. thesis presents the applications of the research within
several European projects and a contract with a private company for which
prototypes of climate services have been created. For instance, prototypes
of forecast products have been developed for the Southern African Develop-
ment Community, Tanzania and Malawi regions. These prototypes consist
of annual and multi-annual forecast products of temperature, precipitation
and drought conditions. Another application was the development of fore-
cast products of climate variables relevant to cotton production. In this
case, only the crop months for each location were considered when creating

the forecasts to tailor the predictions to that season of the year.
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Resumen

Las variaciones climéaticas en escalas temporales de uno a diez anos afectan
a muchas regiones del globo, causando impactos directos en la economia, los
ecosistemas y la sociedad en varios sectores, como el de las energias renov-
ables, la agricultura, la seguridad alimentaria, la gestion del agua, la pesca,
la sanidad, los seguros y la planificacion urbana. Conocer estas variaciones
climaticas con antelaciéon permite implementar medidas de adaptacion, mit-
igacion y resiliencia a las consecuencias de un clima variable. En escalas
de tiempo anual a decadal, las variaciones climaticas estan causadas tanto
por forzamientos generados externamente (que pueden ser naturales, como
las erupciones volcanicas y la radiaciéon solar, o antropogénicos, como las
emisiones de gases de efecto invernadero) como por la variabilidad climética
interna (que se genera por las interacciones entre los distintos componentes
del sistema climatico y desencadena oscilaciones lentas y naturales que se

relacionan con condiciones climaticas a escala regional).

Los modelos climaticos se desarrollaron como herramientas para estudiar
la dindmica climéatica y anticipar las variaciones del clima resolviendo las
ecuaciones fisicas que rigen el sistema climatico. Las proyecciones climati-
cas incorporan informacion sobre forzamientos externos basada en distintos
escenarios socioeconémicos para proyectar posibles trayectorias que seguiria
el sistema climético. Los mismos modelos se utilizan para predecir la vari-
abilidad y el cambio climético a escalas temporales anuales y decadales,
incorporando también informacién sobre el estado actual del clima. Este
proceso se conoce como inicializacion del modelo, en el que las condiciones
iniciales (informaciéon basada en datos observados) se incluye en el modelo

para ajustar la fase de variabilidad con el estado del clima observado.
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Sin embargo, las predicciones climaticas no siempre predicen correctamente
las variaciones climaticas, ya que deficiencias en los modelos, errores en las
condiciones iniciales y aproximaciones matematicas degradan la calidad de
las predicciones, lo que limita su utilidad para los usuarios. Ademas, no to-
das las variaciones son predecibles debido a la naturaleza cadtica del sistema
climatico. Por lo tanto, la evaluacion de la calidad de las predicciones es
un paso esencial antes de utilizar cualquier informaciéon climética derivada
de modelos para garantizar que dicha informacion sea fiable y beneficiosa
para la toma de decisiones. La evaluacion de la calidad de las previsiones
consiste en comparar las predicciones del pasado con las observaciones para
evaluar su grado de concordancia y, de este modo, tener una estimacion
de como podrian funcionar los modelos para predecir futuras variaciones

climéaticas.

Ademaés de evaluar la calidad, las predicciones del pasado también permiten
aplicar técnicas de postprocesado a las predicciones del futuro para corre-
gir errores sistematicos mediante técnicas de calibracion (por ejemplo, las
climatologias del modelo y observadas pueden ser diferentes) o incremen-
tar la resolucién espacial de las predicciones para proporcionar informaciéon
regional (ya que la resolucion espacial original puede ser demasiado gruesa
para la toma de decisiones regionales), entre otras. Ademads, evaluar la
calidad de diferentes modelos (0 una combinacion de ellos, es decir, de un
multimodelo) permite seleccionar la mejor fuente de informacion climatica

para cada variable, region y periodo de prediccion.

El trabajo desarrollado en esta tesis doctoral se centra en la evaluacion
de la calidad de las predicciones climaticas de diversas variables, indices
e indicadores relevantes para la toma de decisiones en diversos sectores,
con especial atencion a la agricultura. La evaluaciéon se ha realizado de
forma global, para los modelos individuales y el multimodelo, y diferentes
periodos de prediccion con el fin de identificar los casos en los que las
predicciones climaticas tienen suficiente calidad como para ser utilizadas en
la toma de decisiones. Ademas, las simulaciones de forzamiento histoérico

(es decir, las proyecciones climéaticas del pasado) pueden considerarse un



sistema de prediccion alternativo que simula el clima en respuesta a los
cambios de los forzamientos externos, y se han incluido en todos los analisis
para estimar el impacto de la inicializacion del modelo y encontrar la mejor
fuente de informacién climéatica para las variaciones climéticas para los

proéximos anos.

En primer lugar, se evalu6 la calidad de las predicciones multimodelo
de temperatura, precipitacion, indice de la Variabilidad Multidecadal de
Atlantico (AMV) y anomalia de la Temperatura Global del Aire en Su-
perficie (GSAT) generadas a partir de todos las predicciones decadales
que contribuyen a la Fase 6 del Proyecto de Intercomparacion de Mode-
los Acoplados (CMIP6). En este estudio se encontré una calidad alta para
las predicciones de temperatura, AMV y GSAT, mientras que la calidad
es més limitada para las predicciones de precipitacion. En el estudio se
comparoé la calidad de diferentes modos de construir un multimodelo, iden-
tificando s6lo pequenas diferencias entre ellos, y el efecto de la calibracion
en las predicciones. También se comparo6 la calidad del multimodelo contra
los modelos individuales, y se observo que el mejor modelo para cada lugar
concreto suele ser mejor que el multimodelo. Sin embargo, el multimodelo
proporciona una mayor precision que, al menos, la mitad de los sistemas.
Por lo tanto, se puede seleccionar el mejor modelo para proporcionar la
informacion climéatica de mayor calidad para cada caso particular. Sin em-
bargo, el multimodelo es la mejor opcién para una prediccién sistematica
en la que se incluyen varias variables, periodos de prediccién y regiones.
El multimodelo decadal también se compar6 con el multimodelo de simu-
laciones histoéricas, encontrando un beneficio de la inicializacion del modelo
en varias regiones oceanicas y terrestres para temperatura, y para la AMV
y GSAT. Dada la escasa disponibilidad de predicciones decadales en tiempo
real, se compard el multimodelo completo con un subconjunto de predic-
ciones generadas con los modelos que proporcionan predicciones en tiempo
real para evaluar el impacto del tamano del multimodelo en un contexto de

servicios climéaticos operativos.
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En segundo lugar, se evalu6 la representacion y prediccion de los tipos de
tiempo euro-atlanticos por el modelo EC-Earth3, identificando los patrones
espaciales dominantes de circulacion atmosférica en esta region mediante
la aplicacion del algoritmo de agrupacion k-means sobre campos diarios de
presion a nivel del mar. Las predicciones de alta calidad de los tipos de
tiempo podrian utilizarse como fuente de predictibilidad para las condi-
ciones climaticas locales, y traducirse asi en informaciéon climatica 1til para
la toma de decisiones. Los tipos de tiempo euro-atlanticos son las fases
positiva y negativa de la Oscilacion del Atlantico Norte (NAO+ y NAO-,
respectivamente), el Bloqueo y la Dorsal Atlantica en invierno; y la NAO-
, el Bloqueo, la Dorsal Atlantica y la Baja Atlantica en verano. Se vio
que el EC-Earth3 representa correctamente los patrones espaciales y las
frecuencias climatologicas de todos los tipos de tiempo. Sin embargo, la
habilidad para predecir las variaciones anuales a decadales de la frecuencia
de ocurrencia de los tipos de tiempo es baja, y la inicializacion del modelo

no mejora dicha habilidad de prediccion.

En tercer lugar, se evalta la calidad de las predicciones decadales multimod-
elo para predicciones multianuales de un conjunto de indices relacionados
con la frecuencia e intensidad de extremos de temperaturas y precipita-
ciones. Estas predicciones son esenciales para elaborar planes de adaptacion
y anticiparse a los efectos de los eventos extremos en varios sectores sensibles
al clima. La calidad del multimodelo es alta para la prediccion de eventos
extremos de temperatura en la mayoria de las regiones terrestres, mientras
que la calidad es menor para el caso de precipitacion extrema. Comparando
dicha calidad contra la correspondiente para predicciones de temperatura
y la precipitacion media, los extremos se predicen con menor calidad, espe-
cialmente los relacionados con los dias mas extremos. En comparaciéon con
las simulaciones de forzamiento histérico, las predicciones decadales mues-
tran generalmente poco beneficio gracias a la inicializaciéon del modelo, el

cuél depende de la region de interés.

Por ultimo, esta tesis doctoral presenta las aplicaciones de la investigacion

desarrollada en el marco de varios proyectos europeos y contratos con em-
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presas, para los cuales se han creado prototipos de servicios climaticos. Por
ejemplo, se han creado prototipos de servicios climéaticos para las regiones de
la Comunidad para el Desarrollo del Africa Meridional, Tanzania y Malawi.
Estos prototipos consisten en productos que contienen predicciones anuales
y multianuales de temperatura, precipitacion y condiciones de sequia. Otra
aplicacion ha sido el desarrollo de productos con informacion de variables
climéticas relevantes para la produccion de algodén. En este caso, a la hora
de crear la informacién climatica, sélo se consideraron los meses de cosecha

de cada lugar para adaptar las predicciones a esa época del ano.
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b S
Resum

Les variacions climatiques en escales temporals d’'un a deu anys afecten
moltes regions del mon, causant impactes directes a I’economia, els ecosis-
temes i la societat en diversos sectors, com el de les energies renovables,
I’agricultura, la seguretat alimentaria, la gestié de 'aigua, la pesca, la san-
itat, les assegurances i la planificacié urbana. Conéixer aquestes variacions
climatiques amb antelacié permet implementar mesures d’adaptacié, miti-
gacio i resiliéncia que facin front a les conseqiiéncies d’un clima canviant.
En les escales temporals anuals fins a decadals, les variacions climatiques
estan causades tant per forgaments externs (que poden ser naturals, com les
erupcions volcaniques i la radiacio solar, o antropogénics, com les emissions
de gasos d’efecte hivernacle), com per la variabilitat climatica interna (que
es genera per les interaccions entre els diferents components del sistema
climatic i desencadena oscil-lacions lentes i naturals que es relacionen amb

condicions climatiques a escala regional).

Els models climatics es van desenvolupar com a eines per estudiar la
dinamica climatica i anticipar les variacions del clima resolent les equa-
cions fisiques que regeixen el sistema climatic. Les projeccions climatiques
incorporen informacié sobre forgaments externs basades en diferents esce-
naris socioeconomics per projectar les possibles trajectories que seguiria
el sistema climatic. Aquests mateixos models es fan servir per predir la
variabilitat i el canvi climatics a escales temporals anuals i decadals, in-
corporant també informacié sobre l'estat actual del clima. Aquest procés
es coneix com a inicialitzacio del model, en queé les condicions inicials (in-
formacié basada en observacions) s’inclouen al model per ajustar-lo amb

l'estat del clima observat.

*Translated by Eulalia Baulenas Serra
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Tot i aixi, les prediccions climatiques no sempre prediuen correctament les
variacions climatiques degut a deficiéncies en els models, errors en les condi-
cions inicials i aproximacions matematiques que poden degradar la qualitat
de les prediccions, cosa que limita la seva utilitat per als usuaris. A més a
més, no totes les variacions sén predictibles a causa de la naturalesa caotica
del sistema climatic. Per tant, I’avaluacié de la qualitat de les prediccions és
un pas essencial abans de fer servir qualsevol informacié climatica derivada
de models per garantir que aquesta informacio6 sigui fiable i beneficiosa per a
la presa de decisions. L’avaluaci6é de la qualitat de les previsions consisteix
en comparar les prediccions del passat amb les observacions per avaluar-ne
el grau de concordanca i, aixi, tenir una estimacié de com podrien funcionar

els models per predir futures variacions climatiques.

A més d’avaluar la qualitat, les prediccions del passat també permeten
aplicar técniques de postprocessament a les prediccions del futur per cor-
regir errors sistematics mitjangant técniques de calibratge (per exemple,
les climatologies del model i les observacions poden ser diferents) o incre-
mentar la resoluci6 espacial de les prediccions per proporcionar informacié
regional (ja que la resoluci6 espacial original pot ser massa poc definida per
a la presa de decisions regionals), entre d’altres. A més, avaluar la qualitat
de diferents models (o una combinacid, és a dir, d’'un multimodel) permet
seleccionar la millor font d’informaci6 climatica per a cada variable, regi6 i

periode de prediccio.

El treball desenvolupat en aquesta tesi doctoral se centra en ’avaluacid
de la qualitat de les prediccions climatiques de diverses variables, indexs
i indicadors rellevants per a la presa de decisions a diversos sectors, amb
especial atenci6 a 'agricultura. L’avaluacié s’ha realitzat de forma global,
per als models individuals i el multimodel, i diferents periodes de prediccio,
per tal d’identificar els casos en queé les prediccions climatiques tenen prou
qualitat per a ser utilitzades en la presa de decisions. A més, les simulacions
de forgament historic (és a dir, les projeccions climatiques del passat) es
poden considerar un sistema de prediccié alternatiu que simula el clima en

resposta als canvis dels forcaments externs, i s’han inclos a totes les analisis
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per estimar I'impacte de la inicialitzacié del model i trobar la millor font

d’informaci6 climatica per a les variacions climatiques dels propers anys.

En primer lloc, s’ha avaluat la qualitat de les prediccions multimodel
de temperatura, precipitacio, index de la Variabilitat Multidecadal de
I’Atlantic (AMYV) i 'anomalia de la Temperatura Global de I’ Aire en Super-
ficie (GSAT) generades a partir de totes les prediccions decadals que con-
tribueixen a la Fase 6 del Projecte d’Intercomparacié de Models Acoblats
(CMIP6). En aquest estudi es va observar una alta qualitat en les predic-
cions de temperatura, AMV i GSAT, mentre que la qualitat és més limitada
per a les prediccions de precipitacié. A l'estudi es va comparar la quali-
tat de diferents maneres de construir un multimodel, identificant petites
diferéncies entre ells, i I'efecte del calibratge en les prediccions. També es
va comparar la qualitat del multimodel contra els models individuals, i es
va observar que el millor model per a cada lloc concret sol ser millor que
el multimodel. No obstant aixo, el multimodel proporciona més precisié
que, almenys, la meitat dels sistemes. Per tant, es pot seleccionar el millor
model per proporcionar la informacié climatica de més qualitat per a cada
cas particular. Tot i aix0, el multimodel és la millor opci6 per a una predic-
ci6 sistematica en qué s’inclouen diverses variables, periodes de prediccié i
regions. El multimodel decadal també es va comparar amb el multimodel
de simulacions historiques, trobant-se un benefici de la inicialitzacié del
model a diverses regions oceaniques i terrestres per a temperatura, i per
a PAMV i GSAT. Atesa la poca disponibilitat de prediccions decadals en
temps real, es va comparar el multimodel complet amb un subconjunt de
prediccions generades amb els models que proporcionaven prediccions en
temps real, per tal d’avaluar I'impacte de la mida del multimodel en un

context de serveis climatics operatius.

En segon lloc, s’ha avaluat la representacio i la prediccio dels tipus de temps
euroatlantics pel model EC-Earth3, identificant els patrons espacials dom-
inants de circulacié atmosférica en aquesta regié mitjancant 'aplicacié de

I’algorisme d’agrupacié k-means sobre camps diaris de pressié a nivell del
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mar. Les prediccions d’alta qualitat dels tipus de temps es podrien util-
itzar com a font de predictibilitat per a les condicions climatiques locals,
i traduir-se aixi en informacié climatica til per a la presa de decisions.
Els tipus de temps euroatlantics es refereixen a les fases positiva i nega-
tiva de 'Oscil-lacio de 1’ Atlantic Nord (NAO+ i NAO-, respectivament), el
Bloqueig i la Dorsal Atlantica a I'hivern; i la NAO-, el Bloqueig, la Dorsal
Atlantica i la Baixa Atlantica a I'estiu. Es va veure que 'EC-Earth3 rep-
resenta correctament els patrons espacials i les freqiiéncies climatologiques
de tot tipus de temps. Tot i aixi, I’habilitat per predir les variacions anuals
a decadals en la freqiiéncia d’ocurréncia dels tipus de temps és baixa, i la

inicialitzacié del model no en millora I'habilitat de prediccio.

En tercer lloc, s’ha avaluat la qualitat de les prediccions decadals mul-
timodel per a prediccions multianuals d’un conjunt d’indexs relacionats
amb la freqiiéncia i la intensitat de temperatures extremes i precipita-
cions. Aquestes prediccions sén essencials per elaborar plans d’adaptacio i
anticipar-se als efectes dels esdeveniments extrems en diversos sectors sen-
sibles al clima. Els resultats mostren com la qualitat del multimodel és alta
per a la prediccioé de temperatures extremes a la majoria de les regions ter-
restres, mentre que la qualitat és menor per al cas de precipitacié extrema.
Comparant aquesta qualitat contra la corresponent per a prediccions de
temperatura i precipitacié mitjana, els extrems es prediuen amb menor
qualitat, especialment els relacionats amb els dies més extrems. En com-
paracié amb les simulacions de forgament historic, les prediccions decadals
mostren generalment poc benefici degut a la inicialitzacié del model, que

es mostra depenent de la regié d’interés.

Per acabar, aquesta tesi doctoral presenta aplicacions d’aquesta recerca de-
senvolupades en el marc de diversos projectes europeus i contractes amb
empreses, per als quals s’han creat prototips de serveis climatics. Per ex-
emple, s’han creat prototips de productes per a les regions de la Comunitat
per al Desenvolupament de I’Africa Meridional, Tanzania i Malawi. Aque-
sts prototips consisteixen en productes que contenen prediccions anuals i

multianuals de temperatura, precipitacio i condicions de sequera. Una altra
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aplicacio ha estat el desenvolupament de productes que contenen informa-
ci6 de variables climatiques rellevants per a la producci6 de cot6. En aquest
cas, a ’hora de crear la informaci6 climatica només es van considerar els
mesos de collita de cada lloc per adaptar les prediccions a aquesta época

de I'any.
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Chapter 1

Introduction

The variability of the climate system is modulated by both natural and an-
thropogenic factors. However, Earth’s climate has been experiencing unprecedented
changes over the past decades, with the global surface temperature for the decade
2011-2020 reaching values 1.09°C warmer than the 1850-1900 average and associated
with more frequent and intense extreme events such as heatwaves and droughts (IPCC,
2023b). Therefore, the impact of climate change compromises the security of natural
ecosystems, human health and socio-economics (Abbass et al., 2022; Pecl et al., 2017).

Decadal climate predictions have been recently developed as a relatively new source
of climate information to understand and predict climate evolution for the next few
years up to one decade. This annual-to-decadal climate information is essential to pro-
vide valuable information for policy and decision-making in several climate-vulnerable
sectors such as agriculture, renewable energy, health and water management. High-
quality climate predictions allow the development of adaptation and mitigation mea-
sures and early-warning systems for climate variations (Curtis et al., 2017; Hanlon
et al., 2013; Kushnir et al., 2019; Sillmann et al., 2017).

1.1. Climate system and its variability and changes

The Earth’s climate system is formed by several components that interact between
them. These components are the atmosphere, hydrosphere, lithosphere, biosphere
and cryosphere, and they play different roles in the climate system (Rodé & Comin,

2003). A schematic figure on the different climate system’s components, their roles
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Figure 1.1: Schematic representation of the different climate system’s components, their

roles and interactions. Figure taken from Rodé & Comin (2003).

and interactions can be seen in Figure 1.1. For example, the atmosphere absorbs and
reflects terrestrial and solar radiation, helping to distribute the heat around the planet.
Weather processes, such as precipitation and wind, take place in the atmosphere. The
hydrosphere, mainly formed by the oceans, also plays a role in the distribution of
the heat around the planet, as it stores heat from solar radiation, and the currents
distribute it around the planet. In addition, the ocean absorbs carbon dioxide from
the atmosphere, thus playing a key role in the carbon cycle. The lithosphere and
biosphere, which include the land and vegetation, respectively, influence the rest of
the climate system depending on the vegetation and land type and use. Finally, the
cryosphere helps to regulate the global temperature as the ice reflects a large amount
of solar radiation.

The variability of the climate system is modulated by both internal variability
and external forcings. Internal variability refers to natural variations produced by
the interactions between the different climate system components (such as the ocean-
atmosphere dynamic and thermodynamic interactions; Deser et al., 2012) at different
time scales. On the other hand, external forcings refer to those factors that affect the

climate system without being directly part of it, and can be natural (e.g. volcanic
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eruptions and variability of the solar radiation) or anthropogenic (e.g. greenhouse gas
emissions, land use and deforestation) (Smith et al., 2016).

The interactions between the different climate system’s components and the con-
tributions from externally-forced factors result in modes of variability of the climate
system. Each mode of variability operates at a particular time scale and area of the
globe (Figure 1.2), and provides some predictability due to their low-frequency varia-
tions. Thus, they are relevant on specific time scales and regions, and are associated
with certain large-scale climate patterns and local weather conditions, such as extreme
climate events (Kenyon & Hegerl, 2008). Besides, these modes of variability can also
interact with each other (L’Heureux et al., 2017; Trascasa-Castro et al., 2021) and with
external forcings (Hermanson et al., 2020), leading to more complex and unpredictable
climate patterns and weather conditions.

Some of the main modes of internal variability at subseasonal, seasonal and decadal

time scales are the following:

» Madden-Julian Oscillation (MJO; Woolnough et al., 2007): It operates over the
Indian and Pacific Oceans, and is characterised by an eastward displacement of
tropical rainfall. It consists of eight phases (lasting a total of 1 to 3 months),
starting with enhanced convection over the western Indian Ocean which is slowly
displaced towards the Central Pacific Ocean, where the enhanced rainfall is dis-

solved, and the cycle starts again over the Indian Ocean.

= North Atlantic Oscillation (NAO; Visbeck et al., 2001): It is characterised by
changes in the atmospheric pressure difference between the Azores High and the
Iceland Low. It is related to local weather in Europe, North America and parts
of Africa. For instance, its positive phase is related to stronger westerly winds
and storm tracks across the North Atlantic, while its negative phase is associated
with weaker winds and a shift of the storm tracks towards southern Europe.
This shift of the storm tracks causes changes in temperature, precipitation and

extreme events, particularly over Europe.

» Arctic Oscillation (AO; Thompson & Wallace, 1998): It is characterised by
changes in the atmospheric pressure difference between the Arctic region and

mid-latitudes, influencing the position and strength of the polar jet stream. Thus,
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Figure 1.2: Time scales of the main modes of variability at different time scales (top; figure

adapted from Merryfield et al., 2020) and their approximate location (bottom).

it is related to impacts on local temperature, precipitation and extreme events in

Europe, Asia and North America.

» Southern Annular Mode (SAM; Kidson, 1988), also known as the Antarctic Os-
cillation: It is characterised mostly through the pressure differences between mid
and high latitudes, and is associated with a longitudinal oscillation of the westerly
winds over the mid- and high-latitudes of the Southern Hemisphere, influencing

the temperature and precipitation over southern Australia.
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El Nino - Southern Oscillation (ENSO; McPhaden et al., 2006): It is characterised
by variations in the sea surface temperatures (SST) over the tropical Pacific
Ocean, and is related to significant impacts on climate conditions and extremes
over large areas of the globe at seasonal time scales. It is considered as the

globally dominating mode of variability on inter-annual time scales.

Quasi-Biennial Oscillation (QBO; Kim & Chun, 2015): downward-propagating
oscillation with an approximate duration of 28-month of easterly and westerly
zonal jets in the tropical stratosphere, driven by upward equatorial waves from
the troposphere. When the QBO is easterly, sudden stratospheric warmings and

colder-than-normal winters over Northern Europe are more likely to occur.

Indian Ocean Dipole (IOD; Ashok et al., 2001), also known as the Indian Nino:
It is characterised by changes in SST over the Indian Ocean, and is related to

climate extremes over Australia and parts of Asia.

Interdecadal Pacific Oscillation (IPO; Henley et al., 2015): It is associated with
a tripole pattern of SST over the Pacific Ocean, and has regional impacts over

regions such as North America, East Asia, South America and Australia.

Pacific Decadal Oscillation (PDO; Mantua & Hare, 2002): It is characterised by
oscillations of the SST over the North Pacific Ocean, and it could be described as
a decadal-scale ENSO pattern (but also including extra-tropical SST variations,
whereas ENSO is tropical). It is related to impacts over North America and Asia,

although it has also been related to impacts in the Southern Hemisphere.

South Pacific Ocean Dipole (SPOD; Saurral et al., 2020): It is modulated by
ENSO and the IPO, and is related to anomalies of temperature and precipitation

over parts of the Southern Hemisphere.

Atlantic Multidecadal Variability (AMV; Doblas-Reyes et al., 2013; Trenberth &
Shea, 2006): It is characterised by variations of the SST over the North Atlantic
Ocean. It is related to impacts over Europe, Africa and North and Central

America.
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In addition to variations caused by the modes of internal variability, the climate
system also responds to external forcings, generating complex feedbacks and mecha-
nisms (Brovkin et al., 2004). For instance, human-induced greenhouse gas emissions,
such as carbon dioxide, have a significant impact on the system, leading to an in-
crease in temperatures, sea-level rise, changes in precipitation patterns, and alteration
of natural ecosystems (Jain, 1993); volcanic eruptions, which release volcanic gases and
aerosols into the atmosphere, producing a cooling effect during a few years due to the
reflecting of sunlight (Hermanson et al., 2020); land use changes (Ward et al., 2014);
and variations in the solar radiation lead to small changes in the global temperature
(Zanchettin, 2017).

1.2. Climate predictions and projections

Given the variability of the climate system and its potential consequences, predic-
tions of its evolution are crucial for applications in all time scales in order to anticipate
and minimise the risk associated with weather and climate events that can cause dev-
astating effects on natural ecosystems and human activities.

The first weather forecast was created by combining ship observations and the me-
teorologist’s intuition, and was issued in the British newspaper The Times by Robert
FitzRoy in 1861 (Talman, 1927). These forecasts aimed to help sailors avoid dan-
gerous conditions at sea and were distributed in newspapers and public places. Over
time, the knowledge about the weather and its evolution has improved, increasing the
trustworthiness of weather predictions and boosting their applications by population
and organisations on, for example, agriculture, transportation and outdoor activities.
Nowadays, weather predictions are performed with numerical climate models, software
tools based on mathematical representations that simulate the evolution of the atmo-
sphere by solving the laws of physics (Bauer et al., 2015). The first numerical weather
forecast was produced in 1950 using a computer to run a dynamical model. Nowadays,
these weather forecasts, which are started from the current atmospheric conditions,
provide predictions of the atmospheric evolution from the next hours up to several
days.

For longer forecast periods, subseasonal and seasonal climate predictions are typ-

ically developed by coupling ocean and atmosphere numerical models to account for
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their interaction when predicting the climate evolution from the current state. Be-
sides, other components, such as a sea ice model, can also be coupled to incorporate
more information when producing the predictions (Vitart et al., 2017). Subseasonal
predictions cover a forecast period from one week to a few months and were started
in the 1980s. However, the most significant advances were made in the 2000s when
more computational resources were available. On the other hand, seasonal predictions
provide forecasts for the next months up to a year and were performed from the 1980s
when coupled ocean-atmosphere models were developed. Subseasonal and seasonal
predictions benefit from the predictability given by different low-frequency modes of
variability, such as the MJO and ENSO, among others (Vitart & Robertson, 2018).

On multi-decadal to centennial time scales, long-term climate projections provide
information on how the climate is expected to change and its potential impacts in the
long-term future under different Shared Socioeconomic Pathways (SSPs; IPCC, 2023a;
O’Neill et al., 2020; Riahi et al., 2017), also known as socio-economic scenarios. These
scenarios are based on different radiative forcings that may be reached under assump-
tions of future societal and economic developments, different levels of greenhouse gas
emissions, aerosol concentrations, land use and other factors that affect the radiative
balance of the climate system (IPCC, 2023a).

Weather, subseasonal and seasonal climate predictions are considered an initial
value problem, as most of the predictability is given by the current state of the climate
system. In contrast, the predictability for climate projections is provided by external

forcings, and thus, they are considered a forced boundary condition problem.

1.3. Decadal climate predictions

Decadal predictions have recently been developed as a source of climate informa-
tion at annual to decadal time scales, filling the gap between seasonal predictions and
climate projections (Doblas-Reyes et al., 2013; Kushnir et al., 2019). The first decadal
prediction was made in 2007 by the Met Office Hadley Centre (Smith et al., 2007) by
incorporating information about the current climate state into a climate model pre-
viously used to produce long-term climate change projections. Thus, decadal climate
predictions incorporate information on both the internal climate variability and exter-
nal forcings (Kirtman et al., 2013; Meehl et al., 2009), benefiting from both sources
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Figure 1.3: Weather and climate prediction time scales, and the impact by the initial value
and forced boundary condition problems on their predictability. Figure taken from Kirtman
et al. (2013).

of predictability, and are thus considered as a combination of initial value and forced
boundary condition problems (Figure 1.3).

Although the term “decadal” may seem to only refer to a whole decade, decadal
predictions are also used to provide climate information at shorter time scales. For
instance, they can be used to produce annual, multi-annual and multi-seasonal aver-
ages (Dunstone et al., 2020; Sospedra-Alfonso & Boer, 2020). At these time scales,
high-quality and reliable climate information is crucial to prepare adaptation and mit-
igation policies to minimise the impact of climate variability and change. The antici-
pation of climate variations is also beneficial to plan and help decision-making about
investments, infrastructure and disaster preparedness, as well as estimating the risk
and opportunities associated with such variations of the climate conditions in several
climate-vulnerable and socio-economic sectors (BrunoSoares et al., 2018; Merryfield
et al., 2020). Besides, decadal predictions can also help to advance climate science by
further understanding how the climate system works and the interactions between its
different components.

Decadal predictions are created with the same climate models as the long-term cli-

mate projections. The major difference between these two types of simulations is that,
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while climate projections only incorporate information about the external forcings,
decadal predictions incorporate information on both external forcings and internal cli-
mate variability (Kirtman et al., 2013; Meehl et al., 2009). To do so, the best estimate
of the current state of the climate system is incorporated into the climate models to
align the phase of the model simulations with that observed (Volpi et al., 2021). This
procedure is known as model initialisation (Polkova et al., 2019) and is the main dif-
ference between decadal predictions and climate projections (Smith et al., 2019). The
two main initialisation methods are the full-field and anomaly initialisation methods
(Hazeleger et al., 2013; Polkova et al., 2019; Smith et al., 2013). After the model ini-
tialisation date, known as start date and typically selected towards the end of each
calendar year, the evolution of the system is computed by integrating the dynamical
and physical equations forward in time predicting the future climate evolution up to
ten years. As the prediction evolves in time, the information incorporated through the
initial conditions is lost, and decadal predictions become more similar to uninitialised
climate projections.

The information on the current climate state used for model initialisation, known
as initial conditions, is created from observation-based products, which are not per-
fect (Zumwald et al., 2020). For instance, human and instrumental errors during the
data measurement, biases during the data processing and homogenisation to combine
different sources of observations, and limited temporal and spatial coverage decrease
the quality of the observational data. Therefore, imperfections in the observations are
propagated to initial conditions and are then propagated to the predictions due to
the chaotic nature of the climate system (Lorenz, 1963). In order to account for this
observational uncertainty, climate models are run several times following the ensemble
approach, in which each run is referred to as an ensemble member.

There are several ensemble generation methods used to generate spread (i.e. an
estimation of the forecast uncertainty) to sample the uncertainty of the initial state
of the predictions. For instance, the burst method consists of initialising the forecast
system on the same calendar day with small perturbations in the initial conditions.
A simpler approach is the lagged method, which consists of initialising the forecast
system on slightly different dates (Chen et al., 2013) and has been shown to generate
enough spread in the predictions (Polkova et al., 2019). Both approaches allow obtain-

ing the uncertainty of the predictions associated with the initial state. For the first
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lead times, the predictions usually point to the same trajectory of climate evolution,
and the spread between the ensemble members increases for longer lead times, thus
increasing the uncertainty of the predictions (Hawkins & Sutton, 2009). This increase
in time of the ensemble spread can be seen in the illustration presented in Figure 1.4,
with examples of initialised decadal predictions and their spread represented in green
colours. In addition, it shows the different behaviour of initialised decadal and unini-
tialised historical simulations (i.e. climate projections of the past, which use prescribed
forcings), with a narrowed uncertainty shown by decadal predictions due to the infor-
mation provided by initial conditions during the model initialisation, which constrains
the spread particularly for the first lead times. The coupled climate model and the
complete procedure to create the predictions (including the used forcings, parameter-
isations, initial conditions and initialisation procedure, among others) constitute the
forecast system.

Despite all the recent efforts by the community, there are still many open issues
associated with decadal predictions (Merryfield et al., 2020). For example, increasing
the model spatial resolution to solve physical processes instead of parameterisations
can reduce predictions’ biases and improve the forecast quality (Jia et al., 2015; Miiller
et al., 2018; Schuster et al., 2019). Another of the main challenges in decadal prediction
research is to understand dynamical phenomena further and improve their representa-
tion and teleconnections in climate models (Cassou et al., 2018). A significant issue
of decadal predictions is the initialisation shock that can rapidly occur after model
initialisation due to inconsistencies between the initial conditions and the model itself,
causing an adverse effect of model initialisation (Bilbao et al., 2021; Kroger et al.,
2018; Pohlmann et al., 2017; Volpi et al., 2021). Improving data assimilation methods
to incorporate the initial conditions in the climate models may enhance the quality of
the predictions and minimise the effects of initialisation shocks. For instance, strong
data assimilation methods, which refer to using a common data assimilation for all the
coupled model components, may reduce imbalances between the different components
after initialisation (Pohlmann et al., 2023).

In addition to the challenges mentioned above, the signal-to-noise issue is currently
regarded as one of the major problems related to climate prediction. This issue refers
to the low signal-to-noise ratio (i.e., the magnitude of the predictable signal relative

to unpredictable noise) in climate predictions (Eade et al., 2014), and it is related
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Figure 1.4: Illustration of time series for observations (black line), historical simulations
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and decadal predictions (green line and shading). Figure taken from Solaraju-Murali et al.
(2022)

to the signal-to-noise paradox (Scaife & Smith, 2018). The signal-to-noise paradox
refers to the fact that models are able to better predict the real world than themselves
(as the ensemble mean is typically higher correlated with observations than with the
members of the ensemble), and has been shown to occur, for instance, for predictions
of the high-latitude blocking and the NAO (Athanasiadis et al., 2020; Scaife & Smith,
2018). Besides, (Smith et al., 2020) showed that the predictable signal in climate
models is smaller than in reality, implying that real-world climate evolution is more
predictable than the climate model output suggests. Also, the signal-to-noise issue
can be minimised using the ensemble mean of very large ensembles to extract the

predictable signal from the chaotic noise (Athanasiadis et al., 2020; Donat et al., 2023;
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Smith et al., 2020).

1.4. Forecast quality assessment

Before using any climate information derived from the predictions, it is essential
to assess the forecast quality (also referred to as skill; defined as the degree of corre-
spondence between the predicted and observed values) to estimate how trustable the
climate information is and to assess the potential value of climate predictions (God-
dard et al., 2012, 2013). Thus, the prediction skill is assessed by measuring the level
of agreement between the predictions and observations. To do so, the same forecast
systems used to predict the future variations of the climate system are used to predict
such variations over the past decades, when observations are available so that they can
be used as reference for comparison. These climate forecasts of past climate conditions
are called climate hindcasts or climate re-forecasts.

There are a number of skill metrics that can be used to evaluate the quality of
climate predictions. However, the specific metric should be chosen depending on the
particular forecast product that is being evaluated. Alternatively, in a pure research
context, different metrics should be used to cover all aspects that may be relevant for
users (Goddard et al., 2012). A forecast product can be deterministic or probabilistic.
Deterministic forecast products are based on the ensemble mean or median. In contrast,
probabilistic forecast products are based on probabilities estimated as the fraction of
ensemble members that fall into each discrete probabilistic category (e.g. equiprobable
tercile or quintile categories) or on the full probability distribution function. The
forecast quality can also be provided in terms of skill scores, which measure the quality
of a forecast in comparison to a reference forecast and allow easily identifying whether
a forecast outperforms a reference forecast (Goddard et al., 2013). For instance, skill
scores can be used to compare different versions of the same model, different models,
initialised and uninitialised experiments, and model output against classical forecasts
such as those based on climatology or persistence (Murphy, 1992).

In addition to the forecast quality, assessing the forecast reliability is essential, as
it is crucial for decision-making procedures with climate information. A prediction is
reliable if the ensemble spread is representative of the forecast uncertainty (Verfaillie

et al., 2021). For example, the deterministic forecast is reliable if the spread matches
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the error, meaning the predictions fall into the forecast uncertainty. On the other hand,
a probabilistic forecast is reliable if there is an agreement between forecast probability
and mean observed frequency (Weisheimer & Palmer, 2014). In a practical example, a
probabilistic forecast is reliable if it rained 20% of the times that there was a probability
of 20% of rainy conditions.

Given the observational uncertainty, the skill estimates differ when measured
against observation-based datasets. Also, some reanalysis may have been created using
models included as a component in coupled climate models, and they may therefore
have common biases and overestimate the actual skill of such models. Thus, using
more than one observational dataset is recommended when performing the forecast
quality assessment (Goddard et al., 2013; Jolliffe & Stephenson, 2012). Using several
observational reference datasets allows for comparing the skill estimates to check the
robustness of the results. Other options include using the mean or the median of several
reference datasets to make a robust forecast evaluation or using a reference dataset that
provides uncertainty estimates based on the standard error (e.g. the Global Precipita-
tion Climatology Project dataset, GPCP; Adler et al., 2003) or based on an ensemble
(e.g. the 5th generation ECMWEF Atmospheric Reanalysis, ERA5H; Hersbach et al.,
2020).

1.5. Post-processing techniques

In addition to their use in forecast quality assessment, climate hindcasts are also
needed to post-process the raw model output to partially correct systematic errors
that models have, known as model biases, and to make the statistical properties of
the forecasts more similar to those observed. These errors are caused, for instance,
by imperfections in the model, inconsistencies between the model and the observation
products used to initialise the predictions which lead to initialisation shocks, approx-
imations during the mathematical representation and limited knowledge about some
climate system’s processes. The simplest bias adjustment consists of removing the
model climatology and adding the observed climatology, correcting the mean bias in
the predictions (Gangsto et al., 2013). Besides, biases in the variance can also be cor-
rected by multiplying by the ratio of the observed and predicted variances (Torralba

et al., 2017). In addition to biases in the mean and variance, other statistical properties,
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such as the spread, can be corrected by applying more advanced calibration methods
with the goal of improving the reliability of the predictions (Doblas-Reyes et al., 2005;
Eade et al., 2014; Manzanas et al., 2019; Marcos et al., 2018; Pasternack et al., 2018;
Pérez-Zanom et al., 2021; Schaeybroeck & Vannitsem, 2011, 2015; Smith et al., 2020;
Tippett & Barnston, 2008; Torralba et al., 2017; Weigel et al., 2009; Zhao et al., 2017).
Every calibration method should be applied in cross-validation mode, which consists
of not using observed information for the time step that is being calibrated, which is
essential when bias-adjusting or calibrating hindcasts not to produce overfitting and
thus overestimate the actual skill of future predictions (Doblas-Reyes et al., 2005).
In contrast, cross-validations can also underestimate the true skill, particularly when

correcting a small sample size (Gangsto et al., 2013; Smith et al., 2013).

Running climate models to create the predictions is highly computationally expen-
sive, which limits the spatial resolution at which they are run. Therefore, such a spatial
resolution is often insufficient to address the users’ needs, as the grid may cover a too
large area to represent the climate variations over a specific location. Statistical down-
scaling methods are post-processing methods to create more localised information by
increasing the forecasts’ spatial resolution to improve the climate information by better
understanding the potential impacts at a regional scale (Benestad et al., 2019; Paxian

et al., 2022).

There is also uncertainty associated with the forecast system as none of them are
perfect. The multi-model ensemble method combines predictions from several forecast
systems into a single ensemble. The multi-model ensemble has been shown to outper-
form the predictions from a single forecast system of the same ensemble size (DelSole
et al., 2014) and can outperform the best single forecast system that the multi-model
ensemble contains (Bellucci et al., 2014; Hagedorn et al., 2005; Hemri et al., 2020).
The higher skill of the multi-model ensemble is due to the increased ensemble size,
the error cancellation between models, and the signal each forecast system adds to the
multi-model ensemble (Hagedorn et al., 2005). However, the multi-model does not nec-
essarily show higher skill than individual forecast systems for all cases (Mishra et al.,

2018).
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1.6. Climate services

Climate services provision implies collecting, analysing and disseminating climate
information so that it allows to support decision-making and planning strategies to
anticipate, adapt, manage disaster risk and minimise the impacts of climate vari-
ability and change on communities and climate-vulnerable sectors (Merryfield et al.,
2020). For instance, these sectors include agriculture (Solaraju-Murali et al., 2021),
renewable energy (BrunoSoares et al., 2018), water management (Paxian et al., 2019),
health (Frumkin et al., 2011), fisheries (Tommasi et al., 2017), insurance (Caron
et al., 2018), retail (Chiang & Ling, 2017), and urban planning (Masson et al., 2020).
Decadal climate predictions have only been used for pure scientific research until
very recently (Solaraju-Murali et al., 2022). However, in 2020, the Copernicus Cli-
mate Change Service (C3S) promoted a collaboration between four European institu-
tions (Deutscher Wetterdienst, DWD; Barcelona Supercomputing Center, BSC; Cen-
tro Euro-Mediterraneo per i Cambiamenti Climatici, CMCC; and United Kingdom’s
Met Office; UKMO) to create and deliver prototypes of climate services based on
decadal predictions for the agriculture, energy, infrastructure and insurance sectors
(https://climate.copernicus.eu/sectoral-applications-decadal-predictions).

In order to deliver a climate service, the climate information produced with the fore-
cast systems needs to be translated into reliable, tailored and actionable information
that enable stakeholders and decision-makers to take action. To do so, a co-production
process involving both scientists and decision-makers is crucial to build trust and un-
derstand the specific user’s needs and requirements that the final product must meet
(Bojovic et al., 2021; Goddard et al., 2012). This knowledge exchange serves as the
basis for developing co-designed new climate information, and its added value and po-
tential applicability can be addressed through, for instance, support decision tools or
case studies (Solaraju-Murali et al., 2022) to demonstrate the usefulness of the provided
climate information.

After identifying, selecting and engaging the users that will be provided with the
climate service (Baulenas et al., 2023), there are six main steps in the co-production
process to ensure tailored and usable climate information (Solaraju-Murali, 2023). The

first step is to understand the user’s requirements and needs, in which users and climate
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services providers exchange their knowledge and understand the decisions the poten-
tially provided climate information would support. For example, users can state which
variables or indicators, forecast periods, regions and final products are required to be
incorporated into their decision-making process (BrunoSoares et al., 2018). The sec-
ond step is identifying and obtaining the relevant climate data for the climate service.
This data collection is constrained by the availability and timeliness of the climate
predictions produced with the forecast systems, for example, on the Earth System
Grid Federation (ESGF; https://esgf-node.llnl.gov), which serves as the database for
the decadal prediction data produced within the framework of the Decadal Climate
Prediction Project (DCPP; Boer et al., 2016) component of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6; Eyring et al., 2016).

After collecting the necessary climate data, the third step implies applying post-
processing methods, such as multi-model combination, bias adjustment, calibration and
downscaling, aiming to improve the quality and reliability of the raw model output (see
Section 1.5). The fourth step consists of evaluating the forecast quality and reliability of
these post-processed predictions to verify whether they show quality and demonstrate
value to inform users and decision-makers (see Section 1.4). These two steps should
be carried out in an iterative process since different post-processing techniques may be
used and compared to select the method that provides the highest quality information
for each specific case.

The fifth step involves creating tailored climate information by producing climate
indices or indicators for the specific user’s needs and decisions to be taken. These in-
dices and indicators can also be understood as another post-processing method, as they
are computed with one or more of the essential climate variables (e.g. monthly means
of temperature and precipitation) from the model output. Examples of these tailored
indices and indicators are the Standardised Precipitation Evapotranspiration Index
(SPEIL; Vicente-Serrano et al., 2010) and other indices such as those recommended by
the Expert Team on Climate Change Detection and Indices (ETCCDI; Zhang et al.,
2011) but adapting them using user-defined thresholds for them to be as tailored as
possible to the user’s needs. Finally, the sixth and last step is developing a climate ser-
vice product with such tailored information. Such a product must be understandable,
trusted and usable by the user to be incorporated into their decision process (Bojovic

et al., 2021). It can be presented differently, such as maps or time series included in
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websites, apps, text documents or a combination. These steps of the co-production
process can be repeated as many times as needed in order to keep including the user’s
feedback and finally deliver the most useful climate information during climate service

provision.

1.7. Framework within the Earth Sciences Depart-
ment at the BSC-CNS

This Ph.D. thesis has been developed within the Climate Variability and Change
(CVC) and the Earth System Services (ESS) groups of the Earth Sciences (ES) depart-
ment at the Barcelona Supercomputing Center - Centro Nacional de Supercomputacion
(BSC-CNS).

The CVC group, co-led by Markus G. Donat and Pablo Ortega, focuses on fur-
ther understanding climate variability and its sources of predictability to increase
the model accuracy in representing the physical and biogeochemical processes in
climate models. The group works on a wide range of research activities related
to, for example, data assimilation, model initialisation, ensemble generation and
timescales-merging methods to improve the forecast quality of the EC-Earth forecast
system. The BSC is one of the members of the EC-Earth Consortium (https://ec-
earth.org/consortium /), which collaborates on the development of the model. Besides,
the BSC is a Global Producing Centres, designed by the World Meteorological Organi-
zation (WMO), that provides the WMO Lead Centre for Annual-to-Decadal Climate
Prediction (https://hadleyserver.metoffice.gov.uk/wmolc/) with timely decadal predic-
tions, which also contribute to CMIP6/DCPP-A.

The ESS group, led by Albert Soret, focuses on transferring scientific knowledge
and advancing sustainable development in different sectors (e.g. renewable energy,
agriculture, health, urban development, insurance and water management), combining
the knowledge from scientific and social researchers. The group works on the inter-
pretation, communication and applicability of scientific research, and improving the
forecast quality by applying post-processing techniques. The final aim is to provide
climate services at different time scales to benefit nature and society by conducting

and improving user interaction to create the most tailored services.
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1. Introduction

This Ph.D. thesis has benefitted from its development within both groups, one
focused on fundamental climate research and the other on application-oriented research.
The production and application of decadal predictions are supported by the teamwork
within the department, starting from the production of the predictions (documented
in Bilbao et al., 2021) to the delivery of climate information to stakeholders (e.g.
the climate services provision for the wheat sector, documented in Solaraju-Murali
et al., 2021). Previous Ph.D. theses have also supported the research conducted within
this Ph.D., particularly the ones carried out by Verérica Torralba and Balakrishnan
Solaraju-Murali. Torralba (2019) developed a Ph.D. on the applicability of seasonal
predictions for the wind energy sector. Her work included the analysis of Euro-Atlantic
weather regimes on seasonal predictions, and was the basis for one of the research
articles of this Ph.D. thesis. Solaraju-Murali (2023) developed his Ph.D. thesis on
the applicability of decadal predictions to support decision-making in the agriculture
sector, and has been the basis for the forecast product development within several
projects and contracts (presented in Chapter 6).

The research presented in this thesis has also been fostered by collaborations in
several Spanish (CLINSA) and European (C3S_34c, EUCP, FOCUS-Africa, ASPECT)
projects, as well as a contract with a private company (Decathlon). The specific tasks
developed within each project and contract are stated in Appendix A.7. Having the
opportunity to interact and collaborate with climate researchers from BSC-CNS and
other international institutions has favoured the development and learning process of
this thesis, also giving the opportunity to co-authoring some research articles listed in
Appendix A.2.
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Chapter 2

Objectives and structure

The overall objective of this Ph.D. thesis is to evaluate the quality of decadal climate
predictions and investigate their potential usefulness for climate services at annual to
decadal time scales. The forecast quality assessment allows for finding windows of op-
portunity in which climate predictions show skill or added value in comparison to refer-
ence forecasts (e.g. the climatological forecast) to be used for climate services provision
in several climate-vulnerable sectors such as agriculture, energy, water management and
health at local, regional and global levels. Besides, post-processing techniques such as
calibration and downscaling methods and multi-model approaches are applied to the
raw forecasts with the aim of improving the quality, reliability and thus usability of the
climate information for it to be applicable for policy and decision-making processes.

In particular, predictions of mean variables (e.g. near-surface air temperature and
precipitation), modes of climate variability (e.g. the AMV and PDO indices), extreme
climate indices (e.g. the most extreme days in terms of cold and hot temperatures and
heavy rainfall), drought-related indices (e.g. SPEI index) and Euro-Atlantic weather
regimes (e.g. NAO and Blocking regimes) have been evaluated to seek for opportunities
of climate services provision in several sectors, and as well as to detect model deficiencies
for further improvements in the next generation of forecast systems.

Furthermore, the impact of model initialisation towards the observed climate state is
also assessed by comparing the initialised decadal hindcasts and uninitialised historical
forcing simulations contributing to CMIP6. This comparison allows for selecting the
highest-quality climate information for each specific case, as decadal predictions and

climate projections may show a different quality depending on the particular case being
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analysed. Also, the estimation of the impact of model initialisation is needed to assess
whether yearly producing decadal predictions is worth the effort with regard to the
very high computational cost involved.

This Ph.D. thesis consists of seven chapters and four appendices. Chapter 1 intro-
duces the current knowledge on decadal climate predictions, their quality assessment
and post-processing approaches with a particular focus on their applicability to cli-
mate services. Chapter 2 presents the main objectives of the thesis and how it is
structured. Chapters 3, 4 and 5 are shown in the form of a compendium of research ar-
ticles published in some of the leading peer-reviewed journals in the field (i.e. Journal of
Climate, Journal of Geophysical Research-Atmospheres, and Environmental Research
Letters). Chapter 6 discusses the research outcomes and gives an overview of how
the research and software developed during the research conducted within this thesis
has been applied within Spanish and European projects. Chapter 7 summarises the
main conclusions and presents future research. Additionally, Appendix A provides a
list of the authored and co-authored papers, attendance to conferences and workshops,
contribution to projects and software development, and information on the research
stay conducted at the International Research Institute for Climate and Society (IRI;
https://iri.columbia.edu/) of Columbia University during the Ph.D.; and Appendices
B, C and D include the supplementary materials of the research articles shown in

Chapters 3, 4 and 5, respectively.
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Chapter 3

Multi-Model forecast quality
assessment of CMIP6 decadal

predictions

This chapter has been published as peer-reviewed article as:

Delgado-Torres, C., Donat, M. G., Gonzalez-Reviriego, N., Caron, L., Athanasiadis,
P. J., Bretonniére, P., Dunstone, N. J., Ho, A., Nicoli, D., Pankatz, K., Paxian, A.,
Pérez-Zanon, N., Cabré, M. S., Solaraju-Murali, B., Soret, A., and Doblas-Reyes, F.
J. (2022). Multi-Model forecast quality assessment of CMIP6 decadal predictions.
Journal of Climate, 35(13), 4363-4382. https://doi.org/10.1175/JCLI-D-21-0811.1

The supplementary material can be found in Appendix B.

3.1. Main objectives

s Evaluate the forecast quality of the decadal predictions contributing to
CMIP6/DCPP in predicting near-surface air temperature, precipitation, the
AMYV index and the GSAT anomalies.

= Assess whether the approach used to build a multi-model ensemble has a signifi-

cant impact on the prediction skill.
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3.2.

Compare the multi-model ensemble against the individual forecast systems to
assess the benefit and drawbacks of combining predictions from different forecast

systems.

Estimate the impact of model initialisation by comparing the skill of the DCPP

and historical forcing simulations (HIST) multi-model ensembles.

Estimate how much skill is lost for not having all the predictions available in
real-time by comparing a research multi-model ensemble (13 forecast systems)

against an operational multi-model ensemble (4 forecast systems).

Main outcomes

The DCPP multi-model ensemble is skilful in predicting near-surface air temper-

ature for the forthcoming five years over most of the global domain.

The DCPP skill in predicting precipitation is lower in comparison to temperature

and significant skill is only found over regions of Central Africa, Europe, and Asia.

The DCPP multi-model ensemble skillfully predicts both the AMV index and
the GSAT anomalies.

The four approaches used to build a large multi-model ensemble show a similar

skill for all the considered variables and indices.

The best forecast system generally provides the highest skill for a particular
location, variable and forecast period, indicating that it is the best option for a

particular climate service.

The multi-model ensemble shows higher skill than, at least, the 50% of the in-
dividual forecast systems, thus being a reasonable choice for operational forecast

generation.

There is an added value from model initialisation for predictions of temperature

and precipitation over some ocean and land regions. Also, there is added value
for the AMV index and GSAT anomalies.
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3.2 Main outcomes

= The research multi-model ensemble shows generally higher quality than the oper-
ational multi-model ensemble, although the differences are not always statistically
significant. This suggests that more real-time predictions would be beneficial and
allow selecting the best forecast system or multi-model ensemble for each specific

region, variable and forecast period.
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ABSTRACT: Decadal climate predictions are a relatively new source of climate information for interannual to decadal time
scales, which is of increasing interest for users. Forecast quality assessment is essential to identify windows of opportunity (e.g.,
variables, regions, and forecast periods) with skill that can be used to develop climate services to inform users in several sectors
and define benchmarks for improvements in forecast systems. This work evaluates the quality of multi-model forecasts of
near-surface air temperature, precipitation, Atlantic multidecadal variability index (AMV), and global near-surface air temper-
ature (GSAT) anomalies generated from all the available retrospective decadal predictions contributing to phase 6 of the Cou-
pled Model Intercomparison Project (CMIP6). The predictions generally show high skill in predicting temperature, AMV, and
GSAT, while the skill is more limited for precipitation. Different approaches for generating a multi-model forecast are com-
pared, finding small differences between them. The multi-model ensemble is also compared to the individual forecast systems.
The best system usually provides the highest skill. However, the multi-model ensemble is a reasonable choice for not having to
select the best system for each particular variable, forecast period, and region. Furthermore, the decadal predictions are com-
pared to the historical simulations to estimate the impact of initialization. An added value is found for several ocean and land
regions for temperature, AMV, and GSAT, while it is more reduced for precipitation. Moreover, the full ensemble is com-
pared to a subensemble to measure the impact of the ensemble size. Finally, the implications of these results in a climate serv-
ices context, which requires predictions issued in near-real time, are discussed.

KEYWORDS: Climate prediction; Ensembles; Forecast verification/skill; Hindcasts; Probability forecasts/models/
distribution; Decadal variability; Climate services

1. Introduction evolution. Thus, decadal forecasting provides large ensembles
of predictions (needed for sampling observational uncertainty
in the initial conditions and increasing the signal-to-noise
ratio; Smith et al. 2020), which, besides predicting the average
anomalies based on the ensemble mean, are also used to
obtain probabilistic information about the likelihood for cer-
tain event types to occur.

Murphy (1993) presented three ways to evaluate a forecast:
forecast quality (defined as the degree of correspondence
between the simulated and observed conditions), consistency
(which is based on the forecaster’s judgments and knowl-
edge), and value (the usefulness that the forecasts can provide
to increase social, economic, environmental, or other benefits
when used by users and decision-makers). Knowing the qual-
ity of a prediction is crucial for providing useful forecast prod-
ucts for specific sectors such as the agriculture (Solaraju-
Murali et al. 2021), energy (Bruno Soares et al. 2018), water
management (Paxian et al. 2019), health (Frumkin et al. 2008),

& Supplemental information related to this paper is available —marine fisheries (Tommasi et al. 2017), and insurance sectors
at the Journals Online website: https://doi.org/10.1175/JCLI-D-21- (Caron et al. 2018)’ as well as improving the current forecast

Decadal climate prediction aims to predict the evolution of
the climate system from 1 to 10 years ahead, filling the gap
between seasonal predictions and climate projections.
Although the word “decadal” may seem to only refer to a
whole decade, these predictions also include shorter time
scales, as the forecasts are typically issued for annual, multi-
annual, and multiseasonal averages (Dunstone et al. 2020;
Sospedra-Alfonso and Boer 2020), which strongly depends on
the user’s needs. The external forcings (natural and anthropo-
genic) and the internal climate variability (i.e., the slow varia-
tions of the climate system) provide predictability on these
time scales (Doblas-Reyes et al. 2013; Goddard et al. 2013;
Smith et al. 2019). However, due to chaotic characteristics of
the climate system, it is not possible to predict its exact

0811.s1. systems (Vera et al. 2010; Goddard et al. 2013; Fricker et al.
e 2013).
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available to compare against) to achieve robust results that
can be used as an estimate of how well the forecast system
may perform in simulating future climatic anomalies. Thus,
retrospective decadal forecasts (also termed hindcasts or re-
forecasts) are performed with the same forecast systems used
to predict future climate variations. For this, the forecast sys-
tems are utilized to simulate the evolution of the climate sys-
tem from a set of initial conditions based on observations,
which is referred to as forecast system initialization (Hazeleger
et al. 2013; Smith et al. 2013; Polkova et al. 2019), and incorpo-
rate information about the external forcings. These decadal
forecasts stand in contrast to retrospective climate projections
(known as historical simulations), which incorporate the same
external forcings as in the decadal forecasts, but which do not
align the internal variability of the forecast system with that of
the real world through an initialization procedure. The com-
parison between decadal hindcasts and the historical simula-
tions performed using the same climate model and ensemble
size provides an estimate of the impact of the forecast system
initialization on the quality of the predictions (Doblas-Reyes
et al. 2013; Smith et al. 2019).

Errors in the initial conditions (generated from observation-
based data) and errors in the model itself (e.g., imperfect rep-
resentation of the climate system and approximation in math-
ematical methods to solve the physics equations) can affect
the quality of the forecasts (Slingo and Palmer 2011). The
ensemble approach, which consists of performing several sim-
ulations from slightly different initial conditions or by perturb-
ing parameters of the forecast system, is commonly used to
address these limitations. Each one of these simulations is
called an ensemble member and provides a possible evolution
of the climate system. The ensemble approach also allows
obtaining an estimate of the forecast system’s confidence in its
predictions. For instance, the agreement of all members to the
same evolution of the climate systems indicates that the fore-
cast system is confident about the climate trajectory it is pre-
dicting. By contrast, a wide range of future climate evolutions
simulated by the different ensemble members reveals low
confidence. It should be noted that even in the case that all
the ensemble members were very similar (i.e., the forecast
system is confident about its simulations), the forecast may
not be of high quality due to internal errors in the forecast sys-
tem itself, such as the lack of forecast reliability (i.e., the
degree of correspondence between the forecast probability
and the mean observed frequency for a certain event; Murphy
1993).

All forecast systems suffer from systematic errors. For
example, the forecast system’s climatology may differ from
the observed one. Thus, after initializing the system with ini-
tial conditions that differ from the model’s preferred state,
the predictions will slowly evolve toward the model’s pre-
ferred state (i.e., its climatology). This is known as the model
drift (Boer et al. 2016). Similarly, the variance of the simu-
lated time series can be different from the observed one. Post-
processing techniques allow us to partially correct some of the
statistical properties of the raw ensembles of simulations,
making them more consistent with the reference dataset. Cor-
recting both the mean and variance of the predictions is a
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strategy known as simple bias adjustment. More complex
postprocessing techniques can partially correct other statisti-
cal properties of the predictions, making them more reliable
or improving the skill measured by specific metrics (different
techniques may improve some metrics but worsen others). This
procedure is often referred to as calibration (Doblas-Reyes
et al. 2005; Tippett and Barnston 2008; Weigel et al. 2009; van
Schaeybroeck and Vannitsem 2011; Eade et al. 2014; van
Schaeybroeck and Vannitsem 2015; Torralba et al. 2017; Zhao
et al. 2017; Manzanas and Gutiérrez 2018; Marcos et al. 2018;
Pasternack et al. 2018; Smith et al. 2020; Pérez-Zanén et al.
2021).

Because of the imperfections of the forecast systems, cli-
mate predictions must account for the uncertainties associated
with a particular forecast system. The multi-model ensemble
method, also known as the multisystem ensemble method,
combines predictions derived from several forecast systems.
Various studies have proven multisystem ensembles to pro-
duce more reliable predictions without compromising their
accuracy, outperforming a single forecast system of the same
ensemble size (DelSole et al. 2014) and even the best of the
single forecast systems included in the multi-model in some
cases (Hagedorn et al. 2005; Bellucci et al. 2014; Athanasiadis
et al. 2017; Hemri et al. 2020). This improvement through the
multi-model approach compared to the performance of a sin-
gle forecast system is not only due to the increase of the
ensemble size and the associated error cancellation but also
because of the signal that each forecast system adds to the
multi-model (Hagedorn et al. 2005). However, it should be
noted that not always a multi-model approach provides better
results than a single forecast system (Mishra et al. 2018).

There are many approaches to build a multi-model, but
there is no agreement on which is the best (Kirtman and
Pirani 2009; Hemri et al. 2020). For example, the simplest way
is by averaging the ensemble means from each forecast system
to create a deterministic forecast product and by averaging
the probability density functions to create a probabilistic
product. This approach is known as simple multi-model, in
which all the forecast systems have the same weight. Another
approach for building a multi-model forecast is by pooling the
members of all systems together for computing both the
ensemble mean and probabilities for the deterministic and
probabilistic products, respectively. In that case, the different
forecast systems contribute with a different weight to the
multi-model ensemble based on their ensemble size. Both
approaches are tested in this study, as in Lledo et al. (2020)
for seasonal prediction ensembles. Another possible way to
build the multi-model ensemble is by weighting the contribu-
tion of the forecast systems based on their performance. How-
ever, Mishra et al. (2018) found that an equally weighted
multi-model outperformed two different unequally weighted
multi-models in seasonal forecasting.

The aim of this paper is to assess the quality of the decadal
predictions contributing to the Component A of the Decadal
Climate Prediction Project (DCPP-A; Boer et al. 2016), part
of phase 6 of the Coupled Model Intercomparison Project
(CMIP6; Eyring et al. 2016), assessing the sensitivity of the
results to different ways of constructing a multi-model
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TABLE 1. Forecast systems contributing to the DCPP-A component of the CMIP6 and their specifications (available simulations at
the time of the study). The spatial resolution is shown for the atmospheric grid as degrees latitude X degrees longitude.

DCPP HIST Spatial Initialization

Forecast system Institution members members resolution month Reference
BCC-CSM2-MR BCC 8 3 1.125° x 1.125° January Wu et al. (2019)
CanESM5 CCCma 20 40 2.8° X 2.8° January Swart et al. (2019)
CESM1-1-CAM5-CMIP5 NCAR 40 40 0.9° X 1.25° November Yeager et al. (2018)
CMCC-CM2-SR5 CMCC 10 1 0.9° X 1.25° November Cherchi et al. (2019)
EC-Earth3-il BSC 10 10 0.7° X 0.7° November Bilbao et al. (2021)
EC-Earth3-i2 SMHI/DMI 5 — 0.7° X 0.7° November Tian et al. (2021)
HadGEM3-GC3.1-MM MOHC 10 4 0.55° X 0.83° November Sellar et al. (2020)
IPSL-CM6A-LR IPSL 10 32 1.25° x 2.5° January Boucher et al. (2020)
MIROC6 MIROC 10 10 14° x 1.4° November Tatebe et al. (2019)
MPI-ESM1.2-HR DWD 10 10 0.9° X 0.9° November Miiller et al. (2018)
MPI-ESM1.2-LR DWD 16 10 1.9° X 1.9° November Mauritsen et al. (2019)
MRI-ESM2-0 MRI 10 5 1.125° X 1.125° November Yukimoto et al. (2019)
NorCPM1 NCC 10 30 1.9° X 2.5° October Bethke et al. (2021)

ensemble, and also estimating the benefit of using such a
multi-model ensemble instead of individual forecast systems.
In addition, the impact that the system initialization and the
number of systems used to build a multi-model forecast have
on the skill is evaluated.

The paper is structured as follows. Section 2 presents the
simulations and the observation-based data used in this study.
Section 3 describes the postprocessing techniques, the defini-
tion of the indices, and the metrics used to evaluate the qual-
ity of the forecasts. Section 4 presents and discusses the skill
of different multi-model approaches (section 4a), the compar-
ison between the skill obtained with the multi-model ensem-
ble and the individual forecast systems (section 4b), the
impact of the system initialization (section 4c), and the impact
that the number of forecast systems have on the quality of the
multi-model forecast products (section 4d). Finally, conclu-
sions are drawn in section 5.

2. Data

The available decadal predictions from the forecast systems
contributing to the DCPP-A component of the CMIP6 have
been used in this study. DCPP-A includes the production and
analysis of a large multi-model ensemble of hindcasts to assess
and understand the decadal prediction skill. It serves as a basis
for improving future decadal predictions and for estimating the
quality of potential operational forecast production on annual
to decadal time scales, which is included in Component B of
DCPP (DCPP-B; Boer et al. 2016). In addition to the decadal
predictions, the CMIP6 historical simulations performed with
the same forecast systems have been used for comparison and
to estimate the impact of initialization. The coupled climate
forecast systems are the BCC-CSM2-MR, CanESMS5, CESM1-
1-CAMS5-CMIP5, CMCC-CM2-SR5, EC-Earth3 [using both
full-field (i1) and anomaly (i2) initialization], HadGEM3-
GC3.1-MM, IPSL-CM6A-LR, MIROC6, MPI-ESM1.2-HR,
MPI-ESM1.2-LR, MRI-ESM2-0, and NorCPM1, which make
a total of 169 decadal predictions (DCPP) and 195 historical
simulations (HIST). The main information about these forecast
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systems, including their ensemble size (number of members), is
shown in Table 1.

In this study, the predictions for the average of years 1 to
5 have been evaluated for the global domain. Since the fore-
cast systems are initialized in different calendar months (see
Table 1), the first few forecast months have been discarded
for some of the forecast systems in order to restrict the analy-
sis to full calendar years (i.e., from January to December).
More precisely, the first two forecast months have been dis-
carded for the systems initialized in November, and the first
three forecast months have been discarded for the system ini-
tialized in October. Both the decadal predictions and the his-
torical simulations have been evaluated over the 1961-2014
period. The evaluation period finishes in 2014 because the his-
torical simulations are run until that year. Hence, start dates
from 1960 to 2009 have been used for the evaluation of the
decadal predictions in this study.

Monthly means of three climate variables have been used
to evaluate the forecasts: near-surface air temperature (tas),
precipitation (pr), and sea surface temperature (tos). To take
into account the observational uncertainty, two observation-
based datasets per variable have been used as reference for
the assessment. The first reference dataset listed in Table 2
for each variable has been used for map figures in the main
text (the ones marked with an asterisk), while the maps
obtained with the second reference dataset are shown in the
online supplemental material. In the case of figures displaying
the temporal evolution of the indices, the results obtained
using both reference datasets are shown.

3. Methods

The forecast quality assessment has been performed with
the anomalies of the considered variables to overcome the
systematic errors that arise because the climatologies of the
forecast systems and the reference datasets are not the same
(a problem directly related to mean model biases). The anom-
alies are computed with respect to the respective 1981-2010
climatology (reference period used by the WMO Lead Centre
for Annual-to-Decadal Climate Prediction; https://hadleyserver.
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TABLE 2. Reference datasets used for the forecast quality assessment for each variable. The spatial resolution is shown for the
atmospheric grid as degrees latitude X degrees longitude. The datasets marked with an asterisk correspond to those used for the map

figures in the main text.

Spatial
Variable Dataset Institution Type resolution Reference

Near-surface air temperature (tas) GHCNv4* NOAA Gridded observations 5° X 5° Menne et al. (2018)
Near-surface air temperature (tas) JRA-55 IMA Reanalysis 1.25° X 1.25° Kobayashi et al. (2015)
Precipitation (pr) GPCC* DWD Gridded observations 1° x 1° Schneider et al. (2018)
Precipitation (pr) JRA-55 IMA Reanalysis 1.25° X 1.25° Kobayashi et al. (2015)
Sea surface temperature (tos) GISTEMPv4 NOAA/NASA Gridded observations 2° % 2° Lenssen et al. (2019)
Sea surface temperature (tos) HadCRUT4 UEA/MOHC  Gridded observations 5% 5° Morice et al. (2012)

metoffice.gov.uk/wmolc/). The results obtained using the whole
period for computing the climatology were found to be overall
very similar (not shown). For the decadal predictions, monthly
lead-year-dependent climatologies have been computed so as to
account for the model drift, occurring after initialization, toward
the respective climatology (see appendix E of Boer et al. 2016).
The use of a lead-time-dependent climatology intrinsically cor-
rects the bias and drift of the forecast system’s climatology. The
same historical period (1981-2010) has also been used to com-
pute the thresholds between the three equiprobable categories
(i.e., below lower tercile, between lower and upper terciles, and
above upper tercile) for the probabilistic forecast products.
Once the three equiprobable categories are computed, the
probabilistic forecast products are created as the percentage of
ensemble members that corresponds to each category at each
time step. Therefore, the probabilistic products are based on
three percentages at each time step, which sum up to 100%.

The calibration method proposed in Doblas-Reyes et al.
(2005) has been used to assess the impact of calibration on
the quality of the products. This calibration method is based
on an adjustment and variance inflation of the predictions. It
aims at correcting the bias, the overall forecast variance, and the
ensemble spread, increasing the reliability of the forecast. The
calibration has been performed in leave-one-out cross-validation
mode (i.e., excluding the year in which the prediction is made),
as it would be for real-time forecasting (Doblas-Reyes et al.
2005; Torralba et al. 2017; Pasternack et al. 2018).

The forecast systems and reference datasets have different
spatial resolutions (see Tables 1 and 2). Hence, it was neces-
sary to interpolate the data to a common spatial grid before
performing the quality assessment. To avoid interpolating to
higher resolutions, for every specific variable the spatial grid
chosen was the coarsest grid among the forecast systems and
the reference dataset used for the evaluation. The coarsest
grid among the forecast systems is the one from the Can-
ESMS5 system (gridpoint resolution: 128 longitude X 64 lati-
tude). Thus, the simulated and observed data have been
interpolated to the CanESMS5’s grid when it is coarser than
the reference dataset’s grid. Otherwise, the simulated and
observed data have been interpolated to the reference data-
set’s grid. Consequently, a different grid has been selected
depending on the reference dataset used for each variable.

While decadal predictions, historical simulations and re-
analyses typically provide data for the entire globe, observa-
tional datasets have missing data for certain regions and

periods. When this occurred, all the simulations were masked
during the forecast quality assessment in order to have a con-
sistent coverage with the reference datasets (Cowtan et al.
2015). This masking has been applied over the grid points
for which at least one missing monthly value was found dur-
ing the evaluation period.

The global surface air temperature (GSAT) anomaly has
been computed as the area-weighted averaged near-surface
air temperature anomalies over the entire globe. In the case
of the GSAT computed with the GHCNv4 dataset, which has
missing values, the GSAT has been computed as the average
of the northern and Southern Hemisphere averages. To give
the same importance to both hemispheres (the Northern
Hemisphere would dominate otherwise, as it has fewer miss-
ing values than the Southern Hemisphere). The Atlantic mul-
tidecadal variability (AMV) index (Trenberth and Shea 2006)
has been computed as the difference between the area-
weighted averaged sea surface temperature anomalies over
the North Atlantic region (0°-60°N, 280°-360°E) and those
over all longitudes in the 60°S—-60°N band, as in Doblas-Reyes
et al. (2013). The computation of these indices has been per-
formed in the original grid for both the simulations and refe-
rence datasets.

Four different multi-model approaches have been tested in
this study in order to assess how the construction of a multi-
model product affects the quality of the forecast, and to esti-
mate the advantages and shortcomings of combining simula-
tions from several forecast systems instead of using only one
of them. The various multi-model ensembles were built as
follows:

e Multi-model-1 was built by averaging the individual ensem-
ble means of the different forecast systems when creating
deterministic products and by averaging the probabilities
computed from the individual forecast systems in the case
of probabilistic products. This approach is known as the
simple multi-model ensemble, and all the forecast systems
are equally weighted.

e Multi-model-2 was built by pooling all members from all
the forecast systems together in a single distribution. This
approach was followed for creating both deterministic and
probabilistic products from this unified distribution. There-
fore, the weight of each forecast system is proportional to
the number of members it contributes to the ensemble (see
Table 1).
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Multi-model-1-calib was built by using the same approach
as multi-model-1 but by previously calibrating the simula-
tions with the method used in Doblas-Reyes et al. (2005) in
leave-one-out cross-validation mode independently for
each forecast system.

Multi-model-2-calib was built by using the same approach
as multi-model-2 but by previously calibrating the simula-
tions with the method used in Doblas-Reyes et al. (2005) in
leave-one-out cross-validation mode independently for
each forecast system.

In this study, the anomaly correlation coefficient (ACC;
Wilks 2011), the root-mean-square error skill score (RMSSS;
Murphy 1988), and the ranked probability skill score (RPSS;
Wilks 2011) have been used to evaluate the skill of the fore-
cast systems. The ACC, which measures the linear relation-
ship between two time series, has been used for evaluating
the quality of the deterministic products. To do so, the ACC
has been computed, at each grid point, between the simulated
and observed anomalies’ time series. The ACC ranges from
—1to 1. A value of 1 indicates a perfect forecast, while values
near zero or negative indicate a forecast with no skill. The
RMSSS has also been used to evaluate the quality of the
deterministic forecasts. The RMSSS is based on the root-
mean-square error (RMSE; Murphy 1988) and estimates the
improvement or worsening in the magnitude of the forecast’s
errors compared to a reference forecast’s errors. If the
RMSSS is greater than zero, it indicates that the skill of the
forecasts is higher than that of the reference forecast. In con-
trast, negative skill score values mean that the reference fore-
cast is more skillful. The RPSS for three categories (the
lower, middle, and upper terciles) has been used to evaluate
the probabilistic products. The RPSS is based on the ranked
probability score (RPS; Wilks 2011) and provides a measure
of the improvement (or lack thereof) of the probabilistic fore-
cast with respect to a reference forecast. Analogous to the
RMSSS, if the RPSS is positive (negative), it indicates that
the skill of the forecasts is higher (lower) than that of the ref-
erence forecast. The ACC and RPSS are insensitive to biases
in mean and variance, while the RMSSS is sensitive and
accounts for the signal’s amplitude.

Four different reference forecasts have been used as bench-
marks to compute the RMSSS and RPSS: the climatological
forecast (defined as the equiprobable forecast; i.e., probability
of 33.33% for each tercile category) is used when assessing
the quality of the multi-model approaches; the individual
forecast systems are used to assess the benefits and drawbacks
of using a multi-model forecast; the historical simulations
have been used to estimate the impact of the system initializa-
tion; and, finally, a smaller number of simulations has been
compared to the complete multi-model ensemble to measure
the impact that the ensemble size has on the multi-model
skill.

The statistical significance has been tested to check for sam-
pling errors and exclude random effects at the 95% confidence
level. For the ACC, a two-sided ¢ test has been used to assess
whether the value is significantly different from zero (Wilks
2011). For the ACC differences, the Fisher’s z-transformed
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correlations divided by the standard error of the difference
have been used (Wilks 2011). An effective number of degrees
of freedom has been used to avoid overestimating the actual
significance of the ACC and ACC differences due to the auto-
correlation of the time series (von Storch and Zwiers 1999). It
should be noted that the traditional significance test used for
the ACC differences has been shown to be biased toward
indicating no difference in skill (DelSole and Tippett 2014),
making the test too conservative and the threshold to reach
the significance higher. The significance of the RMSSS and
RPSS has been assessed by applying the random walk test
(DelSole and Tippett 2016) to the RMSE and RPS time
series, respectively, in order to test whether the number of
times that the forecast is better or worse than the reference
forecast is significant at the 95% confidence level. Therefore,
although the skill score is small (or large), the test considers
one forecast significantly better (or not) than a reference fore-
cast depending on the number of times that one forecast has
provided better predictions than the other forecast, regardless
of the actual skill score value.

When measuring the impact of the forecast system initiali-
zation, the residual correlation has also been used (in addition
to the ACC differences, RMSSS, and RPSS). The residual
correlation aims to assess whether the decadal predictions
capture any of the observed variability that is not already cap-
tured by the historical simulations (Smith et al. 2019; Borchert
et al. 2021; Mahmood et al. 2021). The procedure is as follows:
the residuals of the decadal predictions’ ensemble mean and
observations are computed by linearly regressing out the his-
torical simulations’ ensemble mean from the decadal predic-
tions’ ensemble mean and observations, respectively. Then,
the residual correlation is computed as the correlation
between both residuals. Positive values of the residual corre-
lation indicate that the decadal predictions capture more
observed variability than the historical simulations, while neg-
ative values mean that the historical simulations capture
more. The significance of the residual correlation is computed
as the ACC significance, also taking into account the effective
degrees of freedom.

4. Results and discussion
a. Skill and comparison of multi-model approaches

In this section, the quality of the DCPP multi-model ensem-
ble predictions is evaluated for near-surface air temperature,
precipitation, the AMV index, and the GSAT anomalies.
Also, it is assessed whether there are differences in the skill
between the different approaches to construct a multi-model.

Maps of ACC obtained for the four multi-model
approaches show, in general, similar skill and significance for
temperature (first column in Fig. 1; see Fig. S1 in the online
supplemental material for ACC differences between the
multi-model approaches). For precipitation, lower skill and
smaller areas with significant positive skill are found for the
calibrated multi-models compared to the noncalibrated (cf.
Figs. 1f,h with Figs. 1b,d, respectively). The lower skill of the
calibrated multi-models in predicting precipitation can also be
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FIG. 1. Maps of ACC obtained with the different multi-model approaches (see section 3) for
the forecast years 1-5 for the (left) surface air temperature and (right) precipitation. The ACC
has been computed over the 1961-2014 period (start dates: 1960-2009) for each individual grid
point. The reference period for the computation of anomalies is 1981-2010. The reference data-
sets used for the near-surface air temperature and precipitation are the GHCNv4 and the GPCC
datasets, respectively. Crosses indicate that the values are not statistically significant at the 95%
level using a two-sided ¢ test accounting for autocorrelation.

seen in Figs. S1f and S1h, where the red colors indicate a bet-
ter performance of the noncalibrated multi-model, especially
over regions of North America and North Africa, where the
differences are significant. It should be noted that the main
differences between the multi-model-1 and multi-model-1-
calib compared to the multi-model-2 and multi-model-2-calib
are due to the different ensemble sizes (the forecast systems
with a larger ensemble size contribute more to the latter

30

ones). For temperature, the ACC is generally high and signifi-
cant. However, there are exceptions like the northeast Pacific
Ocean, areas of the South Atlantic Ocean, western Canada,
northern Australia, and northern Asia. A similar pattern of
the ACC map was found by Smith et al. (2019) using the
CMIPS (Taylor et al. 2012) multi-model ensemble for the
forecast years 2-9. For precipitation, the significant positive
ACC is limited to some regions of central and northern
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Europe, western and central Africa, and northern and cen-
tral Asia [results in line with Sheen et al. (2017), Smith et al.
(2019), and Solaraju-Murali et al. (2019)]. In addition, the
multi-model ACC is significantly negative for precipitation
in some areas, especially for the calibrated multi-model
forecasts, which may be due to cross-validation and to the
statistical assumptions of the calibration method (e.g., nor-
mal distribution). Also, the calibration method is designed
to decrease the forecast error and improve the reliability of
the probabilistic forecasts, so the reduction in ACC does not
come as a surprise. However, most of the regions with signifi-
cant skill are common between the four different approaches.

When evaluating the simulations against the second refer-
ence dataset (Fig. S2), there is a general agreement with
results for temperature in Fig. 1 in the Northern Hemisphere,
where there are high-quality observations. However, discrep-
ancies are found over the Arabian Sea, the Philippine Sea, the
Indian Peninsula, and the western part of the North Atlantic
Ocean, where the correlation obtained against the JRA-55 is
not significantly positive (whereas it is significant when using
the GHCNv4 as the reference dataset). The results over the
Southern Hemisphere are more difficult to compare due to
the low coverage of the GHCNv4 dataset. However, for the
regions that are covered by both reference datasets, a lower
agreement has been found between ACC values in Fig. 1 and
Fig. S2 than the one obtained for the Northern Hemisphere,
finding a general lower correlation when using the JRA-55
(e.g., over the southern African and Australian coasts). This
might be indicative of the quality of reanalyses being affected
by fewer observations available for assimilation in the South-
ern Hemisphere. For precipitation, there are high discrepancies
over all the continental regions (the observational uncertainty
cannot be addressed over the oceans since the GPCC dataset
only provides data over land regions). The only regions where
there is an agreement between the ACC values obtained with
both reference datasets are areas over Greenland, parts of cen-
tral and northern Asia, and western Africa.

Maps of RMSSS and RPSS (Figs. 2 and 3, respectively)
show similar skill (and significance) for the different multi-
model approaches, with spatial patterns similar to those
obtained for the ACC (Fig. 1). Also, the patterns of the maps
of both skill scores are very similar between them, being the
RPSS generally higher than the RMSSS. For temperature, sig-
nificant positive skill scores (which indicates an added value
of the decadal predictions with respect to the climatological
forecast) are found, in general, over the same areas as those
where ACC was significantly positive. Exceptions for the
RPSS are northern Asia (where there is a larger number of
significant grid points than in the ACC maps) and the south-
ern part of the Indian Ocean (where the RPSS is not signifi-
cant). In the Pacific Ocean, there are some grid points where
the climatological forecast is significantly better than the
multi-model forecasts when measured with both the RMSSS
and RPSS. For precipitation, the skill score values are much
lower than for temperature, only being significantly positive
over limited regions of Africa and Asia, indicating that there
is not a significant improvement of the decadal predictions
with respect to the climatological forecast over most of the

DELGADO-TORRES ET AL.

31

4369

regions. As for temperature, there are also grid points where
the climatological forecast is significantly better than the
multi-models. Besides, there are no high differences between
the RMSSS and RPSS obtained with the first two multi-model
approaches (i.e., equally weighted and pooling multi-models;
Figs. S3 and S4). Lled¢ et al. (2020) also found that these two
multi-model approaches provide almost identical perfor-
mance in predicting the Euro-Atlantic teleconnection indices
such as the North Atlantic Oscillation (NAO; Wanner et al.
2001; Athanasiadis et al. 2017) in seasonal forecasting. With
respect to the calibrated multi-model ensembles, the calibra-
tion improves the temperature forecast skill over several
areas when measured by the RMSSS (Figs. S3e,g). In contrast,
it does not improve the skill when measured by the ACC and
RPSS (Figs. S1 and S4).

Comparing the RMSSS and RPSS maps with those
obtained using the second reference dataset (Figs. S5 and S6,
respectively), there is a general agreement for temperature
over the continental areas of the Northern Hemisphere, while
large differences are found in regions like South America,
southern Africa, the Indian Ocean, the western part of the
Pacific Ocean, and Australia. For precipitation, large differences
are found between the skill estimates with the different refer-
ence datasets (only the continental areas are assessed since the
GPCC dataset does not provide data over the oceans), espe-
cially over Africa, Europe, and Asia, where the climatological
forecast is significantly better than the decadal predictions over
most of the regions when using the JRA-55, matching the differ-
ences seen with the ACC when using both reference datasets.

As done for temperature and precipitation, the deterministic
and probabilistic skills in predicting the AMV and GSAT vari-
ability are also assessed (Fig. 4). The results obtained with the
DCPP multi-model forecasts show a significant positive ACC,
RMSSS, and RPSS for both indices in all the multi-model
approaches. The main difference between the approaches is the
ensemble spread, which is higher for the multi-model-2 and
multi-model-2-calib as they are built with all the members
instead of the ensemble means. Besides, the ensemble spread is
adjusted in the calibrated multi-models, increasing the reliability
of the products and matching the spread with the mean error of
the forecasts (Doblas-Reyes et al. 2005), although that metric is
not considered in this study. The HIST multi-model ensemble,
which also shows significant skill in predicting both indices, is
compared to the DCPP multi-model in section 4c to estimate
the impact of the system initialization.

The skillful prediction of the AMV index by the decadal pre-
dictions is in agreement with previous results in the literature
(e.g., Garcia-Serrano et al. 2015; Si et al. 2019; Bilbao et al.
2021). Regarding the GSAT time series, although the positive
skill is significant, there is an overestimation of the warming
during the most recent period after about year 2000 when
observed temperatures show a so-called hiatus (e.g., Fyfe et al.
2016). This overestimation has already been documented for
both the CMIP5 and CMIP6 simulations (e.g., Douville et al.
2015; Papalexiou et al. 2020; Tokarska et al. 2020; Wang et al.
2021). This overestimation is partially corrected in the cali-
brated multi-models, showing a trend more similar to observa-
tions (Figs. 4£h). On the other hand, the cost of applying the
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FIG. 2. Maps of RMSSS obtained with the different multi-model approaches (see section 3)
for the forecast years 1-5 for (left) near-surface air temperature and (right) precipitation using
the climatology as the reference forecast. The skill scores have been computed over the
1961-2014 period (start dates: 1960-2009). The reference period for the computation of anoma-
lies is 1981-2010. The reference datasets used for the surface air temperature and precipitation
are the GHCNv4 and the GPCC datasets, respectively. Crosses indicate that the decadal predic-
tions do not provide significantly better or worse predictions than the climatological forecast at
the 95% confidence level based on a random walk test.

calibration is a worse forecast in the 1960s and 1970s by the cal-
ibrated multi-models, when the error is higher.

the ensemble means (probabilities) from the individual fore-
cast systems for the deterministic (probabilistic) forecast
products. The reason for choosing this approach is that all the
forecast systems are equally weighted, while the forecast sys-
tems with a larger ensemble size have more weight in the
multi-model-2 and multi-model-2-calib approaches. Also, the
multi-model-1 is chosen instead of the multi-model-1-calib for

b. Multi-model ensemble compared to individual
forecast systems

For the subsequent analyses, only the multi-model-1
approach is used. This approach has been built by averaging
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FIG. 3. Maps of RPSS for three categories obtained with the different multi-model approaches
(see section 3) for the forecast years 1-5 for (left) near-surface air temperature and (right) pre-
cipitation using the climatology as the reference forecast. The skill scores have been computed
over the 1961-2014 period (start dates: 1960-2009). The reference period for the computation of
the thresholds between categories is 1981-2010. The reference datasets used for the surface air
temperature and precipitation are the GHCNv4 and the GPCC datasets, respectively. Crosses
indicate that the decadal predictions do not provide significantly better or worse predictions than
the climatological forecast at the 95% confidence level based on a random walk test.

a fair comparison with the individual forecast systems, which
have not been calibrated. Hence, hereafter the multi-model-1
approach is referred to simply as the multi-model.

To assess the advantages and disadvantages of using a
multi-model ensemble instead of the simulations from a single
forecast system, the skill estimates for the deterministic and
probabilistic forecast have been computed for all the systems
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for temperature and precipitation (Figs. S7-S18). Then, the
multi-model is compared to the forecast systems that provide
the maximum and median skill values for each grid point
(Fig. 5). For the comparison, the ACC differences between
the multi-model and the forecast systems that present the
maximum and the median skill are directly computed for each
grid point. Similarly, the RMSSS and RPSS of the multi-
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FIG. 4. (left) AMV index and (right) GSAT anomalies obtained with the multi-
model approaches for the DCPP (forecast years 1-5) and HIST ensembles. The his-
torical simulations are shown in blue (dark shading contains the values between the
25th and 75th percentiles, while light shading contains the values between those per-
centiles and the minimum/maximum values) and the decadal predictions in red
(boxes contain the values between the 25th and 75th percentiles, while the whiskers
contain the values between those percentiles and the minimum/maximum values). In
the legend, the ACC, RMSSS, and RPSS are shown for both decadal predictions (in
red) and historical simulations (in blue) over 19612014 (start dates: 1960-2009). The
reference period for the computation of anomalies and thresholds between categories
is 1981-2010. The reference datasets used for the AMV index are the GISTEMPv4
(gray solid lines) and the HadCRUT4 (gray dashed lines), while JRA-55 (gray solid
lines) and GHCNV4 (gray dashed lines) are used for the GSAT anomalies. The skill
measures are shown for both reference datasets in the legend of each panel: the first
value corresponds to the GISTEMPv4 (JRA-55) dataset and the second value to the
HadCRUT4 (GHCNv4) dataset for the AMV (GSAT). A star next to an ACC esti-
mate indicates that the skill is statistically significant at the 95% confidence level using
a two-sided ¢ test accounting for autocorrelation, while a star next to an RMSSS or
RPSS value indicates that the simulations provide significantly better or worse predic-
tions than the climatological forecast at the 95% confidence level based on a random

walk test.
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FIG. 5. (left) Differences between the ACC obtained with the multi-model and the forecast systems that provide the maximum and
median skill, (center) RMSSS of the multi-model using the forecast systems that present the maximum and median skill score as the refer-
ence forecast, and (right) RPSS obtained with the multi-model using the forecast systems that provide the maximum and median skill
score as the reference forecast. The results are shown for the (a)—(f) near-surface air temperature and (g)—(1) precipitation for the forecast
years 1-5. The skill estimates have been computed over the 1961-2014 period (start dates: 1960-2009). The reference period for the com-
putation of the climatology and thresholds between categories is 1981-2010. The reference datasets used for the near-surface air tempera-
ture and precipitation are, respectively, the GHCNv4 and the GPCC datasets. For the ACC differences, crosses indicate that the differ-
ence is not statistically significant at the 95% confidence level using the two-sided ¢ test accounting for autocorrelation. For the RMSSS
and RPSS, crosses indicate that the multi-model does not provide significantly better or worse predictions than the best/median forecast

system at the 95% confidence level based on a random walk test.

model are calculated using the forecast systems that present
the maximum and the median skill as the reference forecasts
for each grid point. The aim of this comparison is twofold. On
the one hand, comparing the multi-model against the forecast
system that provides the highest skill is useful to estimate how
much skill is lost when using a multi-model (whose skill may
be degraded due to a lower skill of some systems) instead of
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the best forecast system. On the other hand, the analogous
comparison using the forecast system that provides the
median skill informs on whether the multi-model provides
better predictions than, at least, 50% of the forecast systems.
In such a case, using a multi-model might be a worthwhile
choice because the forecast products could always be gener-
ated using the multi-model ensemble, without having to select
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the best system for each particular region, forecast period,
and variable.

The comparison of the deterministic skill for temperature
measured with the ACC (Fig. 5a) shows that the maximum
value obtained with the individual forecast systems is similar
to that obtained with the multi-model over most of the
regions, except for the eastern tropical Pacific Ocean and
some regions of the Southern Ocean (only visible with the
second reference dataset in Fig. S19a), where the negative dif-
ferences are the largest (i.e., where the best single system is
better than the multi-model). For the case of the eastern trop-
ical Pacific Ocean, the negative differences are due to the
higher skill present in the MPI-ESM1.2-LR system than in the
multi-model ensemble (Figs. S7I and S7a, respectively) over
this region. The skill of this forecast system over the eastern
tropical Pacific region indicates that it may capture some sea
surface temperature variability at lower frequencies than
ENSO. For instance, it might partially capture variations
related to the interdecadal Pacific oscillation (IPO; Power
et al. 1999), which varies at longer time scales. The map is
noisier when using the RMSSS for comparing the multi-model
and the best forecast system (Fig. 5b). There are some regions
where the multi-model performs better than the best forecast
system. However, they are very limited (the highest positive
skill scores are found over a few points in the North Atlantic
Ocean). In contrast, the best forecast system outperforms the
multi-model over most of the globe, finding significant nega-
tive skill scores over large areas like regions of central Africa,
South America, the Arctic Ocean, and the Pacific Ocean.
Regarding the comparison of the probabilistic skill (Fig. Sc),
the best system is significantly better than the multi-model
over several regions, especially over South America, Africa,
and southern Asia. For precipitation, larger negative ACC
differences are found over most regions of the globe, indicat-
ing a better performance of the best forecast system (Fig. 5d),
particularly when using the second reference dataset (Fig.
S$19d). This better performance of the best forecast system is
less evident when estimated with the RMSSS and RPSS, with
the skill scores close to zero. Some exceptions are central
Africa and a few grid points over North America and Asia,
where there are significant negative values of both skill
scores.

Although the best single forecast system provides higher
skill than the multi-model over most of the regions, it is worth
keeping in mind that the best system would have to be deter-
mined for each particular region, variable, and forecast period
to reach the highest possible skill, complicating the generation
of forecast products. Besides, the skill estimates obtained with
the multi-model are higher than those obtained with the
median skill of the single forecast systems over most of the
globe for both variables (although only a few areas show a sig-
nificant ACC difference or RPSS). For temperature, the areas
with the largest benefit of using a multi-model forecast com-
pared to the median of the single systems are the North
Atlantic Ocean, central Africa, the Indian Ocean, and the
Indian Peninsula for the deterministic products (Figs. 5d.e).
The ACC differences were not found to be statistically signifi-
cant, whereas the positive RMSSS are. Concerning the
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probabilistic products, the same regions as for RMSSS show
an added value of using the multi-model, although with few
points that present significance (Fig. 5f). For precipitation, the
sign of the ACC differences highly depends on the region,
and differences are significant only over a few marginal points
(Fig. 5j). The RMSSS and RPSS are positive almost every-
where (although with the significance limited to a few points),
indicating a higher skill of the multi-model ensemble
(Figs. 5k,1). Then, although the best forecast system provides
higher skill than the multi-model over most of the regions, the
multi-model presents higher skill than the median of the sin-
gle systems, meaning that there is more than 50% of probabil-
ity of choosing worse predictions if a random individual
system is used, and without the need of having to select the
best system for each particular region, forecast period, and var-
iable (Mishra et al. 2018; Hemri et al. 2020). On the other
hand, in a climate services context, the best forecast system or
multi-model approach could be selected to issue the best possi-
ble predictions over a particular region, variable and forecast
period (Fig. S20). For instance, the multi-model precipitation
forecast for the Arabian Peninsula is worse than the median
value obtained with the individual systems (as shown for the
ACC differences in Fig. 5j). Thus, when creating a climate ser-
vice for this region, it would be worth selecting the forecast sys-
tem that presents the highest skill or creating a multi-model
forecast from a subsample of systems if one could be shown to
have higher skill than this single system.

The comparison between the multi-model and the individ-
ual forecast systems has also been performed for the AMV
and GSAT time series. For the AMV, most of the forecast
systems present significantly positive ACC, RMSSS, and
RPSS values (Fig. S21) with the exceptions of the BCC-
CSM2-MR, CanESMS, and MPI-ESM1.2-LR systems. For
the GSAT anomalies, all the forecast systems show signifi-
cantly positive ACC and RPSS (Fig. S22). Still, similar to the
multi-model approaches (Fig. 4), all the forecast systems over-
estimate the warming trend during the most recent part of the
evaluation period.

To compare the skill of the multi-model and the individual
forecast systems, the ACC differences between the multi-
model and the single systems and the RMSSS and RPSS of
the multi-model using the forecast systems as the reference
forecast have been computed and displayed in Fig. 6. For the
AMV, the ACC differences, RMSSS and RPSS are positive,
indicating a better performance of the multi-model (except
the RMSSS obtained using the MRI-ESM2-0 system as refer-
ence, which is negative). However, the comparison is only
significant with respect to the BCC-CSM2-MR, CanESMS5,
and MPI-ESM1.2-LR systems for the ACC difference;
with respect to BCC-CSM2-MR, CanESMS5, EC-Earth3-il,
IPSL-CM6A-LR, MPI-ESM1.2-LR, and NorCPM1 for the
RMSSS; and with respect to the MRI-ESM2-0 system for
the RPSS. The same results are found when using the second
reference dataset (Fig. S23), except for the RMSSS, which is
only significant when using the BCC-CSM2-MR, CanESMS5,
and MPI-ESM1.2-LR systems as reference forecasts. For the
GSAT, low (and not significant) ACC differences are found
between the multi-model and the forecast systems. The
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FIG. 6. Differences between the ACC obtained with the multi-model and the individual fore-
cast systems, and RMSSS and RPSS obtained with the multi-model using the forecast systems as
the reference forecasts. The differences and skill scores are shown for the AMV and GSAT indi-
ces for the forecast years 1-5. The skill estimates have been computed over the 1961-2014 period
(start dates: 1960-2009). The reference period for the computation of the climatology and
thresholds between categories is 1981-2010. The reference datasets used for the AMV and
GSAT indices are, respectively, the GISTEMPv4 and JRA-55 datasets. For the ACC, dots indi-
cate that the differences are statistically significant at the 95% level using a two-sided ¢ test
accounting for autocorrelation. For the RMSSS and RPSS, dots indicate that the multi-model
provides significantly better or worse predictions than the forecast systems at the 95% confi-

dence level based on a random walk test.

RMSSS shows an added value of using a multi-model instead
of any individual systems, which is significant when using the
EC-Earth3-il, EC-Earth3-i2, HadGEM3-GC3.1-MM, IPSL-
CM6A-LR, MIROCS6, and MPI-ESM1.2-HR systems as refer-
ence. The comparison of the probabilistic skill shows that the
multi-model is significantly better than the EC-Earth3-i2 sys-
tem, while it is significantly worse than the IPSL-CM6A-LR
and MIROCS6 systems. The same results are found for the ACC
differences and RPSS when using the second reference data-
set (Fig. S23). For the RMSSS, the skill scores are significant
for the CESM1-1-CAMS5-CMIP5 (negative in this case; i.e.,
outperforming the multi-model), CMCC-CM2-SR5, EC-Earth3-
i2, HadGEM3-G(C3.1-MM, and IPSL-CM6A-LR systems. The
lack of significance for the ACC differences may be due to the
low effective number of degrees of freedom that the time
series have due to their high autocorrelation (10.7 and 5.1 for
the observed AMV and GSAT, respectively). It should be
noted that the random walk test (used to test the RMSSS and
RPSS significance) is based on the significance of the number
of years that one forecast overcomes the reference forecast.
Thus, although the RMSSS and RPSS are small (or large), the
test considers them as significant (or not) depending on the num-
ber of years that one forecast provides better predictions than
the other one, regardless of the actual value of the skill score.

c. Impact of forecast system initialization

The multi-model ensemble built with decadal predictions is
compared to the one built with historical simulations. This
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comparison is made in order to assess the impact of the fore-
cast system initialization toward the observed climate state,
while the forcings are the same between the DCPP and HIST
multi-models. Figure 7 shows the ACC differences between
the decadal predictions and the historical simulations, the
residual ACC (i.e., the correlation between the residuals of
the DCPP ensemble mean and observations once the HIST
ensemble mean has been linearly regressed out from each;
Smith et al. 2019), and the RMSSS and RPSS of the decadal
predictions using the historical simulations as the refer-
ence forecast for the near-surface air temperature and
precipitation.

For the near-surface air temperature, the differences
between the ACC obtained with DCPP and HIST do not
show a significant impact due to initialization (Fig. 7a), except
for some areas over the Southern Ocean (only visible when
using the JRA-55 as the reference dataset; Fig. S24a).
Although without significance, the North Atlantic Subpolar
Gyre region also shows an improvement after initialization.
The initialization in this region has been shown to be of high
importance for maximizing skill in the area (e.g., Yeager et al.
2018). The low ACC differences may be explained by the
high ACC that the historical simulations already show in pre-
dicting the near-surface temperature. Note that the signifi-
cance of the ACC differences may be underestimated due
to the bias of the traditional significance test toward showing
no significant differences in skill when evaluated against
the same reference dataset (DelSole and Tippett 2014).
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FIG. 7. Maps of (a),(b) ACC differences between the decadal predictions and historical simu-
lations, (c),(d) residual ACC, (e),(f) RMSSS of the decadal predictions using the historical simu-
lations as the reference forecast, and (g),(h) RPSS of the decadal predictions using the historical
simulations as the reference forecast. The values are shown for the (left) near-surface air temper-
ature and (right) precipitation for the forecast years 1-5 with the multi-model. The skill estimates
have been computed over the 19612014 period (start dates: 1960-2009). The reference period
for the computation of the climatology and thresholds between categories is 1981-2010. The ref-
erence datasets used for the near-surface air temperature and precipitation are, respectively, the
GHCNvV4 and the GPCC datasets. For the ACC difference and residual ACC maps, crosses indi-
cate that the values are not statistically significant at the 95% level using a two-sided ¢ test
accounting for autocorrelation. For the RMSSS and RPSS maps, crosses indicate that the
decadal predictions do not provide significantly better or worse predictions than the historical
simulations at the 95% confidence level based on a random walk test.
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Therefore, the residual correlation has also been used for
assessing the added value of the forecast system initialization,
as proposed by Smith et al. (2019). The residual correlation
shows a significant improvement due to initialization over
some ocean and land regions. Over the ocean, the highest
added value is found over the northeastern and central regions
of the Atlantic Ocean, the southwestern corner of the Pacific
Ocean, the Southern Ocean, and the Indian Ocean. Over
land, significant improvement is found over regions such as
North Africa and the Arabian Peninsula (Fig. 7c). By con-
trast, negative residual correlation is found over other regions
like the western part of the North Atlantic Ocean and parts of
the South Atlantic Ocean. The skill scores computed using
the historical simulations as the reference forecast also show a
benefit of initialization over some regions. The RMSSS
(Fig. 7b) is significantly positive over regions like the eastern
part of the North Atlantic Ocean, Central America, and areas
of North America and northern Africa. On the other hand, it
shows significantly negative values over regions of South
America and the Arctic Ocean. For the probabilistic products,
the RPSS (Fig. 7d) shows an improvement of the decadal pre-
dictions with respect to the historical simulations over the
eastern North Atlantic, the western coast of South America,
and the Southern Ocean (see Fig. S24e for the latter). On the
contrary, some regions present a worsening of RPSS due to ini-
tialization, like the western part of the North Atlantic Ocean.

The maps of ACC differences and residual ACC for precip-
itation are noisier (Figs. 7b and 7d, respectively), and a posi-
tive or negative impact is found depending on the region. For
instance, the residual ACC shows a positive impact of initiali-
zation over parts of central Africa, South America, and Asia.
In contrast, significantly negative residual ACC is found, for
example, over the Arabian Peninsula. The RMSSS and RPSS
maps for precipitation also shows an improvement or worsening
depending on the region, with skill scores close to zero
(Figs. 7£,h). The only remarkable region is the northeastern cor-
ner of Africa, where a significantly positive RMSSS is found.

The impact that the initialization has on the forecast quality
has been addressed in several studies with CMIP5 and CMIP6
simulations (e.g., Doblas-Reyes et al. 2013; Meehl et al. 2014;
Caron et al. 2015; Smith et al. 2019; Borchert et al. 2021;
Bilbao et al. 2021). The benefit of initialization has been
reported mainly for regions over the North Atlantic, Pacific,
and Indian Oceans. In particular, Borchert et al. (2021) docu-
mented that the skill had improved from CMIP5 to CMIP6
for the subpolar North Atlantic, primarily related to improved
forcing, resulting in a smaller added value from initialization
in CMIP6. Besides, Smith et al. (2019) also found a significant
positive impact of initialization over land regions such as
southern Europe and central Africa using the residual corre-
lation methodology, showing a very similar pattern to the one
in Fig. 7c.

The comparison of the DCPP and HIST multi-models’ skill
in predicting the AMV and GSAT time series is shown in
Table 3 to assess the impact of initialization. For the AMV
index, a low correlation difference is found. However, the
residual ACC, RMSSS, and RPSS are significantly positive,
indicating an added value due to initialization. In addition,
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the HIST ensemble mean shows a lower AMYV variance, indi-
cating that even if external forcings have an impact on the
AMYV, the full signal cannot be reproduced without realistic
initialization, pointing to the importance of internal variability
for its prediction. Besides, the system initialization may cor-
rect the model response to external forcings, improving the
forecast quality. The better AMYV predictions provided by the
decadal predictions with respect to the historical simulations
have also been shown by Garcia-Serrano et al. (2015), Si et al.
(2019), and Bilbao et al. (2021). For the GSAT anomalies, the
added value is seen when using the residual ACC and
RMSSS, both being significantly positive (except the RMSSS
when using GHCNv4 as the reference, which is not signifi-
cant). The values of the ACC difference and RPSS are very
close to zero and not significant. In addition, it can be seen
that the overestimation of recent global warming is lower in
the DCPP ensemble, although it is still present. This partially
corrected overestimation was also found for the CMIPS
multi-model ensemble (Meehl et al. 2014).

d. Impact of the multi-model ensemble size

The quality of the ensemble predictions is expected to
improve as more members are used (Smith et al. 2019;
Athanasiadis et al. 2020). However, in an operational con-
text, not all prediction centers provide their simulations in
near-real time for the forecast product generation, thus limit-
ing the ensemble size for actual forecast applications. With
the aim of estimating how the skill is impacted by using a
smaller ensemble, the skills of the full DCPP ensemble
(169 decadal prediction members from 13 forecast systems)
and a smaller DCPP subensemble (40 decadal prediction
members from 4 forecast systems: the CMCC-CM2-SRS,
EC-Earth3-i1, HadGEM3-GC3.1-MM, and MPI-ESM1.2-HR
systems). These four forecast systems have been selected to
construct the smaller multi-model ensemble because the cen-
ters that run their simulations have the capacity to provide
timely simulations for an operational multi-model product
generation. Besides, the Copernicus Climate Change Service
(C3S) operated by the European Centre for Medium-Range
Weather Forecasts (ECMWF) has selected these forecast sys-
tems for a prototype of climate services for decadal predic-
tions (C3S_34c contract; https:/climate.copernicus.eu/c3s34c-
prototype-service-decadal-climate-predictions). Therefore,
this smaller multi-model is referred to as the C3S_34c
multi-model from here.

Figure 8 shows the differences in the ACC between the full
and C3S_34c multi-model ensembles, as well as the RMSSS
and RPSS of the full ensemble using the C3S_34c ensemble as
the reference forecast (i.e., the comparison of the DCPP
multi-models with different ensemble sizes: 169 vs 40 mem-
bers). For temperature, the ACC differences are positive
(which indicates a higher quality of the full ensemble; Fig. 8a)
over parts of the eastern Pacific Ocean, the North Atlantic
Subpolar Gyre, the Indian Peninsula, and the Southern Ocean
(the latter only visible when using the second reference data-
set; Fig. S25a). However, these differences are not statistically
significant, except for a few points over the Southern Ocean.
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TABLE 3. ACC difference between the decadal predictions
and historical simulations, residual ACC, RMSSS, and RPSS of
the DCPP multi-model ensemble using the HIST multi-model
ensemble as the reference forecast for the AMV index and
GSAT anomalies for the forecast years 1-5. The skill estimates
have been computed over the 1961-2014 period (start dates:
1960-2009). The reference period for the computation of the
climatology and thresholds between categories is 1981-2010. For
the ACC difference and residual ACC, an asterisk indicates it is
statistically significant at the 95% level using a two-sided ¢ test
accounting for autocorrelation. For the RMSSS and RPSS, an
asterisk indicates that the decadal predictions provide significantly
better or worse predictions than the historical simulations at the
95% confidence level based on a random walk test.

Index ACC Residual
(reference dataset)  difference = ACC  RMSSS RPSS
AMV (GISTEMPv4) 0.1 0.75% 0.37* 0.32%
AMV (HadCRUT4) 0.06 0.69* 0.36* 0.38*
GSAT (JRA-55) 0.01 0.46* 0.16*  —0.06
GSAT (GHCNv4) 0 0.45% 0.08 —0.06

The RMSSS map (Fig. 8b) shows a significantly better quality
in terms of errors of the full ensemble over large regions of
the North Atlantic Ocean, southern Africa, South America,
the northern and central Pacific Ocean, and the Southern
Ocean. In contrast, the RMSSS is significantly negative over
other regions like the Arabian Peninsula. The results of the
comparison of the probabilistic skill (Fig. 8c) reveal a signifi-
cant benefit of using the full multi-model ensemble over areas
of the Pacific Ocean, Africa, South America, and the South-
ern Ocean. On the other hand, there are also significant RPSS
values (i.e., the smaller ensemble provides higher skill) over
other regions, particularly over the Arabian Peninsula and
parts of North America, Asia, and Australia.

For precipitation, there are some areas where there is a
benefit in skill due to using the larger ensemble, for example,
over parts of western Australia, North America, and South
America (Fig. 8d). In contrast, there are also a few grid points
where the skill of the C3S_34c ensemble is higher (e.g., over
the western part of South America). However, both positive
and negative ACC differences are not significant. With
respect to the RMSSS and RPSS (Figs. 8e,f), the benefit of
using the full ensemble is generally positive, being statistically
significant over some areas of all the continents. In the case of
the RMSSS, significantly negative values are also found over
limited regions of Africa. Still, it should be noted that most of
the areas with a significant benefit of using the full ensemble
instead of the C3S_34c ensemble (e.g., the northern part of
South America and central Africa) present negative or non-
significantly positive RMSSS and RPSS with respect to the
climatological forecast (see Figs. 2b and 3b).

5. Summary and conclusions

In this work, a deterministic and probabilistic forecast qual-
ity assessment has been performed using all the available
decadal predictions from the forecast systems contributing to
the DCPP-A component of the CMIP6. The evaluation has
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been applied over two essential climate variables (near-
surface air temperature and precipitation) and two indices
(global surface air temperature anomalies and Atlantic multi-
decadal variability) for the average of the forecast years 1-5.
It should be noted that the quality of the products can vary if
other variables and forecast periods are considered. The ACC
and the RMSSS have been used to evaluate the quality of the
deterministic products, while the RPSS has been used to evaluate
the probabilistic products. The choice of these metrics is motivated
by the fact that they assess different aspects of the forecast quality.

The quality of the forecast products from four different
multi-model approaches has been compared. The benefits
and drawbacks of using a multi-model ensemble instead of
the simulations from a single forecast system have also been
documented. In addition, the impact that the system initializa-
tion has on the forecast quality has been assessed by compar-
ing the skill of the DCPP and HIST multi-model ensembles.
Finally, two multi-model ensembles built with different
ensemble sizes have been compared to estimate how the skill
is affected due to the limited number of forecast producing
centers that can provide timely decadal predictions for the
multi-model products generation in an operational context to
underpin climate services. All the quality estimates have been
computed using two different reference datasets to account
for the observational uncertainty, which is particularly high
for precipitation and, to a lower extent, for temperature over
oceanic regions. Future improvements in observation-based
datasets are expected to increase the robustness of the fore-
cast quality assessment as well as to improve the realistic ini-
tialization of the predictions.

The skill of the DCPP multi-model ensemble is generally
high for near-surface air temperature, particularly over land
regions. Compared to temperature, the skill is lower for pre-
cipitation and is limited to regions over central Africa,
Europe, and Asia. The four multi-model approaches provide,
in general, similar skill and significance for temperature. For
temperature, some regions like central Africa and the Arabian
Peninsula benefit from calibration when measured by the
RMSSS (the ACC and RPSS show no or little benefit). For
precipitation, the skill of the calibrated multi-models is lower,
which might be linked to the assumption of a normal distribu-
tion. Also, the multi-model ensembles tend to get less benefit
from calibration than the individual forecast systems (Doblas-
Reyes et al. 2005; Hemri et al. 2020). With respect to the indi-
ces, the main difference between the multi-model approaches
is the lower overestimation of global warming by the cali-
brated multi-models during the last part of the evaluation
period. However, the calibrated multi-models show a worse
forecast in the 1960s and 1970s for the GSAT anomalies.

The comparison between the quality of the multi-model
products and those created with individual forecast systems
shows benefits but also drawbacks. On the one hand, using
the best forecast system (or multi-model ensemble) for each
particular location, variable, and forecast period provides the
highest possible quality of the forecast product, which is what
Mishra et al. (2018) recommend for seasonal forecasting. On
the other hand, using a multi-model provides a higher skill
than, at least, the 50% of the forecast systems, without the
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FIG. 8. Maps of (left) ACC differences between the DCPP multi-model and the C3S_34c multi-model, (center) RMSSS of the DCPP
multi-model using the C3S_34c multi-model as the reference forecast, and (right) RPSS obtained with the DCPP multi-model using the
C3S_34c multi-model as the reference forecast. The DCPP multi-model is built with 169 members from 13 forecast systems, while the
C3S_34c multi-model is built with 40 members from four forecast systems (the CMCC-CM2-SR5, EC-Earth3-i1, HaddGEM3-GC3.1-MM,
and MPI-ESM1.2-HR systems). The differences are shown for the (top) near-surface air temperature and (bottom) precipitation for the
forecast years 1-5. The skill estimates have been computed over the 1961-2014 period (start dates: 1960-2009). The reference period for
the computation of the climatology and thresholds between categories is 1981-2010. The reference datasets used for the near-surface air
temperature and precipitation are, respectively, the GHCNv4 and the GPCC datasets. For the ACC difference maps, crosses indicate that
the difference is not statistically significant at the 95% confidence level using a two-sided ¢ test accounting for autocorrelation. For the
RMSSS and RPSS maps, crosses indicate that the DCPP multi-model does not provide significantly better or worse predictions than the
C3S_34c multi-model ensemble at the 95% confidence level based on a random walk test.

need to select the best system for each particular case, which ~ HIST than with the DCPP ensemble, meaning that the initiali-
makes an operational forecast product generation more zation partially corrects this issue (also seen in the CMIP5
straightforward (Lled¢ et al. 2020). multi-model ensemble; Meehl et al. 2014).

The forecast system initialization provides positive or nega- The differences in the skill of the multi-models built using a
tive impacts depending on the region and variable considered.  different number of forecast systems show, in general, a bene-
This dependency might be due to the different quality of fit of using a large ensemble. This result was also found by
assimilated observational data in different regions and varia-  Smith et al. (2019) for the deterministic forecast of the NAO,
bles, and different regions being differently affected by deteri-  which was attributed to the signal-to-noise paradox (Eade
orating effects such as initialization shocks. For temperature, et al. 2014; Dunstone et al. 2016; Scaife and Smith 2018). Fur-
there is a significant added value of the initialization over land  thermore, Athanasiadis et al. (2020) also showed the benefit
(e.g., northern Africa and the Arabian Peninsula) and ocean of using a larger ensemble for the high-latitude blocking and
(e.g., the eastern part of the North Atlantic Ocean and the NAO predictions. The skill of the precipitation forecasts also
Indian Ocean) regions. Also, the predictions over the North  shows the benefit of using a large number of simulations over
Atlantic Subpolar Gyre region are improved due to the ini- some areas, although it is lower than for temperature. How-
tialization. The skill in this region is of high importance since  ever, the regions with significantly higher skill in the full
low-frequency variability here is suggested to be linked with DCPP ensemble as compared to the subset providing quasi-
the skill found for high-latitude blocking and the NAO operational forecasts within C3S_34c are quite limited, and
(Athanasiadis et al. 2020). By contrast, there is a worsening  most of them coincide with regions that do not present a signif-
over other areas like the western part of the North Atlantic icant improvement with respect to the climatological forecast.
Ocean. Both the improvement and worsening are more evi- In a climate services context, the forecast quality assess-
dent for the probabilistic products. For precipitation, the ment is essential for providing high-quality and reliable fore-
impact is noisier, while the statistical significance is lower than  cast products that can be used for decision-making in several
for temperature. The AMV and GSAT predictions are sectors. The quality estimates are specific and should be pro-
improved due to initialization. In the GSAT time series, the vided with the particular forecast product issued, which varies
overestimation of recent global warming is higher with the according to their intended use (Goddard et al. 2013). This
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study has focused on the prediction of temperature and pre-
cipitation for the average of forecast years 1 to 5. However,
the transferability of the results is limited and depends on the
specific variable, forecast period (one or more years, seasons,
or months), and region considered (Sgubin et al. 2021). Thus,
the same exercise must be carried out for the specific climate
service that aims to be provided.
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Chapter 4

Representation and annual to decadal
predictability of Euro-Atlantic
weather regimes in the CMIP6 version

of the EC-Earth coupled climate
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The supplementary material can be found in Appendix C.

4.1. Main objectives

= Identify the four weather regimes over the Euro-Atlantic region during different

seasons.
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4. Representation and annual to decadal predictability of Euro-Atlantic
weather regimes in the CMIP6 version of the EC-Earth coupled climate
model

= Assess the spatial representation and climatological frequency of such weather

regimes in the EC-Earth3 forecast system.

» Evaluate the ability to predict the inter-annual to decadal variability of the

weather regimes’ seasonal frequency of occurrence.

= Analyse the impact of model initialisation for the representation and prediction
skill.

4.2. Main outcomes

= The EC-Earth3 forecast system correctly represents the spatial patterns and cli-

matological occurrence frequencies of the four weather regimes.

= The skill in predicting the inter-annual to decadal variations of the seasonal

frequencies is generally low.
= The model initialisation does not improve the prediction skill.

s The teleconnections between the weather regimes and the North Atlantic SST

are generally not reproduced by the model, which might limit the prediction skill.
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Key Points:

o The EC-Earth3 model simulates the
spatial patterns and climatological
frequencies of the Euro-Atlantic
weather regimes realistically

o Correlations between simulated and
observed frequencies of weather
regimes on inter-annual to decadal
time scales are generally low

e Model initialization does not
significantly alter the skill in
predicting the spatial patterns and
temporal variations of the weather
regimes
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Abstract weather regimes are large-scale atmospheric circulation states that frequently occur in the climate
system with persistence and recurrence, and are associated with the occurrence of specific local weather
conditions. This study evaluates the representation of the four Euro-Atlantic weather regimes in uninitialized
historical forcing simulations and initialized decadal predictions performed with the EC-Earth3 coupled
climate model. The four weather regimes are the positive and negative phases of the North Atlantic Oscillation
(NAO+ and NAO—, respectively), Blocking, and Atlantic Ridge in winter; and the NAO—, Blocking, Atlantic
Ridge, and Atlantic Low in summer. We also analyze the impact that the model initialization toward the
observed state of the climate system has on the ability to predict the variability of the weather regimes'
seasonal frequency of occurrence. We find that the EC-Earth3 model correctly reproduces the spatial patterns
and climatological occurrence frequencies of the four weather regimes. By contrast, the skill in predicting

the inter-annual to decadal variations of the weather regimes' seasonal frequencies is generally low, and the
initialization does not significantly improve such skill. The observed teleconnections between the weather
regimes and the North Atlantic sea surface temperatures are generally not reproduced by the model, which
could be a reason for the low skill in predicting the temporal variations of the weather regime frequencies.

1. Introduction

Weather regimes are a set of climate states that occur more frequently due to either more persistence or more recur-
rence than other possible states of the climate system (Christensen et al., 2013; Cortesi et al., 2019; Michelangeli
et al., 1995). They provide a simplified description of the atmospheric flow variability and describe large-scale
conditions that can be associated with local weather. Skillful climate predictions of the weather regimes could
thus be used as a source of predictability for local climate conditions (Hertig & Jacobeit, 2014). Therefore,
a correct representation and prediction of weather regimes by climate models could be translated into useful
climate information for decision-makers. At inter-annual to decadal time scales, such climate information could
be provided by decadal climate predictions, which aim at filling the gap between seasonal predictions and climate
projections (Kirtman et al., 2013).

The atmospheric states gather naturally into four well-defined, statistically robust clusters over the Euro-Atlantic
sector, with a typical persistence of 3—7 days (Michelangeli et al., 1995). The four weather regimes are different
across the seasons. In winter, the positive and negative phases of the North Atlantic Oscillation (NAO+ and
NAO-, respectively), the Blocking, and the Atlantic Ridge are identified in the literature (Cattiaux, Quesada,
et al., 2013; Cortesi et al., 2019, 2021; Dawson et al., 2012; Ferranti et al., 2015). In summer, the Euro-Atlantic
weather regimes are the Atlantic Low, the NAO—, the Blocking, and the Atlantic Ridge (Cassou et al., 2005;
Cattiaux, Quesada, et al., 2013). However, the existence and the optimal number of regimes is a subject with
conflicting results (see, e.g., Christiansen [2007] for a review), and some studies even reject the existence of
weather regimes (Stephenson et al., 2004). Still, a classification of flow regimes can be useful to characterize
large-scale weather conditions and to evaluate how climate models represent large-scale atmospheric flow.

The simulation and prediction of the Euro-Atlantic weather regimes by climate models are hindered by the
characteristic biases that models tend to show in the representation of atmospheric flow over the Euro-Atlantic
domain (Walz et al., 2018). In particular, evaluations of climate models have often found an underestimation
of the occurrence frequency and persistence of blocking events (Cattiaux, Quesada, et al., 2013; D’Andrea
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et al., 1998; Masato et al., 2013; Schiemann et al., 2017), related to an overestimation of zonal (westerly) flow
regimes in Europe (Donat et al., 2010). This paper therefore provides a systematic evaluation of climatological
characteristics of weather regimes in the latest version of the EC-Earth model.

Climate predictions have been shown to skillfully predict essential climate variables at sub-seasonal to seasonal
(Mariotti et al., 2020) and inter-annual to decadal (Kushnir et al., 2019) time scales, which can be useful to underpin
decision-making in a wide range of sectors (Merryfield et al., 2020). These climate predictions use, in addition to
external forcings (which provide skill in climate projections), predictability provided by slow variations of differ-
ent components of the climate system, especially the ocean, land surface, and sea ice (Meehl et al., 2009, 2021).
In order to make use of these potential sources of predictability, climate models are used to compute the future
evolution of the climate system by integrating them forward in time from a set of observation-based initial condi-
tions, which is referred to as model initialization.

On the seasonal time scale, Cortesi et al. (2017) showed skill in reproducing the weather regimes' spatial patterns,
climatological frequencies, persistences, and transitions probabilities during winter, spring, and summer with the
ECMWEF seasonal forecasting system S4 (Molteni et al., 2011). However, they found low skill in reproducing the
monthly frequency variations of the weather regimes. Carvalho-Oliveira et al. (2022) assessed the representation
of the summer spatial patterns of the weather regimes within the MPI-ESM-MR seasonal forecasting system
(Giorgetta et al., 2013), finding that the Atlantic Ridge regime shows the highest agreement with the reanalysis,
while the Atlantic Low regime shows the lowest agreement. On inter-annual to decadal time scales, while decadal
predictions in particular of temperature are skillful in many regions due to external forcings, model initialization
has also been shown to add prediction skill for several climate variables (Smith et al., 2019). Also, some selected
characteristics of large-scale atmospheric flow have been found to be predictable. For instance, Athanasiadis
et al. (2020) have shown decadal prediction skill for the High Latitude Blocking and the NAO index during
winter. Significant skill in predicting the NAO index was also found by Smith et al. (2020) using a very large
ensemble based on multiple models and applying post-processing techniques to overcome the signal-to-noise
problem in climate models (Scaife & Smith, 2018). However, a systematic evaluation addressing the decadal
prediction skill of the objectively identified Euro-Atlantic weather regimes in different seasons as well as the
impact that the initialization has on the skill is, to our knowledge, still missing.

The aim of this paper is twofold. On the one hand, we evaluate the fidelity of the EC-Earth3 model in reproducing
the climatological patterns and frequencies of the Euro-Atlantic weather regimes. On the other hand, we compare
the weather regimes in initialized decadal predictions and transient historical forcing simulations to quantify the
impact of the model initialization on the skill in predicting the variability of the weather regimes on inter-annual
to decadal time scales.

2. Data

In this study, a ten-member ensemble of initialized decadal predictions (DCPP; Boer et al., 2016) and a ten-member
ensemble of non-initialized historical simulations (HIST) performed with the version 3.3 of the EC-Earth model
(Doscher et al., 2022) in the framework of the Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring
et al., 2016) are used. The historical simulations are started from different states of a pre-industrial control
run with forcing held fix to 1850 levels, and are forced by observed external forcings until 2014. The decadal
predictions have been produced by initializing the EC-Earth3 model every year from 1960 in November using a
full-field initialization technique, and provide predictions for the next 11 years (Bilbao et al., 2021).

Two different reanalyses are used as reference datasets to evaluate the skill of the decadal predictions and historical
simulations in representing the spatial patterns and climatological frequencies, and in predicting the variations of
the seasonal frequency of occurrence of the weather regimes. These reanalyses are the Japanese 55-year Reanal-
ysis (JRA-55; Kobayashi et al., 2015) and the NCEP/NCAR Reanalysis 1 (NCEP1; Kalnay et al., 1996). The
main reason for choosing the JRA-55 and the NCEP1 reanalyses is their temporal coverage matching that of the
decadal predictions. The JRA-55 data set is often preferred over others like NCEP1 because of its higher spatial
resolution, making this reanalysis suitable for weather regime classification (Cortesi et al., 2019). However, here
we use both reanalyses to take into account the observational uncertainty and assess the robustness of the results
to the choice of the reference data set. Stryhal and Huth (2017) made a comparison between five different reanal-
yses (in which both the JRA-55 and NCEP1 were included) for the classification of patterns in the Euro-Atlantic
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area in winter. They found that there is very little difference between the daily pattern classification, especially
in mid-latitudes of the Northern Hemisphere (less than 8% of days classified differently), where there is a dense
coverage of high-quality observations.

3. Methods

We use daily fields of sea level pressure (from the reanalyses and EC-Earth3 simulations) to compute the weather
regimes over the Euro-Atlantic region delimited between 27°-81°N and 85.5°W—45°E, as in Cortesi et al. (2019).
Some studies used the geopotential height at 500 or 700 hPa instead to compute the weather regimes (Casola
& Wallace, 2007; Kageyama et al., 1999). However, we use the sea level pressure because it is a variable less
affected by global warming than the geopotential height (Cortesi et al., 2021; Torralba et al., 2021) and the clus-
tering will thus be more accurate over the long period considered. The winter (defined as December-January-Feb-
ruary; DJF) and summer (defined as June-July-August; JJA) weather regimes are obtained during the 1965-2014
period (50 years) for the reanalyses, the historical simulations and the decadal predictions. For the reanalyses
and the historical simulations, seasonal averages and multi-annual averages of seasonal means are considered. In
the case of the decadal predictions, the first five individual forecast winters and summers, and all their possible
multi-year averages have been included in the assessment. In addition, the analysis also includes the winters
and summers for the average of forecast years 1-10 to account for the full predicted decade. Since different
forecast periods are assessed, different start dates have been selected in each case in order to always evaluate the
predictions over the same calendar period (i.e., over the 1965-2014 period). The evaluation period starts in 1965
because forecast year 5 is the last forecast year evaluated individually (and 1965 is the forecast year 5 from the
first initialization, i.e., start date November 1960), and the evaluation period ends in 2014 because the historical
simulations are run until that year.

The simulated data have been interpolated onto the spatial grid of the reanalyses to obtain the spatial patterns of
the weather regimes in the same grid resolution and evaluate their spatial representation. Also, the daily pressure
fields have been converted into daily anomalies by subtracting the daily climatology. The daily climatology has
been computed over the whole period and smoothed by applying a Locally Estimated Scatterplot Smoothing filter
(LOESS; Cleveland & Devlin, 1988) with a smoothing span of 1 to remove the short-term variability and retain
the seasonal cycle (Torralba, 2019).

In order to classify the daily anomaly maps and compute the weather regimes, the k-means clustering algorithm
(Michelangeli et al., 1995; Philipp et al., 2010) has been applied independently for each season and, in case of
the historical simulations and decadal predictions, also independently for each ensemble member. The k-means
algorithm aims at arranging a set of daily maps within groups, called clusters, seeking the most steady states. The
algorithm minimizes the sum of the squared distances from each map to the centroid of the clusters to which they
belong, providing the common spatial patterns in the analyzed area. The anomalies are previously weighted by
the cosine of the latitude to take into account the different sizes of the grid boxes in the region considered (Cortesi
et al., 2019, 2021, Falkena et al., 2020).

The number of clusters k to generate has to be specified in advance. Fereday et al. (2008) assessed the optimal
number of clusters and concluded that there is no objective choice for the number of clusters. For small k values,
the full range of patterns is not correctly represented, while if a large k is chosen different clusters can look very
similar. The number of clusters generated in this study is k = 4, typically used in the literature to assess the
Euro-Atlantic weather regimes (Cassou et al., 2005; Cattiaux, Quesada, et al., 2013; Cortesi et al., 2019, 2021;
Dawson et al., 2012; Ferranti et al., 2015; Hertig & Jacobeit, 2014). In addition, to confirm that the four weather
regimes are obtained even if the k-means algorithm is set to define more clusters, the same procedure has been
used but applying the k-means algorithm to identify five clusters (k = 5). Similarly, the first and second halves of
the evaluation period (i.e., 1965-1989 and 1990-2014) have been used to obtain the four weather regimes (k = 4,
as in the rest of the study) to confirm that such weather regimes are present during the whole period.

The observed and simulated weather regimes are independently computed by cluster analysis with the
k-means algorithm applied to the daily anomalies fields to obtain the spatial patterns. Then, the daily maps are
projected onto the four patterns using the minimum Euclidean distance method. Both minimal-correlation and
minimal-persistence filters are applied to both observed and simulated projected daily maps to filter out the days
that do not actually belong to any of the clusters. The minimal-correlation filter consists of de-classifying those
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days with a spatial correlation (measured with the spatial Anomaly Correlation Coefficient, ACC; Wilks, 2011)
lower than 0.25 with the cluster it was assigned. The minimal-persistence filter de-classifies those days that
do not belong to a spell of at least 3 days. This methodology is similar to that used in Cattiaux, Douville, and
Peings (2013) but without previously applying Empirical Orthogonal Functions to take into account the extreme
sea level pressure values. This method tests whether the EC-Earth3 model correctly represents the weather
regimes' spatial patterns by itself. Additionally, the same methodology has been employed but projecting the
simulated daily maps onto the observed clusters (i.e., only applying the k-means algorithm to the reanalysis data)
to assess how the simulated daily maps fit onto the observed patterns. Results in the main text correspond to the
first approach, that is, projecting the simulated and observed fields onto the simulated and observed patterns,
respectively. The results for the alternative method, that is, projecting the simulated fields onto the observed
patterns, are included in Supporting Information S1.

Once each day is assigned to one of the four seasonal clusters (or to the unclassified cluster), the spatial patterns
of the weather regimes are computed as the composites (averaged daily maps) of all the days that have been
assigned to a cluster. The relative seasonal frequency of occurrence of each weather regime is computed as the
percentage of the number of days per season assigned to each cluster. For the simulations, since the clustering
has been applied to each ensemble member separately, the frequency time series and the spatial patterns are
calculated as the ensemble mean.

The spatial correlation between the simulated and observed patterns is estimated with the spatial ACC. This
metric has been computed by accounting for the different sizes of the grid cells. The significance of the spatial
correlation has been assessed by estimating the confidence intervals at the 95% confidence level computed by a
Fisher transformation. If the confidence interval includes zero, the spatial correlation is not significant. The spatial
correlation difference between the historical simulations and decadal predictions is significant if their confidence
intervals do not overlap. A two-sided Kolmogorov-Smirnov test has been applied to assess whether the simu-
lated and observed distributions of the seasonal frequencies could have been sampled from the same continuous
distribution at the 95% confidence level. In addition, a two-sided -test has been used to assess whether the mean
values of the simulated and observed distributions are statistically different at the 95% confidence level. In order
to estimate the temporal correlation, the Pearson's correlation coefficient is used. A two-tailed #-test is applied
to analyze whether the temporal correlation between experiments and reanalyses is statistically significant at the
95% confidence level. The Fisher's z transformed correlations divided by the standard error of the difference
(Wilks, 2011) are used to assess whether the correlations obtained with the historical simulations and the decadal
predictions are statistically different at the 95% confidence level. In order to avoid a potential overestimation of
the statistical significance due to spatial patterns and time series autocorrelation, the effective degrees of free-
dom have been used for the significance tests. Such effective degrees of freedom have been calculated over the
reanalysis data following Zwiers and von Storch (1995). In the case of the spatial patterns, the methodology has
been applied over the vector created by concatenating all latitudes one after the other. It should be noted that part
of the information related to different latitudes might be lost when computing the effective number of degrees of
freedom for the spatial patterns.

4. Results
4.1. Evaluation of the Spatial Patterns and Climatological Frequencies of the Weather Regimes

We first evaluate two climatological aspects of weather regimes: the spatial patterns (i.e., the composites pres-
sure maps of all the days that belong to each weather regime) and the climatological seasonal frequencies of
occurrence.

The spatial patterns of the observed weather regimes during the winter and summer seasons identified in the
JRA-55 reanalysis are shown in Figure 1. The four clusters obtained for each season correspond to the NAO+,
NAO-, Blocking, and Atlantic Ridge during winter; and the Atlantic Low, NAO—, Blocking, and Atlantic Ridge
during summer. The regime patterns show that the amplitude of the clusters' anomalies is higher during the winter
season, when they are more persistent in time and have a stronger effect on local climate (Ferranti et al., 2015;
Fil & Dubus, 2005). Compared with the spatial patterns using the NCEP1 reanalysis (Figure S1 in Supporting
Information S1), there is a high consistency for both seasons, indicating the robustness of the identified weather
regimes to the choice of the reference data set.
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Figure 1. Spatial patterns of the observed Euro-Atlantic weather regimes (computed as the averaged sea level pressure
anomalies, in hPa, of all the days classified onto each cluster) obtained with the JRA-55 reanalysis for winter and summer
during the 1965-2014 period.

We test the sensitivity of the clustering algorithm results to the number of identified clusters and the period used
to identify the clusters. We find that the same four observed weather regimes for winter are obtained when asking
for five clusters (Figure S2 in Supporting Information S1). The additional cluster is represented as a center of
anomalously negative pressure over the central part of the region considered. The sum of NAO+ and the addi-
tional cluster resembles the original NAO+ obtained with k = 4. When applying the k-means algorithm to the
first and second halves of the evaluation period, both sets of clusters represent the same weather regimes as when
using the whole period. However, some discrepancies are found in the first half (1965-1989) for NAO+ (for
which the northern part of Europe contains a positive anomaly, while the anomalies over that region are slightly
negative when using the whole period) and Blocking (which is displaced westward with respect to the original
one). For summer (Figure S3 in Supporting Information S1), the patterns obtained with k = 5 and with different
period halves are similar to the original ones.

The spatial patterns of the four weather regimes obtained during the whole period with both DCPP and HIST
show a high agreement with the observed patterns in winter, being significant for all the forecast years and
multi-year averages (Figure 2a). For summer, significant spatial correlations are also found for the NAO—, Block-
ing, and Atlantic Ridge regimes for both DCPP and HIST. However, the spatial correlations for DCPP are system-
atically high and significant for the Atlantic Low regime, except for the forecast years 1-2 (this exception is not
found when using the NCEP1 reanalysis as the reference data set; Figure S4 in Supporting Information S1), while
low and non-significant correlations are found for HIST. Furthermore, the spatial correlations for the different
forecast years in the decadal predictions are similar for both seasons, indicating that the simulation of the weather
regimes' patterns is not strongly affected by the climate drift in the decadal predictions. Similar results are found
when using the NCEP1 reanalysis as the reference data set (Figure S4 in Supporting Information S1).

The ACC differences between DCPP and HIST are computed to assess whether the model initialization impacts
the representation of the simulated weather regimes' patterns. The pattern correlation for the forecast periods that
include more than one season is compared to the pattern correlation obtained with the historical simulations aver-
aged over the same period length (e.g., the forecast years 1-3 are compared to 3-year averages from the historical
simulations). The ACC differences (Figure 2b) indicate that DCPP and HIST perform equally in representing the
spatial patterns of all weather regimes during winter, and the spatial patterns of the NAO—, Blocking and Atlantic
Ridge regimes during summer (low ACC differences for all the cases, and only a few cases show significance).
For the summer Atlantic Low regime, the results show an added value of model initialization in representing
the spatial pattern of this weather regime. It should be noted that, even using the effective degrees of freedom to
account for the auto-correlation, the sample size is still large, which means that relatively low ACC values and
ACC differences may be significant.

The previous analysis (Figure 2) is focused on evaluating the agreement between the model-specific and observed
spatial patterns. If, instead, we compare the observed patterns with the patterns obtained by projecting the
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Figure 2. (a) Spatial correlation between the observed and simulated Euro-Atlantic weather regimes' patterns. (b) Difference between the ACC obtained with the
decadal predictions and that obtained with the historical simulations. The evaluations period is 1965-2014. The reference data set is the JRA-55 reanalysis. The rows
correspond to the winter and summer seasons. The different columns display the results for individual and multi-year averages, where hist-X corresponds to X-years
averaged historical simulations and fyearsY-Z corresponds to decadal predictions for the forecast years Y-Z. Dots indicate that the correlation (a) or the correlation

difference (b) is statistically significant at the 95% confidence level. The auto-correlation of the spatial patterns has been taken into account to determine the effective
sample size when computing the statistical significance.

simulated daily maps onto the observed clusters (i.e., forcing the simulated daily maps to fit into the observed
patterns), high and significant spatial correlations are obtained for all the weather regimes by definition. In addi-
tion, no differences between DCPP and HIST are found (Figure S5 in Supporting Information S1).

In the following, we evaluate the representation of the climatological frequency of occurrence. Figure 3 shows
the distribution of the weather regimes' frequencies for the JRA-55 reanalysis, historical simulations, and decadal
predictions for the first forecast year. The observed frequencies in winter show that the most frequent weather
regime is NAO+ (with 23.3% of the days assigned to this cluster), followed by Blocking (20.6%), NAO— (19.1%),
and Atlantic Ridge (18.1%). In summer, the most frequently observed weather regime is Blocking (21.2% of the
days), followed by Atlantic Ridge (18.8%), Atlantic Low (17.8%), and NAO— (17.2%). Note that the weather
regimes' frequencies do not add up to 100% due to the use of an unclassified cluster (see Section 3).

Both DCPP and HIST show a correct representation of the mean frequencies, which are found to not be signifi-
cantly different to the observed mean frequencies by applying a -test at the 95% confidence level. In addition, we
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Figure 3. Box-and-whisker diagrams of the seasonal frequencies of occurrence for the Euro-Atlantic weather regimes and the unclassified cluster for winter (a) and
summer (b) during the 1965-2014 period. The results are shown for the historical simulations (in blue), the JRA-55 reanalysis (in gray), and the decadal predictions

(in red). Dots show the mean frequencies, while the whiskers indicate the data range between the minimum and maximum values. Model simulation boxes have been
obtained using all ensemble members without averaging.

DELGADO-TORRES ET AL.

60f 13
92



Ay

.
NI Journal of Geophysical Research: Atmospheres 10.1029/2022JD036673
AND SPACE SCIENCE
a) NAO+ b) NAO- c) Blocking d) Atlantic Ridge
81 g 81 8
8 g g 8
£g £ £g £q
5 5 5 7
L 58 §8 §8 §8
O go Eo g go
g E! & é’ o £
e e e e
o4 B a4 - - J = - - o — e + o 1 1o - - - - L - = v - — J
19’70 1980 19‘50 2000 2010 1870 1980 19'90 2000 2010 1970 1980 1990 2000 2010 1870 19‘80 1990 2000 2010
Years Years Years Years
e) Atlantic Low 1) NAD- a) Blocking h) Atlantic Ridge
8 g 8 g
£g £eg £g £g
S = = 2
< &gl g F.l g
S g ga g5 g8
~ Eg £8 £51 gg
e 2 2 e
1970 1980 1990 2000 2010 2 1870 1980 1990 2000 2010 ; 1970 1980 1980 2000 200 1970 1980 1990 2000 2010
Years Years Years Yoars

Figure 4. Time series of the weather regime frequencies of occurrence obtained with the JRA-55 reanalysis during winter (top row) and summer (bottom row) during
the 1965-2014 period. In addition to 1-season averages (in black), also running averages over 5 (in blue) and 10 (in red) seasonal data points are shown.

assessed whether the simulated distributions are drawn from the same distribution as the observed ones with the
Kolmogorov-Smirnov test. We find that the observed and simulated frequencies could have been drawn from the
same continuous distribution, pointing to the correct representation of the frequency distribution by both DCPP
and HIST. The same results are found when using the NCEP1 reanalysis as the reference data set (Figure S6 in
Supporting Information S1).

The percentage of days that have been unclassified (due to either low spatial correlation or low persistence) is also
shown in Figure 3. The results show that there are more unclassified days in summer than in winter, also found by
Cattiaux, Douville, and Peings (2013). This happens for both the reanalyses and the climate model simulations.
In the JRA-55 reanalysis, 18.9% of the days are unclassified in winter, while 25.1% of the days are unclassified
during summer.

4.2. Annual to Decadal Prediction SKkill of Weather Regime Frequencies

This section evaluates the skill in predicting the temporal variations of the weather regimes' seasonal occurrence
frequencies (i.e., the percentage of the number of days assigned to each cluster). A skillful prediction of such
variations may be useful for providing climate services based on weather regimes, which could potentially be
used for downscaling the model output and as local climate predictors.

The time series obtained with the JRA-55 reanalysis show an inter-annual variability of the seasonal occurrence
frequency of the weather regimes (i.e., the percentage of number of days assigned to each cluster) during both
summer and winter (Figure 4). The 5-season and 10-season averages also show a temporal variability of the
weather regimes' frequencies at multi-annual to decadal time scales. The time series obtained with the NCEP1
reanalysis show a similar variability as those obtained with JRA-55 (Figure S7 in Supporting Information S1).
The time series show higher variability in winter than in summer at inter-annual to decadal time scales, particu-
larly for the NAO+ and NAO- regimes. The NAO+ regime was found most frequently in the 1990s, when the
NAO- was less frequent than in the previous and following decades, consistent with the time series of the NAO
index shown, for example, by Athanasiadis et al. (2020) and Smith et al. (2020).

For prediction purposes, the phasing of the simulated variations of the weather regimes are compared against
observations through time series correlation analysis. Figure 5a summarizes the correlation coefficients between
the simulated (with both decadal predictions and historical simulations) and observed time series of the weather
regimes.

In general, low correlation coefficients are found for both DCPP and HIST, with only a few cases being statis-
tically significant. The temporal correlations for HIST mostly show coefficients close to zero. However, signif-
icantly positive correlations are found during winter for 2 and 3-year averages for the NAO— regime, and five
and 10-year averages for the Atlantic Ridge regime. The correlation coefficients obtained for DCPP are generally
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Figure 5. (a) Temporal correlation between the observed and simulated (for HIST and DCPP) Euro-Atlantic weather regimes' occurrence frequencies. (b) Difference
between the correlation coefficient obtained with the decadal predictions and that obtained with the historical simulations. The evaluation period is 1965-2014.

The rows correspond to the winter and summer seasons. The different columns display the results for individual and multi-year averages, where hist-X corresponds
to X-years averaged historical simulations and fyearsY-Z corresponds to decadal predictions for the forecast years Y-Z. Dots indicate that the correlation (a) or the

correlation difference (b) is statistically significant at the 95% confidence level. The auto-correlation of the time series has been taken into account to determine the
effective sample size for the significance test.

low in winter and are significantly positive only for a few marginal cases (e.g., for NAO— and Atlantic Ridge for
forecast year 4). For summer, the Blocking regime shows the highest correlation coefficients, especially when
averaging at least four forecast years, but no significance is found.

In order to identify whether the model initialization has an impact on the predictability of the variability of
weather regimes, the correlation differences between the decadal predictions and the historical simulations are
calculated and displayed in Figure 5b. The figure does not show a clear pattern of the impact of initialization,
and no significant improvements are found. In fact, the results show that the decadal predictions are less skillful
in predicting the weather regimes' time series for some cases, especially for some multi-year averages of the
NAO- regime during winter. The weather regime that tends to show some benefit from initialization (indicated
by systematically positive correlation differences across different forecast times, although without significance)
is the Blocking regime during summer. The Atlantic Ridge regime also shows an improvement from initializa-
tion (systematic for different forecast times, although not significant), but the temporal correlation is still nega-

tive for DCPP. Similar results are found when using NCEP1 as the reference data set (Figure S8 in Supporting
Information S1).

4.3. Teleconnections Between the Weather Regimes and the North Atlantic SST

The slow variations of the SST provide predictability at decadal time scales (Doblas-Reyes et al., 2013; Rodwell
etal., 1999; Sutton & Allen, 1997). Thus, the skill in predicting the North Atlantic SST may be transferred to some
skill in predicting atmospheric circulation, as represented for example, by the Euro-Atlantic weather regimes. For
this, it is needed that the model correctly reproduces (a) the observed variations of the North Atlantic SST and (b)
the observed teleconnections between the weather regimes' frequencies and the North Atlantic SST.

For (a), Bilbao et al. (2021) performed a comprehensive assessment of the skill of the decadal predictions
performed with the EC-Earth3 model. They showed that the model is skillful in predicting the SST over much of
the North Atlantic but skill is poor in the central Subpolar North Atlantic region, and that the initialization leads
to a decrease of the skill due to initialization shocks and the drift of the predictions. They discussed that these

initialization issues over the North Atlantic may be improved by model development and by investigating better
initialization strategies.

For (b), the observed and simulated correlations between the North Atlantic SST and the weather regime frequen-
cies are analyzed (Figure 6). The observed teleconnection maps show that the frequencies of the weather regimes
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Figure 6. Correlation between the seasonal weather regimes frequency and the seasonal sea surface temperature for the JRA-55 reanalysis (top row), historical
simulations (center row), and the first forecast year from decadal predictions (bottom row). In the case of the historical simulations and decadal predictions, the
correlations have been computed with the ensemble mean. Dots indicate that the correlation is statistically significant at the 95% confidence level using a two-sided
t-test. The time series' auto-correlation has been taken into account to determine the effective sample size for the significance test.

are significantly correlated with the SST over large areas of the North Atlantic Ocean, except for the winter
Blocking regime which does not show significant correlations. However, this relationship is not correctly repro-
duced by the model, as the correlation maps show different patterns for both historical simulations and decadal
predictions in comparison to that observed. Also, these teleconnections are weaker (in the sense that lower corre-
lation coefficients are found) and in most cases not significant.

This could suggest that either (a) the weather regime frequency variations do not represent a predictable signal
in relation to the SST and thus models have no possibility to predict it; (b) the relationship between the SST and
weather regimes' frequency could be non-causal (SST anomalies do not force the weather regimes' frequency)
and thus the phenomena phasing both are inherently unpredictable; (c) though inherently predictable, the low
skill of EC-Earth3 in predicting the Subpolar North Atlantic SST (Bilbao et al., 2021) restricts the potential
transferability of skill that may otherwise exist; or (d) the teleconnections are fundamentally predictable, but their
signals are underestimated by the model and small compared to the noise in the ensemble.

5. Summary, Discussion, and Conclusions

This study evaluates the simulated weather regimes in the Euro-Atlantic sector in the EC-Earth3 coupled climate
model in comparison to reanalyses data for the winter and summer seasons. The evaluation has been performed
for both decadal predictions and historical simulations, and they are compared to assess the impact that the model
initialization has on the skill.

We find that the EC-Earth3 model reproduces the spatial patterns of the four Euro-Atlantic weather regimes with
high similarity to the observed patterns derived from the reanalyses. High spatial correlations are obtained with
both decadal predictions and historical simulations except for the summer Atlantic Ridge regime, which shows
spatial correlations close to zero for the historical simulations. Also, these spatial patterns are robust across differ-
ent forecast years, indicating that they are not affected by the model drift in the decadal predictions.

Both the climatological mean frequencies and ranges of inter-annual variability in the occurrence frequencies
of these weather regimes are well reproduced by the model. The number of unclassified days, due to either low
spatial correlation with the observed pattern or low persistence of the regime event, is higher in summer (25.1%)
than in winter (18.9%), which may be due to less intense pressure gradients during the summer season (Cattiaux,
Douville, & Peings, 2013).

Regarding the skill in predicting the inter-annual and multi-annual variations of the occurrence frequencies of
the weather regimes, low correlation coefficients are generally found to be, for the most part, not statistically
significant. Exceptions are the winter NAO— and Atlantic Ridge regimes, which are found to be reproduced by
the historical simulations with significant skill for multi-year averages. Although not statistically significant,
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the decadal predictions tend to show a positive correlation with observations for the predictions of the Blocking
regime during summer systematically at different forecast periods.

The comparison between the decadal predictions and the historical simulations indicates that the model initial-
ization does not significantly improve the skill in predicting the weather regimes' variability. In fact, the skill
decreases for some cases, especially for some multi-year averages of the NAO— regimes during winter. The
highest potential benefit due to initialization is found for the Blocking regime during summer, with a systematic
tendency toward positive ACC differences between DCPP and HIST across different forecast periods, but such
differences are not statistically significant. The lack of added value due to initialization might be due to inconsist-
encies between the model and the initial conditions used to initialize the predictions (Bilbao et al., 2021). Better
predictions of the variations of the Blocking regime's frequency could anticipate periods with more frequency
of extreme events like cold air outbreaks, heat-waves, floods and droughts (Christensen et al., 2013), as well as
episodes of high pollution over European regions (Garrido-Perez et al., 2017; Ordéiiez et al., 2017).

While there is mounting evidence that climate models seem to underestimate some of the predictive signals
related to atmospheric circulation, in particular in the Atlantic sector (Scaife & Smith, 2018; Smith et al., 2019),
a few previous studies showed some predictability for selected weather types at multi-annual to decadal time
scales. For example, Athanasiadis et al. (2020) showed decadal prediction skill for the High Latitude Blocking
and the NAO index during the winter season using a large ensemble (40 members from the Community Earth
System Model-Decadal Prediction Large Ensemble [CESM-DPLE; Yeager et al., 2018]). They showed that such
a large ensemble allows the predictable component of the atmospheric variability to emerge from the chaotic
noise. Smith et al. (2020) also showed predictability for the NAO index using a large multi-model ensemble from
CMIPS5 and CMIP6 models and applying post-processing techniques for overcoming the low signal-to-noise ratio
of the raw model output. However, we use a different definition based on an objective weather regime classifica-
tion designed to classify each day into a certain flow regime (or into the unclassified cluster).

In order to assess possible factors that limit the skill in predicting the weather regimes' frequencies, the observed
and simulated teleconnections between the North Atlantic SST and the weather regime frequencies have been
computed. The observed teleconnections show that the occurrence frequencies of the different weather regimes
are significantly correlated with the SST over large regions of the North Atlantic Ocean (except for the winter
Blocking regime, for which no significant correlations are found). However, these relationships are not shown
in the teleconnections maps obtained with both the decadal predictions and historical simulations, limiting
the skill that may potentially be transferred from the North Atlantic SST to the weather regimes' frequencies.
Besides, the sea level pressure (variable used to compute the weather regimes) over the North Atlantic region
particularly suffers from the signal-to-noise paradox (Smith et al., 2019), which may have contributed to reducing
the skill in predicting the weather regimes. Previous studies have pointed to the benefits of using larger ensem-
bles for predicting variables with a small predictive signal relative to the noise (Athanasiadis et al., 2020; Smith
et al., 2020). In order to assess whether the results obtained with the relatively small ensemble size (10 ensemble
members) can be improved using a larger ensemble, we have tested whether the skill improves when the ensemble
size is doubled by including another 10 ensemble members with slightly different initialization but overall similar
behavior (i.e., the skill is estimated with a total of 20 decadal prediction members), but the results are similar and
no skill improvement is found (not shown). On the other hand, the low skill of the EC-Earth3 model in predict-
ing the Subpolar North Atlantic SST shown by Bilbao et al. (2021) may also limit the skill that may potentially
be transferred from the North Atlantic SST to the weather regimes' frequencies. The limitation of the skill in
predicting the weather regimes' frequencies of occurrence due to biases in SSTs was also suggested by Fabiano
et al. (2020). Another possible limitation might be the spatial resolution of the model. Recent works have shown
that the representation of climatological frequencies and spatial patterns of some weather regimes (e.g., Blocking
regime) can be improved by increasing the grid resolution of the atmospheric model (Dawson & Palmer, 2015;
Fabiano et al., 2020). However, it is not clear if the increase in resolution can improve the prediction skill of the
frequencies' variability.

In conclusion, this study demonstrates that the EC-Earth3 model, which is used for the contributions to
CMIP6/DCPP-A, skillfully simulates most climatological aspects of Euro-Atlantic weather regimes. However,
the skill in predicting the inter-annual to decadal variability of these weather regimes is low, and the model initial-
ization does not significantly improve such skill (as seen by comparing the decadal predictions and historical
simulations). This work can be the basis for more detailed future studies. For instance, further comparison with
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other models could help answer the question of whether the lack of skill in the prediction of the weather regimes
frequencies by the EC-Earth3 model is due to an inherently unpredictable signal or due to model deficiencies
(since other models might be skillful in predicting the temporal variations of the weather regimes). On the other
hand, the multi-model ensemble of predictions contributing to CMIP6/DCPP-A could be used to assess if the
skill is improved compared to the individual models due to error compensation and to the signal that each model
adds to the multi-model ensemble (Hagedorn et al., 2005). Also, post-processing techniques such as the calibra-
tion method proposed by Eade et al. (2014) or the post-processing and member selection as introduced by Smith
et al. (2020) for NAO predictions could be implemented with the goal to improve the prediction of the objectively
classified weather regimes. If the predictability of weather regimes can eventually be established robustly in the
future, it could unlock the potential for skillful decadal climate predictions over Europe and the prediction of
specific weather phenomena, including extreme events typically related to certain weather regimes.
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The EC-Earth3 decadal predictions (members r[1-10]ilp1fl; EC-Earth, 2019b) and historical simulations
(members 1[2,12,14,16-18,21-22,24-25]ilp1fl; EC-Earth, 2019a) are available for downloading on the
ESGF node (https://esgf-node.llnl.gov/search/cmip6/). JRA-55 reanalysis data (Japan Meteorological Agency,
Japan, 2013) have been retrieved from https://climatedataguide.ucar.edu/climate-data/jra-55. NCEP reanalysis
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4. Representation and annual to decadal predictability of Euro-Atlantic
weather regimes in the CMIP6 version of the EC-Earth coupled climate
model
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Chapter 5

Multi-annual predictions of the
frequency and intensity of daily
temperature and precipitation

extremes

This chapter has been published as peer-reviewed article as:

Delgado-Torres, C., Donat, M. G., Soret, A., Gonzalez-Reviriego, N., Bretonniére,
P.-A., Ho, A.-C., Pérez-Zanoén, N.; Samsé Cabré, M., and Doblas-Reyes, F. J.
(2023). Multi-annual predictions of the frequency and intensity of daily temper-
ature and precipitation extremes. Environmental Research Letters, 18 034031.

https://doi.org/10.1088/1748-9326 /acbbel

The supplementary material can be found in Appendix D.
5.1. Main objectives

= Estimate the multi-model forecast quality for extreme indices based on daily min-

imum and maximum temperature and precipitation at multi-annual time scales.
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5. Multi-annual predictions of the frequency and intensity of daily
temperature and precipitation extremes

= Compare the skill in predicting temperature and precipitation extremes to that

for mean temperature and precipitation.

= Estimate the impact of model initialisation on the skill in predicting climate

extremes.

5.2. Main outcomes

= The multi-model ensemble skillfully predicts the temperature extremes over most

land regions, while the prediction skill is more limited for precipitation extremes.
» The extreme indices are predicted with lower skill than the mean quantities.

» The skill in predicting extreme indices based on minimum temperature is gener-

ally higher than that for indices based on maximum temperature.

= The extreme indices based on percentiles are predicted with higher skill than

those representing the most extreme days.

= The added value from model initialisation is generally low and highly region-

dependent.
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Abstract

The occurrence of extreme climate events in the coming years is modulated by both global
warming and internal climate variability. Anticipating changes in frequency and intensity of such
events in advance may help minimize the impact on climate-vulnerable sectors and society.
Decadal climate predictions have been developed as a source of climate information relevant for
decision-making at multi-annual timescales. We evaluate the multi-model forecast quality of the
CMIP6 decadal hindcasts in predicting a set of indices measuring different characteristics of
temperature and precipitation extremes for the forecast years 1-5. The multi-model ensemble
skillfully predicts the temperature extremes over most land regions, while the skill is more limited
for precipitation extremes. We further compare the prediction skill for these extreme indices to the
skill for mean temperature and precipitation, finding that the extreme indices are predicted with
lower skill, particularly those representing the most extreme days. We find only small and
region-dependent improvements from model initialization in comparison to historical forcing
simulations. This systematic evaluation of decadal hindcasts is essential when providing a climate
service based on decadal predictions so that the user is informed on the trustworthiness of the
forecasts for each specific region and extreme event.

1. Introduction

Characteristics of climate extremes are changing in
a warming climate, with in particular hot temper-
ature and heavy precipitation extremes becoming
more intense and frequent, thus increasing their
potential impact on nature, economy and society
(Seneviratne et al 2021). Besides, internal climate
variability also modulates the occurrence of extreme
events (Alexander et al 2009). Trustworthy predic-
tions are essential to develop strategic planning to
adapt, build more resilience to the risk associated with
extreme events and anticipate the impacts ahead of
time (Hanlon et al 2013, Curtis et al 2017, Sillmann
et al 2017, Kushnir et al 2019). Predictions of changes
in the frequency and intensity of extreme events may
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be more relevant to users than predictions of aver-
age variables, as the occurrence of extremes typically
breaks the resilience of a system and cause the heav-
iest impacts on society and environment (Mahlstein
etal 2015, Bhend et al 2017).

Predictions of variations in the frequency and
intensity of extremes in the forthcoming years can
potentially be provided by decadal climate pre-
dictions. In addition to long-term changes due
to external forcings (natural and anthropogenic),
decadal predictions aim to also capture the internal
variability of the climate system (slow, natural oscil-
lations). For this reason, climate models are initial-
ized with observation-based products (Meehl et al
2009, 2021). Decadal predictions have been shown
to skillfully predict essential climate variables such as

© 2023 The Author(s). Published by IOP Publishing Ltd
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near-surface air temperature and, to a lesser extent,
precipitation (Smith et al 2019, Delgado-Torres et al
2022) in many regions of the world. However, the
predictability of mean quantities and extreme events
might differ (Liu et al 2019).

Only a few studies have previously evaluated tem-
perature and precipitation extremes in decadal pre-
dictions. Eade et al (2012) found a generally high skill
for temperature extremes, and limited skill over parts
of North America for precipitation extremes with
the Met Office Decadal Prediction System (DePreSys)
(Smith et al 2007, 2010). Also, they found a slight
skill improvement due to initialization beyond the
first year, pointing to external forcings as the primary
source of skill. Besides, they found slightly lower skill
for extreme predictions than mean quantities, except
for those regions with a greater trend in extremes
than in the mean variables. Hanlon et al (2013) also
found significant skill for multi-year predictions of
summer temperature extremes with DePreSys over
Europe, while the skill for winter extremes was lower.
They also found lower skill in predicting temperature
extremes than mean quantities. Decadal predictions
from four models contributed to the Coupled Model
Intercomparison Project Phase 5 (CMIP5) (Taylor
et al 2012) were evaluated by Hanlon et al (2013)
for European summer extremes, showing higher skill
than the predictions based on observed climato-
logy. Also, they found that the skill did not improve
with initialization, except for one of the models.
DePreSys has also been shown to outperform clima-
tology and persistence forecasts for a set of daily tem-
perature extreme indices over parts of Europe dur-
ing summer for 10-year predictions (Hanlon et al
2015). Nevertheless, the model initialization did not
improve the forecast quality. High skill for European
temperature extremes and lower skill for precip-
itation extremes was also found with the Mittel-
fristige Klimaprognosen (German term for ‘mid-
term climate forecast’; MiKlip) system (Moemken
etal 2021).

However, to our best knowledge, all previous
studies were based on single forecast systems or lim-
ited regions to evaluate the decadal forecast qual-
ity for climate extremes. We perform a forecast
quality assessment of multi-model decadal predic-
tions of annual and seasonal extreme temperature
and precipitation indices with all available hind-
casts contributed to the Decadal Climate Predic-
tion Project Component A (DCPP-A) (Boer et al
2016) of the Coupled Model Intercomparison Pro-
ject Phase 6 (CMIP6) (Eyring et al 2016). The
evaluation is performed globally for predictions
of the next five years. The skill for extreme pre-
dictions is compared to that for mean temperat-
ure and precipitation variations, and the impact of
model initialization is assessed by comparing the
skill of decadal predictions and historical forcing
simulations. 64
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2. Data

Daily minimum and maximum near-surface air tem-
perature and precipitation have been used to com-
pute the extreme indices. Besides, monthly means of
near-surface air temperature (TAS) and precipitation
(PR) have been used to compare the prediction skill
for extreme indices and mean variables.

All the available CMIP6 decadal hindcasts
(DCPP) have been used. Besides, the CMIP6 his-
torical simulations (HIST) performed with the same
forecast systems as DCPP have been used to estimate
the impact of the model initialization on the pre-
diction skill. The number of DCPP and HIST mem-
bers provided by each forecast system and their basic
information can be seen in table S1. The DCPP and
HIST multi-model ensembles consist of 133 and 134
members, respectively.

Two different gridded observation-based data-
sets per variable have been used as the reference for
the evaluation (table S2) to account for the obser-
vational uncertainty (Sillmann et al 2013, Alexander
et al 2020). The Berkeley Earth Surface Temperat-
ures (BEST) and Rainfall Estimates on a Gridded
Network (REGEN) (Contractor et al 2020) data-
sets provide gridded fields of daily minimum and
maximum temperatures and daily PR, respectively.
These have been used to calculate the extremes
indices and are used as observational references. The
HadEX3 (Dunn et al 2020) dataset (which provides
gridded extremes indices calculated for each station
and then interpolated onto global grids) has been
used as an additional reference dataset. The results
obtained with BEST and REGEN are shown in the
main text, while those obtained with HadEX3 are
shown in the Supplementary Material. The Global
Historical Climatology Network version 4 (GHCNv4)
(Menne et al 2018) and Global Precipitation Clima-
tology Centre (GPCC) (Schneider et al 2020) data-
sets have been used as references for TAS and PR,
respectively.

3. Methods

The Expert Team on Climate Change Detection and
Indices (ETCCDI) defined a set of extreme climate
indices to detect, characterize and monitor changes in
the frequency and severity of extreme events, such as
heat waves, cold spells, floods and droughts (Zhang
et al 2011). We have selected six extreme indices:

o TN10p: seasonal or annual percentage of days when
minimum temperature is below the 10th daily per-
centile.

e TNn: seasonal or annual minimum of daily min-
imum temperature.

e TX90p: seasonal or annual percentage of days when
maximum temperature is above the 90th daily per-
centile.
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o TXx: seasonal or annual maximum of daily
maximum temperature.

e R95p: annual sum of precipitation in days where
daily PR exceeds the 95th percentile of daily pre-
cipitation.

e Rx5day: seasonal or annual maximum 5-day con-
secutive precipitation.

Thus, for each variable, we evaluate a measure of
relatively moderate extremes, which occur on average
several times per year or season, and a measure rep-
resenting the most intense event of the year or sea-
son. The R-based software package we use to compute
the ETCCDI indices (climdex.pcic) (Bronaugh 2020)
provides the TN10p, TNn, TX90p, TXx, and Rx5day
indices at seasonal and annual frequencies, while
it only provides the R95p index at annual aggreg-
ation. Therefore, all six indices have been evalu-
ated at annual frequency. Besides, the boreal winter
(DJF; December-January-February) and boreal sum-
mer (JJA; June-July-August) indices that can also be
computed at seasonal frequency have been included
in the analysis. Similarly, annual and seasonal aver-
ages of TAS and PR have been analyzed.

The extreme indices have been evaluated glob-
ally during the 1961-2014 period using the 1981—
2010 period as the baseline period for the percentile-
based indices calculation. The same reference period
has been used to compute the climatology and
thresholds between the tercile probabilistic categor-
ies. For DCPP, the average of the forecast years 1 to 5
has been evaluated. Thus, start dates 1960-2009 have
been used. In the case of the forecast systems not ini-
tialized in January (see table S1), the first forecast
months have been discarded to define the analysis to
calendar years (i.e. from January to December). A 5-
year running mean has been applied to HIST and ref-
erence datasets to make a consistent comparison with
the forecast period of DCPP.

The multi-model ensembles have been built by
pooling all members together. The extreme indices
have been computed in the native grid of each dataset
(see tables S1 and S2) to avoid smoothing the extreme
values when interpolating daily fields. For the eval-
uation, the mean variables and extreme indices have
been interpolated to a common 2.8° x 2.8° grid res-
olution using the conservative interpolation method.

Both deterministic and probabilistic predictions
have been evaluated. The deterministic forecasts are
based on the multi-model ensemble mean, while the
probabilistic forecasts are based on the percentage
of ensemble members that fall into each tercile cat-
egory (below lower tercile, near average, and above
upper tercile conditions). The tercile categories have
been estimated based on the 33.33% and 66.67%
thresholds of the corresponding probability density
functions.
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The Spearman’s anomaly correlation coefficient
(ACC) (Wilks 2011), which estimates the linear rela-
tionship between the observed and predicted time
series, has been used to evaluate the deterministic
forecasts. Spearman’s correlation has been chosen to
avoid assuming that the data are normally distributed.
We have also tested the sensitivity of using Pearson’s
correlation coefficient instead of Spearman’s, finding
correlation values generally very similar. The ACC
ranges between —1 (worst forecast) and 1 (perfect
forecast). The residual correlation (Smith et al 2019)
has been used to assess whether DCPP predicts any of
the observed variability that is not already captured
by HIST forced signal, and also ranges from —1 to 1.
The residual correlation is computed as follows: the
residuals of both the DCPP ensemble mean and refer-
ence dataset are calculated by linearly regressing out
the HIST ensemble mean from the DCPP ensemble
mean and reference dataset, respectively. The residual
correlation is computed as the correlation between
both residuals. Positive (negative) values indicate that
DCPP predicts the observed variability better (worse)
than HIST.

The quality of the probabilistic predictions has
been evaluated with the ranked probability skill score
(RPSS) (Wilks 2011), which measures the quality of a
forecast in comparison with a reference forecast, and
ranges between minus infinity and 1. Negative val-
ues indicate that the reference forecast is more skill-
ful than the forecast, while positive values mean the
opposite. The DCPP forecasts have been compared to
the climatological forecast (defined as the equiprob-
able forecast, with a probability of 33.33% for each
tercile category) and to the HIST.

The statistical significance of the ACC has been
estimated with a one-sided t-test (Wilks 2011)
accounting for the time series auto-correlation fol-
lowing Zwiers and von Storch (1995) with the null
hypothesis that the ACC is not positive. We use
a one-sided test as only positive correlation values
carry useful predictive information. The same test
but two-sided (in order to identify both potential
improvements and deteriorations from initialization)
has been applied for the statistical significance of the
residual correlation with the null hypothesis that the
residual correlation equals zero. The statistical sig-
nificance of the RPSS using the climatological fore-
cast as the reference forecast has been estimated with
a one-sided Random Walk test (Delsole and Tippett
2016) with the null hypothesis that DCPP has less
than or equal to 50% probability of being more skill-
ful than the climatological forecast. The same test but
two-sided has been applied for the statistical signific-
ance of the RPSS using HIST as the reference forecast
with the null hypothesis that DCPP has a probability
different than 50% of being more or less skillful than
HIST. We control for multiple testing by applying
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Figure 1. Maps of ACC obtained with the DCPP multi-model ensemble for the forecast years 1-5 (annual means) for the mean

variables and extreme indices. The percentage of the global area with statistically significant positive or negative values is shown in
the titles. The reference datasets used for the mean near-surface air temperature and PR are the GHCNv4 and the GPCC datasets,
respectively. The reference datasets used for the temperature and PR indices are the BEST and REGEN datasets, respectively. Grey
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arpr = 0.1.

colors over land regions correspond to those grid points with missing values in the reference dataset. Crosses indicate that the
values are not statistically significant using a one-sided t-test accounting for autocorrelation and controlling the FDR with

the (Wilks 2016) false detection rate (FDR) proced-
ure using appgr = 0.1, which approximately corres-
ponds to a global significance level of o =0.05. The
deterministic evaluation is shown in the main text,
and the probabilistic evaluation in the supplementary
material.

4, Results and discussion

4.1. Multi-model skill for annual extreme indices

The DCPP shows high and significant skill in predict-
ing TAS over most of the globe (figure 1(a)), with
99.5% of the global regions being statistically signi-
ficant. The high and significant skill of the DCPP
multi-model is consistent with the results for mean
temperature and PR reported by Smith et al (2019)
and Delgado-Torres et al (2022). For extreme tem-
perature, the skill is generally lower, and significant
skill is found over smaller areas of the globe than
for TAS, especially for the indices representing the
annual most extreme day (TNn and TXx; figures 1(f)
and (g), respectively). The lower skill found for pre-
dictions of extremes than for TAS is consistent with
Eade et al (2012). However, they found higher skill
for extremes than for TAS in some cases. Specific-
ally, they showed that DePreSys presents a higher skill
for extremes in regions where trends in extremes are
larger than for TAS (e.g. rainfall over Europe, hot
extremes over northern Eurasia, and cold extremes
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over the USA). With the CMIP6 multi-model, we
find opposite results for hot extremes. For example,
predictions of hot extremes over northern Eurasia
(e.g. TX90p; figure 1(d)) show less grid points with
significant skill than for TAS (figure 1(a)). For cold
extremes (TN10p; figure 1(c)), results are consist-
ent with those reported by Eade et al (2012) over
the USA, with some areas showing a higher skill for
TN10p than for TAS. Liu et al (2019) found a poten-
tially higher predictability for moderate temperature
extremes than for TAS in a perfect-model experiment.
However, the CMIP6 multi-model ensemble, initial-
ized with observation-based initial conditions, shows
a generally higher skill for TAS than for moderate
extremes.

Still, the skill for hot and cold extremes is high
and significant over many regions, particularly over
some areas of North America, North Africa, and parts
of Eurasia and Australia. The comparison between
hot and cold extremes shows a generally higher skill
and larger areas with significant skill for minimum
temperature extremes (TN10p and TNn; figures 1(c)
and (d), respectively) than those based on maximum
temperature (TN90p and TXx; figures 1(d) and (g),
respectively).

The skill for PR is more limited than for TAS,
with 7.4% of the global region being significant
(figure 1(b)). The regions in which DCPP are skill-
ful in predicting PR are parts of Northern Africa,
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Northern Europe, Australia and Eurasia. As for tem-
perature, the predictions of PR extremes are generally
less skillful than for PR (figures 1(e) and (h)). Besides,
the skill maps for PR extremes are noisier and positive
significance is found over very limited regions.

The higher skill for extreme temperature predic-
tions compared to extreme PR is consistent with pre-
vious studies evaluating predictions for mean vari-
ables (Smith et al 2019, Delgado-Torres et al 2022),
and can be caused by several reasons. The primary
source of prediction skill for TAS is the response to
forcings, which causes a trend that climate models
capture relatively well (Smith et al 2019). On the con-
trary, PR variability depends more on atmospheric
circulation, which is often less well simulated by cli-
mate models (vanUlden and vanOldenborgh 2006).
In addition, PR is more strongly affected by the signal-
to-noise issue in climate models (Scaife and Smith
2018, Smith et al 2019), which makes PR a variable
more challenging to predict. Furthermore, the low
resolution of climate models does not allow small-
scale processes, such as convection, to be resolved
(Merryfield et al 2020). Therefore, a parametrization
is needed, which also contributes as an error source.
However, PR predictions are still skillful over some
regions such as Europe and Sahelian Africa, and the
Atlantic multidecadal variability may be the source of
predictability for PR over these regions (Doblas-Reyes
etal 2013).

The evaluation of probabilistic forecasts (figure
S1) shows a benefit from using decadal predictions
instead of climatology since positive RPSS values are
found over most regions for TAS and temperature
extremes. Low RPSS values are found over most of the
globe for PR and PR extremes, indicating small or no
benefit from using DCPP instead of the climatological
forecast.

The results obtained with HadEX3 (figures S2 and
S3) are generally consistent with the previously repor-
ted results, with similar skill values and significance
for most indices and regions. The most noticeable
exception is TN10p over South America and TX90p
over Asia, for which the skill is higher and more pos-
itive significance is found when using HadEX3 instead
of BEST as reference dataset. It should be noted that
not all the regions can be compared due to the limited
global coverage of HadEX3.

4.2. Impact of initialization for annual extreme
indices

The residual correlations obtained for TAS show sig-
nificant added skill from initialization over regions of
Central America, North Africa, Eurasia and South-
ern Australia (figure 2(a)). Instead, DCPP show a sig-
nificantly reduced skill for TAS predictions over the
parts of Eurasia and Canada. Still, the global area
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with residual correlations showing positive signific-
ance is higher than negative significance (23.6% and
4.3%, respectively). For PR, the significant added skill
is lower and mainly restricted over Central Africa
(figure 2(b)). Nevertheless, there are more regions
showing positive than negative significance (4.7% and
1.4%, respectively). These results are in line with what
was reported by Smith et al (2019) and Delgado-
Torres et al (2022) for TAS and PR. For temperature
and PR extremes, the patterns of the impact of ini-
tialization that we find differs from those found with
DePreSys (Eade et al 2012). The differences may be
caused by using a multi-model ensemble instead of a
single model, the different generations of prediction
systems, the metric used to assess the impact of initial-
ization, and the different forcings (which have been
shown to provide more skill in CMIP6 than in CMIP5
(Borchert et al 2021)).

The initialization aims at phasing the simula-
tions with the observed climate state. However, model
initialization is a nontrivial procedure with various
issues (Merryfield et al 2020) that can reduce the
skill compared to HIST. For example, initialization
shocks due to inconsistencies between the initial con-
ditions and model climatology can degrade the skill
(Kroger et al 2018, Bilbao et al 2021). Also, those ini-
tial conditions used for the model initialization are
based on observation-based products, which may not
be of sufficient quality, especially over regions with
poor observational coverage. Besides, the drivers for
different variables and extreme indices are different,
thus contributing to the region-dependent impact of
initialization.

The maps of residual correlation for temperature
extremes show a different pattern compared to that
for TAS, and there is a generally lower added skill for
extreme predictions. Still, some regions show a pos-
itive impact of initialization, and some of them are
similar between TAS and extreme temperature (e.g.
southern part of Australia). For example, minimum
temperature extremes (TN10p and TNn; figures 2(c)
and (f), respectively) show significantly positive val-
ues over parts of South America, Africa, and Australia.
However, the TN10p index shows a larger fraction of
the global region with negative than positive signi-
ficance, meaning that DCPP capture less variability
than HIST. The different patterns of residual correla-
tions for mean and extreme temperature may be due
to annual averages being aggregated over the whole
year, thus having multiple different weather condi-
tions. However, extremes represent a small number of
days when specific weather situations and drivers may
occur and play a role, therefore showing a different
pattern for the impact of initialization compared to
that for the mean. Also, the temporal aggregation to
create annual means smooths the time series, remov-
ing the high-frequency temporal variations and thus
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Figure 2. Maps of residual correlation obtained with the DCPP multi-model ensemble with respect to the HIST multi-model
ensemble for the forecast years 1-5 (annual means) for the mean variables and extreme indices. The percentage of the global area
with statistically significant positive or negative values is shown in the titles. The reference datasets used for the mean near-surface
air temperature and PR are the GHCNv4 and the GPCC datasets, respectively. The reference datasets used for the temperature
and PR indices are the BEST and REGEN datasets, respectively. Grey colors over land regions correspond to those grid points with
missing values in the reference dataset. Crosses indicate that the values are not statistically significant using a two-sided t-test
accounting for autocorrelation and controlling the FDR with agpr = 0.1.
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removing some noise and making them more predict-
able than extreme indices based on daily data.

As for PR, the maps of residual correlation for PR
extremes are noisy, and the regions with positive sig-
nificance are mainly restricted over parts of western
Africa and South America (figures 2(e) and (h)).

The maps of RPSS show no added skill from ini-
tialization for the probabilistic forecasts, with RPSS
values being negative or close to zero (figure S4).
Besides, the fraction of the global region with signi-
ficantly negative values is higher than for positive sig-
nificance. The results obtained with HadEX3 (figures
S5 and S6) show that, for minimum temperature
extremes, most regions with significant improvement
due to initialization coincide among both reference
datasets. The results differ more for maximum tem-
perature extremes, particularly for the TX90p index
over Asia (higher added skill when using HadEX3 as
reference) and TXx index over America (higher added
skill when using BEST as reference).

4.3. Multi-model skill for seasonal extreme indices
In addition to the annual extremes, skillful predic-
tions of seasonal extremes are highly important as
their impacts on climate-dependent sectors, nature,
and society may be more relevant in particular sea-
sons of the year.

As for annual TAS, the DCPP multi-model
ensemble shows high skill in predicting TAS in both
DJF and JJA, with 92.6% and 97.1% of tl'g:8global

land area being statistically significant, respectively
(figures 3(a) and (b)). This fraction is slightly lower
than for annual means (99.5%; figure 1(a)). For tem-
perature extremes, the skill patterns differ between
seasons. Overall, there is a higher skill and larger areas
showing statistically significant skill for temperature
extremes during JJA than DJF (figures 3(c)—(j)). For
instance, no significance is found around the Medi-
terranean region for DJF extreme predictions, while
most grid points show statistical significance during
JJA. These results are consistent with Hanlon et al
(2013), who also found higher-quality predictions in
the Mediterranean region for JJA than for DJE. How-
ever, there are also regions where some indices are
predicted more skillfully during DJF than during JJA
(for example, TN10p over Central Canada and TNn
over some parts of South America). Besides, the skill
is generally higher for (more moderate) percentile-
based than for (more intense) absolute extremes, con-
sistent with Hanlon et al (2015).

The skill patterns also differ between seasons for
PR. In DJE positive skill is restricted to Northern
Europe and some parts of Central and Eastern Asia,
although without significance (0.5% of the global
fraction; figure 3(k)). In JJA, the regions showing
statistical significance are mainly located over South
America and Northern Africa, representing 6.7% of
the global region (figure 3(m)). The skill for extreme
PR (figures 3(1) and (n)) shows overall similar pat-
terns as those for PR (figures 3(k) and (m)).
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Figure 3. Maps of ACC obtained with the DCPP multi-model ensemble for the forecast years 1-5 (boreal winter and summer
means) for the mean variables and extreme indices. The percentage of the global area with statistically significant positive or
negative values is shown in the titles. The reference datasets used for the mean near-surface air temperature and PR are the
GHCNv4 and the GPCC datasets, respectively. The reference datasets used for the temperature and PR indices are the BEST and
REGEN datasets, respectively. Grey colors over land regions correspond to those grid points with missing values in the reference
dataset. Crosses indicate that the values are not statistically significant using a one-sided t-test accounting for autocorrelation and
controlling the FDR with aigpr = 0.1.

The seasonality of the skill may be caused by sev-
eral factors. For instance, summer PR over Central
Europe is more convective (Llasat et al 2021), which
may decrease the prediction skill because the limited
spatial resolution of climate models does not allow for
resolving the small-scale processes (Merryfield et al
2020). Also, the large-scale drivers and their local
response are different across seasons (Miiller et al
2012), thus affecting the prediction skill. For example,
(Palmer et al 2008) showed that the skill of seasonal
forecasts for winter European heat waves is reduced
due to model deficiencies in representing blocking
systems. Besides, the spatial distribution of trends also
differs (Lee et al 2021), as well as the signal-to-noise
ratio (Schubert et al 2009), which also may contribute
to the seasonality of the prediction skill.

The probabilistic evaluation shows a general
benefit from using DCPP with respect to the climato-
logical forecast for mean and extreme temperature, as
the RPSS is positive and significant over large regions
of the globe (figure S7). For PR, although lower
RPSS values are found, there are regions where DCPP
outperform the climatological forecast. For instance,
significantly positive RPSS values are found over sev-
eral regions of Eurasia for mean and extreme PR dur-
ing DJE, and over Central Africa during JJA. The res-
ults are generally consistent with those obtained with
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HadEX3 (figures S8 and S9). The highest discrepan-
cies are found for some extreme temperature indices,
especially over the Americas.

4.4. Impact of initialization for seasonal extreme
indices

The impact of initialization for seasonal TAS shows
different patterns during DJF and JJA (figures 4(a)
and (b), respectively). For DJF temperature predic-
tions, the greatest added skill is found in Africa, par-
ticularly over some Central and Northern regions.
Other regions like Southern Australia, Southern Asia
and some parts of the Americas also significantly
benefit from initialization. Still, negative residual cor-
relation is found over regions like northern Eurasia.
During JJA, significant added skill is mainly found
over Central Asia, Northeastern Africa, and some
parts of the Americas, Australia and Europe. Con-
trarily, significant skill decrease is found over large
regions of North America, Africa and Asia.

The regions where a significant impact of initial-
ization is found are different between the extreme
temperature indices (figures 4(c)—(j)) and are also
different from those obtained for TAS. The fraction
of the globe showing a significantly added skill is
higher than the fraction showing a worsening for all
the indices considered. Besides, the fraction of the

7



10P Publishing

Environ. Res. Lett. 18 (2023) 034031

C Delgado-Torres et al

(8} TAS_DJF [fracts = 27.6%; fract- « 4.2%)

() TAS_JJA [fracts = 16.0%; fract- = 6.0%)

(1) TXO0p_JJA [fracts = T%; fract- = &.7%]

(m} PR_JJA [Iracts = 35%; tract- = 0.7%]

T

Figure 4. Maps of residual correlation obtained with the DCPP multi-model ensemble with respect to the HIST multi-model
ensemble for the forecast years 1-5 (boreal winter and summer means) for the mean variables and extreme indices. The
percentage of the global area with statistically significant positive or negative values is shown in the titles. The reference datasets
used for the mean near-surface air temperature and PR are the GHCNv4 and the GPCC datasets, respectively. The reference
datasets used for the temperature and PR indices are the BEST and REGEN datasets, respectively. Grey colors over land regions
correspond to those grid points with missing values in the reference dataset. Crosses indicate that the values are not statistically
significant using a two-sided t-test accounting for autocorrelation and controlling the FDR with agpr = 0.1.

global region showing added skill from initialization
is higher for seasonal indices than for annual indices.
Still, there is a smaller added skill for all indices than
for TAS. Hanlon et al (2013) found that initializa-
tion did not improve the skill for European summer
extremes with the CMIP5 multi-model ensemble.
However, they found added skill when assessing the
MPI-ESM1.2-LR model individually. This points to
the importance of also assessing each forecast sys-
tem individually, as the multi-model ensemble does
not necessarily outperform all single forecast systems
(Mishra et al 2018, Delgado-Torres et al 2022).

For PR, the patterns also differ between sea-
sons (figures 4(k) and (m)), being the one for JJA
more similar to that for annual means (figure 2(b)).
Besides, the patterns for seasonal extreme indices
(figures 4(1) and (m)) are similar to those for seasonal
means.

There is no or limited added skill from initializa-
tion for the probabilistic forecasts, as the RPSS values
are close to zero for the seasonal means and extreme
indices of both temperature and PR (figure S10). The
results obtained using HadEX3 show similar results
(figures S11 and S12, respectively).

5. Summary and conclusion

We have evaluated some aspects of the forecast quality
of the CMIP6 decadal forecast systems in p?gicting

TAS, PR, and a set of extreme indices based on daily
minimum and maximum temperatures and PR for
predictions of the next five years, considering annual,
DJF and JJA extremes. The prediction skill of determ-
inistic and probabilistic forecasts has been estimated
and compared to that of the HIST to assess the impact
of model initialization.

The DCPP multi-model shows high skill in pre-
dicting mean and extreme TAS indices computed
at annual frequency over most of the globe. The
skill is lower and limited to some regions for mean
and extreme PR. There is a generally higher skill
in predicting the mean variables than the extreme
indices. The skill for both extreme TAS and PR is
higher for the moderate extremes (TN10p, TX90p
and R95p; related to frequency) than for the most
extreme extremes (TNn, TXx and Rx5day, related to
intensity). The comparison between DCPP and HIST
shows a region-dependent impact of initialization on
the skill. The added skill due to initialization is higher
for the mean variables than for the extreme indices.
Besides, such skill differences differ between indices,
especially those representing extreme temperature.

For seasonal means and seasonal extreme indices,
the DCPP multi-model also shows a generally high
skill for mean and extreme TAS, especially during JJA.
Similar to annual indices, the skill is higher for the
moderate extreme indices than for the most intense
extremes for both DJF and JJA. The skill is also more
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limited for mean and extreme PR than for temper-
ature on seasonal time scales. Still, there is high skill
during DJF over Northern Europe and some regions
of Asia, and during JJA over some regions of South
America, Central Africa and Northeastern Asia. The
residual correlations show different patterns for sea-
sonal mean variables and extreme indices compared
to those for annual frequency. For temperature, a
lower added skill is found for extreme than for mean
temperature. In addition, the added skill for extreme
temperature depends on the region and season. For
PR, the impact of initialization is similar for extreme
and mean PR. Comparing seasons, the added skill is
more similar between JJA and annual, while it differs
more for DJF.

In conclusion, we find that the CMIP6 decadal
forecast systems can skillfully predict characterist-
ics of climate extremes, in particular extremely hot
and cold temperatures. While the prediction skill
for the extremes indices is mostly lower than for
annual or seasonal means, these forecast systems
still provide useful predictions for the more impact-
relevant aspects of climate. However, to exploit all
the potential usefulness of decadal predictions, user-
oriented indicators could be explored to facilitate
their applicability in climate-sensitive sectors, which
might be based on variables other than temperature
and precipitation, such as wind speed and solar radi-
ation. Besides, the analogous forecast quality assess-
ment should be performed for the particular region,
index and forecast period for each user-specific need
(Hanlon et al 2015, Sgubin et al 2021). This system-
atic evaluation of decadal hindcasts is essential when
providing a climate service based on decadal predic-
tions so that the user is informed on the trustworthi-
ness of the forecasts. Also, comparing decadal hind-
casts and historical simulations might help climate
services providers to select the highest-quality climate
information for each particular case.
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Chapter 6

Discussion and applications

Decadal climate predictions have been shown to provide high-quality climate in-
formation for some variables and regions at annual to decadal time scales, therefore
enabling their applicability to support decision-making in climate-dependent sectors
and adapt to the consequences of climate variability and change. In addition to the
results shown in the research articles published in peer-reviewed scientific journals, sev-
eral additional studies and research questions have been addressed during this Ph.D.,
developed as additional research within the peer-reviewed articles presented in Chap-
ters 3, 4 and 5, and Spanish and European projects. Such results can be accessed
through an R Shiny App: https://earth.bsc.es/shiny/cdelgado/. This Shiny App and
those mentioned below are restricted for privacy reasons. Please send an email to
carlos.delgado@bsc.es to get the credentials.

In this Ph.D. thesis, annual to decadal forecasts of essential climate variables and
modes of variability (Chapter 3; Delgado-Torres et al., 2022a), spatial patterns and
frequencies of occurrence of the Euro-Atlantic weather regimes (Chapter 4; Delgado-
Torres et al., 2022b), indices that account for the frequency and intensity of extreme
climate events (Chapter 5; Delgado-Torres et al., 2023), and the SPEI for drought
conditions estimation (below in this Chapter) have been evaluated motivated by their
potential applicability for climate services on climate-sensitive sectors. Nevertheless,
these variables and indices might not be the most suitable for specific decision-making
for all users. Thus, it is necessary to discuss with users what and how they make
decisions to produce tailored indicators. Also, it should be noted that the results

obtained may differ for other variables, indices, regions and forecast periods. Thus,
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6. Discussion and applications

such results should not be extrapolated to other cases, and a careful evaluation should
be carried out for each particular purpose.

Several metrics have been selected to assess the most general aspects of the fore-
cast quality. These metrics include, for instance, the Anomaly Correlation Coefficient
(ACC; Wilks, 2011) and Root Mean Squared Error (RMSE; Wilks, 2011) to evaluate
the deterministic forecasts, and the Brier Score (BS; Wilks, 2011), Ranked Probability
Score (RPS; Wilks, 2011), Continuous Ranked Probability Score (CRPS; Wilks, 2011),
Relative Operating Characteristic (ROC; Kharin & Zwiers, 2003) and Spread-to-Error
ratio (Hopson, 2014) to evaluate the probabilistic forecasts. Nonetheless, the type of fi-
nal product that users request may be different. For example, some users may request
a product based only on the ensemble mean, the ensemble mean plus the ensemble
spread, a probabilistic forecast based on tercile/quintile categories or the full prob-
ability distribution function. Therefore, such a specific product should be evaluated
accordingly using the skill metric that assesses the particular aspect of the predictions
that impact their societal or economic decisions the most.

In addition to selecting the most suitable skill metric, the reference forecast for
skill score calculation should also consider what users have been using before receiving
climate information based on numerical or statistical climate models. In this Ph.D.
thesis, the climatological forecast and historical forcing simulations have been used as
reference forecasts to estimate the benefit of using decadal predictions. However, dif-
ferent users may have been using other classical forecasts, such as predictions based on
persistence (i.e. based on the climate conditions during a recent period), a combination
of persistence and climatology (Murphy, 1992), or predictions based on climate trends.

The post-processing techniques (such as multi-model combination, calibration and
downscaling) should also be selected accounting for the final product to deliver the most
useful climate information. Within this thesis, several multi-model approaches have
been compared, finding non-significant differences between them. These multi-model
approaches used the information from all available decadal prediction systems without
weighting them according to their skill. Using weight-based multi-model approaches
could increase the forecast quality as skillful models would have more importance within
the multi-model ensemble. However, Mishra et al. (2018) found no benefit of weighting
forecast systems to increase the quality of seasonal predictions. The choice of the

calibration method should also account for the specific aspect of the forecast quality
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that aims to be improved, as each technique corrects a certain statistical property of
the predictions but may degrade others. In addition, applying calibration may decrease
the quality due to the mere fact of performing it in cross-validation mode. However, the
price to pay for calibration is rewarded as the predictions need to have the observed
statistical properties and increase their reliability (i.e. agreement between forecast
probability and mean observed frequency; Murphy, 1993) for them to be usable for
users and decision-makers.

In comparison to uninitialised historical forcing simulations, model initialisation is
expected to increase the quality of decadal predictions as climate models incorporate
information on current conditions, thus phasing the simulations with observations and
narrowing the uncertainty of the forecasts. However, the impact of initialisation is not
always positive, as initialisation shocks and errors in initial conditions can decrease
the quality of the predictions. Therefore, to provide the best climate information, it is
necessary to perform a forecast quality assessment for the variables, indicators, fore-
cast periods and regions for the particular climate service provision. This is supported
by the skill differences and distinct impacts of initialisation found during the system-
atic forecast evaluations and comparison between initialised decadal predictions and
uninitialised historical simulations.

One of the major barriers to developing climate services is the availability of near
real-time predictions. While there is currently decadal hindcast data (which corre-
sponds to the Component A of the CMIP6/DCPP) available from 13 forecast systems
on the ESGF portals, decadal forecasts data (Component B of the CMIP6/DCPP) is
only available from a small subset of forecast systems. For instance, there are near
real-time predictions of mean temperature and precipitation from only 6 forecast sys-
tems. On top of this, the number of systems also depends on the variable, as there
is more data available at monthly aggregations than at daily frequency, which poses
an extra problem for the development of climate services based on extreme indices
computed, e.g. from daily temperature and precipitation. Another obstacle for the
climate services provision is the timeliness of the data delivery, especially if the users
are interested in forecast periods that include the first forecast year.

Climate services based on decadal predictions are in a early state, as only a few
studies based on case studies have applied climate information extracted from decadal

predictions to practical application and illustration on how predictions at annual to

I6)



6. Discussion and applications

decadal time scales can support the decision-making process (e.g. Paxian et al., 2019;
Solaraju-Murali, 2023). In this thesis, the potential applicability of decadal predictions
has also been tested for case studies on the food-security sector over the Southern
African Development Community (SADC) region within the framework of the FOCUS-
Africa project (https://focus-africaproject.eu/).

In this context, two forecast products in the form of two-pager and four-pager doc-
uments were developed (Figures 6.1 and 6.2). They included downscaled forecasts of
temperature (both mean and extreme), precipitation and drought conditions (using the
SPEI with different accumulation periods) for the 2022-2026 period over the SADC and
Tanzania regions using decadal predictions produced at the end of 2021. An R Shiny
App was created to share all the skill estimates and forecast products with the stake-
holders: https://earth.bsc.es/shiny/cdelgado  FOCUS-Africa-casestudy/. This work
is still in progress and the users’ feedback is being considered in order to adapt and tai-
lor such products to the users’ needs. For instance, in the first version of the products,
a no-skill mask was applied over those regions where the multi-model ensemble does
not show an added value in comparison to the climatological forecast. Users expressed
their will to have another forecast that could be based, for example, on climatology or
persistence. This adaptation is not trivial, as the probabilistic version of the climato-
logical forecast is defined as the same probability of occurrence for all categories (33.3%
in case of tercile categories), thus having no most likely tercile. Another related issue is
the choice of tercile categories for the probabilistic forecast. Dividing the distribution
function in tercile is the typical choice in the literature, but it is not necessarily the
most useful choice for users. Other options include, for example, using two or five
categories, or the full probability distribution function.

On the second interaction with stakeholders, they showed interests on having two
additional indices related the extreme precipitations. These indices are the Consecutive
Dry Days and Consecutive Wet Days (CDD and CWD, respectively; Zhang et al., 2011).
Regarding the forecast system used to create the climate information, the stakeholders
were in favour of using the most skilful source of information for each case, which can
be based on a forecast system, multi-model ensemble, climatology or persistence. This
implies to select a different system for each variable, region, and forecast period, as
suggested in Delgado-Torres et al. (2022a) (Chapter 3 of this thesis). Also, there was

an agreement on the use of both tercile and quintile categories, as it is the setting for
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Figure 6.1: Two-pager forecast product developed within the framework of the FOCUS-
Africa project. The document provides predictions of temperature and drought conditions
over the SADC region for the 2023-2026 period.

the seasonal predictions within the same project, and the users also requested the use
of the same colour palettes as for seasonal predictions.

Another aspect of the products to be improved is the distribution of the information
along the documents, as the users requested having only one variable per page to clearly
understand what is being shown. They also asked for changing the baseline period used
to compute the anomalies and probabilistic categories, replacing the original 1981-2010
period with the 1991-2020 period. In general, they showed satisfaction with the forecast
products and said that, without previous contact with climate information at annual
to decadal time scales, they see potential for its use for decisions that need a long
margin to be implemented. We aim to publish a research article, which is currently in

preparation, presenting and describing the entire co-production process as well as how
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6. Discussion and applications

the users’ feedback has been taken into account to improve the forecast products.

Another application of climate information at annual to decadal time scales was
tested with Decathlon, a multinational sporting goods retailer and manufacturer based
in France (https://www.decathlon.com/). Decathlon was interested in predictions of
temperature and precipitation for the next few years. This was motivated by the rela-
tionship of these climate variables with the cotton production, as variations in its price
are modulated by cotton availability and production. Decathlon was interested in pre-
dictions for different periods (e.g. forecast year 1, 2, 2-5 and 6-10) over seven different
regions where they purchase cotton. The growing season for the cotton depends on the
region. Thus, the MIRCA2000 dataset (Portmann et al., 2010, which provides the crop
months globally) has been used to select the predictions for specific crop months for
each location where the cotton is produced (Figure 6.3). This includes both irrigated
and rainfed crops.

During the first phase of the contract, the work focused on the forecast quality
assessment of predictions for the settings mentioned above. The first phase of the
contract consisted of performing a systematic forecast quality assessment using a set
of different skill metrics. For instance, Figure 6.4 shows such metrics for multi-model
predictions of precipitation for the forecast crop seasons 2-5. The results were presented
in meetings with the company as well as into a document summarising the main results.
In addition, an R Shiny App was developed to facilitate the access and visualisation
of the results: https://earth.bsc.es/shiny/cdelgado Decathlon/. The second phase of
the contract consisted of the provision of the forecasts through a document and a shiny
app as well as the presentation of such forecasts in a meeting. These forecasts include
both deterministic (based on the ensemble mean) and probabilistic products (based
on both the most likely category and the likelihood for each category). As a forecast
example, Figure 6.5 shows the probability of the most likely tercile forecasted for the
2023-2026 period, selecting only those specific crop months for each location.

Additionally, Decathlon was also provided with regional deterministic and proba-
bilistic forecasts for the areas where they purchase cotton. For instance, Figure 6.6
shows the predicted probability for each tercile category for precipitation over Brazil
for the forecast years 2-5. In the same figure, dots indicate the observed category in

past years to increase the users’ confidence.
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Figure 6.2: Four-pager forecast product developed within the framework of the FOCUS-
Africa project. The document provides predictions of mean and extreme temperature and

drought conditions over the SADC and Tanzania regions for the 2022-2026 period.

79



6. Discussion and applications

Cotton - Bath-IRC+RFC
First month Last manth

Figure 6.3: First and last months for the cotton crop extracted from the MIRCA2000 dataset

for both locations with irrigated and rainfed cotton crop.

Varlable: Precipitation - Forecast system: Multi-model - PCC - Crop 2-5 - Crop type: Both-IRC+RFC
Evaluation period: 1966-2019 - Reference peﬁaﬂ 1981-2010 - Calibration: False
RP55
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Figure 6.4: Forecast quality as measured with different skill metrics obtained with the multi-
model ensemble for predictions of precipitation for forecast crop seasons 2-5 over the global

cotton crop regions.
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Probability of the most likely tercile - Variable: Precipitation - Forecast system: Multi-model - Crop seasons: 2-5
Start date: 2021 - Reference period: 1981-2010 - Calibration: False - Crop typ
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Figure 6.5: Probability of the most likely tercile for precipitation multi-model predictions
for crop seasons of 2023-2026 (start date 2021, crop seasons 2-5) over the global cotton crop
regions. The intensity of colours indicate the probability for each tercile category. White

colours show that all categories are equiprobable (all of them with a probability less than

40%).

Brazil - of tercile - Multi-model - Reference dataset: GPCC - Calibration: False - Crop seasons: 2-5
Start dates: 1964-2021; Evaluation period: 1mm mm1mmwﬁwmwmm
ACC = 0.53*; RMSSS = 0.14; BSS = 0.05; RPSS = 0.11; CRPSS = 0.07; Spread/Error =

Apove (ROCSS = 0.31) — ETE- el (o t- wle . E
Mormal (ROCSS = 0.08) — - - - - - - - e -
Below (ROCSS = 0.45) —

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.6: Probability of tercile categories for precipitation multi-model predictions for
crop seasons 2-5 over Brazil. The intensity of colours indicate the probability for each tercile

category. Dots show the observed category. The skill estimates are shown in the title.
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Chapter 7

Conclusions

The research conducted during this Ph.D. thesis aimed at evaluating the current
generation of decadal climate predictions, identifying windows of opportunity for which
decadal forecasts show skill in predicting climate variations so that they can potentially
be used for climate services to support decision-making and adaptation strategies in
socio-economic sectors that are affected by climate variability and change.

The work has focused on evaluating the CMIP6 decadal predictions quality (mea-
sured as the degree of agreement between predictions and observations of the past
climate conditions since 1961) to estimate how decadal forecast systems are expected
to predict future variations of the climate system. However, it should be noted that
hindcast skill does not imply forecast skill since the drives and sources of predictabil-
ity may change. Besides, several post-processing techniques have been applied to the
raw predictions to enhance the forecast quality, reliability and usability. These post-
processing techniques include the multi-model combination, correction of systematic
model biases by calibration methods, and computation of weather regimes and extreme
climate indicators. In addition, the skill of decadal predictions has been compared to
that of historical forcing simulations to estimate the impact of model initialisation to-
wards the observed climate state. All these comparisons allow for selecting the best
source of climate information for next year up to one decade.

This chapter presents a summary of the main conclusions (Section 7.1) and recom-

mendations for future research in the field of decadal prediction (Section 7.2).
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7. Conclusions

7.1.

Main conclusions

The CMIP6 decadal predictions are skilful in predicting changes in mean near-
surface temperature over most of the globe at multi-annual time scales. Extreme
climate events associated with daily maximum and minimum temperature are
also well predicted at multi-annual time scales, particularly those based on min-
imum temperature. Also, extremes based on frequency are generally predicted
with higher skill than those based on intensity. On the other hand, predictions
of mean and extreme precipitation show skill over limited regions, thus limiting
their potential usability for climate services provision. AMV index and the GSAT
anomalies predictions have also been found to be skilful. Nevertheless, the multi-
model ensemble overestimates the increase in GSAT anomalies in recent years.
Calibration methods correct this overestimation but with the drawback of re-
duced skill in the 1960s and 1970s.

The forecast quality, as measured with bias-sensitive metrics (such as the RMSSS
and CRPSS), is enhanced when applying bias-adjustment and calibration tech-
niques, as systematic biases are partially corrected through calibration. Other
skill metrics that are not sensitive to biases in mean and variance (such as ACC
and RPSS) are generally decreased due to the application of these methods in
cross-validation mode. However, cross-validation is essential when bias-adjusting
or calibrating hindcasts not to produce overfitting and thus overestimate the

actual skill of future predictions.

The multi-model ensemble is the most reasonable approach when systematically
providing predictions (e.g. globally for several variables), even if the multi-model
ensemble does not outperform the best individual forecast system for each case.
On the other hand, the most skilful model or set of models within the multi-
model ensemble could be selected to deliver the best climate information for each

specific case under consideration (e.g. a particular variable over a limited region).

The ensemble size of the multi-model ensemble impacts the forecast quality, as
found when comparing a research multi-model ensemble (built with predictions
produced with 13 forecast systems which provide hindcasts) against an oper-

ational multi-model (built with predictions from 4 forecast systems providing
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forecasts in addition to hindcasts). This implies a major barrier to the devel-
opment of climate services, as the limited number of forecast systems providing
near-real-time forecasts decreases the quality (and thus usability) of predictions
compared to the quality estimated using all decadal prediction systems. Besides,
more real-time predictions allow the selection of the best forecast system or multi-

model sub-ensemble for each specific region, variable and forecast period.

» The EC-Earth3 forecast system correctly represents the spatial patterns and cli-
matological occurrence frequencies of the four Euro-Atlantic weather regimes.
However, the decadal forecast system does not skillfully predict the inter-annual
to decadal variations of the occurrence frequencies, and there are no significant

skill differences compared to the uninitialised historical forcing simulations.

= There is an added value from model initialisation for multi-model temperature
and precipitation predictions over some ocean and land regions, in addition to
the AMV index and GSAT anomalies. Such added value is generally low and

highly region-dependent for temperature and precipitation extremes predictions.

= More co-production and sharing of knowledge is needed from both user and sci-
entist sides in order to produce more tailored and usable climate information to

suitably underpin decision-making processes.

7.2. Future perspectives

The work developed during this Ph.D. thesis serves as the basis for future research
and application of decadal predictions for climate services in different socio-economic
sectors impacted by climate variability and change.

Apart from the variables considered in the research articles and contributions to
projects within this thesis, other variables and user-oriented indicators should be ex-
plored to assess their predictability and potential use for particular applications. To
do so, it is necessary to interact more with final users, as the co-development pro-
cess is essential to produce a final product tailored and usable by stakeholders in a
decision-making process. Also, having a more comprehensive range of users will allow

for gaining more knowledge and transferring it to future climate services provision.
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Based on the results of the studies developed within this Ph.D. thesis, future studies
could address the capacity of decadal models’ output to be used as inputs for statistical
models, which may be skilful in predicting more user-relevant variables such as crop
yield for the agriculture sector or the capacity factor for the renewable energy sector,
instead of essential climate variables that may be of less potential usage for users.

These statistical models can also be built with large-scale indicators such as the
NAO index. However, one requirement is that the large-scale indicators should be
skillfully predicted. Smith et al. (2020) recently showed that NAO predictions suffer
from the signal-to-noise issue, and that this limitation could be addressed by exploit-
ing very large ensembles and sub-selecting ensemble members with the correct NAO
magnitude. This methodology could be further developed to get improved skill, and
could also be applied to other variables and large-scale indicators.

The coarse resolution and biases of climate models are also a barrier to utilising
the predictions for local decisions. There are a number of calibration and downscaling
approaches that aim to correct such biases and regionalise the predictions. However, the
development of more complex statistical techniques might outperform current methods.
If they show effectiveness when applied to decadal forecasts, these new methodologies
will increase the reliability and usability of climate information to support regional
applications.

The systematic forecast quality assessment performed in this Ph.D. thesis also serves
as a benchmark to compare the skill of current and future forecast systems and to
provide climate modellers with weak points of the current models so that they can put
efforts into improving such aspects. Future research is also needed to understand the
sources of predictability of skill at annual to decadal time scales, which will enable
the improvement of current climate models, thus enhancing the forecast quality and
reliability. Fixing essential issues such as model biases and the low signal-to-noise ratio
present in current model ensembles will enable the utilisation of climate information
extracted from climate models for decision-making at annual to decadal time scales.

Another question that should be addressed is how much skill is sufficient for users
to base their decision on climate predictions. Different users might have different
thresholds to consider a prediction as "skilful enough" depending on their particular
decisions. Also, even if the predictions do not show skill over the entire evaluation

period, some climate variations might be more predictable depending on the specific
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state of the drivers or sources of predictability. For instance, the skill could differ
depending on the phase of some modes of variability. In such a case, more advanced
knowledge of those drivers would enhance the trustworthiness of the forecasts issued

during a particular climate state.
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= Mahmood, R., Donat, M. G., Ortega, P., Doblas-Reyes, F. J., Delgado-Torres,
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= Solaraju-Murali, B., Doblas-Reyes, F. J., Torralba, V., Delgado-Torres, C.,
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A.3. Conferences

= 9th BSC Doctoral Symposium 2022 (9BSCDS): Delgado-Torres, C.,
Donat, M. G., and Soret, A.: Multi-model Forecast Quality Assessment
of CMIP6 Decadal Predictions. 10th-12th May, 2022. Barcelona, Spain.
https://www.bsc.es/education/predoctoral-phd /doctoral-symposium /9th-bsc-
doctoral-symposium-2022 /agenda

= 9th BSC Doctoral Symposium 2022 (9BSCDS): Ramon, J., Lledo,
Ll., Palma, LI, Delgado-Torres, C., and Marcos, R.. CSDown-
scale: an R Package for Statistical Downscaling.  10th-12th May, 2022.
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» EGU General Assembly 2022 (EGU22): Delgado-Torres, C., Donat, M. G.,
Gonzalez-Reviriego, N., Caron, L.-P., Athanasiadis, P. J., Bretonniére, P.-A.,
Dunstone, N. J., Ho, A.-C., Pankatz, K., Paxian, A., Pérez-Zan6n, N., Samso
Cabré, M., Solaraju-Murali, B., Soret, A., and Doblas-Reyes, F. J.: Multi-model
forecast quality assessment of CMIP6 decadal predictions. 23th-27th May, 2022.
Vienna, Austria. https://doi.org/10.5194/egusphere-egu22-13156

» 3rd WMO Workshop on Operational Climate Prediction (WMO OCP-3):
Delgado-Torres, C., Donat, M. G., Gonzalez-Reviriego, N., Caron, L.-P.,
Athanasiadis, P. J., Bretonniére, P.-A., Dunstone, N. J., Ho, A.-C., Pankatz,
K., Paxian, A., Pérez-Zanon, N., Samsé Cabré, M., Solaraju-Murali, B.,
Soret, A., and Doblas-Reyes, F. J.: Multi-model forecast quality assessment
of CMIP6 decadal predictions. 20th-22nd September, 2022. Lisbon, Portugal.
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» AGU Fall Meeting 2022 (AGU22): Delgado-Torres, C., Donat, M. G., Soret,
A., Gonzalez-Reviriego, N., Bretonniére, P., Ho, A., Pérez-Zanon, N., Cabré,
M. S., and Doblas-Reyes, F. J.: Decadal Prediction Skill for Daily Temperature
and Precipitation Extreme Climate Events. 12th-16th December, 2022. Chicago,
USA. https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper /1055746

» EGU General Assembly 2023 (EGU23): Delgado-Torres, C., Donat, M.
G., Soret, A., Gonzalez-Reviriego, N., Bretonniére, P.-A., Ho, A.-C., Pérez-
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Milders, N., G. Munoz, A., Palma, L., Pérez-Zanén, N., Ramon, J., Solaraju-
Murali, B., Soret, A., and Torralba, V.: Forecast quality of climate extreme
predictions and its relevance for climate services. 24th-28th April, 2023. Vienna,
Austria. https://doi.org/10.5194 /egusphere-egu23-11143
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= 10th BSC Doctoral Symposium 2023 (10BSCDS): Delgado-Torres, C.,
Donat, M. G., and Soret, A.: Multi-annual predictions of daily tempera-
ture and precipitation extremes. 9th-10th May, 2023. Barcelona, Spain.
https://www.bsc.es/education/predoctoral-phd /doctoral-symposium /10th-

international-bsc-severo-ochoa-doctoral-symposium-2023

s XXVIII General Assembly of the International Union of Geodesy and Geophysics
(IUGG 2023): Donat, M., De Luca, P., Delgado-Torres, C., Mahmood, R.:
Multi-decadal predictability of wet and dry precipitation extremes from exter-
nal forcing and climate variability. 11th-20th July, 2023. Berlin, Germany.
https://doi.org/10.57757/IUGG23-3485

» World Climate Research Programme Open Science Conference 2023 (WCRP OSC
2023): Bojovic, D., Octenjak, S., Delgado-Torres, C., Vigo, I., Marcos, R.:
From local knowledge to climate science: co-creating climate information across
time and spatial scales for food security in Malawi. 23rd-27th October, 2023.
Kigali, Rwanda. https://werp-osc2023.org/

» World Climate Research Programme Open Science Conference 2023 (WCRP OSC
2023): Donat, M. G., Mahmood, R., De Luca, P., Delgado-Torres, C., Cos, J.,
Ortega, P., Doblas-Reyes, F. J.: Constraining decadal variability in large climate
projections ensembles to obtain improved near-term climate change estimates and
attribute sources of predictability. 23rd-27th October, 2023. Kigali, Rwanda.
https://werp-0sc2023.org/

» World Climate Research Programme Open Science Conference 2023 (WCRP OSC
2023): Donat, M. G., De Luca, P., Delgado-Torres, C., Mahmood, R.: Multi-
decadal predictability of wet and dry precipitation extremes from external forcing
and climate variability. 23rd-27th October, 2023. Kigali, Rwanda. https://wecrp-
0sc2023.org/

A.4. Workshops and hackathons

s C3S_34c contract: Workshop on decadal predictions data standards. 8th and
9th Jun 2020.
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s EUCP project: Workshop on FAIR data and software. 28th Oct, 4th Nov and
11th Nov 2020. http://doi.org/10.5281/zenodo.4279433

» [S-ENES3 Workshop on Climate Indices: Eastern Europe perspective: 17th May
2021.

» WCRP: Workshop on Extremes in Climate Prediction Ensembles (ExCPEns):
25th-27th Oct 2021. https://trello.com/b/0h9RHCbH4 /werp-excpens-workshop-
2021

» EUCP project: EUCP Final Multi-User Forum workshop: 3rd May
2022. https://www.eucp-project.eu/eucp-updates/eucp-final-multi-user-forum-

online-event-3rd-may-2022/

» EUCP project: EUCP Final meeting, 4th-6th May 2022. https://www.eucp-

project.eu/eucp-updates/eucp-final-meeting/

= NextGEMS project: Hackathon for the renewable energy sector: June 28th - July
2nd 2022. https://indico.mpimet.mpg.de/event/41/overview

s Columbia University:  Storytelling 101 with Terri Trespicio:  October
12th 2022. https://events.columbia.edu/cal/event /showEventMore.rdo;jsession
id=ekXzyCafdb3KRIolsireauzt-PNfts-1991-qTzA.calprdapp05

» Columbia University: Soccer in a Warming World Workshop: November
16th 2022. https://www.eventbrite.com/e/soccer-in-a-warming-world-workshop-
tickets-443399769647

s NextGEMS project: Hackathon for the fisheries sector: May 29th - June 2nd
2023. https://events.mpimet.mpg.de/event /56 /

A.5. Ph.D. research stay

A research visit was conducted at the International Research Institute for Climate
and Society (IRI; https://iri.columbia.edu/) at Columbia University in the City of New
York, NY, USA, from September 16th 2022 to December 15th 2022.
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A.6 Contribution to software development

During the secondment, a research work was carried out on the evaluation of the
predictability of extreme climate events at inter-annual to decadal timescales, and
their potential applications for climate services, under the supervision of Dr. Angel G.
Munoz and Carmen Gonzélez Romero.

This work was part of the research article published in Environmental Research
Letters (Chapter 5), and served as the basis of the following climate services oriented
research. In addition, it was a great opportunity to know and interact with excellent
scientists of the field, as well as to learn how another key climate research institution

works.

A.6. Contribution to software development

» CSDownscale (not yet on CRAN): R-based software package intended for down-
scaling climate predictions. So far, only purely statistical methods are included.
The downscaling can be performed either to a grid of different spatial resolution

or to a point location.

= CSScorecards (not yet on CRAN): R-based software package to create scorecards,
which are useful tools for visualisation of systematic climate forecast verification

metrics.

» CSTools (https://CRAN.R-project.org/package=CSTools): The Climate Ser-
vices Tools, CSTools, is an R package designed and built to assess and improve
the quality of climate forecasts for seasonal to multi-annual scales. The package
contains process-based state-of-the-art methods for forecast calibration, bias cor-
rection, statistical and stochastic downscaling, optimal forecast combination and
multivariate verification, as well as basic and advanced tools to obtain tailored

products.

» s2dv (https://CRAN.R-project.org/package—s2dv): R-based software package
intended for seasonal-to-decadal climate forecast verification. This package is
specially designed for the comparison between the experimental and observational
datasets. The functionality of the included functions covers data retrieval, data

post-processing, skill scores against observation, and visualisation.
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» SUNSET (SUbseasoNal to decadal climate forecast post-processing and asSEss-
menT suite): R-based tool that provides climate services for sub-seasonal, sea-
sonal and decadal climate forecast horizons. The tool post-processes climate fore-
cast outputs by applying state-of-the-art methodologies to tailor climate products
for each application and sector (e.g.: agriculture, energy, water management, or
health). Its modular design allows the technicians and researchers to decide on
the post-processing required steps, such as regridding, anomalies, downscaling,
bias-adjustment methods, as well as the products definition by deciding on the
forecast system and reference datasets, variables, and forecast horizon among
others. The tool also allows the creation and visualisation of climate forecast
products, such as maps for the most likely terciles, and performs the verification
of the products using user-defined metrics, which can be visualised on maps and
scorecards. The integration of Autosubmit (Python-based workflow manager to
create, manage and monitor complex tasks involving different substeps) in the
tool allows users to parallelize the computation in High Performance Computing
(HPC) machines.

A.7. Contribution to projects

The outcomes and software developed within this PhD thesis have been applied to

several Spanish and European projects, as well as to a contract with a private company.
= CLINSA project

e Predicciéon decadal climatica  para servicios climaticos a
corto  plazo y  adaptacion (https://www.bsc.es/research-and-
development /projects/clinsa-prediccion-decadal-climatica-para-servicios-

climaticos)

e Funding: Ministerio de Ciencia, Innovacién y Universidades (CGL2017-
85791-R)

e Task: Illustration of the relative merits of the calibration, combination and

downscaling of the decadal predictions
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A.7 Contribution to projects

s C3S_ 34c contract

e Prototype Service for Decadal Climate Predictions
(https://climate.copernicus.eu/c3s34c-prototype-service-decadal-climate-

predictions)

e Funding: Copernicus Climate Change Service (C3S) operated by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) contract
ECMWF/COPERNICUS/2019/C3S_34c_ DWD

e Task: Recommendations for forecast quality assessment and forecast prod-

uct generation
= EUCP project

e European Climate Prediction system (https://www.eucp-project.eu/)

e Funding: FEuropean Union under Horizon 2020 Programme under grant
agreement 776613

e Tasks: Evaluation of the representation and predictability of Euro-Atlantic
weather regimes; Forecast quality assessment of the CMIP6 DCPP multi-

model ensemble; Case study on the wind energy sector
= Decathlon contract

e Decathlon (https://www.decathlon.es/)

e Task: Forecast quality assessment and forecast provision of climate variables

related to cotton production with focus on the specific regions and seasons
» FOCUS-Africa project

e Full-value chain Optimised Climate User-centric Services for Southern Africa

(https://focus-africaproject.cu/)

e Funding: European Union under Horizon 2020 Programme under grant
agreement 869575
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e Tasks: Evaluation of individual models over the SADC; Comparison of
different calibration techniques; Comparison of different multi-model ap-
proaches; Comparison of different downscaling approaches; Evaluation of
SPEI predictions; Case study on the agriculture sector using downscaled
decadal predictions of climate variables and indices related to maize pro-

duction
= ASPECT project

e ASPECT Facilitating Seamless Climate Adaptation (https://www.aspect-
project.eu/)

e Funding: European Union under Horizon FEurope grant agreement
101081460

e Task: Forecast quality assessment of extreme indices based on daily tem-

perature and precipitation
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Journal of Climate, 35(13), 4363-4382. https://doi.org/10.1175/JCLI-D-21-0811.1

Main objectives, main outcomes and research article in Chapter 3.
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CARLOS DELGADO-TORRES,* MARKUS G. DONAT,>? NUBE GONZALEZ-REVIRIEGO,? LoUIS-PHILIPPE CARON,*<
PANOS J. ATHANASIADIS,Y PIERRE-ANTOINE BRETONNIERE,* NICK J. DUNSTONE,® AN-CHI Ho,* DARrIo NicoLi,
Kraus PANKATZ,! ANDREAS PAXIAN,T NiRrIA PEREZ-ZANGN,® MARGARIDA SAMS6 CABRE,? BALAKRISHNAN
SOLARAJU-MURALL?® ALBERT SORET,* AND FRANCISCO J. DoBLAS-REYES*P

d

4 Barcelona Supercomputing Center (BSC), Barcelona, Spain
b Institucié Catalana de Recerca i Estudis Avangats (ICREA), Barcelona, Spain
¢ Ouranos, 550 Sherbrooke St W, Montreal, QC, Canada
d Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
¢ Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
f Business Area of Climate and Environment, Deutscher Wetterdienst, Offenbach (Main), Germany

ABSTRACT: Decadal climate predictions are a relatively new source of climate information for inter-annual to decadal time scales, which
is of increasing interest for users. Forecast quality assessment is essential to identify windows of opportunity (e.g., variables, regions,
and forecast periods) with skill that can be used to develop climate services to inform users in several sectors and define benchmarks for
improvements in forecast systems. This work evaluates the quality of multi-model forecasts of near-surface air temperature, precipitation,
Atlantic multi-decadal variability index (AMYV) and global near-surface air temperature anomalies (GSAT) generated from all the available
retrospective decadal predictions contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). The predictions generally
show high skill in predicting temperature, AMV, and GSAT, while the skill is more limited for precipitation. Different approaches for
generating a multi-model forecast are compared, finding small differences between them. The multi-model ensemble is also compared to
the individual forecast systems. The best system usually provides the highest skill. However, the multi-model ensemble is a reasonable
choice for not having to select the best system for each particular variable, forecast period and region. Furthermore, the decadal predictions
are compared to the historical simulations to estimate the impact of initialization. An added value is found for several ocean and land regions
for temperature, AMV, and GSAT, while it is more reduced for precipitation. Moreover, the full ensemble is compared to a sub-ensemble to
measure the impact of the ensemble size. Finally, the implications of these results in a climate services context, which requires predictions
issued in near real-time, are discussed.
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FiG. S1. Maps of ACC obtained with the multi-model-1 approach (first row) and maps of ACC differences between the multi-model-1 and the
rest of the multi-model approaches (second to fourth rows) for the forecast years 1-5 for the surface air temperature (first column) and precipitation
(second column). The ACC has been computed over the 1961-2014 period (start dates 1960—-2009) for each individual grid point. The reference
period for the computation of anomalies is 1981-2010. The reference datasets used for the surface air temperature and precipitation are the
GHCNvV4 and the GPCC datasets, respectively. Crosses indicate that the values are not statistically significant at the 95% level using a two-sided
t-test accounting for autocorrelation.
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F1G. S2. Same as Figure 1, but using the JRA-55 reanalysis as the reference dataset.
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Temperature Precipitation
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FiG. S3. Maps of RMSSS obtained with the multi-model-1 approach using the climatology as the reference forecast (first row) and maps of
RMSSS of the multi-model-1 using the rest of multi-model approaches as the reference forecast (second to fourth rows) for the forecast years 1-5
for near-surface air temperature (first column) and precipitation (second column). The skill scores have been computed over the 1961-2014 period
(start dates 1960-2009). The reference period for the computation of the anomalies is 1981-2010. The reference datasets used for the surface air
temperature and precipitation are the GHCNv4 and the GPCC datasets, respectively. Crosses indicate that the decadal predictions do not provide
significantly better or worse predictions than the reference forecast at the 95% confidence level based on a Random Walk test.
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F1G. S4. Maps of RPSS for 3 categories obtained with the multi-model-1 approach using the climatology as the reference forecast (first row) and
maps of RPSS for 3 categories of the multi-model-1 using the rest of multi-model approaches as the reference forecast (second to fourth rows) for
the forecast years 1-5 for near-surface air temperature (first column) and precipitation (second column). The skill scores have been computed over
the 1961-2014 period (start dates 1960-2009). The reference period for the computation of the thresholds between categories is 1981-2010. The
reference datasets used for the surface air temperature and precipitation are the GHCNv4 and the GPCC datasets, respectively. Crosses indicate that
the decadal predictions do not provide significantly better or worse predictions than the reference forecast at the 95% confidence level based on a
Random Walk test.
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F1G. S5. Same as Figure 2, but using the JRA-55 reanalysis as the reference dataset.
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Temperature Precipitation

(a) Multi-model equally weighted (b) Multi-model equally weighted

FI1G. S6. Same as Figure 3, but using the JRA-55 reanalysis as the reference dataset.
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(a) Multi-model

(b) BCC-CSM2-MR (c) CanESM5 (d) CESM1-1-CAMS5-CMIPS

(e) CMCC-CM2-SR5 (f) EC-Earth3-i1 (g) EC-Earth3-i2
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Fic. S7. ACC obtained with the multi-model (a) and the forecast systems (b—n) with decadal predictions for the forecast years 1-5 for the
near-surface air temperature. The skill estimates have been computed over the 1961-2014 period (start dates 1960-2009). The reference period for
the computation of anomalies is 1981-2010. The reference dataset used is the GHCNv4 dataset. Crosses indicate that the values are not statistically
significant at the 95% level using a two-sided t-test accounting for autocorrelation.
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F1G. S8. Same as Figure S7, but using the JRA-55 reanalysis as the reference dataset.
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(a) Multi-model (b) BCC-CSM2-MR (c) CanESM5 (d) CESM1-1-CAM5-CMIP5S
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F1G. S9. RMSSS obtained with the multi-model (a) and the forecast systems (b—n) with decadal predictions for the forecast years 1-5 for the
near-surface air temperature using the observed climatology as the reference forecast. The skill scores have been computed over the 1961-2014
period (start dates 1960-2009). The reference period for the computation of the anomalies is 1981-2010. The reference dataset used is the GHCNv4
dataset. Crosses indicate that the decadal predictions do not provide significantly better or worse predictions than the climatological forecast at the
95% confidence level based on a Random Walk test.
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(a) Multi-model (b) BCC-CSM2-MR (c) CanESM5 (d) CESM1-1-CAM5-CMIP5S
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Fi1G. S10. Same as Figure S9, but using the JRA-55 reanalysis as the reference dataset.
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(a) Multi-model (b) BCC-CSM2-MR (c) CanESM5 (d) CESM1-1-CAM5-CMIP5S
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F1G. S11. RPSS for 3 categories obtained with the multi-model (a) and the forecast systems (b—n) with decadal predictions for the forecast years
1-5 for the near-surface air temperature using the observed climatology as the reference forecast. The skill scores have been computed over the
1961-2014 period (start dates 1960-2009). The reference period for the computation of the thresholds between categories is 1981-2010. The
reference dataset used is the GHCNv4 dataset. Crosses indicate that the decadal predictions do not provide significantly better or worse predictions
than the climatological forecast at the 95% confidence level based on a Random Walk test.
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F1G. S12. Same as Figure S11, but using the JRA-55 reanalysis as the reference dataset.
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(a) Multi-model (b) BCC-CSM2-MR (c) CanESM5 (d) CESM1-1-CAM5-CMIP5S

(e) CMCC-CM2-SR5 (f) EC-Earth3-i1 (g) EC-Earth3-i2 (h) HadGEM3-GC3.1-MM

(i) IPSL-CMBA-LR (i) MIROCB (k) MPI-ESM1.2-HR () MPI-ESM1.2-LR

(m) MRI-ESM2-0 (n) NorCPM1
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FiG. S13. ACC obtained with the multi-model (a) and the forecast systems (b—n) with decadal predictions for the forecast years 1-5 for
precipitation. The skill estimates have been computed over the 1961-2014 period (start dates 1960-2009). The reference period for the computation
of anomalies is 1981-2010. The reference dataset used is the GPCC dataset. Crosses indicate that the values are not statistically significant at the
95% level using a two-sided t-test accounting for autocorrelation.
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F1G. S14. Same as Figure S13, but using the JRA-55 reanalysis as the reference dataset.
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(a) Multi-model (b) BCC-CSM2-MR (c) CanESM5 (d) CESM1-1-CAM5-CMIP5S
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FiG. S15. RMSSS obtained with the multi-model (a) and the forecast systems (b—n) with decadal predictions for the forecast years 1-5 for
precipitation using the observed climatology as the reference forecast. The skill scores have been computed over the 1961-2014 period (start dates
1960-2009). The reference period for the computation of the anomalies is 1981-2010. The reference dataset used is the GPCC dataset. Crosses
indicate that the decadal predictions do not provide significantly better or worse predictions than the climatological forecast at the 95% confidence
level based on a Random Walk test.
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F1G. S16. Same as Figure S15, but using the JRA-55 reanalysis as the reference dataset.
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(a) Multi-model (b) BCC-CSM2-MR (c) CanESM5
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Fi1G. S17. RPSS for 3 categories obtained with the multi-model (a) and the forecast systems (b—n) with decadal predictions for the forecast years
1-5 for precipitation using the observed climatology as the reference forecast. The skill scores have been computed over the 1961-2014 period
(start dates 1960-2009). The reference period for the computation of the thresholds between categories is 1981-2010. The reference dataset used
is the GPCC dataset. Crosses indicate that the decadal predictions do not provide significantly better or worse predictions than the climatological
forecast at the 95% confidence level based on a Random Walk test.
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Fi1G. S18. Same as Figure S17, but using the JRA-55 reanalysis as the reference dataset.
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ACC diff RMSSS RPSS
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(d) Multi-model vs Median-models
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F1G. S19. Same as Figure 5, but using the JRA-55 reanalysis as the reference dataset.
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(a) Highest ACC - Temperature (b) Highest RMSSS - Temperature (c) Highest RPSS - Temperature
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Fi1G. S20. Highest ACC (a, d), RMSSS (b, e), and RPSS for three categories (c, f) obtained with the DCPP forecast systems and the multi-model
for the forecast years 1-5 for the near-surface air temperature (a—c) and precipitation (d—f). The skill estimates have been computed over the
1961-2014 period (start dates 1960-2009). The reference period for the computation of anomalies and the thresholds between the categories is
1981-2010. The RMSSS and RPSS have been computed using climatology as the reference forecast. The reference datasets used for the near-surface
air temperature and precipitation are, respectively, the GHCNv4 and the GPCC datasets.
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FiG. S21. AMYV index obtained with the multi-model (a) and the forecast systems (b—n) for the forecast years 1-5. The historical simulations
are shown in blue (dark shading contains the values between the percentiles 25th and 75th, while light shading contains the values between those
percentiles and the minimum/maximum values) and the decadal predictions in red (boxes contain the values between the percentiles 25th and 75th,
while the whiskers contain the values between those percentiles and the minimum/maximum values). The ACC, RMSSS, and RPSS are shown for
both decadal predictions and historical simulations over 1961-2014 (start dates 1960-2009). The reference period for the computation of anomalies
and thresholds between categories is 1981-2010. The reference datasets are the GISTEMPv4 (grey solid lines) and the HadCRUT4 (grey dashed
lines). The skill measures are shown for both reference datasets: the first value corresponds to the GISTEMPv4 dataset and the second value to the
HadCRUT4 dataset. A star next to an ACC estimate indicates that the skill is statistically significant at the 95% confidence level using a two-sided
t-test accounting for autocorrelation, while a star next to an RMSSS or RPSS value indicates that the simulations provide significantly better or
worse predictions than the climatological forecast at the 95% confidence level based on a Random Walk test.
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FiG. S22. GSAT anomalies obtained with the multi-model (a) and the forecast systems (b-n) for the forecast years 1-5. The historical simulations
are shown in blue (ensemble spread shown by shading) and the decadal predictions in red (ensemble spread shown by box-and-whiskers). The
ACC, RMSSS, and RPSS are shown for both decadal predictions and historical simulations over 1961-2014 (start dates 1960-2009). The reference
period for the computation of anomalies and thresholds between categories is 1981-2010. The reference datasets are the JRA-55 (grey solid lines)
and the GHCNv4 (grey dashed lines). The skill measures are shown for both reference datasets: the first value corresponds to the JRA-55 dataset
and the second value to the GHCNv4 dataset. A star next to an ACC estimate indicates that the skill is statistically significant at the 95% confidence
level using a two-sided t-test accounting for autocorrelation, while a star next to an RMSSS or RPSS value indicates that the simulations provide
significantly better or worse predictions than the climatological forecast at the 95% confidence level based on a Random Walk test.
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Fi1G. S23. Same as Figure 6, but using the HadCRUT4 and GHCNv4 datasets for the AMV and GSAT indices, respectively, as the reference datasets.
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F1G. S24. Same as Figure 7, but using the JRA-55 reanalysis as the reference dataset.
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Fi1G. S25. Same as Figure 8, but using the JRA-55 reanalysis as the reference dataset.
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Figure S1. Same as Figure 1, but using the NCEP1 reanalysis as the reference dataset.
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Figure S2. Spatial patterns of the observed Euro-Atlantic weather regimes (computed as the
averaged sea level pressure anomalies, in hPa, of all the days classified onto each cluster) obtained
with the JRA-55 reanalysis for the winter season. The first and second rows show the patterns
obtained by applying the k-means clustering asking for 4 and 5 clusters, respectively, during
the 1965-2014 period. The third and fourth rows show the patterns obtained by applying the
k-means clustering algorithm asking for 4 clusters during the 1995-1989 and 1990-2014 periods,

respectively.
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Figure S3. Same as Figure S2, but for the summer season.
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Figure S4. Same as Figure 2, but using the NCEP1 reanalysis as the reference dataset.
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NAO- BL AR Unclassified
Same as Figure 3, but using the NCEP1 reanalysis as the reference dataset.
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July 20, 2022, 8:44am

134




Appendix D

Supplementary material for Chapter 5

Delgado-Torres, C., Donat, M. G., Soret, A., Gonzalez-Reviriego, N., Bretonniére,
P.-A., Ho, A.-C., Pérez-Zanoén, N.; Samsé Cabré, M., and Doblas-Reyes, F. J.
(2023). Multi-annual predictions of the frequency and intensity of daily temper-
ature and precipitation extremes. Environmental Research Letters, 18 034031.
https://doi.org/10.1088 /1748-9326 /acbbel

Main objectives, main outcomes and research article in Chapter 5.
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Table S1.

Forecast systems,

institution, number of decadal prediction and

historical simulation members, spatial resolution of the atmospheric model, month

of initialization, and reference in which they are described.

Forecast DCPP HIST  Spatial Month Reference

system members members resolution initialization
BCC-CSM2-MR 8 2 1.125% x 1.125% January  Wu et al. (2019)
CanESM5 20 25 2.82 x 2.8° January  Swart et al. (2019)
CMCC-CM2-SR5 10 6 0.99 x 1.25° November Nicoli et al. (2023)
EC-Earth3-i1 10 10 0.7° x 0.7° November Ddscher et al. (2022)
EC-Earth3-i2 5 - 0.7 x 0.7° November Ddéscher et al. (2022)
EC-Earth3-i4 10 — 0.79 x 0.7° November Doscher et al. (2022)
HadGEM3-GC3.1-MM 10 4 0.559 x 0.83° November Sellar et al. (2020)
IPSL-CM6A-LR 10 31 1.259 x 2.5° January  Boucher et al. (2020)
MIROC6 10 10 1.49 x 1.4° November Tatebe et al. (2019)
MPI-ESM1.2-HR 10 10 0.92 x 0.99 November Miiller et al. (2018)
MRI-ESM2-0 10 6 1.125° x 1.125° November Yukimoto et al. (2019)
NorCPM1-il 10 30 1.99 x 2.5 October  Bethke et al. (2021)
NorCPM1-i2 10 - 1.99 x 2.59 October  Bethke et al. (2021)
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Table S2. Reference datasets used for the evaluation, variable, institution, temporal
frequency, dataset type, spatial resolution, and the reference in which they are

described.
Variable Dataset ~ Temporal Type Spatial Reference
frequency resolution

Near-surface air ~ BEST Daily Gridded 19x 1° -

maximum observations

and minimum

temperature

Precipitation REGEN  Daily Gridded 19x 1° Contractor et al. (2020)
observations

ETCCDI indices HadEX3  Daily Gridded 1.875° x 1.25° Dunn et al. (2020)
indices

Near-surface air  GHCNv4 Monthly Gridded 59 x 5 Menne et al. (2018)

temperature observations

Precipitation GPCC Monthly  Gridded 19x 1° Schneider et al. (2020)
observations

{a) TAS [fract+ = 95.9%)] (b} PR [fract+ = 4.2%]

Figure S1. As Figure 1, but for the RPSS of the DCPP multi-model ensemble using
the climatological forecast as the reference forecast. The statistical significance has
been estimated with the Random Walk test controlling the FDR with appr = 0.1.

139



{a) TAS [fract+ = 99.5%] (b} PR [fract+ = 7.4%]

(c) TN10p [fracts = 99.8%] (d) TX90p [fracts = 96%]

{f) TNn [fract+ = 93.4%] {g) TXx [fract+ = 67.5%]

05 06 0.7 08 09

Figure S2. As Figure 1, but using the HadEX3 as the reference dataset for the
extremes indices.

{a) TAS [fract+ = 95.9%)] (b} PR [fract+ = 4.2%]

(e) R9Sp [fracte = 11.1%]

(g) TXx [fract+ = 41%] (h) Rx5day [fract+ = 3.1%]

0.2- 0.3 0.4 05 06 0.7 08 09

Figure S3. As Figure S1, but using HadEX3 as the reference dataset for the extreme
indices.
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(a) TAS [fract+ = 1.8%; fract- = 16.2%] (b) PR [fract+ = 2.5%; fract- = 1.1%]

(d) TX90p [fract+ = 3%; fract- = 15%] (e) R95p [fract+ = 4.6%; fract- = 3.1%]

{g) TXx [fract+ = 3.7%; fract- = 63%] (h) Rx5day [fract+ = 2.4%; fract- = 1.3%]

0.7 0.6 -0.5 0.4 -0.3 -0.2 0.1 0 0.1 0.2 03 0.4 0.5 0.6 07

Figure S4. As Figure 2, but for the RPSS of the DCPP multi-model ensemble using
the HIST multi-model ensemble as the reference forecast. The statistical significance
has been estimated with the Random Walk test controlling the FDR with appr = 0.1.

(a) TAS [fract+ = 23.6%; fract- = 4.3%] (b) PR [fract+ = 4.7%; fract- = 1.4%]

(¢) TN10p [fracts = 13.9%; fract- = 23.6%] (d) TX90p [fract+ = 24.2%; fract- = 1.7%] (e) R95p [fract+ = 2.9%; fract- = 1.1%]

(f) TNn [fract+ = 9.8%; fract- = 1.2%] (g) TXx [fract+ = B.9%; fract- = 0.8%] (h) Rx5day [fract+ = 1.9%; fract- = 0.5%]

0.7 0.6 -0.5 0.4 -0.3 -0.2 0.1 0 0.1 0.2 03 0.4 0.5 0.6 07

Figure S5. As Figure 2, but using HadEX3 as the reference dataset for the extreme
indices.
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(a) TAS [fract+ = 1.8%; fract- = 16.2%] (b) PR [fract+ = 2.5%; fract- = 1.1%]

(e) R95p [fract+ = 1.1%; fract- = 0.9%]

(h) Rx5day [fract+ = 0%; fract- = 0%]

0.2 03 0.4 0.5 0.6 07

Figure S6. As Figure S4, but using HadEX3 as the reference dataset for the extreme
indices.

{b) TAS_JJA [fracts = B8.1%]

o1 02 [k} 04 05 08 oy 08 08

Figure S7. As Figure 3, but for the RPSS of the DCPP multi-model ensemble using
the climatological forecast as the reference forecast. The statistical significance has
been estimated with the Random Walk test controlling the FDR with appr = 0.1.
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(b) TAS_JJA [fracts « 97.1%]

(€} TH10p_DJF [fracts = 92.3%)]

08 08 07 06 05 04 03 02

Figure S8. As Figure 3, but using the HadEX3 as the reference dataset for the
extreme indices.

Figure S9. As Figure S7, but using HadEX3 as the reference dataset for the extreme
indices.
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(8] TAS_DJF [tracts = 26%; fract- = 11.5%]

e I —— g

07 08 -05 04 0.3 02 a1 o o 02 03 04 os 08 o7

Figure S10. As Figure 4, but for the RPSS of the DCPP multi-model ensemble using
the HIST multi-model ensemble as the reference forecast. The statistical significance
has been estimated with the Random Walk test controlling the FDR with appr = 0.1.

(a) TAS_DJF [fracts « 27.6%; fract- « 4.2%)]

(€) TN10p_DJF [tracts = 16.3%; fract- = 4.7%)] (d) TX90p_DJF [fracts = 18.6%; fract- = 1.8%]

Figure S11. As Figure 4, but using HadEX3 as the reference dataset for the extreme
indices.
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(a) TAS_DJF [fracts = 26%; fract- = 11.5%]

Figure S12. As Figure S10, but using HadEX3 as the reference dataset for the
extreme indices.
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Climate variations at annual to decadal time scales impact the economy,
ecosystems and society in several sectors, such as renewable energy,
agriculture, food security, water management, fisheries, health, insurance
and urban planning. Knowing these variations ahead of time allows for
implementing measures to adapt, mitigate and build resilience to the
consequences of a changing climate. The work developed within this
Ph.D. thesis has focused on evaluating the forecast quality for predic-
tions of several variables, indices and indicators relevant for deci-
sion-making in several sectors, with a particular focus on agriculture. The
evaluation has been performed globally, for the individual models and
multi-model ensemble, and different forecast periods in order to identify
windows of opportunity for which the climate predictions show enough
quality to be used for decision-making. Besides, different post-process-
ing techniques have been applied to the predictions to improve their qual-
ity and usability. The thesis also presents some applications of the
research within different projects, as well as prototypes of climate
services developed in collaboration with users.



