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Abstract

The main goal of this work is to cover fundamental wavelet theory concepts,
MRA construction, and Mallat’s theorem’s proof. Practical applications in signal
processing and image analysis are highlighted, emphasizing wavelets’ versatile role
in diverse fields.
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Introduction

Within the intricate tapestry of mathematics lies a sometimes overlooked yet per-
vasive tool: wavelets. This work explores how wavelets work in math and how they
are used in different areas like processing images, analyzing signals, and interpreting
data. By exploring Wavelet Theory, this work aims to show how useful they are in
solving real-world challenges.

The inception of wavelet theory traces its roots back to the latter half of the 20th
century, although its antecedents can be found in diverse areas of mathematics and
signal analysis that span several centuries.

The beginnings of wavelets can be associated with the work of the French math-
ematician Joseph Fourier in the early 19th century, who introduced the Fourier
transform (Section 1.2). This transformative mathematical tool enabled the repre-
sentation of signals in the frequency domain, revolutionizing the study of signals and
systems. However, the Fourier transform, while powerful, faced limitations when
dealing with non-stationary signals whose frequency content evolves over time.

The quest to overcome these limitations led to the development of wavelets. The
term "wavelet" was first coined by the French mathematician and physicist Jean
Morlet in the mid-20th century in his exploration of seismic signals. Morlet’s work
laid the groundwork for the understanding and application of wavelets in the anal-
ysis of signals with varying frequencies over time, addressing the shortcomings of
traditional Fourier methods. To establish a relationship between time precision and
frequency we will look at the Heisenberg uncertainty principle (Section 1.11), which
states that the more precisely a signal’s frequency is determined, the less precisely
its time can be known and vice versa.

However, it was the pioneering work of the mathematicians Yves Meyer, Ingrid
Daubechies, Stéphane Mallat, and others in the late 1970s and early 1980s that
solidified the mathematical foundation of wavelets. One of the fundamental mile-
stones was the introduction of the "mother wavelet" by Daubechies in the 1980s,
which provided a solid basis for the construction of wavelets with specific proper-
ties, such as compactness in the time and frequency domain, essential for practical
applications. They established the theoretical framework, defining the properties of
wavelets, exploring their multiresolution analysis (MRA), and unveiling their appli-
cations in signal processing and data analysis.

The fundamental breakthrough came with the formulation of the discrete wavelet
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transform (DWT) and the introduction of orthogonal wavelet bases. These innova-
tions, along with the development of fast algorithms for wavelet computations by
Stéphane Mallat and others, propelled wavelet theory into the spotlight of scientific
and technological advancement.

The evolution of wavelet theory from its nascent stages to its present-day ap-
plications across diverse disciplines like image processing, data compression, signal
analysis, and beyond, exemplifies its profound impact on modern mathematics and
its practical significance in addressing real-world challenges.

As we delve deeper into this work, we will explore the mathematical underpin-
nings and versatile applications of wavelet theory, showcasing its journey from a
theoretical concept to an indispensable tool in the realm of mathematics and signal
analysis.

The initial Chapter introduces the basic ideas needed to understand Wavelet
Theory thoroughly. Beginning with an examination of Hilbert Spaces, the study
progresses to investigate the Fourier Transform and its key properties. Subsequently,
attention is directed toward the Haar basis of L2[0, 1] and an exploration of Heisen-
berg’s Uncertainty Principle, forming the foundational pillars for the subsequent
exploration of Wavelet Theory.

The core of this work revolves around a detailed analysis of Wavelet Theory.
Starting with an in-depth study of the Haar wavelet and its Multiresolution Analysis
(MRA), a mathematical framework that examines signals or functions at multiple
scales simultaneously, capturing both coarse and fine details efficiently. The work
unfolds to introduce broader concepts within Wavelet Theory. This includes pre-
senting some examples of wavelets, such as Shannon or Daubechies Wavelets. It is
also shown how to construct an MRA through Mallat’s theorem, which states that
any function can be decomposed into different scales and positions using wavelet
transformations, allowing for an efficient representation with sparse coefficients. We
will explore two different proofs of this theorem, one directly and the other through
the Fourier perspective. Additionally, the study extends to analyze wavelets in R2

and investigates separable multiresolutions.

The final section of this work focuses on the practical applications of Wavelet
Theory in various fields. From its utilization in signal and audio processing to its
role in image and video compression, including specific applications such as medical
image processing, the scope extends further into data and time series analysis. More-
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over, the thesis explores its application in geospatial data compression and analysis,
showcasing the versatility of Wavelet Theory across multiple disciplines.

In summary, this work aims not only to build a solid theoretical base in Wavelet
Theory, but also to emphasize its various and significant uses in solving practical
problems across many different areas.
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Chapter 1

Preliminaries

Before delving into the theory of wavelets, we will provide a brief summary of con-
cepts and results essential for their construction. We will begin by examining what
a Hilbert space is and what constitutes a Hilbert basis. Additionally, we will define
the Fourier transform and explore some properties that will prove useful later on. In
the next section we will introduce a basis of L2[0, 1], different from the Fourier basis,
the Haar basis. Finally, we will discuss Heisenberg’s uncertainty principle, which is
crucial because it underlines the trade-off between time and frequency precision in
signal analysis.

In this section, we will not delve extensively as it serves as an introduction to
specific concepts that are essential and which are known for understanding the core
subject of this work. We present concise notions of essential elements that are ei-
ther necessary or beneficial to comprehend the principal theme of this work. Should
further depth or more expansive explanations be sought, or if demonstrations are
required, you can refer to the following sources: [10], [14].

1.1 Hilbert Spaces

Definition 1.1. A Hilbert space is a vector space H on C with a scalar product
⟨x, y⟩, x, y ∈ H such that:

1. ⟨x, y⟩ is bilinear.

2. ⟨x, y⟩ = ⟨x, y⟩, i.e. it is Hermitian.

3. ⟨x, x⟩ ⩾ 0 and ⟨x, x⟩ = 0 if and only if x = 0.

1
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4. H is a complete metric space with the distance included by the norm ∥x∥ =

⟨x, x⟩1/2.

Prior to establishing a Hilbert basis, we shall first define the orthogonal space.

Definition 1.2. Given a closed subspace M ⊂ H its orthogonal space is:

M⊥ = {x ∈ H : ⟨x, y⟩ = 0 ∀y ∈M}.

In this situation any x ∈ H can be projected onto M, as if H were a space with
finite dimension.

Theorem 1.3. (Projection theorem) Let M ⊂ H be closed. Then H =M⊕M⊥,
i.e., for any x ∈ H there exist unique y ∈ M and z ∈ M⊥ such that x = y + z.
Furthermore,

d(x,M) = ∥x− y∥ = ∥z∥ = sup
w∈M⊥,∥w∥=1

∥⟨x, y⟩∥.

Definition 1.4. A Hilbert basis consists of elements {ei}i∈I ∈ H, forming a com-
plete orthonormal system. Completeness implies that the closure of the span, ⟨ei⟩i∈I ,
covers the entire H, which is equivalent to V ⊥ = {0}, i.e., that if ⟨x, ei⟩ = 0 ∀i ∈ I,
then x = 0 necessarily.

Projections on subspaces spanned by orthonormal systems are straightforward.

Theorem 1.5. Let {en}∞n=1 be a countable orthonormal system in a Hilbert space H
and let V = ⟨en⟩∞n=1 be its span. Given x ∈ H,

(a) PV (x) =
∞∑
n=1
⟨x, en⟩ en ,

(b)
∞∑
n=1
|⟨x, en⟩|2 ≤ ∥x∥2 (Bessel’s inequality).

In particular, given a countable orthonormal basis, the norm of any x ∈ H can
be discretized.

Corollary 1.6. Let {en}∞n=1 be a countable orthonormal system. The following are
equivalent:

(a) {en}∞n=1 is a Hilbert basis.

(b) If ⟨x, en⟩ = 0 for all n ≥ 1, then x = 0.

(c) ∥x∥2 =
∞∑
n=1
|⟨x, en⟩|2 (Parseval’s identity).
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1.2 Fourier transform and main properties

In this section we will focus on the Fourier transform, which decomposes a func-
tion, usually a signal in the time domain, into its frequency components. This
transform allows the function to be expressed in terms of sinusoidal functions, which
facilitates the analysis of its frequency components.

Consider the normalized Hilbert space L2[0, 2π], with inner product

⟨f, g⟩ = 1

2π

ˆ 2π

0
f(t)g(t)dt, f, g ∈ L2[0, 2π].

Then, it is well known that the system {eint}n∈Z is an orthonormal basis of L2[0, 2π].
Now, let’s define the Fourier series, which is essentially the decomposition of any
f ∈ L2[0, 2π] in this basis.

Definition 1.7. Given n ∈ Z, the n-th Fourier coefficient of a function f ∈ L2[0, 2π]

is

f̂n = ⟨f, en⟩ =
1

2π

ˆ 2π

0
f(t)eintdt.

As the system {eint}n∈Z is a basis, we can represent any function f ∈ L2[0, 2π]

as
f(t) =

∑
n∈Z

f̂ne
int. (1.1)

In the equation (1.1), the right hand side is called Fourier series of f . This
representation allows the digitisation of the continuous signal f(t), since all the in-
formation of f is encoded in the discrete sequence {f̂n}n∈Z.

Now, to define the Fourier transform in L1, we should consider the space of
integrable functions in R:

L1(R) =
{
f : R −→ C : ∥f∥1 =

ˆ
R
|f(t)|dt < +∞

}
.

Definition 1.8. Given f ∈ L1(R), its Fourier transform is the function f̂ : R −→ C
defined by

f̂(ξ) =

ˆ
R
f(t)e−2πiξtdt, ξ ∈ R.
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The Fourier transform is well-defined and bounded: |f̂(ξ)| ≤
´
R |f(t)|dt = ∥f∥1.

We will now list some properties of the Fourier transform. In the column "Time"
we will see some operations and properties in the time domain, where the variable
t ∈ R is temporal. In the "Frequency" column, where the variable ξ ∈ R refers to
the frequency, we have the corresponding operations in the frequency domain. The
following table shows how these operations are transformed from the time domain
to the frequency domain and vice versa.

Time Frequency

(1)
linear properties

af + bg

linear properties
af̂ + bĝ

(2)
conjugation
f̄(t) := f(t)

conjugate reflection̂̄f(ξ) = f̂(−ξ) = (f∨)(ξ)

(3)
translation

τhf(t) := f(t− h)
modulation

τ̂hf(ξ) =M−hf̂(ξ) = e−2πihξ f̂(ξ)

(4)
modulation

Mhf(t) := e2πihtf(t)

translation
M̂hf(ξ) = τhf̂(ξ) = f̂(ξ − h)

(5)
dilation

Dsf(t) := sf(st)

inverse dilation
D̂sf(ξ) = sDs−1 f̂(ξ)

(6)

derivative
f ′(t)

f (k)(t)

multiply by polynomial
f̂ ′(ξ) = (2πiξ)f̂(ξ)

f̂ (k)(ξ) = (2πiξ)kf̂(ξ)

(7)
multiply by polynomial

−2πitf(t)
derivative

[−2πitf(t)]∧(ξ) = d
dξ f̂(ξ)

(8)
convolution

(f ∗ g)(t) :=
´
f(t− x)g(x)dx

product
(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

(9)
product
f(t)g(t)

convolution
f̂g(ξ) = (f̂ ∗ ĝ)(ξ)

Table 1. Fundamental properties of the Fourier transform.

We want to use the Hilbert structure of L2(R), but L2 functions are not neces-
sarily in L1, so first we have to explain how the definition of Fourier transform is
extended to L2 functions.



1.3 The Haar basis of L2[0, 1] 5

Definition 1.9. The Fourier transform of a function f ∈ L2(R) is the only signal
f̂(ξ) such that it is a limit, in the sense of L2(R), of a sequence of transforms
{f̂n(ξ)}, where {fn(t)}n ⊆ L2(R) satisfy fn(t), f̂n(ξ) ∈ L1(R) for all n ≤ 0 and
lim
n→∞

∥f − fn∥2 = 0.

Note that it is well defined, since the L2 limit does not depend on the represen-
tative, {fn}n. This can be seen in more detail in Chapter 12 from [4].

Remember that in L2 we have the Hermitian product

⟨f, g⟩ =
ˆ
R
f(t) g(t) dt , f, g ∈ L2(R),

which gives the norm

∥f∥2 =
(ˆ

R
|f(t)|2dt

)1/2

.

In L2 the roles of f and f̂ are equivalent, and this symmetry is often quite useful.
This is clear in the following result.

Theorem 1.10. (Plancherel theorem) Let f ∈ L2(R). Then f̂ ∈ L2(R) and
∥f∥2 = ∥f̂∥2. In particular, if f, g ∈ L2(R)

ˆ
R
f(t) g(t) dt =

ˆ
R
f̂(ξ) ĝ(ξ) dξ.

1.3 The Haar basis of L2[0, 1]

Let us define another orthogonal basis of L2[0, 1] (where for ease of calculation
the normalisation has been changed from [0, 2π] to [0, 1]), the Haar basis, which will
be relevant in the next chapter. This basis is of a completely different nature: its
elements are compact support functions, rather than e∞ functions, such as eint.

Let us start with the constant function χ ≡ 1, χ ∈ L2[0, 1]. Let also

ψ0(t) =

{
−1 if t ∈ [0, 1/2)

1 if t ∈ [1/2, 1)

Note that the constant functions on each half of the interval [0, 1] are a linear
combination of χ and ψ0, since χ[0,1/2) =

1
2(χ−ψ0) and χ[1/2,1) =

1
2(χ+ψ0). Observe

that we have divided the interval into 2 equal sized intervals.
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Repeat the same procedure dyadic step by step. In each half of [0, 1] consider a
function with the shape of ψ0.

In the interval [0, 1/2] we have:

ψ(2t) =

{
−1 if 2t ∈ [0, 12)⇒ t ∈ [0, 14)

1 if 2t ∈ [12 , 1)⇒ t ∈ [14 ,
1
2)

Likewise for the interval [1/2, 1], we get:

ψ(2t− 1) =

{
−1 if 2t− 1 ∈ [0, 12)⇒ t ∈ [12 ,

3
4)

1 if 2t− 1 ∈ [12 , 1)⇒ t ∈ [34 , 1)

For each dyadic interval of all generations we rescale the functions so that their
L2 norm is 1. So we get:

ψ1,0(t) =
1√
2
ψ(2t) =

−
1√
2

if t ∈ [0, 14)

1√
2

if t ∈ [14 ,
1
2)

ψ1,1(t) =
1√
2
ψ(2t− 1) =

−
1√
2

if t ∈ [12 ,
3
4)

1√
2

if t ∈ [34 , 1)

1/20 1

Figure 1.1: Plot of ψ0(t),



1.4 Heisenberg’s Uncertainty Principle 7

By repeating this same process, we can write, for all n ≥ 0 and k = 0, . . . , 2n−1,
the functions

ψn,k(t) = 2n/2ψ0(2
nt− k) =

{
−2n/2 if t ∈

[
k
2n ,

k+1/2
2n

)
2n/2 if t ∈

[k+1/2
2n , k+1

2n

)
.

So, the Haar wavelet ψ0(t) on the unit interval is defined as

ψ(t) := −χ[0,1/2)(t) + χ[1/2,1)(t)

and the family {ψj,k := 2j/2ψ(2jt− k)}j,k∈Z is an orthonormal basis for L2(R). We
have seen that this family generates all L2[0, 1], but to see that it forms a basis of
L2(R) , it is necessary to make sure that the set is complete. This proof can be found
in Chapter 9 of [14].

1.4 Heisenberg’s Uncertainty Principle

Fourier emphasises frequency accuracy at the expense of time accuracy, however,
wavelets offer localized information in time and frequency domains simultaneously.
Now, we see Heisenberg’s uncertainty principle, which states that it is impossible
to find a function that it is simultaneously well-localized in time and in frequency.
This general principle can be quantified in several ways, the one in equation (1.2) is
probably the best known.

Theorem 1.11. (Heisenberg’s Uncertainty Principle) Let f ∈ L2(R) and let
a, b ∈ R. Then(ˆ

R
(t− a)2|f(t)|2dt

)1/2(ˆ
R
(ξ − b)2|f̂(ξ)|2dξ

)1/2

≥ ∥f∥
2
2

4π
. (1.2)



Chapter 2

Wavelet Theory

The fundamental concept behind wavelets involves representing functions or sig-
nals as combinations of small waves, and their translations and dilations. In this
context, wavelets serve a similar purpose to sines and cosines in Fourier analysis
but can be more effective, for example, for some natural phenomena where high fre-
quency events happen for short duration.

What constitutes a wavelet and its multiresolution analysis? These fundamental
inquiries will be addressed in the second section of this chapter. Before, it is shown
the Haar wavelet as an illustrative example, which is very useful to explore the fol-
lowing concepts. Post our exploration of the introductory aspects of Wavelet Theory,
we will examine more intricate examples showcasing diverse properties compared to
the Haar wavelet.

The subsequent section will outline the process of constructing a Multiresolution
Analysis (MRA), a fundamental theorem in this endeavor being Mallat’s theorem.
This theorem’s proof will be presented via distinct methodologies, one stemming
from the outlined definitions and the other from a Fourier-based perspective.

Lastly, considering the aspiration to explore applications of wavelets, and rec-
ognizing the need to address multidimensional signals beyond one-dimensional sig-
nals like sound, a brief explanation on transitioning from one-dimensional to two-
dimensional wavelets in R2 will be presented.

8
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2.1 The Haar wavelet and its MRA

We will now explain a simple example that contains all the essential elements
that we will define in Section 2.2. In Section 1.3 the Haar basis of L2[0, 1] has been
defined. Consider φ(t) = χ[0,1](t) and its translates φ0,k(t) = φ(t− k), k ∈ Z, which
form an orthonormal basis of the closed subspace of L2 consisting of the functions
which are constant between integers:

V0 =
{
f ∈ L2(R) : f|[k,k+1) = ck constant for all k ∈ Z

}
.

Observe that a function f is in V0 if and only if is of the form

f =
∑
k∈Z

ckφ0,k with ∥f∥2 =
∑
k∈Z
|ck|2 < +∞.

Observe also that, given an arbitrary f ∈ L2(R), its projection on V0 is P0f =∑
k∈Z
⟨f, φ0,k⟩φ0,k, where the coefficient

⟨f, φ0,k⟩ =
ˆ k+1

k
f(t) dt =

 
I0,k

f

is the average of f on the interval [k, k+1). From this point of view P0f can be seen
as a low resolution approximation of f .

Consider now the space V1 of L2 functions which are constant on all intervals
I1,k =

[
k
2 ,

k+1
2

)
, that is

V1 =
{
f ∈ L2(R) : f|I1,k = ck constant for all k ∈ Z

}
.

We can obtain an orthonormal basis of V1 just by rescaling the basis of V0: for k ∈ Z
let

φ1,k(t) =
√
2φ(2t− k) =

√
2χI1,k(t).

It is clear that ∥φ1,k∥2 = 1 and that

⟨φ1,k, φ1,j⟩ = 0 for j ̸= k.

As before, a function of the form f =
∑
k∈Z

ckφ1,k is in V1 if and only if ∥f∥2 =∑
k∈Z
|ck|2 < +∞.

Now an arbitrary f ∈ L2(R) projected on V1 gives

P1f =
∑
k∈Z
⟨f, φ1,k⟩φ1,k =

∑
k∈Z

ck χI1,k ,
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where

ck =
√
2⟨f, φ1,k⟩ = 2

ˆ (k+1)/2

k/2
f(t) dt =

 
I1,k

f.

Thus
P1f =

∑
k∈Z

( 
I1,k

f
)
χI1,k

is an approximation of f with “double resolution” that P0f .

Let us examine the detail we add to P0f when increasing the resolution to produce
P1f . For the sake of simplicity we just look at the interval I0,0 = [0, 1). The detail
in this interval is

(P1f − P0f)χ[0,1) =
( 
I1,0

f
)
χI1,0 +

( 
I1,1

f
)
χI1,1 −

( 
I0,0

f
)
χI0,0

=
( 
I1,0

f −
 
I0,0

f
)
χI1,0 +

( 
I1,1

f −
 
I0,0

f
)
χI1,1 .

Observe that this is a multiple of the function ψ := −χI1,0 + χI1,1 , since
 
I1,0

f −
 
I0,0

f +

 
I1,1

f −
 
I0,0

f = 2

ˆ
I1,0

f −
ˆ
I0,0

f + 2

ˆ
I1,1

f −
ˆ
I0,0

f

= 2
(ˆ
I1,0

f +

ˆ
I1,1

f
)
− 2

ˆ
I0,0

= 0.

The same arguments are valid for all intervals [k, k+1), where the detail added when
passing from V0 to V1 is a multiple of ψ0,k(t) := ψ(t− k).

Let W0 denote the orthogonal complement of V0 in V1 (the space of details added
to P0f to get P1f , for f ∈ L2(R)), so that V1 = V0 ⊕W0 and {ψ0,k}k∈Z is an or-
thonormal basis of W0.

This scheme can be reproduced at all scales: consider the dyadic intervals of the
nth generation In,k =

[
k/2n, (k + 1)/2n

)
, k ∈ Z, together with the closed subspace

Vn =
{
f ∈ L2(R) : f|In,k

= ck constant for all k ∈ Z
}
.

The system {φn,k}k∈Z, with φn,k(t) = 2n/2φ(2nt − k), is an orthonormal ba-
sis of Vn, and a function of the form f =

∑
k∈Z αkχIn,k

is in Vn if and only if
∥f∥22 =

∑
k∈Z |αk|2 < +∞.

The orthogonal projection Pn : L2(R) −→ Vn produces the best approximation
(in terms of the L2-norm) of a given f ∈ L2(R) by functions which are constant on
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each dyadic interval In,k, k ∈ Z.

The detail added when passing from resolution Vn to resolution Vn+1 forms
a close space, denoted by Wn; hence Vn+1 = Vn ⊕ Wn. The rescaled functions
ψn,k(t) = 2n/2ψ(2nt− k), k ∈ Z, form an orthonormal basis of Wn.

In the way they are defined it is clear that

⋃
n∈Z

Vn = L2(R).

It is also clear that ⋂
n∈Z

Vn = {0}.

Then, from the iteration (m < n)

Vn = Vn−1 ⊕Wn−1 = Vn−2 ⊕Wn−2 ⊕Wn−1 = · · · = Vm ⊕Wm ⊕ · · · ⊕Wn−1

we deduce that

Vn =

n−1⊕
j=−∞

Wj

and therefore

L2(R) =
⊕
j∈Z

Wj .

That is, any function can be viewed as the superposition of the details at all possible
resolutions. Also {ψn,k}n,k∈Z is an orthonormal basis of L2(R).

This is an example of what is called, in general, a multiresolution analysis (MRA);
this particular one is called Haar MRA. The initial function φ is called the scaling
function and ψ is the (mother) wavelet of the MRA. The system {ψn,k}n,k∈Z is the
wavelet basis of L2(R).
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Figure 2.1: Representation of a function f with different resolutions using the Haar
wavelet. The Python code to represent this f can be found in the Appendix A.
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Now we will examine a specific example of how a function decomposes into its
projections onto the Haar subspaces. We will do this both graphically (see Figure
2.2) and using vectors.

First of all, we will analyse this decomposition process vectorially. Consider a
vector of 8 = 23 samples of a function, f , which we assume to be the average value
of the function on 8 intervals of length 1, so that the function is supported on the
interval [0, 8]. In this example, we choose the vector

v0 = [6, 6, 5, 3, 0,−2, 0, 6]

to represent f in V0. Once we average pairs of values corresponding to taking the
average value on the 4 parent intervals of length 2, we get the projection onto V−1:

v−1 = [6, 6, 4, 4,−1,−1, 3, 3].

The difference is in W−1, so we have

w−1 = [0, 0, 1,−1, 1,−1,−3, 3].

By repeating this process, we obtain

v−2 = [5, 5, 5, 5, 1, 1, 1, 1],

w−2 = [1, 1,−1,−1,−2,−2, 2, 2],
v−3 = [3, 3, 3, 3, 3, 3, 3, 3] and

w−3 = [2, 2, 2, 2,−2,−2,−2,−2].

To compute the coefficients of the expansion, Pjf(t) =
∑

k∈Z⟨f, φj,k⟩φj,k(t), we
must compute the inner product ⟨f, φj,k⟩ for the function φj,k(t) = 2j/2φ(2jt − k).
In terms of our vectors, we have for example

⟨f, φ0,3⟩ = ⟨[6, 6, 5, 3, 0,−2, 0, 6], [0, 0, 0, 1, 0, 0, 0, 0]⟩ = 3

and

⟨f, φ−1,1⟩ = ⟨[6, 6, 5, 3, 0,−2, 0, 6], [0, 0, 1/
√
2, 1/
√
2, 0, 0, 0, 0]⟩ = 8/

√
2.

Now, observe what happens in the example depicted in Figure 2.2. At first, there
are two consecutive dyadic intervals In,k, In,k+1 of length 2−n. The value of Pn−1f

on In−1,j is the average of the values of Pnf on In,k and In,k+1. The difference
Qn−1f = Pnf − Pn−1f ∈ Wn−1 can be viewed as the detail that must be added to
Pn−1f to obtain the representation of f at resolution Vn.
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Pnf ∈ Vn

Pn−1f ∈ Vn−1

Pn−2f ∈ Vn−2

Pn−3f ∈ Vn−3

Wn−1

Wn−2

Wn−3

In,k In,k+1

In−1,j

Figure 2.2: Multiresolution of a signal f .

If we look at the Figure 2.2 (to simplify the notation we will take n = 0) and
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using what we previously we have seen that Vn+1 = Vn ⊕Wn, we can see that

V−2 = V−3 ⊕W−3

V−1 = V−2 ⊕W−2 = V−3 ⊕W−3 ⊕W−2

V0 = V−1 ⊕W−1 = V−3 ⊕W−3 ⊕W−2 ⊕W−1

In summary, we have selected the coarser space V−n and the finest scale V0,
truncated the chain to

V−n ⊂ ... ⊂ V−2 ⊂ V−1 ⊂ V0,

and obtained

V0 = V−n ⊕W−n ⊕W−n+1 ⊕W−n+2 ⊕ ...⊕W−1.

2.2 Introduction to Wavelet Theory

We will start by looking at the basic concepts of Wavelet Theory.

Definition 2.1. An orthonormal wavelet of R is a function ψ ∈ L2(R) such that
{ψj,k : j, k ∈ Z} is an orthonormal basis of L2(R), where

ψj,k(t) = 2j/2ψ(2jt− k). (2.1)

Note that ψ has been translated by integers and dilated to generate an orthonor-
mal basis. It is multiplied by 2j/2 to make each element have L2-norm equal to one.
Just by a substitution of the variable we can see that ∥ψj,k∥2 = ∥ψ∥2 = 1.

Moreover, if we compute the Fourier transform

ψ̂j,k(ξ) = 2−j/2e−2πiξ2−jkψ̂(2−jξ)

we see that translations have become modulations (as we have seen in the Table 1).

Although the Fourier transforms of a wavelet basis form another orthonormal
basis, it is not a wavelet basis. Since it does not have the same form as (2.1)

Definition 2.2. A (orthogonal) multiresolution analysis is a decomposition of L2(R),
into a chain of closed subspaces

... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ L2(R)

such that
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1.
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj is dense in L2(R).

2. f(t) ∈ Vj if and only if f(2t) ∈ Vj+1.

3. f(t) ∈ V0 if and only if f(t− k) ∈ V0 for any k ∈ Z.

4. There exists a function φ ∈ V0 such that {φ(t−k)}k∈Z, is an orthonormal basis
of V0. The function φ is called the scaling function.

Note that φj,k ∈ Vj for all k ∈ Z. Also for all j ∈ Z let Pj be the orthogonal
projection into Vj , i.e.

Pjf(t) =
∑
k∈Z
⟨f, φj,k⟩φj,k.

The function Pjf(t) can be seen as an approximation to the original function
f at scale 2−j . It is the best approximation of f in the subspace Vj . If we want
to get a better approximation we should compute Pj+1f . In order to accomplish
this, it is necessary to add to Pjf the difference, Qjf = Pj+1f − Pjf . This defines
Qj to be the orthonormal projection onto the closed subspace Wj defined as the
orthogonal complement of Vj in Vj+1. This closed space is defined by the identity
Vj+1 = Vj ⊕Wj , so that, as in the Haar case,

L2(R) =
⊕
j∈Z

Wj . (2.2)

It is shown [9] that the scaling function φ determines the wavelet ψ, such that
{ψ(t − k)}k∈Z is an orthonormal basis of W0. It is possible to define ψj,k(t) =

2j/2ψ
(
2jt− k

)
, since Wj is a dilation of W0. So, we get Wj = span

(
{ψj,k(t)}k∈Z

)
.

A calculation in [9] shows that Qjf =
∑
k∈Z
⟨f, ψj,k⟩ψj,k.

The wavelet transform involves translations and dilations, and provides a zoom-
ing mechanism which is behind the multiresolution structure of these bases. The
orthogonal wavelet transform is given by

Wf(j, k) = ⟨f, ψj,k⟩ =
ˆ
R
f(t)ψj,k(t)dt j, k ∈ Z

and the reconstruction formula is,

f(t) =
∑
j,k∈Z

⟨f, ψj,k⟩ψj,k(t).
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2.3 Some examples of wavelets

The diversity of wavelets arises due to the need to address various types of signals
and data characteristics. Different wavelets excel in capturing specific features such
as localization in time or frequency, smoothness, or the ability to represent different
types of signal behavior effectively. Moreover, applications across various fields, such
as signal processing, image compression, and data analysis, often require wavelets
tailored to specific needs, leading to the development of numerous types of wavelets,
each optimized for particular tasks and domains.

In the previous section it is shown the Haar wavelet. It is considered basic due to
its simplicity and straightforward construction, making it an elementary example of
wavelet analysis. It consists of simple step functions that are easy to understand and
compute, that is why we have used it for introducing the concepts of wavelet trans-
forms. Its basic characteristics, such as discontinuity at the center and the ability to
capture abrupt changes in signals, serve as a foundational basis for understanding
more complex wavelet families. We will now look at some examples of other families
of wavelets.

Example 2.3. (The Shannon Wavelet) This example consists of taking φ so that
φ̂ is Haar’s scaling function. So, let φ be given on the Fourier side by

φ̂(ξ) := e2πiξχ[−1,−1/2)∪[1/2,1)(ξ)

Figure 2.3: The Shannon Wavelet.



18 Wavelet Theory

The family {φj,k}j,k∈Z in an orthonormal basis for L2(R). The function φ is the
Shannon wavelet, and the corresponding basis is the Shannon basis. This wavelet is
C∞ but has a slow asymptotic time decay.

Example 2.4. (The Daubechies Wavelets) In 1988, Ingrid Daubechies discov-
ered another family of wavelets. Unlike Haar wavelets, Daubechies wavelets are
continuous, so they work better with continuous signals. They also have longer sup-
ports, i.e. they use more values from the original signals to produce averages and
differences. These improvements enable Daubechies wavelets to handle complicated
signals more accurately.

Figure 2.4: The Daubechies db4 wavelet and scaling function.

Daubechies wavelets find applications in various fields, due to their ability to
compress data while retaining essential details. They have been used in medical
field, for example, in the analysis and detection of community-acquired pneumonia
[15], Parkinson’s Disease Detection [17]; or in engineering, for example, to solve the
brachistochrone problem [7] or for transient dynamic wave analysis in elastic solids
[12].

Figure 2.3 has been taken from [18] and Figure 2.4 from [19]
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2.4 Construction of a MRA. Mallat’s theorem.

For a function f ∈ L2(R) and an integer j ∈ Z let us denote (Djf)(t) =

2j/2f(2jt), t ∈ R.

In the following we propose a scheme to construct MRA.

1. Determine a φ ∈ L2(R) (scaling function) such that {φ0,k}k∈Z is an orthonor-
mal system and define V0 = ⟨φ0,k⟩k∈Z.

2. Check that Vn := Dn(V0) is an increasing sequence of close subspaces in L2(R)
and that

⋃
n∈Z

Vn = L2(R).

3. Find, using Mallat’s theorem (see below), the associated wavelet ψ, so that
{ψ0,k}k∈Z is an orthonormal basis of W0 = V1 ⊖ V0.

In the third step of the procedure we use Mallat’s theorem, but what does this
theorem say? This theorem states that given φ satisfying 1 and 2, there exists ψ
such that any function can be approximated to any desired accuracy using a linear
combination of scaled and translated wavelets. We will examine the theorem and
two different ways of proving it.

Firstly, we will look at some definitions, lemmas and theorems we will need. Some
of their proofs can be found in Chapter 10 of [14]. We will use these lemmas mostly
in the second proof, where we will prove the theorem on the Fourier side.

Definition 2.5. A (mother) wavelet of the MRA {Vn}n∈Z is a function ψ ∈ W0

such that the translates ψ0,k(t) = ψ(t− k), k ∈ Z, form an orthonormal basis of W0.

Proposition 2.6. If ψ is a wavelet of the MRA {Vn}n∈Z , then the system {ψn,k}n,k∈Z,
where ψn,k = Dn(ψ0,k), is an orthonormal basis of L2(R) (called the wavelet basis of
the MRA).

Proof. Since Wn = Dn(W0), n ∈ Z, when ψ is a wavelet the family ψn,k = Dn(ψ0,k),
k ∈ Z, is an orthonormal basis of Wn. By (2.2), the system {ψn,k}n,k∈Z spans then
the whole L2(R).

It remains to see that {ψn,k}n,k∈Z is an orthonormal system. By definition of
wavelet it is clear that ⟨ψn,k, ψn,j⟩ = δjk, so it will enough to prove that Wn ⊥ Wm

for m ̸= n. But this is clear, since (assuming without loss of generality that m < n)
one has Wm ⊆ Vm+1 ⊆ Vn and Vn ⊥Wn.
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Observe that the following Lemma 2.7 helps us to do first step of the scheme, it
tells us how the scaling function φ can be chosen.

Lemma 2.7. Take φ ∈ L2(R). The family {φ0,k = τkφ}k∈Z of integer translates of
f is orthonormal if and only if∑

n∈Z
|φ̂(ξ + n)|2 = 1 for a.e. ξ ∈ R.

Proof. By Plancherel, since φ̂0,k(ξ) = e2πikξφ̂(ξ),

⟨φ,φ0,k⟩ = ⟨φ̂, φ̂0,k⟩ =
ˆ
R
φ̂(ξ)φ̂(ξ) e−2πikξdξ =

∑
n∈Z

ˆ n+1

n
|φ̂(ξ)|2e−2πikξdξ

=
∑
n∈Z

ˆ 1

0
|φ̂(ξ + n)|2e−2πikξdξ =

ˆ 1

0

(∑
n∈Z
|φ̂(ξ + n)|2

)
e−2πikξdξ.

Letting F (ξ) =
∑
n∈Z
|φ̂(ξ+n)|2, which is 1-periodic and in L1[0, 1] (since φ̂ ∈ L2(R)),

we have thus
⟨φ,φ0,k⟩ = F̂ (k).

By the uniqueness theorem for L1 functions (see Remark ??) the conclusion is im-
mediate: if the system is orthonormal F̂ (k) = 0 for all k ̸= 0 and F̂ (0) = 1, so
F (ξ) = 1. On the other hand, if F (ξ) = 1 a.e. ξ ∈ R then F̂ (0) = 1 and F̂ (k) = 0

for all k ̸= 0.

With the above lemma we can describe determining properties of the scaling
function.

Theorem 2.8. Let φ be the scaling function of a MRA. Then:

1.
∑
n∈Z
|φ̂(ξ + n)|2 = 1 for a.e. ξ ∈ R.

2. There exist {hk}k∈Z ∈ L2(Z) such that

φ(t) =
√
2
∑
k∈Z

hkφ(2t− k).

Proof. 1. It follows from Lemma 2.7.

2. Since φ ∈ V0 ⊆ V1 and φ1,k(t) =
√
2φ(2t − k) are an orthonormal basis of

V1, then φ(t) =
∑

k∈Z = ⟨φ,φ1,k⟩φ1,k(t). Letting hk = ⟨φ,φ1,k⟩ we have the
result, since, ∑

k∈Z
|hk|2 =

∑
k∈Z
|⟨φ,φ1,k⟩|2 = ∥φ∥22
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Definition 2.9. The equation

φ(t) =
∑
k∈Z
⟨φ,φ1,k⟩φ1,k =

∑
k∈Z

hk
√
2φ(2t− k) (2.3)

is called the dilation (or scaling) equation.

Taking Fourier transforms we get

φ̂(ξ) =

ˆ
R
φ(t)e−2πiξtdt =

√
2
∑
k∈R

ˆ
R
φ(2t− k)e−2πiξtdt =

(s=2t−k)
=

1√
2

∑
k∈Z

hke
−πiξk

ˆ
R
φ(s)e2πiξ(s/2)ds.

Defining

H(ξ) =
1√
2

∑
k∈Z

hke
−2πiξk

we get thus
φ̂(ξ) = H(ξ/2)φ̂(ξ/2). (2.4)

Observe that H is 1-periodic in L2(R), (because {hk}k∈Z ∈ L2(Z)). It is usually
called the low pass filter. Then hk are called the filter coefficients.

Assume, to avoid convergence issues, that H is a finite sum, a trigonometric
polynomial. These low pass filters correspond to MRA with compactly supported
scaling functions, the most used in practice.

Lemma 2.10. (Quadrature mirror filter; QMF) Given an orthogonal MRA
with scaling function φ and a corresponding low-pass filter H that we assume is a
trigonometric polynomial, then for every ξ ∈ R,

|H(ξ)|2 + |H(ξ + 1/2)|2 = 1

Proof. Insert equation (2.4) into equation 1 from Theorem 2.8, obtaining

1 =
∑
n∈Z
|φ̂(ξ + n)|2 =

∑
n∈Z
|H((ξ + n)/2)|2|φ̂((ξ + n)/2)|2.

Now separate the sum over the odd and even integers, use the fact that H has
period one to factor it out from the sum, and use equation (10.5) (twice), which
holds for almost every point ξ :
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|H(ξ/2)|2
∑
k∈Z
|φ̂(ξ/2 + k)|2 + |H(ξ/2 + 1/2)|2

∑
k∈Z
|φ̂((ξ + 1)/2 + k)|2

= |H(ξ/2)|2 + |H(ξ/2 + 1/2)|2 = 1.

Equality holds almost everywhere. Since H is a trigonometric polynomial, H is
continuous and so equality must hold everywhere.

Lemma 2.11. A function f ∈ W0 if and only if there is a function v(ξ) of period
one such that

f̂(ξ) = eπiξv(ξ)H(ξ/2 + 1/2)φ̂(ξ/2)

Proof. Recall that f ∈ W0 if and only if f ∈ V1 and f ⊥ V0. Since f ∈ V1 we have
f̂(ξ) = mf (ξ/2)φ̂(ξ/2), so we have to prove that

mf (ξ) = e2πiξσ(ξ)H(ξ + 1/2)

with σ(ξ) 1
2 -periodic. Then v(ξ) = σ(ξ/2) have period one.

The orthogonality f ⊥ V0 is equivalent to ⟨f, φ0,k⟩ = 0 for all k ∈ Z, which is by
Plancharel

0 =
〈
f̂ , φ̂0,k

〉
=

ˆ
R
f̂(ξ)e−2πikξφ̂(ξ)dξ =

ˆ
R
f̂(ξ)e2πikξφ̂(ξ)dξ =

=

ˆ
R
e2πikξmf (ξ/2)φ̂(ξ/2)H(ξ/2)φ̂(ξ/2)dξ =

ˆ
R
e2πikξmf (ξ/2)H(ξ/2)|φ̂(ξ/2)|2dξ

Here we break the integral over R into the sum of integrals over the intervals
[n, n+ 1), change variables to the unit interval, and use the periodicity of the expo-
nential to get

0 =
∑
n∈Z

ˆ n+1

n
e2πikξmf (ξ/2)H(ξ/2)|φ̂(ξ/2)|2dξ

=

ˆ 1

0
e2πikξ

∑
n∈Z

mf

(
ξ + n

2

)
H

(
ξ + n

2

) ∣∣∣∣φ̂(ξ + n

2

)∣∣∣∣2 dξ
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Now we use the 1-periodicity of mf and H. Separating odd and even integers:

0 =

ˆ 1

0
e2πikξ

[∑
k∈Z

mf

(
ξ + 2k

2

)
H

(
ξ + 2k

2

) ∣∣∣∣φ̂(ξ + 2k

2

)∣∣∣∣2+
+
∑
k∈Z

mf

(
ξ + 2k + 1

2

)
H

(
ξ + 2k + 1

2

) ∣∣∣∣φ̂(ξ + 2k + 1

2

)∣∣∣∣2
]
dξ

=

ˆ 1

0
e2πikξ

[
mf

(
ξ

2

)
H

(
ξ

2

)∑
k∈Z

∣∣∣∣φ̂(ξ2 + k

)∣∣∣∣2+
+mf

(
ξ

2
+

1

2

)
H

(
ξ

2
+

1

2

)∑
k∈Z

∣∣∣∣φ̂(ξ + 1

2
+ k

)∣∣∣∣2
]
dξ

By Theorem 2.8 (1), the two sums are 1 a.e. ξ ∈ R; thus

0 =

ˆ 1

0
e2πikξ

[
mf

(
ξ

2

)
H

(
ξ

2

)
+mf

(
ξ

2
+

1

2

)
H

(
ξ

2
+

1

2

)]
dξ

Observe that the function

F (ξ) = mf (ξ/2)H(ξ/2) +mf (ξ/2 + 1/2)H(ξ/2 + 1/2)

is 1-periodic

F (ξ + 1) = mf (ξ/2 + 1/2)H(ξ/2 + 1/2) +mf (ξ/2 + 1)H(ξ/2 + 1) = F (ξ).

The above identity tells us that all Fourier coefficients F̂ (k), k ∈ Z, are 0, so

F (ξ) = mf (ξ/2)H(ξ/2) +mf (ξ/2 + 1/2)H(ξ/2 + 1/2) = 0 a.e. ξ ∈ R.

Equivalently, the complex vectors

v⃗ = (mf (ξ/2),mf (ξ/2 + 1/2)) w⃗ = (H(ξ/2), H(ξ/2 + 1/2))

are orthogonal.

The QMF property of H (see Lemma 2.10) tells us that w⃗ is unitary, so the space
⟨w⃗⟩⊥ is complex 1-dimensional in C2. So, to characterize ⟨w⃗⟩⊥ we just need to find
one non-vanishing vector. But

u⃗ = (−H(ξ + 1/2), H(ξ)) ∈ ⟨w⃗⟩⊥,

so v⃗ = λu⃗ for some λ ∈ C, i.e.{
mf (ξ) = −λ(ξ)H

(
ξ + 1

2

)
mf

(
ξ + 1

2

)
= λ(ξ)H (ξ)
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Here necessarily λ(ξ) is 1-periodic (as mf and H). Also, by adding 1/2) to ξ:

mf

(
ξ +

1

2

)
= −λ

(
ξ +

1

2

)
H(ξ),

hence λ(ξ) = −λ
(
ξ + 1

2

)
.

Therefore λ(ξ) = e−2πiξ is 1/2-periodic:

λ

(
ξ +

1

2

)
e−2πi(ξ+ 1

2) = −λ(ξ)e−2πiξe−πi = λ(ξ)e−2πiξ.

Defining σ(ξ) = −λ(ξ)e−2πiξ we have finally

mf (ξ) = −λ(ξ)H
(
ξ +

1

2

)
= e2πiξσ(ξ)H

(
ξ +

1

2

)
as required.

Lemma 2.12. Let {Vn}n∈Z be a MRA with scaling function φ. Then∑
k∈Z
|⟨φ,φ1,k⟩|2 = 1

and ∑
k∈Z
⟨φ,φ1,k⟩⟨φ,φ1,k−2l⟩ = 0

for all l ∈ Z \ {0}.

Proof. The first identity follows immediately from the decomposition

φ =
∑
k∈Z
⟨φ,φ1,k⟩φ1,k

of φ in V1.

For the second one, let l ̸= 0 and try to express the identity ⟨φ,φ0,l⟩ = 0 in terms
of the coefficients of φ and φ0,l in the basis {φ1,k}k∈Z. Since

φ0,l(t) = φ(t− l) =
∑
k∈Z
⟨φ,φ1,k⟩φ1,k(t− l)

and

φ1,k(t− l) =
√
2φ
(
2t− l)− k

)
=
√
2φ
(
2t− (2l + k)

)
= φ1,k+2l(t) (2.5)
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if follows that

φ0,l(t) =
∑
k∈Z
⟨φ,φ1,k⟩φ1,k+2l(t) =

∑
k∈Z
⟨φ,φ1,k−2l⟩φ1,k(t).

This and the decomposition of φ in terms of {φ1,k}k∈Z yield,

0 = ⟨φ,φ0,l⟩ =
∑
k∈Z
⟨φ,φ1,k⟩ ⟨φ,φ1,k−2l⟩,

as stated.

Now, let us enunciate Mallat’s theorem.

Theorem 2.13 (Mallat’s theorem). Given an orthogonal MRA with scaling func-
tion φ, there is a wavelet ψ ∈ L2(R) such that for each j ∈ Z, the family {ψj,k}k∈Z is
an orthonormal basis for Wj. Hence the family {ψj,k}j,k∈Z is an orthonormal basis
for L2(R).

2.4.1 Mallat’s theorem proof on the Fourier side.

Now, let us prove Mallat’s theorem on the Fourier side.

Proof. The function we are looking for is ψ ∈ W0 ⊆ V1, hence, by the Lemma 2.11,
must satisfy

ψ̂(ξ) = mψ(ξ/2)φ̂(ξ/2)

where
mψ(ξ) = e2πiξσ(ξ)H(ξ + 1/2) (2.6)

and σ(ξ) is a function with period 1/2.

Moreover, since ψ0,k are an orthonormal system, by Lemma 2.7,∑
n∈Z
|ψ̂(ξ + n)|2 = 1 a.e. ξ ∈ R.

As in Lemma 2.10, from here we deduce a QMF property for mψ:

|mψ (ξ)|2 +
∣∣∣∣mψ

(
ξ +

1

2

)∣∣∣∣2 = 1 a.e. ξ ∈ R.

By the form of mψ, this is

|σ(ξ)|2
∣∣∣∣H (ξ + 1

2

)∣∣∣∣2 + ∣∣∣∣σ(ξ + 1

2

)∣∣∣∣2 |H(ξ)|2 = 1
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Since σ is 1/2-periodic and H satisfies the QMF identity, this is

1 = |σ(ξ)|2
[∣∣∣∣H (ξ + 1

2

)∣∣∣∣2 + |H(ξ)|2
]
= |σ(ξ)|2

Thus |σ(ξ)| = 1 a.e. ξ ∈ R.

Choose a 1
2 -periodic function with |σ(ξ)| = 1 a.e., for instance σ ≡ 1 (or σ(ξ) =

e4πiξ). Then, define ψ by

ψ̂(ξ) = eπiξH

(
ξ

2
+

1

2

)
φ̂

(
ξ

2

)
,

i.e., choose mψ(ξ) = e2πiξH
(
ξ + 1

2

)
.

By Lemma 2.11, ψ ∈W0. Its integer translates are also in W0:

ψ0,k(ξ) = e−2πikξψ̂(ξ) = e−2πikξeπiξH

(
ξ

2
+

1

2

)
φ̂

(
ξ

2

)
and v(ξ) = e−2πikξ is 1-periodic.

Furthermore, H(ξ) satisfies the QMF property, and so {ψ0,k}k∈Z is an orthonor-
mal family.

It remains to see that {ψ0,k}k∈Z spans W0. By Lemma 2.11, if f ∈ W0, there
exists v ∈ L2 1-periodic with v(ξ) =

∑
k∈Z ake

−2πikξ, where
∑

k∈Z |ak|2 < ∞ and
(ak) ∈ l2(Z).

Thus,
f̂(ξ) =

∑
k∈Z

ake
−2πikξψ̂(ξ) =

∑
k∈Z

akψ̂0,k(ξ).

Taking the inverse Fourier transform, we see that

f(t) =
∑
k∈Z

akψ0,k(t)

That is, f belongs to the span of the integer translates of ψ. The integer translates
of ψ form an orthonormal basis of W0. By scale invariance, the functions {ψj,k}j,k∈Z
form an orthonormal basis of Wj . Thus the family {ψj,k}j,k∈Z forms an orthonormal
basis of L2(R), as required.
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2.4.2 Mallat’s theorem direct proof.

In this section it is a proof of Mallat’s theorem by a direct way.

Proof. Not only does the wavelet exist, it is also of the following form:

ψ =
∑
k∈Z

(−1)k ⟨φ,φ1,1−k⟩ φ1,k

To prove it we need to see that ψ ∈ V1 ⊖ V0 and that the translates {ψ0,k}k∈Z form
an orthonormal basis of W0.

It is clear by the definition that ψ ∈ V1. In order to see that ψ ∈ V ⊥
0 it is enough

to see that for all l ∈ Z
⟨φ0,−l, ψ⟩ = ⟨φ,ψ0,l⟩ = 0.

Using again that φ1,k(t− l) = φ1,k+2l(t) (see (2.5)), denoting ck = ⟨φ,φ1,k⟩ and
re-indexing the sum defining ψ,

ψ0,l(t) = ψ(t− l) =
∑
k∈Z

(−1)kc1−k φ1,k(t− l) =
∑
k∈Z

(−1)kc1−k φ1,k+2l(t)

=
∑
m∈Z

(−1)mc1−m+2l φ1,m(t).

Since
φ =

∑
m∈Z
⟨φ,φ1,m⟩φ1,m =

∑
m∈Z

cm φ1,m

this yields
⟨φ,ψ0,l⟩ =

∑
m∈Z

(−1)mcmc1−m+2l.

Since (−1)m and (−1)1−m+2l have opposite signs this adds up to 0 (each term
appers twice, and with opposite signs).

By translation, this also shows that ψ0,l ∈W0 for all l ∈ Z.

Let us see next that {ψ0,k}k∈Z is an orthonormal system. Since ⟨ψ0,m, ψ0,j⟩ =
⟨ψ,ψ0,j−m⟩, it is enough to see that ⟨ψ,ψ0,l⟩ = δ0l, l ∈ Z.

Using the definition of ψ and the expression ψ0,l =
∑

m∈Z(−1)mc1−m+2l φ1,m

seen above, we obtain, by the identities in (a),

⟨ψ,ψ0,l⟩ =
∑
k∈Z

(−1)2kc1−k c1−k+2l =
∑
m∈Z

cm cm+2l = δ0,l.
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It remains to prove the hard part, that {ψ0,k}k∈Z generates the whole W0. To
do so we want to see that any f ∈ V1 ⊖ V0 such that ⟨f, ψ0,l⟩ = 0 for all l ∈ Z is
necessarily f = 0.

Since all functions appearing here are in V1, they are completely determined by
their coordinates in the basis φ1,k, k ∈ Z. Thus

f ←→ F = (fk)k∈Z , fk = ⟨f, φ1,k⟩.

Similarly, since φ0,l =
∑
k∈Z
⟨φ,φ1,k−2l⟩φ1,k (see the proof of the first identity in (a)

above), these functions can be identified with the sequence of coefficients

φ0,l ←→ Φl = (ck−2l)k∈Z.

In the same way, from the expression above

ψ0,l ←→ Ψl =
(
(−1)kc1−k+2l

)
k∈Z.

The orthogonality assumptions are then expressed as

⟨F,Φl⟩ℓ2(Z) = ⟨F,Ψl⟩ℓ2(Z) = 0 ∀l ∈ Z. (2.7)

Consider now the infinite matrix M whose columns are the vectors Φl and Ψl

writen alternately:

· · · Φ1 Ψ1 Φ0 Ψ0 Φ−1 Ψ−1 · · ·
↓ ↓ ↓ ↓ ↓ ↓ · · ·
...

...
...

...
...

...
· · · c−1−2 (−1)−1c̄1−1+2 c−1 (−1)−1c̄1+1 c−1+2 (−1)1c̄1+1−2 · · ·
· · · c0−2 (−1)0c̄1−0+2 c0 (−1)0c̄1−0 c0+2 (−1)0c̄1−0−2 · · ·
· · · c1−2 (−1)1c̄1−1+2 c1 (−1)1c̄1−1 c1+2 (−1)0c̄1−1−2 · · ·

...
...

...
...

...
...

Observe that the columns of this matrix are orthogonal.

Claim. MM∗ = I, where M∗ indicates the conjugate transpose of M .

Accepting this the proof is finished: by assumption (see (2.7)) M∗F = 0, and
therefore

F =MM∗F = 0.
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The proof of the claim is essentialy a computation. Break M into 2 × 2 blocks
of the form

Mm,l =

(
c2m−2l c̄1−2m+2l

c2m−2l+1 −c̄−2m+2l

)
m, l ∈ Z.

The first column is part of the vector Φl and the second is part of Ψl. Then the
matrix MM∗ is made up of the blocks

∑
j∈Z

Mm,j(Ml,j)
∗ =

(
c2m−2j c̄1−2m+2j

c2m−2j+1 −c̄−2m+2j

)(
c̄2l−2j c̄2l−2j+1

c1−2l+2j −c−2l+2j

)

=


∑
j
c2m−2j c̄2l−2j + c̄1−2m+2jc1−2l+2j

∑
j
c2m−2j c̄2l−2j+1 − c̄1−2m+2jc−2l+2j∑

j
c2m−2j+1c̄2l−2j − c̄−2m+2jc1−2l+2j

∑
j
c2m−2j+1c̄2l−2j+1 + c̄−2m+2jc−2l+2j



A computation, using the orthogonality relations seen previously shows that this
is (

δml 0

0 δml

)
.

For example, for the first entry, re-index the sum by m− j = k in the first term
and by k = j − l in the second one:∑

j

c2m−2j c̄2l−2j + c̄1−2m+2jc1−2l+2j =
∑
k

c2k c̄2k−2m+2l +
∑
k

c̄2k+1−2m+2l c2k+1

=
∑
k

ck c̄k−2m+2l = δml.

The other entries are dealt with similarly.

The same procedure shows that {ψn,k}k∈Z is an orthonormal system and that
any f ∈ Vn+1 ⊖ Vn which is orthogonal to that system must be 0, so {ψn,k}k∈Z is
an orthonormal basis of Wn. Since ∩nVn = {0} and ∪nVn = L2(R), we deduce that
{ψn,k}n,k∈Z is an orthonormal basis of L2(R).

2.5 Wavelets in R2

As previously stated, wavelets hold significance within the realm of image pro-
cessing. In consideration of these practical applications, which will be elaborated on
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in the forthcoming section, we hereby introduce "separable" multiresolutions. Specif-
ically, these multiresolutions in R2 are derived as the products of one-dimensional
multiresolutions.

A first attempt, given {ψn,k}n,k∈Z wavelet orthonormal basis of L2(R), would be
to consider the products L2(R2):

{ψn1,k1(t1)ψn2,k2(t2)}n1,n2∈Z
k1,k2∈Z

.

These functions blend information from two different scales, 2n1 and 2n2 , across
the axes t1 and t2. However, this arrangement lacks convenience; it’s preferable to
maintain consistent scaling across all directions.

This construction can be slightly modified to provide another separable wavelet
basis whose elements are products of one variable functions dilated by the same factor
in all coordinate directions. These multiresolution approximations have important
applications in computer vision, where they are used to process images at different
levels of detail.

2.5.1 Separable multiresolutions

The formal definition of a MRA in R2 is as in one dimension: it is an increasing
collection of closed subspaces {V (2)

n }n∈Z with the properties previously listed (see
Definition 2.2). As in dimension one, the notion of resolution is formalised with
orthogonal projections on the spaces Vn; hence the approximation of f(t1, t2) at res-
olution n is the orthogonal projection of f on V

(2)
n and the space V (2)

n is the set of
all approximations at resolution n.

We consider only the particular case of separable multiresoltions.

Definition 2.14. Given a multiresolution {Vn}n∈Z in L2(R), the associated separable
2-dimensional multiresolution is {V (2)

n }n∈Z, where V (2)
n = Vn ⊗ Vn. Thus F ∈ V (2)

n

if it has the form

F (t1, t2) =
∑
m∈Z

cmfm(t1) gm(t2) ,

where fm, gm ∈ Vn, ∥fm∥ = ∥gm∥ = 1 and
∑

m |cm|2 = ∥f∥2L2(R2) <∞.

It is immediate to check that {V (2)
n }n∈Z is a multi-resolution of L2(R2).
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Let φ be the scaling function of {Vn}n∈Z, so that {φn,k}k∈Z is an orthonormal
basis of Vn. Then the system

φ
(2)
n,k(t1, t2) = φn,k1(t1)φn,k2(t2) = 2nφ(2nt1 − k1)φ(2nt2 − k2)

n ∈ Z, k = (k1, k2) ∈ Z2

is an orthonormal basis of V (2)
n . Notice that the scaling function of the two-dimensional

multi-resolution is just
φ(t1, t2) = φ(t1)φ(t2).

Example 2.15. (Haar) Let {Vn}n∈Z be the Haar MRA given in Section 2.1. Then
V

(2)
n is the approximation space consisting on the functions in L2(R2) which are

constant on dyadic squares

Qn,k = [2−nk1, 2
−n(k1 + 1))× [2−nk2, 2

−n(k2 + 1)) , k1, k2 ∈ Z.

The two-dimensional scaling function is therefore

φ(t1, t2) = χ[0,1)(t1)χ[0,1)(t2) = χ[0,1)×[0,1)(t1, t2).

2−n

2−n

(k1, k2) (k1 + 1, k2)

(k1 + 1, k2 + 1)(k1, k2 + 1)

Figure 2.5: ψ0(t)

Given a MRA {V (2)
n }n∈Z of L2(R2) let W (2)

n = V
(2)
n+1 ⊖ V

(2)
n denote the corre-

sponding detail space at level n.
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Theorem 2.16. Let φ be the scaling function of a MRA {Vn}n∈Z in L2(R) and let
ψ denote the associated wavelet. Define

ψ1(t1, t2) = φ(t1)ψ(t2),

ψ2(t1, t2) = ψ(t1)φ(t2),

ψ3(t1, t2) = ψ(t1)ψ(t2)

and denote, for n, k1, k2 ∈ Z and j = 1, 2, 3,

ψjn,k(t1, t2) = 2n ψj
(
2nt1 − k1, 2nt2 − k2

)
.

The collection
{
ψ1
n,k, ψ

2
n,k, ψ

3
n,k

}
k∈Z2 is an orthonormal basis of W (2)

n , n ∈ Z, and
therefore the system

{
ψ1
n,k, ψ

2
n,k, ψ

3
n,k

}
n∈Z
k∈Z2

is an orthonormal basis of L2(R2).

Proof. By definition V
(2)
n+1 = V

(2)
n ⊕W (2)

n . Since by definition Vn+1 = Vn ⊕Wn we
also have

V
(2)
n+1 =

(
Vn ⊕Wn

)
⊗
(
Vn ⊕Wn

)
= V (2)

n ⊕
(
Wn ⊗ Vn

)
⊕
(
Vn ⊗Wn

)
⊕
(
Wn ⊗Wn

)
we deduce that

W (2)
n =

(
Wn ⊗ Vn

)
⊕
(
Vn ⊗Wn

)
⊕
(
Wn ⊗Wn

)
.

It is clear that
{
ψ1
n,k

}
k∈Z2 is an orthonormal basis of Vn ⊗ Wn,

{
ψ2
n,k

}
k∈Z2 is an

orthonormal basis of Wn⊗ Vn, and
{
ψ3
n,k

}
k∈Z2 is an orthonormal basis of Wn⊗Wn,

so the statement follows.

The three wavelets of the previous theorem extract image details at different
scales and orientations. Notice also that

ψ̂1(ξ1, ξ2) = φ̂(ξ1) ψ̂(ξ2),

ψ̂2(ξ1, ξ2) = ψ̂(ξ1) φ̂(ξ2),

ψ̂3(ξ1, ξ2) = ψ̂(ξ1) ψ̂(ξ2).

Sometimes ψ1 is denoted ψh and called horizontal wavelet, because the corresponding
subspaces favour details in the horizontal direction. Similarly ψ2 = ψv is called
vertical wavelet and ψ3 = ψd is called diagonal wavelet.

Example 2.17. (Shannon wavelet) Let {Vn}n∈Z be the MRA given by the scaling
function φ̂(ξ) = χ[−1/2,1/2](ξ). Observe that, by Lemma 2.7, such a MRA exists.
Actually, by Shannon’s theorem, Vn coincides with the subspace of L2(R) consist-
ing of the functions f such that supp(f̂) ⊂ [−2n−1, 2n−1]. It can be proved that
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the corresponding wavelet ψ is, up to a unimodular constant, given by the identity
ψ̂ = χ[−1,1]\[−1/2,1/2].

In this setting the two-dimensional basis explained above paves the Fourier plane
with the dyadic dilations of the rectangles shown below. Here

ψ̂1(ξ1, ξ2) = χ[−1/2,1/2](ξ1)χ[−1,1]\[−1/2,1/2](ξ2)

ψ̂2(ξ1, ξ2) = χ[−1,1]\[−1/2,1/2](ξ1)χ[−1/2,1/2](ξ2)

ψ̂3(ξ1, ξ2) = χ[−1,1]\[−1/2,1/2](ξ1)χ[−1,1]\[−1/2,1/2](ξ1).

0 1/2

1/2

−1/2

−1/2

1−1

Figure 2.6: Supports of the horizontal (grey), vertical (red) and diagonal (blue)
Shannon wavelets.



Chapter 3

Applications

The chapter explores the various practical applications of Wavelet Theory. From
signal processing to image analysis, this chapter highlights its practical applications,
the profound impact and versatility of wavelets in a variety of fields.

3.1 Signal and audio processing

Wavelets are useful for audio compression, leading to more efficient and high-
quality file formats, such as the lossless audio standard FLAC. They are also used
for denoising, spectrum analysis and signal filtering.

Denoising is one of the most important aspects of signal processing. It consists
in the removal of noise from signals. Our discussion in this section will introduce the
fundamental ideas about Haar transform, because, as it has been said in Section 2.1,
it is a easy example to understand.

When a signal is received after transmission over some distance, it is frequently
contaminated by noise. The term noise refers to any undesired change that has
altered the values of the original signal. The simplest model for the acquisition
of noise by a signal is additive noise, which has the form (contaminated signal) =

(original signal)+(noise). We represent equation in a more compact way as f = s+n,
where f is the contaminated signal, s is the original signal and n is the noise.

There are several types of noise, however, in this example we only examine the
random noise. In this situation the Haar transform is used very effectively for re-
moving the noise. Nevertheless, for real signals, the Haar transform usually per-
forms poorly, and more sophisticated wavelet transforms will be needed, such that
Daubechies wavelet transform. However, the essential principles underlying these

34
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more sophisticated wavelet methods are the same principles we describe here for the
Haar wavelet.

Threshold Method of Wavelet Denoising

Suppose that the contaminated signal f equals the transmitted signal s plus the
noise signal n. Also suppose that these two conditions hold:

1. The energy of s is captured, to a high percentage, by transform values whose
magnitudes are all greater than a threshold Ts > 0.

2. The noise signal’s transform values all have magnitudes which lie below a noise
threshold Tn satisfying Tn < Ts.

Then the noise in f can be removed by thresholding its transform: all values of its
transform whose magnitudes lie below the noise threshold Tn are set to 0 and an
inverse transform is performed, providing a good approximation of f .

Let’s see how this method applies to signal A shown in Figure 3.2(a). This sig-
nal was obtained by adding random noise, whose values oscillate between ±0.1 with
mean of zero to Signal 1 shown in Figure 3.1(a). In this case, Signal 1 is the original
signal and Signal A is the contaminated signal. The energy of Signal 1 is captured
very effectively by the relativity few transforms values whose magnitudes lie above
a threshold of 0.35. So we set Ts equal to 0.35, and condition 1 in the Denoising
Method is satisfied.

Now as for condition 2, look at the 10-level Haar transform of Signal A shown in
Figure 3.2(b). Comparing this Haar transform with the Haar transform of Signal 1 in
Figure 3.1(b), it is clear that the added noise has contributed a large number of small
magnitude values to the transform of Signal A, while the high energy transform values
of Signal 1 are plainly visible (although slightly altered by the addition of noise).
Therefore, we can satisfy condition 2 and eliminate the noise if we choose a noise
threshold of, for example, Tn = 2. This is indicated by the two horizontal lines shown
in Figure 3.2(b); all transform values lying between ±0.2 are set to 0, producing the
thresholded transform shown in Figure 3.2(c). Comparing Figure 3.2(c) with Figure
3.1(b) we see that the thresholded Haar transform of the contaminated signal is
a close match to the Haar transform of the original signal. Consequently, after
performing an inverse transform on this threshold signal, we obtain a denoised signal
that is a close match to the original signal. This denoised signal is shown in Figure
3.2(d), and it is clearly a good approximation to Signal 1, specially considering how
much noise was originally present in Signal A.
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Figure 3.1: (a) Signal A. (b) Haar transform of Signal 1.

Figure 3.2: (a) Signal A, 210 values. (b) Haar transform of signal A. The two
horizontal lines are at ±0.2 where 0.2 is a denoising threshold. (c) Thresholded
transform. (d) Denoised signal.

This example has been borrowed from Chapter 2 of [16].
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3.2 Image and video compression

Wavelets allow lossy and lossless compression of images and video, as it is done in
JPEG2000, which provides both lossless and lossy compression in a single compres-
sion architecture. The ability to preserve fine details means that compressed images
maintain better quality.

In addition to JPEG2000, the Wavelet Scalar Quantization algorithm (WSQ)
also uses wavelet-based techniques for image compression. It is a compression al-
gorithm used for gray-scale fingerprint images. It has become a standard for the
exchange and storage of fingerprint images. WSQ was developed by the FBI, the
Los Alamos National Laboratory, and the National Institute of Standards and Tech-
nology (NIST).

Although, JPEG2000 offers in general higher compression efficiency, more ad-
vanced features and a wider range of applications than WSQ, the latter has its niche
in specific applications that require specialised compression, such as fingerprint im-
ages.

We will now look at some examples of images compressed with WSQ at different
compression ratios. For example, in Figure 3.3 two images can be observed, the
original image and its WSQ-Reconstructed image at 15:1, where 15:1 means that we
have divided the bytes of the image by 15. At this resolution, it is impossible to
distinguish the two images with the human eye.

In order to assess the efficacy of WSQ compared to alternative lossy compres-
sion methodologies, a comparative analysis is conducted between WSQ and JPEG,
a widely employed standard in lossy image compression. JPEG employs the Discrete
Cosine Transform (DCT) to divide images into blocks, allowing for efficient compres-
sion suitable for a broad range of photographic images. It offers good compression
ratios but operates primarily through lossy compression, causing some loss of image
quality. Through the examination of Figures 3.6, 3.7 and 3.8 the identical fingerprint
image is reconstructed using both compression systems at compression ratios of 15:1,
30:1, and 45:1, correspondingly.

At the initial 15:1 compression ratio, the visual similarity between the outputs
of JPEG and WSQ might be apparent to an untrained observer. However, findings
from FBI latent examiners revealed that even at this relatively moderate compression
ratio, JPEG-encoded images impeded fingerprint identification. As the compression
ratio escalates, especially at 45:1, observable flaws in JPEG compression, notably
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blocking artifacts and loss of intricate details, become increasingly conspicuous, as
depicted in Figure 3.8.

Figure 3.3: An Original Fingerprint Image (above) and its WSQ-Reconstructed at
15:1 (below).
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Figure 3.4: An Original Fingerprint Image (above) and its WSQ-Reconstructed at
60:1 (below).
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Figure 3.5: An Original Fingerprint Image (above) and its WSQ-Reconstructed at
120:1 (below).
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Figure 3.6: JPEG at 15:1 (above) and WSQ at 15:1 (below).
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Figure 3.7: JPEG at 30:1 (above) and WSQ at 30:1 (below).
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Figure 3.8: JPEG at 45:1 (above) and WSQ at 45:1 (below).

These images have been borrowed from [13].
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3.2.1 Medical image processing

In medical applications, such as magnetic resonance imaging (MRI) or computed
tomography (CT), wavelets are used for image enhancement, noise reduction and
extraction of important features.

3.3 Data and time series analysis

Wavelets can decompose time series into different scales, allowing frequency com-
ponents to be analysed and patterns in time data to be detected. As we have already
seen in Section 1.4, although it is impossible to localise time and frequency simulta-
neously, based on the Heisenberg uncertainty principle, wavelets allow us to obtain
information from both fields, unlike the Fourier transform.

3.4 Geospatial data compression and analysis

Wavelets have been used in GIS (Geographic Information Systems) applications
for geospatial data compression and analysis, enabling more efficient management of
large datasets.

Geospatial data compression: In the field of geographic information systems
(GIS) and digital mapping, geospatial datasets can be huge due to high spatial
resolution. Wavelets allow the compression of these data by decomposing them into
scales and levels of detail, preserving essential information and eliminating redun-
dancy. This allows for more efficient representation of large geographic datasets
without losing crucial information. The use of wavelets in this context can be seen
in [8].

Satellite image analysis: In satellite image processing, wavelets are used for noise
reduction, edge detection, image segmentation and relevant feature extraction. The
ability of wavelets to preserve fine details allows for more detailed analysis of satellite
imagery, which is essential in applications such as environmental monitoring, preci-
sion agriculture, disaster management, among others. See [3].

Terrain and relief modelling: In topographic analysis and terrain modelling,
wavelets can decompose altimetric data at different scales, allowing the identification
of topographic patterns, geological features or relief changes at various spatial scales.
For example, in [6].



Conclusions

In conclusion, this thesis has provided a comprehensive overview of wavelet the-
ory and its applications. Beginning with fundamental mathematical concepts like
Hilbert Spaces, the Fourier transform, and the Haar basis, we progressed to delve
deeply into Wavelet Theory, exploring the Haar wavelet’s Multiresolution Analysis
(MRA) and Mallat’s theorem.

The analysis highlighted wavelets’ versatile nature, demonstrating their effective-
ness in various practical applications, including signal and audio processing, image
and video compression, medical image analysis, as well as data and time series anal-
ysis. Their ability to efficiently handle complex data while extracting vital infor-
mation underscores their significant role in real-world problem-solving across diverse
domains.

On a personal note, the objectives I had for this work have been more than
achieved. The main goal was to study something with some practical applications,
and as we have already seen, wavelets have many. Analysing the theoretical basis of
wavelets, understanding them and seeing some of their applications has been very
enriching for me. Surprisingly, while the primary goal was to introduce Wavelet
Theory, I realized I’ve indirectly employed wavelets throughout this endeavor, like
when working with images, downloading, and sharing PDFs, etc. This exploration
has illuminated a mathematical domain previously unfamiliar to me, fascinating in
its potential for new advancements and interdisciplinary applications.
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Appendix A

Python code

In this appendix we present the code created to represent a function f(x) using
the Haar wavelet. In Figure 2.1 it has been used to represent the function f(x) =
1
2 cos(x) sin(x

2 + 5) at different resolutions, but of course it can be used for other
functions and resolutions.

import pandas as pd
import numpy as np
import matp lo t l i b . pyplot as p l t

def f ( x ) :
return 0 .5 ∗ np . cos ( x ) ∗ np . s i n (x∗∗2 + 5)

def harr ( a , len , x ) :
l e f tmost_point = a + len ∗ ( ( x − a ) // len )
r ightmost_point = a + len ∗ ( ( x − a ) // len ) + len
return ( f ( l e f tmost_point ) + f ( r ightmost_point ) ) / 2

def harr_plot te r ( a=0, b=5, s tep =0.001 , s ubd i v i s i o n s =512):
i n t e r v a l = np . arange (a , b , s tep )
len = (b − a ) / subd i v i s i o n s

# This p l o t s the func t i on wi th the harr f unc t i on
df6 = pd . DataFrame ({ ’ x ’ : i n t e r va l , ’ y ’ : harr ( a , len , i n t e r v a l )} )
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df6 . p l o t ( kind=" s c a t t e r " , x="x" , y="y" , s=1)
p l t . gca ( ) . set_aspect ( 1 . 5 )
# Remove top border and r i g h t border
ax = p l t . gca ( )
ax . sp i n e s [ ’ top ’ ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ’ r i g h t ’ ] . s e t_v i s i b l e ( Fa l se )
# Remove x and y ax i s t i t l e s
p l t . x l ab e l ( ’ ’ )
p l t . y l ab e l ( ’ ’ )
# Set y t i c k s to every 0.5
p l t . y t i c k s (np . arange ( −0.5 , 0 . 51 , 0 . 5 ) )

p l t . show ( )

def f unc t i on_p lo t t e r ( i n t e r v a l ) :
data = f ( i n t e r v a l )
func t i on = { ’ x ’ : i n t e r va l , ’ y ’ : l i s t ( data )}
df = pd . DataFrame ( func t i on )
# This p l o t s the func t i on as i s
p lo t = df . p l o t ( kind=" s c a t t e r " , x="x" , y="y" , s=1, t i t l e=’ ’ )
p l t . gca ( ) . set_aspect ( 1 . 5 )
# Remove top border and r i g h t border
ax = p l t . gca ( )
ax . sp i n e s [ ’ top ’ ] . s e t_v i s i b l e ( Fa l se )
ax . sp i n e s [ ’ r i g h t ’ ] . s e t_v i s i b l e ( Fa l se )
# Remove x and y ax i s t i t l e s
p l t . x l ab e l ( ’ ’ )
p l t . y l ab e l ( ’ ’ )
# Set y t i c k s to every 0.5
p l t . y t i c k s (np . arange ( −0.5 , 0 . 51 , 0 . 5 ) )
return p lo t

i f __name__ == "__main__" :
a = 0
b = 5
step = 0.001
p lo t = func t i on_p lo t t e r ( i n t e r v a l=np . arange (a , b , s tep ) )
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p l t . show ( )

for i in range (0 , 1 0 ) :
har r_plot te r ( a , b , step , s ubd i v i s i o n s =2∗∗ i )
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