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Abstract

The main goal of this work is to give a rigorous definition of wormhole
and show that some well known metrics given to wormholes - Ellis, Morris-
Thorne and Schwarzschild - fit in such framework. We also introduce the
necessary tools to understand the formalism.
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Introduction

As humans, we are captivated by the night sky. A simple gaze at the
breathtakingly small stars leaves some of us only awed, others deeply in
trance for hours. In this modern age, the truth about this mysterious shin-
ing dots has been unveiled, and they are, in essence, not different from our
Sun. This revelation awakens not only many questions, but most impor-
tantly, it arouses a dream - a dream to catch the stars. Within the mind of
the greatest dreamers, a world unfolds where humanity reigns over entire
galaxies and navigating them at will.

But reality has its limitations: nothing can travel faster than light. This
is not just a way of saying it. It does not make sense to travel faster than
light, just as it does not make sense to have an object with imaginary mass.
It’s not that there is a magical wall that stops anything from moving faster
than light. The structure of spacetime itself does not allow it.

Albert Einstein showed us in his theory of Special Relativity that space
and time conspire against fast-moving objects: they change shape to stop
things from accelerating further. Not content with that, he later postulated
the beautiful theory of General Relativity (GR), which, based on the brilliant
idea of H. Minkowski to join space and time into a single object, states that
as a consequence of the presence of energy, space and time mix together
and cease to be independent. This groundbreaking theory was proven more
accurate than Newtonian mechanics, our previous conception of spacetime.

This theory comes with loads of incredible consequences, such as grav-
itational waves, black holes, or cosmic strings. It can feel like a mathemat-
ical playground. But this playground brings hope again to our interstellar
dream: wormholes. A wormhole is a bridge that connects two completely
separate regions of space, whether they are in the same universe or in dif-
ferent ones. Although this seems directly extracted from a science fiction
book, they are actual solutions to the GR equations and they make physi-
cal sense. If one could indeed build a wormhole, any place in the universe
could be reached in just the time spent going through the wormhole.

Wormholes are complex objects, and the construction of wormholes car-
ries with it many unknowns and difficulties, such as topology change, causal-
ity violation, and negative energy. We will not be dealing with them in this
paper, although the state-of-the-art knowledge is that none of these prob-
lems is for sure a deal-breaker.

The scope of this project is to introduce wormhole theory and give worm-
holes their deserved rigorous mathematical treatment, since there is a lack
of a completely formal wormhole theory. We aim to provide a strict worm-
hole definition, since the existing definitions in the literature do not allow
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Figure 1: Schwarzschild metric visualization with some fixed parameters to
embed it into R3. This is known as Flamm’s paraboloid.

us to confidently classify spacetimes that do or do not have wormholes.
General Relativity has two postulates: the general principle of relativity,

which states that the laws of physics are the same in all reference frames
and leads us to tensors; and the mass equivalence principle, which states
that the inertial mass and gravitational mass are the same and leads us to
differential geometry. Therefore, we first review some basic definitions and
results from differential geometry in chapter 1. Also, the invariance of the
laws of electromagnetism and, in particular, the speed of light, leads to the
study of Lorentzian geometry. Consequently, in chapter 2, we also review
the main concepts of pseudo-Riemannian geometry and then, armed with
this foundation, we are ready to briefly state the actual theory of General
Relativity.

At the core of this theory are the Einstein field equations - a tensorial
second-order differential equation. These equations, referred to in the plu-
ral since a tensorial equation can be reduced to equations for each com-
ponent, establish the relationship between mass/energy distribution and
spacetime structure (structure will be defined in detail). While obtaining the
structure proves challenging when a mass/energy distribution is provided,
obtaining the mass/energy distribution given the structure of spacetime is
comparatively more tractable.

The most important solution of GR, after the flat, Minkowski spacetime of
special relativity, is the Schwarzschild solution, which is a vacuum (without
the presence of matter) spherically symmetric solution. In fact, by Birkhoff’s
theorem, it is the only vacuum spherically symmetric solution. It is known
in general as the solution for a point mass located at the origin, or to hype
things up, the basic black hole solution. A visualization has been provided
in figure 1.

In this paper, we give a definition for wormhole as a region whose "space
part" is homotopically equivalent to S2. This involves the definition of a spe-
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Figure 2: In one less dimension, the space part of a wormhole is homotopi-
cally equivalent to S1 instead of S2

cial type of vector representing our time direction, and defining orthogonal
surfaces to it, which will represent space at any given moment in time. This
surfaces, homotopically equivalent to S2, can be thought as deformable into
cylinders with spherical base instead of circular.

In chapter 3, we dive into wormhole theory. We construct wormholes
with different metrics (which can be thought of as spacetime structures for
the moment). These are well known metrics of wormholes, so we prove that
they actually fit in the given definition.

The first one is the Ellis wormhole, discovered as part of a greater family
of wormholes, the Ellis drainhole, in [Ell03]. This type of wormholes was
supposed to be a non-singular substitute of the Schwarzschild metric (since
the center of this metric has a singularity), but it was not very useful, since
it is not a vacuum solution. The solution represents some fluid (named
ether by Ellis) going through some kind of drainhole - hence the name.
When setting the mass of ether going through to zero, the metric adopts its
simplest form, the Ellis wormhole. This simplicity is also the reason why we
decided to study the Ellis wormhole as a first dive into the theory. Despite
its lack of complexity, it resulted to be a traversable wormhole, the first one,
in fact! There are wormholes which can be traversed and wormholes which
not, since traversing them would require an infinite amount of time.

The Ellis wormhole was actually the starting point for the construction
of the wormhole seen in Interstellar. The construction of this wormhole
was carried on in [JvTFT15]. For cinematic reasons, the Ellis wormhole
alone was not enough to be visualized on the big screen, since some more
freedom of parameters was needed. The wormhole used in Interstellar used
3 adjustable parameters, but the Ellis wormhole has only one, as the reader
will be able to see.

For the Ellis wormhole, we can actually give an embedding, which makes
it much easier to visualize what is happening. Since manifolds exist on their
own, the Ellis wormhole exists without the need of anything else. However,
for us, it is hard to think of curved spaces by themselves. It is much easier
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Figure 3: Diagrams of wormholes. The diagram on the left shows a space-
time with both mouths connected, and the one on the right, a spacetime
containing just the wormhole. We will be working with the latter one.

to think of the space as a subspace - submanifold in this case - of Rn. With
that in mind, we can then visualize the manifolds properties in a much
more intuitive way, since we are used to dealing with 2-spheres in R3 or
even for objects embedded in higher dimensions (such as a Klein’s bottle or
a tesseract), with their projections. In fact, this idea has been a great tool
to show General Relativity to non-scientist audiences. It is even the book
cover of some GR text books! Wormholes can also be greatly benefited from
this perspective, since the curvature is not as easy to visualize as the actual
tunnel that everybody has seen. The reader who has not actually seen the
tunnel can take a look at the diagram 3 so that the previous statement
becomes true.

In the diagram, we are seeing just the equatorial section of the constant
time sections, which allows us to lower the dimension from 4 to 2, allowing
us to embed it into R3 (in this particular case). Obviously, when we say
that we give an embedding, we are working with higher dimensions, so our
embedding will need R5 or even R6.

We scale up in generality, and our next target is the Morris-Thorne worm-
hole - a family of very different wormholes, in fact. Morris and Thorne give
in [MT88] a metric for spherically symmetric wormholes. From Birkhoff’s
theorem, we know that the only spherically symmetric vacuum solution
must be the Schwarzschild metric. Therefore, the Morris-Thorne wormhole
does contain matter in general - if it did not, it would be only one solu-
tion, the Schwarzschild one. It is a family of wormholes, determined by two
functions: the redshift function, related to how much energy is pulled from
photons - light particles - when they escape the wormhole, and the shape
function, which is the one which gives the shape to the wormhole.

We show that the Ellis wormhole is a particular case of the Morris-
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Thorne wormhole, which is not of much surprise since the Morris-Thorne
wormhole aimed to be a generalization of the Ellis metric. Unexpectedly, we
even show that a wormhole can be constructed with the same metric as the
Schwarzschild black hole. This means that every Schwarzschild black hole
could in fact be a wormhole (at least from just the perspective of General
Relativity). This idea, ironically enough, solves the problem of the singular-
ity at the center of the Schwarzschild solution, as Ellis aimed to patch with
his solution. But this proposition is not new. It was discovered in [Fla15] in
1916 by Flamm, and much later, in 1935, revisited by Einstein and Rosen
in [ER35], who also gave a new metric. This is, in fact, the first known
wormhole. Unfortunately, the Einstein-Rosen bridge - the name given to
the Schwarzschild wormhole - is not traversable, it is needed an infinite
amount of time to do so.

Nevertheless, this idea raises an important aspect of GR. The theory does
not deal with topology, which remains a free until chosen. Anyway, one
can not tell whether black holes are wormholes or that, just black holes
with a singularity, since anyone who sees it would not be able to tell us.
However, this specific nuance stays at the core of wormhole mathematical
falsifiability.

Knowing the metric of the Morris-Thorne wormhole, it is straightforward
- although laborious - to find the matter distribution generating that par-
ticular structure. In this work, we calculated the energy distribution (rep-
resented by the energy-momentum tensor) of the Morris-Thorne wormhole.
The analysis of this result reveals that the Schwarzschild solution is a vac-
uum solution - a predictable outcome given the assumption on the deduc-
tion of the metric. The surprise, however, lies on the Ellis wormhole. which,
conversely, needs negative energy density. This means that there is no clas-
sical way of getting an Ellis wormhole, since we need negative mass. Matter
like this is known as exotic matter, and there are certain effects in quan-
tum mechanics that can generate exotic matter under some very specific
circumstances. Thus, wormholes narrowly dodge another bullet, avoiding
again another apparent flaw in their model.

To wrap things up, there are several aspects of wormhole theory which
have been studied in a physics level, but no so much in a formal way. For dif-
ferent reasons - mainly the need for a broader understanding of some physi-
cal or mathematical concepts, which would add much more unneeded com-
plexity to this work - the formalization of these concepts was discarded, but
some hints at these topics were provided instead. These aspects include:
time travel, which can be achieved by accelerating one of the mouths of a
wormhole and joining them together, wormhole traversability and non ori-
entable wormholes. This last one is really intriguing concept, since, travers-
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Figure 4: A Möbius strip representing the idea of a non orientable worm-
hole. Going around the strip turns left to right and right to left every time
the same point has been reached. In a piece of paper, you would get one
line on each (local) side of the paper, represented by red and green.

ing it would switch right and left. That is, by traversing it your heart would
switch from left to right for the people observing you, and you would see
people mirrored, so that freckle under her left eye would be under her right
eye now!
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Chapter 1

Differential geometry

Before diving into the world of General Relativity, we need some mathe-
matical tools. The first and most basic one of them is differential geometry.
GR craves for a new kind of mathematical space, something more general
than Rn; spaces that look locally like Rn, but perhaps not globally. An ex-
ample of this is the 2-sphere, S2, but the main charm of these spaces is that
they make sense on their own, without the need of being embedded into a
higher dimensional space. These spaces are called manifolds.

In manifolds, the notion of straight lines, which represent trajectories of
free particles (in inertial reference frames) in classical mechanics, tumbles.
So what we are looking for in manifolds are spaces in which there are other
types of trajectories for free particles. This is the interpretation we want for
gravity, as a direct consequence of the first principle of General Relativity:
the mass equivalence principle. By this principle, the resistance of a body
to move by gravity and the amount a force exerted by gravity scales are the
same. This means that mass can be ignored in gravity terms, and the path
followed by particles on the space can be treated as a property of the space,
and not the particle.

For this section, we will be mainly following [Lee13] and [CB03].

1.1 Differential manifolds

1.1.1 Definition

The first thing we want to mimic from the Euclidean space Rn is the
topology. Therefore, our first step is to define sets with topological charac-
teristics akin to Rn.

Definition 1.1 (Topological manifold). Let X be a topological space. We say
that X is a topological manifold if it satisfies:

1



2 Differential geometry

1. X is locally Euclidean (locally homeomorphic to Rn, with n ∈ Z+)

2. X is Hausdorff

3. X is second-countable (satisfies the second axiom of enumerability)

In that case, n is called the dimension of the topological manifold.

This last property is not given by every author, but it will always be the
case for us.

Now, we want a way of defining differentiation - we do not call it dif-
ferential geometry for no reason. The idea is to cover the manifold with
open subsets, in which we can work similarly to Rn regarding differenti-
ation. With that purpose, the manifold is given local coordinates to each
open subset, and forced that whenever this local coordinates are changed,
this change of coordinates is differentiable.

Definition 1.2 (Chart). Let M be a topological manifold. A chart is a pair
(U, ϕ) of an open subset U ⊂ M and a homeomorphism ϕ : U → Rn, where n
is the dimension of the manifold.

We also say that U is a coordinate open set and that each component of
ϕ is a local coordinate, so all of them will be a set of local coordinates.

Definition 1.3 (Atlas). Let M be a topological manifold. A differentiable
atlas (or, simply, atlas) of M is a set of charts of M, (Ui, ϕi)i∈I which satisfy:

1. M =
⋃

i∈I Ui

2. ∀i, j ∈ I such that Ui ∩ Uj ̸= ∅, we have ϕj ◦ ϕ−1
i is C∞ on its domain.

Most of the time we will not be specifying which chart we choose, we will
be talking in terms of some local coordinates. Notice that by definition, this
is okay, since they must be defined all over the manifold. If we want some
other coordinates, we can always change them.

Remark 1.4. The reunion of two atlases might not be another atlas, since
two charts might not satisfy the second condition.

Definition 1.5 (Differential compatibility). Two atlases are differentially
compatible if their reunion is another atlas.

Proposition 1.6. The differential compatibility relation between atlases is
an equivalence relation.

Proof. Let’s check the properties of an equivalence relation.
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• Reflexivity: every atlas is trivially compatible with itself.

• Symmetry: again, this is trivial, since we are asking for the same con-
ditions to be true either way.

• Transitivity: we have A = (Ui, ϕi), B = (Vj , ψj), C = (Wk, δk). For any
two i, k, we have that ϕ−1

i ◦ δk = ϕ−1
i ◦ ψ−1

j ◦ ψj ◦ δk for some j, which is
C∞. This can be done by picking the right open sets for each i, j, k, and
covering all the domain of ϕ−1

i ◦ δk.

In our manifolds, we want to include every compatible coordinates, since
they are valid coordinates. The previous proposition gives a clear hint on
what the goal is: to use equivalence classes. We know that any two atlases
are compatible with each other if and only if they are in the same class.

Definition 1.7 (Differentiable structure). Let M be a topological manifold,
we define differentiable structure as a differential compatibility equiva-
lence class (of atlases). A local chart will be any chart in any atlas of the
equivalence class.

Definition 1.8 (Smooth manifold). A manifold (or smooth manifold) is a
topological manifold M together with a differentiable structure.

So, informally, what we are saying is that a differential manifold is a
set that resembles the Euclidean space, together with a way of differentiat-
ing. It is important to notice that once we get an atlas, we already have a
manifold, since the equivalence class is completely determined.

Example 1.9. Here are some examples, which we will only be stating:

• Rn with the identity chart

• Sn, the n-sphere, with the stereographic projection with respect to two
different points

• RPn, the real projective space, with the charts ϕi, 1 ≤ i ≤ n, given by:

ϕi([x1 : · · · : xn]) = (
x1
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)

We obviously need something to differentiate: smooth maps between
manifolds can be defined, and there is one intuitive way to do it: asking
for the expression in local coordinates to be smooth. This is what the next
definition is saying.
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Definition 1.10 (Smooth map). Let M, N be two differential manifolds. Let
f : M → N be a map between them. We say that f is smooth or differentiable
if ∀(U, ϕ) local chart of M and (V, ψ) local chart of N we have ψ ◦ f ◦ ϕ−1 is
differentiable (on the Euclidean space). We say that f is a diffeomorphism
if it is smooth, has an inverse and it is also smooth.

1.1.2 Tangent space

Now, since we are not working with subsets of the Euclidean space, it is
not as easy to define the tangent space of a smooth manifold. We will be
doing a bit of a trick; we will pick a vector space that behaves as expected:
it should have the dimension of the manifold and only depend on a neigh-
borhood of the point. With this in mind, the partial derivatives with respect
to the local coordinates seem a good approach, since directional derivatives
are one to one with vectors on the tangent space. We will be showing how
we can build up this idea precisely next.

Definition 1.11 (Smooth function). A smooth function on M is a smooth
map f : M → R, with the identity differentiable structure. The set of all
smooth functions on M is denoted F(M).

Remark 1.12. F(M) is a R-commutative algebra with the sum, product
with scalar and product of functions. In particular, it is also a ring.

Definition 1.13 (Derivation). Given a smooth manifold M and a point p ∈ M,
an application δp : F(M) → R is a derivation on p ∈ M if it satisfies:

1. δp(f1 + f2) = δp(f1) + δp(f2)

2. δp(λf) = λδp(f)

3. δp(f1 · f2) = f1(p) · δp(f2) + δp(f1) · f2(p)

That is, it is R-linear (1 and 2) and satisfies the Leibniz rule (3).

Definition 1.14 (Tangent space). Let M be a smooth manifold, and p ∈ M.
The set of all derivations on p is called the tangent space of M on p and we
denote it TpM.

Remark 1.15. The tangent space is a vector space. It can be easily checked
from the fact that the arriving space is R.

Now, if we have a smooth map between manifolds, the tangent space also
has to be transformed accordingly. So there must be a relation between the
map and the transformation of the tangent space. We can define another
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map, which we will call pushforward 1 and will go from one tangent space
to the other linearly.

Definition 1.16 (Pushforward). Let M, N be two smooth manifolds and
f : M → N , a smooth map between them. We define the pushforward (or
differential) of f at a point p ∈M as the linear application dpf : TpM → Tf(p)N
such that:

(dpf(vp))(g) = vp(g ◦ f) ∀g ∈ F(N )

We have to see that this definition actually makes sense, and some prop-
erties that we are used to seeing in the standard Rn differential.

Proposition 1.17. The pushforward is linear, and it is well-defined. Fur-
thermore, if the smooth map is a diffeomorphism, then the pushforward is an
isomorphism.

Proof. Let’s first see that it is well-defined: notice that g ◦ f ∈ F(M). So
(dpf(vp))(g) = vp(g ◦ f) is well-defined.

Now let’s see the linearity. We can see dpf(λvp+µwp)(g) = (λ vp+µwp)(g ◦
f) = λ vp(g ◦ f) + µwp(g ◦ f) = λ dpf(vp)(g) + µdpf(wp)(g).

Lastly, let’s suppose f : M → N is a diffeomorphism. Notice that by
definition dpf

−1 is the inverse of dpf . Therefore, dpf is an isomorphism.

Proposition 1.18 (Dimension of the tangent space). Let M be a smooth
manifold of dimension n. Then, given any point p ∈ M, it is true that TpM ∼=
Rn.

Proof. Let (U, ϕ) be a chart containing p. We will abuse notation, and also
refer to U as a manifold. Notice that it constitutes one. We want to prove
the following set of isomorphisms:

TpM
(1)∼= TpU

(2)∼= Tϕ(p)Rn
(3)∼= Rn

(1), TpM ∼= TpU :
Can be seen at proposition 3.9 of [Lee13].
(2), TpU ∼= Tϕ(p)Rn:

1Some authors call it the differential. We will choose the name pushforward since, as
we will see, we will also define a pullback, and we want to make clear when we are pushing
and when we are pulling -in the ways that we will define. Nevertheless, it must be clear
the relation between the known differential on the Euclidean space and the pushforward
on manifolds.
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We have the diffeomorphism ϕ : U → ϕ(U). The pushforward dpϕ is an
isomorphism.

(3), Tϕ(p)Rn ∼= Rn:
Let x1, . . . , xn be coordinates on Rn. Let ∂

∂xi |a be the partial derivative with
respect to xi at the point a = ϕ(p). We want to show that

(
∂
∂xi |a

)
1≤i≤n

is a
base of TaRn.

Let δa ∈ TaRn, f ∈ F(Rn). We can see that (with xi the i-th coordinate
function):

f(q) = f(0) +

∫ 1

0

d

dt
(f(tq))dt

= f(0) +

∫ 1

0

n∑
i=1

xi(q)(
∂f

∂xi
(tq))dt

= f(0) +
n∑

i=1

xi(q)

∫ 1

0
(
∂f

∂xi
(tq))dt

We can also prove that a derivation applied to a constant is zero, since
δa(λ) = λδa(1) = λ(1δ̇a(1)+δa(1)1̇) = 2λδa(1) = 2δa(λ). Taking this into account
and applying δa to f :

δa(f) =
n∑

i=1

δa(x
i)

(∫ 1

0

∂f

∂xi
(a)dt

)
+

n∑
i=1

xi(0)δa

(∫ 1

0

∂f

∂xi
(tq)dt

)

=
n∑

i=1

δa(x
i)

∂

∂xi

∣∣∣∣
a

(f)

So
(

∂
∂xi |a

)
1≤i≤n

generate the space, and the linear independence is trivial.

We will sometimes abuse notation and write either ∂xi |p or ∂
∂xi |p to refer

to dpi(dpϕ−1( ∂
∂xi |ϕ(p))), where i : U ↪→ M is the inclusion map. Notice that the

actual vector living in TpM should be written as the last one, but we hope
the reader will go easy on us when we prefer to write any of the first two.

Corollary 1.19 (Base of the tangent space). Let M be a smooth manifold,
and p ∈ M, with (xi)i some local coordinates. Then

(
∂
∂xi |p

)
i

is a base of TpM.

Now we can give a local form of the pushforward in terms of our new base.
Notice that it is strongly related to the one given in the Euclidean space -and
it makes sense, we are moving to the Euclidean space, differentiating and
going back to our smooth manifold, so any counterintuitive result in this
regard should not go unnoticed.
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Proposition 1.20 (Local expression of the pushforward). Let M,N be smooth
manifolds, with (U, ϕ) and (V, ψ) respective local charts with coordinates (xi)i
and (yj)j respectively. Let f : M → N be a smooth map. Then:

dpf

(
∂

∂xi

∣∣∣∣
p

)
=
∑
j

∂f j

∂xi
(p) · ∂

∂yj

∣∣∣∣
f(p)

Proof. By applying the chain rule:

dpf

(
∂

∂xi

∣∣∣∣
p

)
(g) =

∂

∂xi

∣∣∣∣
p

(g ◦ f) =
∑
j

∂f j

∂xi
(p) · ∂g

∂yj
(f(p))

We can also have curves that lie in manifolds. For them, it also makes
sense to define a tangent vector.

Definition 1.21 (Smooth curve). Let M be a smooth manifold. A smooth
curve on M is a smooth map γ : I → M, where I is an open interval.

Definition 1.22 (Tangent vector of a curve). Let M be a smooth manifold.
The tangent vector of a curve γ at γ(t0) (with t0 ∈ I) is γ̇(t0) ∈ Tγ(t0)M, defined
by:

γ̇(t0)(f) =
d(f ◦ γ(t))

dt

∣∣∣∣
t=t0

∀f ∈ F(M)

The dual space of the tangent space (generally referred to as the cotan-
gent space) will be of great importance as well. The surprising part here is
that the pushforward of the coordinate functions is actually a base of the
cotangent space:

Proposition 1.23 (Dual base of the tangent space). Let M be a smooth
manifold, p ∈ M and (xi)i some local coordinates. The base of TpM∗, dual of(

∂
∂xi

∣∣
p

)
i

is (dpx
i)i

Proof. Let’s see:

dpx
j

(
∂

∂xi

∣∣∣∣
p

)
(f) =

∂

∂xi

∣∣∣∣
p

(f ◦ xj) = ∂xj

∂xi
f ′

Therefore dpxj( ∂
∂xi

∣∣
p
) is 1 when j = i and 0 when j ̸= i.
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1.1.3 Submanifolds

As usual, we want to define a type of subset of a manifold which in some
sense conserves its properties. To fulfill this objective, we introduce the
concept of smooth submanifold. Unfortunately, it is not as straightforward
as one might initially presume, since we need a way of relating the subman-
ifold with its supermanifold, although this relationship is not too complex.

Definition 1.24 (Immersion). We say that a smooth map f : M → N is an
immersion if ∀p ∈ M, dpf is injective.

Definition 1.25 (Embedding). We say that an immersion ϕ : M → N is an
embedding if ϕ is a homeomorphism between M and ϕ(M).

Definition 1.26 (Submanifold). Let M, N be smooth manifold, ϕ : N → M
an embedding. We say that (N, ϕ) is a submanifold of M.

There is a special type of submanifold which is going to be particularly
important for us.

Definition 1.27 (Hypersurface). Let M be a smooth manifold of dimension
n. A hypersurface of M is a submanifold of M of dimension n− 1.

Getting submanifolds, and even manifolds, can become really hard or
laborious, and sometimes one might not be interested in local charts, but
only on some special smooth manifold properties. To prove that a given set
is a manifold, we want an easy way to get them. This way, even if it seems
like magic, exists, and it relies on a beautiful theorem akin to the implicit
function theorem. One may find the proof to this result in theorem (3.1.1)
of [CB03] or corollary (5.14) of [Lee13].

Definition 1.28 (Regular value). Let F : M → N be a smooth map between
manifolds. A point q ∈ M is a regular value of F if ∀p ∈ F−1(q), dpF is
exhaustive. We say that F−1(q) is the level set of q.

Theorem 1.29 (Regular value theorem). Let F : M → N be a smooth map
between manifolds. Let q ∈ M be a regular value of F . Then the level set of q
is a submanifold of M, of dimension dimM− dimN .

1.2 Vector and tensor fields

From here on, the summations will be getting worse, sometimes even
with an open number of indexes. There is a notation which can help us
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lower the load on the notation: the Einstein summation convention. It
establishes that whenever an index is repeated on a single term, there is a
summation over all the values of that index.

Example 1.30. Let us give some examples, with the sum being over all the
range of i or j:

• aibi =
∑

i aibi

• aijb
i =

∑
i aijb

i

• aijb
icj =

∑
i

∑
j aijb

icj

We will be using this notation from now on.

1.2.1 Vector fields and 1-forms

We can have some kind of object on manifolds assigning to each point of
the manifold a vector in its tangent space, we will call that a vector field. In
an intuitive way, we could have the vector field represent the flow of some
liquid, or the direction of the hair of a "hairy" manifold in which all the hair
has been combed in a way that no hair sticks out. Then we generally want
the vector field to be smooth; we do not know what that means yet, but we
will now define it.

Definition 1.31 (Vector field). Let M be a smooth manifold. We define a
vector field over M as an assignment of every point p ∈ M to an element
Xp ∈ TpM.

Definition 1.32 (Smooth vector field). Let M be a smooth manifold of di-
mension n, X a vector field over M. We say that X is a smooth tensor field
if ∀p ∈ M, in local coordinates, we can write:

X = λi(xj)
∂

∂xi
= λi(x1, . . . , xn)

∂

∂xi

with λi differentiable. We will denote by Ξ(M) the set of all smooth vector
fields.

With the definition of vector fields comes a definition of an analogous in
the cotangent space, so they, as vectors, also have their dual. These duals
of the vector fields are called 1-forms.

Definition 1.33 (1-form). Let M be a smooth manifold of dimension n. We
define a 1-form as an assignment ω of every point p ∈ M to an element
ωp ∈ TpM, such that in local coordinates we can write:

ω = ωi(x
j)dxi

with ωi differentiable. We will denote by Ω1(M) the set of all 1-forms.
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Remark 1.34. Ω1(M) and Ξ(M) are F(M)-modules.

Remark 1.35. Notice that there is not a non-differentiable definition for 1-
form. In fact, when we talk about vector fields, we will not be talking about
non-smooth vector fields either, since they will not be of much utility for
spacetime geometry.

In Rn, it is easy to define any dimensional subspaces. Unfortunately, in
a smooth manifold every point has its tangent space 2, which spices things
up. Distributions appear to save the day as analogous to subspaces.

Definition 1.36 (Distribution). Let M be a smooth manifold. A distribution
D of dimension r over M is an assignment of every point p ∈ M to a subspace
Dp, with dimension also r.

We say that D is smooth if ∀p ∈ M there is an open neighborhood U of p
and r smooth vector fields X1, . . . , Xr such that:

Dp =< X1, . . . , Xr > |p

In some way, distributions are related to any dimensional subspaces
as vector fields are related to vectors. The definition will be, nonetheless, of
great importance, since distributions induce submanifolds, as k-subspaces
induce k-linear manifolds. With that purpose we give the following defini-
tions, which are going to be of key importance when we define a wormhole,
since the submanifolds representing constant time sections at each point
in time are generated by the space directions, and we want only this space
sections to have these tunnels.

Definition 1.37 (Integral manifold). Let (N , i) be a submanifold of M a
smooth manifold. We say that N is an integral manifold of a distribution D
if it satisfies di(TpN ) = Di(p) ∀p ∈ U .

Not all distributions create submanifolds. To exactly define which ones
do induce new manifolds, we first need to define a mathematical artifact
that can appear somewhat pathological at first glance.

Definition 1.38 (Lie bracket). Let M be a smooth manifold, we define its Lie
bracket as the application:

[· , ·] : Ξ(M)× Ξ(M) −→ Ξ(M)

(X,Y ) 7−→ [X,Y ]

such that for every f ∈ F(M), it satisfies [X,Y ]f = X(Y f)− Y (Xf).
2Although they can be combined to form the tangent bundle
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The Lie bracket is a particular case of a greater concept, the Lie deriva-
tive, which is defined for more mathematical objects than just vector fields.
For now, we can stay with the idea that the Lie bracket is a kind of general-
ization to vector fields of the normal derivative.

Definition 1.39 (Involutive distribution). Let M be a smooth manifold, D a
distribution over M. We say that D is involutive if ∀X,Y ∈ D, [X,Y ] ∈ D.

The notions of involutive distribution and integral manifold are strongly
related. The following results show that they are involutive distributions
give arise to integral manifolds and vice versa. Their proofs can be found
on proposition (19.3) and theorem (19.12), respectively, of [Lee13].

Proposition 1.40. If on every p ∈ M there is an integral manifold of a distri-
bution D, then D is involutive.

Theorem 1.41 (Frobenius theorem). If D is involutive, on every p ∈ M there
is an integral manifold of D.

1.2.2 Tensor fields

Tensors are the core of General Relativity. They have a beautiful prop-
erty; they do not depend on the local chart chosen. In physics, this trans-
lates to a non-dependence on the reference frame, which is one of the two
principles of GR.

The intuitive idea of a tensor is a mathematical object which we feed any
number of vectors, and we receive a number. Examples of this are a scalar
product or linear forms. We ask the tensors to be linear on every input,
which is a wonderful property, since, among other consequences, allows
us to define a base for the tensor space. Notice that, defined this way, the
previous property becomes obvious.

Definition 1.42 (Multilinear map). Let E1, . . . , Ek, F be vector spaces. A map
f : E1 × · · · × Ek → F is multilinear if it is linear on each variable when the
others are fixed.

Definition 1.43 (Tensor). Let E be a vector space. A (k, l) tensor over E is
a multilinear application T : ×kE ×l E∗ → R.

By ×kE ×l E∗ we mean k copies of E and l copies of E∗. In fact, we see
that we included the dual space in the tensor’s input. In our framework, we
will work with a scalar product, which as we know induces an isomorphism
between the vector space and its dual space, so the choice of k and l will be
merely a convention.
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Definition 1.44 (Tensor product). Let E1, . . . , Ek, G1, . . . , Gl be vector spaces,
F a field, f : E1 × · · · ×Ek → F and g : G1 × · · · ×Gl → F be multilinear maps.
We define the tensor product of f and g as f⊗g : E1×· · ·×Ek×G1×· · ·×Gl → F

(f ⊗ g)(u1, . . . , uk, v1, . . . , vl) = f(u1, . . . , uk)g(v1, . . . , vl)

Remark 1.45. In particular, the tensor product is defined for tensors, and
it is straightforward to see that the result is another tensor.

Proposition 1.46 (Tensor vector space structure). The set of all (k, l) tensors
over a vector space E is also a vector space, and it is denoted T(k,l)(E).

Proof. The fact that it is a vector space comes directly from the fact that
the arrival set is R. By using the standard properties of the sum and the
product of R the eight axioms can be easily checked.

We can treat vectors v ∈ E as linear applications v : E∗ → R. Let (ei)i be
a base of E and (ωi)i its dual base. We propose as a base of T(k,l)(E) the set:

{ωj1 ⊗ · · · ⊗ ωjk ⊗ ei1 ⊗ · · · ⊗ eil ∈ T(k,l)(E) : 1 ≤ j1, . . . , jk, i1, . . . , il ≤ n}

The reader might be convinced on their own that the tensors in the set
are linearly independent, by applying them to carefully selected elements
of ×kE ×l E∗. To see that they generate T(k,l)(E), let (v1, . . . , vk, w1, . . . , wk) ∈
×kE ×l E∗. This element can be decomposed into a linear combination of
k+ l-tuples of base elements of E and E∗. And since a tensor is multilinear,
we end up with a linear combination of this tuples going through the ten-
sor. But for this to be completely determined, it is enough with the given
elements.

Now we want to do as we did with vectors and vector fields. To define
tensor fields, we will be doing pretty much the same. Notice that we are
interested in tensor fields mainly because of the notion of scalar products
on manifolds, but we will see that in fact, differential geometry and general
relativity have some other interesting tensor fields.

Definition 1.47 (Tensor field). Let M be a smooth manifold of dimension n.
We define a (k, l) tensor field over M as an assignment of every point p ∈ M
to an element Kp ∈ T(k,l)(TpM).

Definition 1.48 (Smooth tensor field). Let M be a smooth manifold of di-
mension n, K a (k, l) tensor field over M. The local coordinates of Kp are:

Kp = λj1,...,jli1,...,ik
dxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂xj1
⊗ · · · ⊗ ∂

∂xjl

We say that K is smooth if the functions λj1,...,jli1,...,ik
are.
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But now, we would like to define an extra object. When we have a smooth
map between two manifolds, there is an induced way of transporting the
tensor field from one manifold to the other. Note that we will be defining
the pullback of tensor fields just for (k, 0)-smooth tensor field, since we are
only interested in transporting our scalar products from one manifold to
another.

Definition 1.49 (Pullback of tensor fields). Let M,N be smooth manifolds,
K a (k, 0)-smooth tensor field. Let ϕ : M → N be a smooth map. The pullback
of K, denoted ϕ∗K is defined as:

(ϕ∗Kp)(v1, . . . , vk) = Kp(dpϕ(v1), . . . , dpϕ(vk))

Lastly, we are interested in the Lie derivative of tensor fields. In partic-
ular, we are interested in the Lie derivative of (2, 0)-tensor fields. To avoid
complicating things further, we will be only stating the local form of the Lie
derivative of a (2, 0)-tensor field. If the tensor field is given by g = gijdx

i⊗dxj,
then, its Lie derivative with respect to a vector field X = Xk∂k is:

LXg = (Xk∂kg
ij + gkj∂kX

i + gik∂kX
j)dxi ⊗ dxj

At first, the interest in specifically (2, 0)-tensor fields might not be obvious,
but the main point is to define the Lie derivative of metric tensors (our
scalar product equivalent). There is a special kind of vector fields, called the
Killing vector fields, which will be defined in more detail later. A Killing
vector field X satisfies the Killing equation, LXg = 0. This means, in local
coordinates:

Xk∂kg
ij + gkj∂kX

i + gik∂kX
j = 0, ∀i, j

1.3 Connections

We will be defining a concept that will be core in our study of General
Relativity. The idea of a connection is some kind of tool that connects -
hence the name - local geometries. For a manifold, there are different ways
of connecting its local geometries, so there are different connections avail-
able. We will see later, nevertheless, that introducing a metric locks the
connection, which does in fact make sense.

Definition 1.50 (Connection). Let M be a smooth manifold. A connection
is a map:

∇ : Ξ(M)× Ξ(M) −→ Ξ(M)

(X,Y ) 7−→ ∇XY

satisfying (for f ∈ F(M) and X,X1, X2, Y, Y1, Y2 ∈ Ξ(M)):
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1. ∇X(Y1 + Y2) = ∇XY1 +∇XY2

2. ∇X1+X2Y = ∇X1Y +∇X2Y

3. ∇X(fY ) = X(f)Y + f∇XY

4. ∇fXY = f∇XY

We need to prove now that the connection can be restricted to a chart,
so we can find its expression on local coordinates. With that purpose, the
next result is given. Its proof can be found in proposition (9.1.1) of [CB03].

Proposition 1.51 (Local connections). Let ∇ be a connection on a manifold
M. For every open set U ⊂ M, ∇ gives arise to a connection ∇U on U , such
that ∀X,Y ∈ Ξ(M), ∇U

XU
YU = ∇XY |U .

We will abuse notation and denote ∇U = ∇.

Definition 1.52 (Christoffel symbols). Let ∇ be a connection on a manifold
M. Let (xi)i be some local coordinates (on a coordinate open set U ). We define
the Christoffel symbols of ∇ on U as Γk

ij, given by:

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk

Proposition 1.53. With the previous notation, the Christoffel symbols com-
pletely define ∇ on U .

Proof. Let X = Xi ∂
∂xi and Y = Y j ∂

∂xj . We can see:

∇XY = X(Y j)
∂

∂xj
+XiY jΓk

ij

∂

∂xk
= (X(Y k) +XiY jΓk

ij)
∂

∂xk

which only depends on X,Y and the Christoffel symbols.

Another of the main benefits of defining a connection is the notion of
geodesics. Geodesics are a special type of curve which satisfy a interesting
relationship with the connection. We want to have them in mind since, in
GR, free particles follow geodesics in the curved spacetime. We will see later
that, once we have a metric, the connection is unique, so geodesics will be
perfectly defined.

Definition 1.54 (Geodesic curve). Let M be a smooth manifold with a con-
nection ∇. A curve γ is a geodesic if it satisfies:

∇γ̇ γ̇ = 0

where γ̇ is the tangent vector of γ.
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We can finally define some interesting tensor fields, namely the torsion
tensor and the curvature tensor. Their names are really well-chosen, since
they represent exactly that. The torsion tensor is a tensor which in some
way represents the torsion of geodesics, and the curvature tensor also rep-
resents in some way the curvature of these geodesics. Nevertheless, it is
better to think of them as inherent properties of the manifold and not the
geodesics.

Definition 1.55 (Torsion tensor). Let M be a smooth manifold, ∇ a connec-
tion on M. The torsion tensor field of ∇ is the tensor field (2, 1) given by:

T (X,Y ) = ∇XY −∇YX − [X,Y ]

Proposition 1.56. The torsion field is actually a tensor field.

Proof. We have to see that it is F(M)-bilinear. Let’s first see that it is linear
on the first variable.

T (f1X1 + f2X2, Y ) = ∇(f1X1+f2X2)Y −∇Y (f1X1 + f2X2)− [f1X1 + f2X2, Y ]

= f1∇X1Y + f2∇X2)Y − Y (f1)X1 − f1∇YX1 − Y (f2)X2

− f2∇YX2 + Y (f1)X1 + Y (f2)X2 − [X1, Y ]− [X2, Y ]

= f1 T (X1, Y ) + f2 T (X2, Y )

We used the properties of the Lie bracket of aditivity and [fX, Y ] = f [X,Y ]−
Y (f)X, both of which can be easily checked.

And since T (X,Y ) = −T (Y,X), it must be bilinear.

Definition 1.57 (Symmetric connection). We say that a connection is sym-
metric if the torsion field is 0.

Definition 1.58 (Curvature tensor). Let M be a smooth manifold, ∇ a con-
nection on M. The Riemann curvature tensor field of ∇ is the tensor field
(3, 1) given by:

R(X,Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

Proposition 1.59. The curvature field is actually a tensor field.



16 Differential geometry

Proof. As with the torsion field, it is enough to see that the given definition
is F(M)-multilinear. Since R(X,Y, Z) = −R(Y,X,Z), we will check only X

and Z. For X:

R(f1X1 + f2X2, Y, Z) = f1∇X1∇Y Z + f2∇X2∇Y Z −∇Y f1∇X1Z −∇Y f2∇X2Z

−∇[f1X1+f2X2,Y ]Z

= f1∇X1∇Y Z + f2∇X2∇Y Z − f1∇Y ∇X1Z − f2∇Y ∇X2Z

− Y (f1)∇X1Z − Y (f2)∇X2Z −∇[X1,Y ]Z −∇[X2,Y ]Z

+ Y (f1)∇X1Z + Y (f2)∇X2Z

= f1R(X1, Y, Z) + f2R(X2, Y, Z)

And now, for Z:

R(X,Y, f1Z1 + f2Z2) = ∇X∇Y (f1Z1 + f2Z2)−∇Y ∇X(f1Z1 + f2Z2)

−∇[X,Y ](f1Z1 + f2Z2)

= ∇X(f1∇Y Z1 + Y (f1)Z1) +∇X(f2∇Y Z2 + Y (f2)Z2)

−∇Y (f1∇XZ1 +X(f1)Z1)−∇Y (f2∇XZ2 +X(f2)Z2)

− f1∇[X,Y ]Z1 − [X,Y ](f1)Z1 − f2∇[X,Y ]Z2 − [X,Y ](f2)Z2

= f1R(X,Y, Z1) + f2R(X,Y, Z2)



Chapter 2

General relativity

Now we are ready to introduce the mathematical core of General Rela-
tivity. We join space and time together in a single manifold, the spacetime,
and we introduce the concept of a metric. This works as one expects it
to, we give every point in the manifold a metric for its tangent plane. Nev-
ertheless, now the metric will not give us a real distance between points.
In spacetimes, points are typically called events, because they represent,
simply enough, a point in space and time. So the now "distance" measured
will give us an idea of how much they are separated in causality (we are
assuming there is a maximum speed, which in reality, there is: the speed
of light).

For this, the sign of the scalar product of a vector with itself will be one if
pointing into a causal direction, and other when pointing into a non-causal
one. Don’t worry if all of this sounds a bit too vague, since we are now
formalizing all of these concepts.

2.1 Pseudo-Riemannian geometry

For this section, we will be following mainly [O’N83].
The first thing that must be determined is a way of distinguishing be-

tween space and time directions. For that purpose, the index of bilinear
maps is used. The following result can be found in [O’N83]’s lemma (2.26).

Proposition 2.1 (Index invariance). Every non-degenerate (2, 0)-tensor can
be transformed by a change of basis to one whose matrix is diagonal with all
entries being either +1 or −1, and the number of each is invariant.

Definition 2.2 (Metric signature). The pair (p, q), where p is the number of
−1 and q the number of +1 is called the metric signature.

17
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Definition 2.3 (Metric tensor). Let M be a smooth manifold. A metric ten-
sor (or, simply, metric) is a tensor field of type (2, 0) on M which satisfies:

1. g is symmetric

2. g is non-degenerate

3. Its metric signature is the same ∀p ∈ M

Definition 2.4 (Pseudo-Riemannian manifold). A pseudo-Riemannian man-
ifold is a pair (M, g), where M is a smooth manifold and g is a metric tensor.
The metric signature of M is the metric signature of g.

Remark 2.5. In local coordinates (xi)i, since the metric is a (2, 0) tensor, it
can be written g = gijdx

i⊗dxj, but since it is symmetric notation is typically
abused, writing g = gijdx

idxj. In this new notation we can add together
terms with a different order of the same indices (which will be the same by
symmetry), we just need to keep this in mind if we want to switch back to
the tensor notation.

Sometimes we also say ds2 = g = gijdx
idxj, which will be our final nota-

tion. Also, we will place our indexes down if the metric is the usual, and for
the inverse we will be placing them up as such gij 1.

Example 2.6. We can study the case of the spherical metric. We start
from R3 and we subtract the center (R3 \ {0}). This is a manifold, since
subtracting a point will not affect charts: open sets stay open sets and the
local coordinates are one to one. We define the spherical coordinates, given
by the inverse of the map: ψ(r, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ). Notice
that one chart is not enough to cover all R3 \ {0} even if ψ will be the only
application needed, so we will do a trick and define for each point (we can
pick θ0 and ϕ0 as we want) a neighborhood: U = {ψ(r, θ, ϕ) : r ∈ (0,∞), θ ∈
(θ0 − π/2, θ0 + π/2), ϕ ∈ (ϕ0 − π, ϕ0 + π)}.

Now the only difference between distinct charts is the open set, since
with the same definition, the application ψ is a homeomorphism. We can
compute the metric, and after some work, we get:

g = dr2 + r2dθ2 + r2 sin2 θdϕ2

The metric does not depend on the chosen open set, since the coefficients
will be the same (and, in fact, the tangent vectors will be the same as well).

1The convention states that for tensor coefficients we place indexes going TpM → R
down, and indexes going TpM∗ → R up, so repeated indexes should not be in the same
position. It is possible to rise and lower indexes with the metric, which as we know induces
an isomorphism TpM ∼= TpM∗, so the meaning of the tensor does not vary. For example
T i

j = gkjT
ik. We will not dive further into it, but formally, this is achieved by stating that we

are working with equivalence classes of physically equivalent classes of tensors, instead of
just tensors. More on the topic can be found in [SW77] section (1.0.1).
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We need to consider that at times, our metric might become degenerate
or singular in some local charts. This indicates the invalidity of the coordi-
nates at that particular point. Consequently, we will need to either change
coordinates or utilize a different chart for that specific point. Determining
when we can execute such a change of coordinates or when the manifold
cannot be extended is challenging. We will refer to these latter types of
points as singularities.

In summary, zeros or singularities in the metric could either be artifacts
or crucial missing points of the manifold. Differentiating between the two
at a given point is a complex matter.

Proposition 2.7 (Levi-Civita connection uniqueness and existence). Let (M, g)

be a pseudo-Riemannian manifold. Then there is a unique connection ∇ such
that ∀X,Y, Z ∈ Ξ(M):

1. T∇(X,Y ) = 0 (Symmetry)

2. Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) (Metric compatibility)

Proof. We can express the metric compatibility property with 3 different per-
mutations of the vector fields X,Y, Z.

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ)

Y g(Z,X) = g(∇Y Z,X) + g(Z,∇YX)

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY )

We can use them as follows:

Xg(Y,Z) + Zg(X,Y )− Y g(Z,X) = g(∇ZY −∇Y Z,X) + g(∇ZX +∇XZ, Y )

+ g(∇XY −∇YX,Z)

= g([X,Y ], Z) + g([Z, Y ], X) + g([X,Z], Y )

+ 2g(∇ZX,Y )

Therefore, moving terms around:

g(∇ZX,Y ) =
1

2

[
Xg(Y,Z) + Zg(X,Y )− Y g(Z,X)

]
− 1

2

[
g([X,Y ], Z) + g([Z, Y ], X) + g([X,Z], Y )

]
Now, since at any given point g(X, )̇ is an isomorphism whenever g is

non-degenerate, it is clear that the vector field ∇ZX exists and is unique. It
is not very hard to check that this expression actually satisfies the defined
properties of a connection.
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Definition 2.8 (Levi-Civita connection). The previously stated connection is
called the Levi-Civita connection.

Proposition 2.9 (Christoffel symbols of the Levi-Civita connection). The
local form of the Christoffel symbols of the Levi-Civita connection is:

Γk
ij =

1

2
gkλ(∂j giλ + ∂i gλj − ∂λ gij)

where gkλ represents the inverse of the metric.

Proof. By using the formula deduced in the proof of proposition (2.7), we
get:

g(∇∂i∂j , ∂k) =
1

2

[
∂ig(∂k, ∂j) + ∂jg(∂i, ∂k)− ∂kg(∂j , ∂i)

]
since the Lie brackets vanish. By multiplying by the inverse of the metric,
we get the formula.

Notice that the symbols are always the same when we transpose the sub-
indexes, since the metric tensor is, by definition, symmetric. This is key to
save time when we have to compute 43 = 64 symbols for a 4-dimensional
pseudo-Riemannian manifold, which is generally a non-pleasant task.

Remark 2.10. The Christoffel symbols will be continuous functions as long
as the metric is C1, which will always be the case for us.

Definition 2.11 (Induced metric). Let M be a pseudo-Riemannian mani-
fold, and N a smooth submanifold, with i : M ↪−→ N the inclusion map. The
pullback of the metric of M by i, that is i∗(g) is called the induced metric
whenever it is a metric.

Notice that in matrix notation, if we have the pushforward di and the
metric g, the matrix of the induced metric is di · g · diT . Furthermore, since
the pushforward has the local expression of the tangent vectors in each local
coordinate, we can compute the local components of the induced metric
through the scalar product of this tangent vectors

Definition 2.12 (Pseudo-Riemannian submanifold). With the above nota-
tion, if there is an induced metric, (N , i∗(g)) is a pseudo-Riemannian sub-
amnifold.

We will find later some cases on which a smooth submanifold might not
be a pseudo-Riemannian submanifold because the pullback of the metric
is not actually a metric.
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Proposition 2.13 (Product manifold). Let (M, gM), (N , gN ) be two pseudo-
Riemannian manifolds, with π, σ the projections of M × N onto M and N
respectively. Then:

g = π∗(gM) + σ∗(gN )

is a metric tensor on M×N , and therefore M×N it is a pseudo-Riemannian
manifold.

Proof. Let v, w ∈ T(p,q)(M×N ). From the definition of pullback:

g(v, w) = gM(dπ(v), dπ(w)) + gN (dσ(v), dσ(w))

Then g must be symmetric. We want to see now non-degeneracy, so if there
is any vector v such that g(v, w) = 0, ∀w. For a vector w with all of its nonzero
coordinates on M, it follows dσ(w) = 0, which means gM(dπ(v), dπ(w)) = 0.
But then, dπ(w) can be any vector on Tp(M). Therefore dπ(v) = 0. Similarly,
we get dσ(v) = 0, so it must be v = 0.

We have just left the constant index. But the orthonormal bases combine
into a new orthonormal base. Hence, the index equals the sum of both
indices, and it is constant.

We want to define a special type of vector fields, related with the metric:

Definition 2.14 (Killing vector field). Let M be a smooth manifold. We say
that a vector field X is a Killing vector field if LXg = 0.

We are basically stating that the lie derivative of the metric tensor in the
direction of the field X is zero. Notice that this must mean that, in some
way, the metric does not change.

And now, an important special case:

Definition 2.15 (Lorentzian manifold). An n-dimensional Lorentzian man-
ifold is a pseudo-Riemannian manifold with a metric of signature (1, n − 1).
The same way, we also say that some metric is Lorentzian if its signature
is (1, n− 1).

This is the type of metric we will be dealing with from now on. The
metric signature deserves its justification. The idea here is, as we said, the
causality. By introducing one time dimension with an opposite sign as the
spatial ones, we are making it so that the module of vectors pointing into
the time direction and into the spatial ones have different sign.

This last definition will be of much use later on.

Definition 2.16 (Isometry). Let (M, gM), (N , gN ) be pseudo-Riemannian man-
ifolds. A diffeomorphism ϕ : M → N is an isometry if it preserves the metric,
that is, ϕ∗(gN ) = gM. We say, then, that M and N are isometric.
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2.2 Spacetime geometry

For the geometry of spacetimes we will be following [HE75] and [SW77].

Definition 2.17 (Lorentzian spacetime). We define an n-dimensional Lorentzian
spacetime as a connected n-dimensional Lorentzian manifold.

Unless stated otherwise, a Lorentzian spacetime, or just spacetime, will
be 4-dimensional.

Now we are going to give several definitions which seem pretty similar,
but all of them will be necessary. The definitions have a physical relation of
causality; if two different objects are given the same causal character, that
will be because in some way they will mean similar things.

Definition 2.18 (Vector causal character). Let M be a Lorentzian spacetime,
with g its metric. Let p ∈ M, and v ∈ TpM . Then:

1. If gp(v, v) < 0, N is said to be timelike.

2. If gp(v, v) = 0 and v ̸= 0, N is said to be lightlike.

3. If gp(v, v) > 0 or v = 0, N is said to be spacelike.

We say that v is causal if it is not spacelike.

Definition 2.19 (Submanifold causal character). Let M be a Lorentzian
spacetime, and let N be a submanifold. The pullback of the metric of M
induces a new tensor on N , let us denote it by g. Then:

1. If g is Lorentzian, N is said to be timelike.

2. If g is degenerate, N is said to be lightlike.

3. If g is definite positive, N is said to be spacelike.

We say that N is causal if it is not spacelike.

Remark 2.20. A submanifold is only a pseudo-Riemannian submanifold if
it is not lightlike, since in this case, g is not a metric tensor.

Definition 2.21 (Curve causal character). Let M be a Lorentzian spacetime.
A timelike/lightlike/spacelike/causal curve is a curve whose tangent vec-
tor at each point is timelike/lightlike/spacelike/causal respectively.

Definition 2.22 (Vector field causal character). Let M be a Lorentzian space-
time. A timelike/lightlike/spacelike/causal vector field is a vector field
X which satisfies that Xp ∈ TpM is timelike/lightlike/spacelike/causal re-
spectively ∀p ∈ M.
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Now a definition on the global character of spacetimes:

Definition 2.23 (Static spacetime). Let M be a Lorentzian spacetime. We say
that M is static if it admits a timelike Killing vector field whose orthogonal
distribution is involutive.

2.3 Einstein’s field equations

Before giving the equation of General Relativity, we need to define some
more curvature concepts. Notice that they might have stronger or weaker
conditions for its definition, but it is better to have all of them clustered on
here since their utility will be basically the field equations. Nevertheless,
they will all obviously be defined in our Lorentzian spacetimes.

Definition 2.24 (Ricci tensor). Let M be a smooth manifold, ∇ a connection
on M. The Ricci curvature tensor field of ∇ is the tensor field (2, 0) given
at a point p ∈ M by the coefficients (in some local coordinates):

Ricµν = Rα
µαν

Definition 2.25 (Scalar curvature). Let M be a pseudo-Riemannian mani-
fold. The scalar curvature tensor field of M is the tensor field (0, 0) given
by (in some local coordinates):

S = gµνRicµν

The reader must remember that the repeated indices are the ones over
which the summation is carried on. Implicit (not local) definitions can be
given, but they become overly complicated, and they do not give anything
in return.

Definition 2.26 (Einstein tensor). Let M be a pseudo-Riemannian manifold.
We define the Einstein tensor field of M as:

G = Ric− 1

2
gS

Definition 2.27 (Einstein field equations). Let M be a Lorentzian spacetime.
An Einstein field equation is an equation G = T for some tensor T . The
vacuum Einstein field equation is an Einstein field equation with T = 0.
If M satisfies the vacuum Einstein field equation, it is called an Einstein
manifold.
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2.4 Solutions

The Minkowski spacetime is a really straightforward solution to the
vacuum Einstein equation: that is, we choose R4 with the metric ds2 =

−dt2 + dx2 + dy2 + dz2. Notice how the Riemann tensor vanishes, since the
Christoffel symbols vanish, and consequently the Einstein tensor is exactly
0, condition for the Einstein vacuum equations.

Now we want something a bit more spicy, since, although Minkowski
spacetime is the basis for special relativity, a theory which is interesting
enough by itself, we want some curvature involve. We did not need to intro-
duce all of these concepts to work on a flat spacetime.

The Schwarzschild spacetime is, by Birkhoff’s theorem, the only spher-
ically symmetric solution for the vacuum Einstein field equation. A beauti-
ful, rigorous proof of this result can be seen at [vO19]. The Schwarzschild
metric is

ds2 = −
(
1− rs

r

)
dt2 +

1

1− rs
r

dr2 + r2dΩ2

where dΩ2 = dθ2 + sin2θdϕ2, all the spatial part (plus sign in the metric) in
spherical coordinates.

We may notice two things: when rs = 0, the metric is just Minkowski’s,
and the metric coefficients of dt2 and dr2 can go to zero and diverge at r = 0

and r = rs.



Chapter 3

Wormholes and time travel

Here we get to the part that we were interested in: wormholes. For this
section, we used the main text book on the topic: [Vis95]. Unfortunately,
this book goes deeper into the physical meaning and stays a bit shallower
than we want in the mathematical formalism. So we took the definition in
there and rewrote it in a more rigorous way, to prove afterward that some
old known wormholes are in fact wormholes with the definition.

We give then the following definition, based on definition (9.11) of [Vis95].

Definition 3.1 (Static wormhole). Let M be a static Lorentzian spacetime
of dimension n. We say that an open set Ω contains a static wormhole if
every integral submanifold of the distribution orthogonal to the timelike field
is homotopy equivalent to Sn−2.

We will be working only with static wormholes. Although the definition
could be generalized, we did not find it necessary, since the wormholes that
we will be studying will be static.

To understand a bit better the definition, what we are asking the worm-
hole to be, in an intuitive way, is that "it has a throat in the space dimen-
sions".

Einstein field equations give us only a metric. We can play with this met-
ric and find the curvature (either Riemann, Ricci or scalar). Nevertheless,
our definition contains a purely topological term, homotopy. This seemingly
simple problem is of greater magnitude than it first seems, and on here lies
the actual debate on the existence of wormholes.

On a 2-dimensional Riemannian manifold, which has a positive definite
metric, instead of non-degenerate, we have the beautiful Gauss-Bonnet the-
orem, which states that the Euler characteristic can be obtained from purely
geometrical terms. Consequently, the possibility of completely characteriz-
ing topological surfaces from only a geometrical perspective appears.

25
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But we are working (in general) with a higher dimensional pseudo - Rie-
mannian manifold. Then, we do not have access to something as powerful
as the Gauss-Bonnet theorem, but we do have access to an analogous, given
by Chern in [Che63]. This article involves algebraic topology (including de
Rham cohomology), completely out of the scope of the paper. Neverthe-
less, the theorem shows that the complete topological characterization is
not generally possible, and therefore General Relativity has some freedom
of topology.

For the case of wormholes, this implies that we might have some metric
which can be the metric of a wormhole, but it might not be. Nevertheless,
the following definition is important, because we need to know if a metric
can be a wormhole metric.

Definition 3.2 (Wormhole metric). We say that a metric is a static worm-
hole metric if there is a pseudo-Riemannian manifold with that metric which
is a static wormhole.

Remark 3.3. If we have some metric of the type ds2 = −dt2 + g(x, y, z), with
g definite positive, we will have a static spacetime: it is easy to see that
∂t is a killing vector field, and that < ∂x, ∂y, ∂z > is an orthogonal distribu-
tion. Furthermore, by setting t constant we get a manifold (from the regular
value theorem, by setting F (t, x, y, z) = t any value is a regular value, since
dF = (1, 0, 0, 0)). It is obvious that these manifolds are integral manifolds of
the distribution, so it must be involutive. Additionally, these manifolds are
spacelike.

3.1 Ellis wormhole

The Ellis wormhole is a particular case of a much broader wormhole
family, the Ellis drainhole, treated by Ellis in [Ell03]. It is the earliest
known traversable wormhole, that meaning that it can be traversed in a
finite amount of time (this term will be considered explained further in sec-
tion (3.4)).

Definition 3.4 (Ellis wormhole metric). The Ellis wormhole metric is defined
as:

ds2 = −dt2 + dρ2 + (ρ2 + n2)dΩ2

We will define a 4-manifold embedded into a higher dimension Euclidean
space in hopes that the induced metric arises a wormhole metric. This
method will also provide us with a direct way of visualizing the wormhole.
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Proposition 3.5. The Ellis wormhole metric is a wormhole metric.

Proof. We will be defining a subset of R × (R3 \ {0}) × R with the metric
ds2 = −dt2 + dr2 + r2(dθ2 + sin2θdϕ2) + dw2, which is a pseudo-Riemannian
manifold, consequently of being a product of pseudo-Riemannian mani-
folds. In particular, we may define r =

√
ρ2 + n2, w = narcsinh(ρ/n). Let us

write the subset explicitly:

{(t, r, θ, ϕ, w) : r =
√
ρ2 + n2, w = narcsinh(ρ/n), ρ ∈ R}

As in spherical coordinates, we have to take into account that we need more
than one chart to cover this, since we cannot have a single chart that "cov-
ers" all the domain of θ and ϕ. Nevertheless, we will be using another ap-
proach to show that this is in fact a manifold, the regular value theorem.

Notice that, since ρ = n sinh(w/n), it must be r = n cosh(w/n). If we define
F (t, r, θ, ϕ, w) = r − n cosh(w/n), it is clear that the subset is the level set of
0, that is, F−1(0). We just need to see that dpF is exhaustive ∀p ∈ F−1(0). If
we compute it, dpF = (0, 1, 0, 0, sinh(w/n)), which cannot be zero, so it must
have range 1, and therefore it must be exhaustive.

Then, we have a 4-manifold, our (yet to prove) spacetime:

F−1(0) = R× {(r, θ, ϕ, w) : r = n cosh(w/n)}

Now we are getting closer. For the next part, we will be finding the in-
duced metric onto our 4-manifold (which will induce another trivially onto
Σ = {t0}× {(r, θ, ϕ, w) : r = n cosh(w/n)}). This way we will show that we have
a spacetime.

We will use the charts given by ψ−1(t, ρ, θ, ϕ) = (t,
√
(ρ2 + n2), θ, ϕ, narcsinh(ρ/n)),

and an open set U = {ψ(t, r, θ, ϕ) : t ∈ R, r ∈ (0,∞), θ ∈ (θ0−π/2, θ0+π/2), ϕ ∈
(ϕ0 − π, ϕ0 + π)}, for any θ ∈ [−π/2, π/2), ϕ ∈ [0, 2π). It is not hard to check
that these are in fact charts. We can compute the tangent vectors:

∂t = (1, 0, 0, 0, 0)

∂ρ = (0,
ρ√

ρ2 + n2
, 0, 0,

n√
ρ2 + n2

)

∂θ = (0, 0, 1, 0, 0)

∂ϕ = (0, 0, 0, 1, 0)

We can now compute the induced metric from the metric given at the
start. And, surprise, we get (taking into account that r =

√
ρ2 + n2):

ds2 = −dt2 + dρ2 + (ρ2 + n2)(dθ2 + sin2 θdϕ2)

We have an isometric 4-manifold to the Ellis (yet to prove) wormhole. It
clearly has Lorentzian signature. Moreover, we know that the Ellis metric
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Figure 3.1: Ellis wormhole metric visualization with some fixed parameters
to embed it into R3

.

is static from the remark (3.3), and that ∂t is the timelike Killing field, and
Σ is the orthogonal distribution.

For the connection, we will see that it is arc connected: any two points
(picking a chart on which both points lie) can be connected by the con-
catenation of the curves moving independently and continuously on each
coordinate. Notice that this concatenation must be continuous, since the
curve lies on the manifold always. So the manifold is a spacetime.

Finally, we just have left to prove that Σ is homotopy equivalent to S2. For
this we will find a deformation retract of Σ homeomorphic to S2. Any sphere
will be enough for this purpose, since the rest is a trivial homeomorphism.
For that, we will choose the one with radius n.

Let us choose a point (ρ0, θ0, ϕ0). Our continuous map will be r(s) =

(ρ0s, θ0, ϕ0). It is really easy to check that this map "carries" the point at
s = 1 given by (

√
(ρ20 + n2), θ0, ϕ0, narcsinh(ρ0/n)) to the point (n, θ0, ϕ0, 0)

at s = 0, which is on the sphere of radius n. It is clear that r(s) ∈ Σ and it is
obviously continuous. So we just proved that Σ is homotopy equivalent to
S2.

So the Ellis wormhole metric is actually a wormhole metric.

3.2 Morris-Thorne wormhole

Morris and Thorne proposed a general, spherically symmetric wormhole
metric in [MT88], and we would like to show that their general metric can
be used to define a wormhole with our previous definition.

For this one, we will not be working with an embedding. Although it is a
much clearer way of showing that some metric is in fact a wormhole metric,
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and there is in fact an embedding that we found for this metric, it requires
the mathematical treatment of degenerate and/or singular metrics, which
is outside the scope of this project.

Definition 3.6 (Traversable wormhole metric). The Morris-Thorne worm-
hole metric is defined as:

ds2 = −e2a(r)dt2 + 1

1− b(r)
r

dr2 + r2(dθ2 + sin2θdϕ2)

where a, b : R>0 → R are smooth functions. The function a is the redshift
function and b is the shape function. This last one must satisfy:

1. b has exactly one point r0 ∈ R>0 such that b(r0) = r0.

2. b(r)− b′(r)r > 0, where b′ is the derivative of b.

To find an embedding, we could use a similar approach as [Fro59] (who
gives the name to the embedding) and [PS12], who did it in a more formal
way and even gave a general method to find embeddings. We could define
a subset of R3 × (R3 \ {0}) with the metric ds2 = −dτ20 + dτ21 + dw2 + dr2 +

r2(dθ2 + sin2θdϕ2), so the metric signature is (−,+,+,+,+,+), which is a
pseudo-Riemannian manifold, consequently of being a product of pseudo-
Riemannian manifolds. As we said, we did not give enough tools to correctly
work with the embedding, but it could be found (and it can be a nice exer-
cise) with:

τ0 = ea(r) sinh t

τ1 = ea(r) cosh t

w = ±
∫ r

r0

√
1

r
b(v) − 1

− (a′(v)ea(v))dv

The ± sign comes from the fact that this metric is thought to be use with
two charts.

As we said, we will be doing a workaround. Before doing anything, we
can see that our choice of coordinates is not the best: the coefficient of the
dr2 term diverges at r = r0, so it is not well-defined. Furthermore, and as
previously stated, this metric is thought to be used with two charts; one
for each side of the wormhole. To deal with this, we can make a change of
coordinates. Notice that we do not expect for the change of coordinate to be
one to one, since we are joining two charts in one. We may define:
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l = ±
∫ r

r0

dv√
1− b(v)

v

Notice that l = 0 when r = r0 in any case, and it can be checked using
the given properties of b that this integral does in fact converge. What we
do need is the r(l) is defined. For that we define the function:

F (r, l) = l2 −

∫ dr√
1− b(r)

r

2

And by the implicit function theorem we just need to see that dF/dr ̸= 0.
We may compute it:

dF

dr
=

−2√
1− b(r)

r

∫
dr√

1− b(r)
r

̸= 0 ∀r ̸= r0

and
dF

dr

r→r0−−−→ r20
b(r0)− b′(r0)r0

̸= 0

So r(l) is well-defined. The metric transforms in this local coordinates
to:

ds2 = −e2A(l)dt2 + dl2 + r2(l)(dθ2 + sin2θdϕ2)

With A(l) = a(r(l)).

Definition 3.7. The proper distance form of the Morris-Thorne wormhole
metric is:

ds2 = −e2A(l)dt2 + dl2 + r2(l)(dθ2 + sin2θdϕ2)

and the coordinate l is called the signed proper radial distance.

Now our metric seems more manageable.

Proposition 3.8. The Morris-Thorne wormhole metric is a wormhole metric.

Proof. We can define the smooth manifold R × R × S2 and, with the proper
distance form of the Morris-Thorne wormhole metric, we have a Lorentzian
spacetime.

Notice how ∂t is a timelike killing vector field, since L∂tg = 0, and <

∂l, ∂θ, ∂ϕ > is orthogonal to it. It is also clear that this distribution is invo-
lutive, and that the induced metric onto the integral manifolds Σt is:

ds2 = dl2 + r2(l)(dθ2 + sin2θdϕ2)
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Figure 3.2: Einstein-Rosen metric visualization with some fixed parameters
to embed it into R3

.

These manifolds are spacelike. Furthermore, we can define a retraction
such that l = l0s, which when s = 0 makes l = 0 and when s = 1, l = l0. This
is a continuous map, so the result is a deformation retract, and it is clearly
S2.

Remark 3.9. The Ellis wormhole is a Morris-Thorne wormhole; if we define
ρ = l, then r(l) = l2 + n2, b(r) = n2

r and a(r) = 0.

Now we might also consider the Scwharzschild metric again:

ds2 = −
(
1− rs

r

)
dt2 +

1

1− rs
r

dr2 + r2dΩ2

It also has the form of a wormhole:

Remark 3.10. The Schwarzschild metric is a wormhole metric with b(r) = rs
and a(r) = 1

2 log(1− rs/r).

We just proved that Schwarzschild black holes are actually static worm-
holes! They are in fact called Einstein-Rosen bridges, discovered by L.
Flamm in [Fla15], in 1916, and given the name by [ER35], who also gave
the Einstein-Rosen metric. They used a similar approach as we did: they
used u2 = r − rs, and they got the Einstein-Rosen metric:

ds2 = − u2

u2 + rs
dt2 + 4(u2 + rs)du

2 + (u2 + rs)(dθ
2 + sin2θdϕ2)

We might now calculate the Christoffel symbols of the Morris-Thorne
wormhole metric. We will prefer to compute them in the classical form,
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rather than in the proper distance form, just because it is the most com-
monly used chart. Nevertheless, if we were to work with geodesics traversing
l = 0, the rigorous way would be to use the latter one. By using proposition
2.9, we can compute them:

Γt
tr = a′(r)

Γr
tt = a′(r)e2a(r)

(
1− b(r)

r

)
Γr
rr =

1

2

b′(r)r − b(r)

r(r − b(r))

Γr
θθ = b(r)− r

Γr
ϕϕ = (b(r)− r) sin2 θ

Γθ
rθ =

1

r

Γθ
ϕϕ = − cos θ sin θ

Γϕ
rϕ =

1

r

Γϕ
θϕ =

cos θ

sin θ

With the remaining ones being either zero or a permutation of the sub-
indexes which results on the symbols being equal. With this calculation
done, we can now work with geodesics on Morris-Thorne wormholes! We
can take it a step further, and compute the Einstein tensor, to find the
needed energy-momentum tensor for our wormhole.

Gtt = e−2a(r) b
′(r)

r2

Grr =

(
1− b(r)

r

)[
−b(r)
r3

+ 2

(
1− b(r)

r

)
a′(r)

r

]
Gθθ =

1

r2

(
1− b(r)

r

)[
a′′(r) +

(
a′(r) +

1

r

)(
a′(r) +

b(r)− b′(r)r

2r(r − b(r))

)]
Gϕϕ =

Gθθ

sin2 θ

And the remaining coefficients are 0. This Einstein tensor is equal to
the energy momentum tensor, so what we actually found is the energy dis-
tribution necessary to match the Morris-Thorne wormhole metric. Notice
that, as we said, topology is not included in the equations, so we can only
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say that if a Morris-Thorne wormhole was actually found, it would have this
energy-momentum tensor.

It can be checked that with b(r) = rs and a(r) = 1
2 log(1 − rs/r), that is,

the Schwarzschild wormhole, the Einstein tensor vanishes, as we expected
(the reader should remember that the Schwarzschild solution is a vacuum
solution).

A more interesting result can be obtained by computing the Einstein
tensor of the Ellis wormhole. By setting a(r) = 0 and b(r) = n2

r , we get the
following Einstein tensor:

Gtt = −n
2

r4

Grr =
(n2 − r2)n2

r6

Gθθ =
n2

r6

Gϕϕ =
n2

r6 sin2 θ

Now, the first component is negative. This component of the energy-
momentum tensor, in physics, stands for the energy density1, and it is
negative 2. Here is one of the complications of building wormholes, they
need negative energy density. This state of matter is generally called exotic
matter.

Just to let know the reader that not all is lost, it should be stated that
there are way rounds to this problem. The most brought up solution to
this problem lies in the domain of quantum field theory, the Casimir effect
(see [Vis95] section (12.3.2)), which allows for negative energy density under
certain conditions.

3.3 Time travel

Time travel is also something appearing with General Relativity. In fact,
the theory alone, as with wormholes, does not forbid going back in time.
Obviously, this implies a direct break in causality, as everybody has dis-
cussed in any interesting social situation. This section aims to give some

1In fact, it does stand for the energy density but only in an orthonormal reference frame.
For the case of the Ellis wormhole, the component stays the same, so there is no need to
worry further. The skeptical reader may check on their own, since it is not a hard exercise.

2The reader may have noticed that the energy density may change when changing coor-
dinates. The problem lies, anyway, in the fact that there are some coordinates in which the
density is negative.
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insight into what role does time travel play in the scene, with a bit of a hint
on its relation to wormholes.

For this small section, [Vis95] was used, in combination with [HE75].

Definition 3.11 (Time-orientable spacetime). A Lorentzian spacetime M is
time-orientable if it admits a timelike vector field.

Remark 3.12. Notice that any static spacetime is trivially a time-orientable
spacetime.

Definition 3.13 (Future and past directed curves). Let M be a time-orientable
Lorentzian spacetime. A future directed curve is a causal curve γ such that
gp(γ̇(p), Tp) < 0 at any given point p ∈ M. Here γ̇ is the tangent vector and T

is the killing timelike vector field defined by the time-orientability condition.
We can analogously define past directed curve, with gp(γ̇(p), Tp) > 0.

Definition 3.14 (Causal future and past). Let M be a time-orientable Lorentzian
spacetime. We define the causal future of p ∈ M as the set of points q ∈ M
such that there is a future-directed causal curve γ such that γ(0) = p and
γ(1) = q, and it is denoted J+(p).

We can analogously define causal past, denoted by J−(p).

Definition 3.15 (Causality violation region). We define the causality vi-
olation region of a point p ∈ M a time-orientable spacetime as J0(p) =

J−(p) ∩ J+(p). We define the causality violation region of the whole space-
time as J0(M) =

⋃
p∈M J

0(p).

In a physically intuitive way, time travel will be possible if the causality
violation region of the spacetime is non-empty.

Remark 3.16. Notice that if we find any closed causal curves, we will have
a non-empty causality violation region.

Although not with the mathematical rigor we aim for in this paper, [MTY88]
shows that a wormhole can be modified to produce closed causal curves. We
decided not to include a rigorous proof of this fact because it would require
a deeper knowledge on topics such as special relativity, which would make
this paper lose its main focus. Nevertheless, it is interesting to know that
wormholes and time travel are strictly related.

3.4 Speculative extensions

This is where the rigor on this paper ends. Wormhole theory is a com-
plex topic with not too many short term applications. This implies that the
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theory might not be as developed as other branches of General Relativity,
not to talk about its formalization. Nonetheless, this section can give some
insights about the next steps in wormhole theory formalization. We might
be giving some new notions, but just to explain this possible next steps.

The Morris-Thorne wormhole metric, although a fantastic take on worm-
hole metrics, it is not the only one we can find, since it assumes spheri-
cal symmetry. Another interesting proposal on them is given by Visser on
[Vis89], where a cubical wormhole is stated. The formalism applied for its
construction, the junction construction formalism, makes use of the second
fundamental form, treating the matter distribution as a thin shell.

Definition 3.17. Let (M, g) be a pseudo-Riemannian manifold, H a pseudo-
Riemannian orientable hypersurface. The second fundamental form of H
is the assignation defined at each point by IIp : TpH × TpH → TpM given at
each point by:

IIp(u, v) = −gp(dpN(u), v)Np , ∀u, v ∈ TpH

where N is the Gauss map of H.

And the Gauss map is a smooth map which assigns each point of H a
vector orthogonal to its tangent space. In some way, they represent the
shape of the hypersurface. With this idea in mind, the second fundamental
form makes for a great mathematical tool to deal with approximations of
thin matter layers, which is exactly the case for the Visser wormhole.

Furthermore, observers can be introduced, and, with them, the notion of
proper time. An observer is represented by a timelike curve. As particles, an
observer will be free if it follows a geodesic. The proper time of an observer
is defined as follows. Let γ(λ) be the path that the observer is following. The
proper time between λ1 and λ2 can be defined as:

∆τ =

∫ λ2

λ1

√
−g( ˙γ(v), ˙γ(v))dv

From this concept, the notion of traversable wormhole can be defined, as a
wormhole for which a particle can traverse the wormhole in a finite amount
of proper time for any observer. We should first define what does "travers-
ing the wormhole" mean, although we could avoid this by just focusing on
reasonably short timelike curves, which should not result in pathological
divergences. Again there would be need of defining what "reasonably short"
means, but that should be easier to define. Another option would be to try
to define a traversing direction (or a set of them).

Until now, we have been working with wormholes as a structure. Notice
how we could now place a wormhole in a universe, by using the connected
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sum. We should only be careful that the result is still a Lorentzian space-
time. Now this could result in a non orientable spacetime. If that was the
case, we would call the wormhole a non orientable wormhole.

Definition 3.18. Let M be a smooth manifold. We say that two charts (U, ϕ)

and (V, ψ) with respective local coordinates (xi)i and (yj)j have the same
orientation if ∀p ∈ U ∩ V :

det(
∂yj

∂xi

∣∣∣∣
p

) > 0

Definition 3.19. A smooth manifold M is said to be orientable if there is
an atlas such that all of its charts have the same orientation.

The last important idea are the energy conditions. In General Relativ-
ity, there are some extra assumptions which are not a required part of the
theory, but instead are extra conditions which a spacetime can satisfy so
that it automatically satisfies other more interesting conditions. It can be
seen as something similar to functions satisfying the continuity condition
or the differentiability condition. From just knowing that, a ton of other
conclusions can be extracted. The study of energy conditions in wormholes
is also interesting.

Let us state some of the energy conditions:

Definition 3.20. A Lorentzian spacetime M is said to satisfy the null energy
condition if at every point p ∈ M every null vector Kp satisfies:

Tp(Kp,Kp) ≥ 0

where T is the energy-momentum tensor.

Definition 3.21. A Lorentzian spacetime M is said to satisfy the weak en-
ergy condition if at every point p ∈ M every timelike vector Vp satisfies:

Tp(Vp, Vp) ≥ 0

where T is the energy-momentum tensor.

Definition 3.22. A Lorentzian spacetime M is said to satisfy the strong en-
ergy condition if at every point p ∈ M every timelike vector Vp satisfies:

(T − 1

2
Tr(T )g)p(Vp, Vp) ≥ 0

where T is the energy-momentum tensor and g is the metric.

Notice how the weak energy condition is not satisfied by the Ellis worm-
hole. The study of the energy conditions in different type of wormholes is
not a difficult idea to formalize, and brings easily many general results to
wormhole theory.
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