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Abstract

Since the transition of Ethereum from a Proof-of-Work to a Proof-of-Stake consen-
sus protocol back in September 2022, the Proposer Buider Separation schema, or
PBS, arose as the methodology for block producing. This protocol runs at a deficit
for the relays, the trusted third party between the proposers and builders, fact that
motivated our intrest in studying the properties of the protocol.

In this work we review the theoretical background needed to takle this analysis
from a mechanism design perspective, we heavily relayand sumarise the the work
of Roughgarden et al., providing the tools we need for it.

Our main goal is to expose the basic notions of mechanism design theory and
build a model capable of explaining the financing of public excludable goods, trying
to provide a self sufficient and coherent thesis, even if disregarding problem that
motivated this line of research.

To achieve our goal we start by introducing several basic concepts of different
aspects of applied mathematics and economics, opening the way to the develop-
ment of those ideas into more sophisticated concepts.

This theoretical approach peaks with the exposition of a selection of mecha-
nisms and models and a review of their properties.
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Chapter 1

Preliminary

Informal Greeting to the Topic

Never before have we seen a greater trend towards decentralization, which is
gonna pose several technical and economical challenges that we must address and
give answer to.
You might be aware of several of those challenges, some notorious challenges as
up scaling blockchain, smart-contract security or legal framework discussion have
never been more present in both the academic and the public debate, and are
gonna occupy a spot in the academic discussion in the foreseeable future.
Let us join that discussion in this essay, and explore one of such challenges, where
you are invited to reflect on the matter and participate in the debate. I am certainly
down to discuss any ideas you might come with should you want to, trying to
never assume any prior knowledge on the topic. This previous asseveration is
gonna prove rather complicated due to the specifics on the topic that we have to
run into, but I hope that you will lend me your patience and we can turn that
around.
And last but not least I want to thank you, for taking the time to read this essay,
desert from almost any examples, which makes it a rather dense reading, thank
you.

1.1 Organization of the Work

The work will be organized as follows:
Our first chapter will have the objective of paving the road for the latter de-

velopment of more complex ideas, it aims at establishing the prerequisites needed
to later delve in mechanism design for the financing of public exludable goods.
At the same time this introductory chapter will be divided into several sections,
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2 Preliminary

each of them aimed at putting the scope in a specific area. We start with an intro-
duction on game theory, to be followed by another one discussing auction theory
and further elaborating the concepts, we continue with a section on mechanism
design only to conclude our introduction with a last section discussing the nature
of public goods, taking our particular interest on the excludable ones.

In the first section of our second chapter we delve deeper in mechanism design
and the financing of public exludable goods, in this case restraining ourselves to
prior free and private valuations. We conclude the chapter with a second section
where we also wonder on the economic efficiency on the mechanisms we propose.

In the third and last chapter we extend our model to consider interdependent
valuations, putting the scope in the case of public signals.

We also have a conclusions section were we highlight the results of our exami-
nation.

And last, although the dissertations are fairly theoretical, we use the Annex to
put the theory to work and apply our results to the problem that motivated our
research, the relays financing on a PBS schema.

We hope that this gradual progression will help the adequate consolidation of
concepts before elaborating on more complex material.

1.2 Introduction

In this chapter we aim to introduce the concepts from different branches of
applied mathematics and economics we need as a prerequisite to explore financing
of public goods.
These concepts might seem a little unrelated at the beginning, but the reader will
corroborate them necessary as we advance in our dissertation.

When discussing financing of a public good it is often tricky to arrive at a
mechanism that ensures that free-riding is not incentivised, we circumscribe our
interest to the financing of the institution of relayer in a PBS schema. This relayer
can be equiparated to the auctioneer in a traditional auction, and using the latter
term will prove useful when discussing the concept since it is well established in
the literature.

Let’s put a pin on this for the moment, we will come back at this later.
Before we start let us begin with a non exhaustive notational cheatsheet:
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Notation Cheatsheet

Symbol Description

ui Player i’s utility function

vi Player i’s valuation function

si Player i’s strategy

Ai Player i’s set of actions {a1, . . . , ak}

Hi Player i’s information set {h1, . . . , hk}

N A finite set {1, . . . , n}

vi Player i’s valuation function

ti Player i’s threshold

wi Player i’s signal

βi Player i’s bidding strategy

b Bid vector (b1, . . . , bn)

bi Player i’s bid

b−i Every bid other than player i’s: (b1, . . . , bi−1, bi+1, . . . , bk)

ψi Player i’s payoff formula

x Allocation map

p Payment map

C Cost map

S Winner subset (S ⊆ N)

π Social cost function

SW Social Welfare function

Hn n-th harmonic number

Table 1.1: Notation

It is typical to find the notation "s" in the literature when referring to signals, but since we use
it to denote strategy in our first chapter we will use "w" as an alternative
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1.3 Introduction to Game Theory

Game theory is the branch of applied mathematics that aims to study strategic
interactions among rational agents. It does so by modelling the behaviour of such
agents and analysing the decision making process.

It can be argued that the problem at hand can be modelled as a game, there-
fore, in this section we will introduce concepts such as utility, strategy, game or
equilibrium, all of them necessary to later discuss auctions and social welfare.

Without further ado, let us then start with one rhetorical question for the
reader:

How would you give a magnitude to a preference?

1.3.1 Utility and Strategies

This idea is the conditio sine qua non for the study of rational decisionmaking,
and perhaps the most prevalent concept in economics, we are talking about a con-
cept that will allow us to establish a preference between the available alternatives,
the utility, which we can define as:

Utility (see [MC95] pag. 9)

We call Utility to the function

u : D → R

d 7→ u(d)

that assigns a numerical value to an element d ∈ D of a set of available
alternatives in accordance to the individual’s preferences.

For instance, if Alice prefers chocolate ice-cream to its mint flavoured equiva-
lent, then:

uA(chocolate ice-cream) > uA(mint ice-cream)

The reader must have noticed that we are not constraining any subjective pref-
erence. In fact, it will be most usual that different subjects have different utility
functions, or even if two or more individuals had the same function, it could hap-
pen that their subjective situation would differ. So even if Alice and Bob like water
the same (same function), if he is stranded in a desert while she’s in a spa, he’ll
have a higher valuation of a glass of it.
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Now that we know that individuals can order their preferences according to
the utility they perceive from each object, we can move forward to the definition
of strategy.

A strategy is a process of election of an action given the available information
to a player at a given time, formally:

Strategy (see [MC95] pags. 228-230)

Given an information set Hi and the possible actions A of a game
A Strategy for player i is a function si : Hi → Ai

Though this work we will restrict ourselves to the case where both Hi and Ai

are finite.
An action can be any proactive or passive input the player makes that has an

impact in the game (a bid in an auction, choosing heads or tails on a coin flip,
doing nothing, etc.).

If we consider a probability space (Ω,A,P) we can choose our strategy prob-
abilistically, this allows for the randomisation of strategies, formally:

Mixed Strategy (see [MC95] pag. 232)

Given a player’s i finite pure strategy set Si, a mixed strategy assigns a
probability to each pure strategy:

σi : Si → [0, 1]

si 7→ σi(si)

We will require that ∑si∈Si
σi(si) = 1

To illustrate this take the game Rock-Paper-Scissors (see [Rou13] chapter 1)

where the player chooses each option with probability
1
3

. In such game neither
player can increase their expected payoff via a unilateral deviation since every
other action has the same expected payoff.

But, is there a better strategy?

It is only natural that an individual will prioritise those strategies yielding a higher
expected utility, we say that an individual operating in such manner is a rational
individual.
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We will also say that a strategy is weakly dominant if no other strategy provides
a higher utility.

1.3.2 Games

A game can be described as a model of strategic interactions between players,
subject to constraints on the actions they can take. (see [OR94] pags. 2-11)

By that we mean that the individual’s welfare depends not only on their actions
but also on the actions of other individuals. (see [MC95] pags. 219-228)

Strategic Game [OR94]

A strategic game consists of:

• a finite set N (the set of players)

• for each player i ∈ N a nonempty set Ai (the set of actions available to
player i)

• for each player the utility induces preference among the available al-
ternatives

• for every player we use an utility map

ui : V → R

vi 7→ ui(vi)

If the set Ai of actions of every player i is finite then the game is finite.
We can broadly categorise strategic games in:

• Cooperative or Non-cooperative: Depending on the type of actions available
to the players. We say that a game is non cooperative if the sets of possible
actions available to the individual players are primitives, on the other hand
we say that a game is cooperative if the sets of possible actions of a group of
players are primitives.

• Strategic Games or Extensive Games: We say a game is strategic if the
players plan their actions independently form the other players and then
take action simultaneously, whereas extensive game are more general mod-
els that contain strategic games, allowing players to consider their actions
in scenarios where they know other players’ decisions and actions or in sce-
narios where they do not have such information. Strategic games are also
referred by as games in normal form in some parts of the literature.
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• Games with Perfect Information and Imperfect Information: Depending
on the information available to the players, a game is said to have perfect
information if players have full information of each others past actions, in
contrast we say that the game has imperfect information if that is not the
case.

Strategic games can arrive at a steady state where no player has incentives to
unilaterally alter their strategy. Once the player has formed a rational expectations
of other players behaviour the optimal set of strategies is the one that maximises
the players utility, we call this steady state an equilibrium.

1.3.3 Equilibrium

The prevalent solution concept in game theory is the Nash equilibrium (see
[OR94] pags. 11-20), which characterizes a stable state within a strategic game. In
this state, each player possesses a valid understanding of how others will behave
and acts in a rational manner. However, it does not concern itself with investigat-
ing the path or methods leading to the establishment of this stable state.

Definition 1.1. A Nash equilibrium of a strategic game is a profile of actions where
the player doesn’t have any better paying alternative actions, this is, the player has no
incentives to deviate from its course of action since any other action will provide her with
equal or lower utility. Formally:

ui(a∗−i, a∗i ) ≥ ui(a∗−i, ai)

Where a∗ ∈ A is a profile of actions for player i ∈ N
We can reformulate it as:
For any a−i ∈ A−i we define Bi(a−i) as the set of optimal actions of player i given a−i

Bi(a−i) = {ai ∈ Ai : (a−i, ai) ≥ (a−i, a
′
i) ∀a

′
i ∈ Ai} (1.1)

We then say that Bi is the best response correspondence of player i where a∗i ∈ Bi(a∗−i)∀i ∈
N is an equilibrium action for player i, this is, she has no incentive to alter her actions
because every other action at her disposal will yield an equal or lower utility.

Let’s extend this concepts to a mixed strategy situation (see [MC95] pag. 250):

Definition 1.2. Given a normal form game, the mixed strategies s∗1 , . . . , s∗n constitute a
mixed strategy Nash equilibrium if and only if ui(s∗i , s∗−i) ≥ ui(si, s∗−i) ∀i ∈ N.

We use s−i as the strategy profile of every player except i, in plain words the
utility of the mixed strategy Nash equilibrium provides a higher or equal utility
than any other strategy for all players.

Now that we have some theoretical background let us illustrate this concepts
with a couple of examples:
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Example 1.3. Prisoner’s Dilemma
Consider two crime suspects put in different rooms for interrogation. There is

no sufficient evidence so the sentence duration will depend on the confession of
the crime.

The condestable offers each of them a deal where three scenarios can happen:

• If one of them makes a confession implicating their partner he will be used
as a witness against the other suspect and receive immunity. On the other
hand the prisoner who didn’t confess would be sentenced to four years.

• If both confess they would both be sentenced to three years each.

• If non of them confesses they each would receive a sentence of one year.

We have two players in this game, and we represent each players available
actions and utilities in different axis.

We say a player is rational if she aims to maximize her utility.

Don’t Confess Confess

Don’t Confess -1, -1 -4, 0

Confess 0, -4 -3, -3

In this game the best social outcome is to cooperate (don’t confess) since there
are obvious advantages in the time served.

Still, each prisoner has incentives to behave opportunistically. From a selfish
point of view, serving zero years is better than serving one, even if that causes the
other prisoner to serve four, thus the dominant strategy for each prisoner is to
confess, irrelevant of whatever the other prisoner does, leading to the worst social
possible outcome. This serves as a perfect example of social-efficiency loss.

Both players act rationally, taking the action that aims to minimise the (in this
case) disutility, the action "Confess" provides the prisoner with either 0 or 3 years
to serve, and the action "Don’t Confess" will lead to 1 or 4 years imprisonment.

This leads to the Nash equilibrium where both suspects serve 3 years.

Example 1.4. Matching Pennies
Two friends want to make a bet, they will flip a coin and reveal it at the same

time. If both coins are equal (heads or tails) player 1 will pay one dollar to player
2. The opposite will happen if the coins do not match.

Head Tail

Head -1, 1 1, -1

Tail 1, -1 -1, 1
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There is no pure strategy Nash equilibrium in this case, choosing matching pen-
nies has the same expected payment as choosing different pennies for both play-
ers, yet if we consider mixed strategies, choosing matching pennies and different
pennies with equal probability leads us to a mixed strategy Nash equilibrium.

This is a game where players have diametrically opposed preferences, we will
also call this type of games strictly competitive games, and in particular this is
an example of zero-sum game, since whatever one player is winning, the other is
loosing.

Proposition 1.5. [Nas51] If we allow for mixed strategies, every strategic game (N, (Ai), ui)

where the number of players and their action profiles are finite has a Nash equilibrium.

The previous proposition can be easily proved with Kakatuni’s fixed point the-
orem or with Brower’s fixed point theorem, we will prescind of the proof ourselves
but the avid reader can find it in several publications, among them the following:
[OR94] (pag. 20) and [Gli52; Nas51].

1.4 Introduction to Auction Theory

Auctions have a long history dating back to ancient times, with Herodotus
documenting their use in Babylon as far back as 500 BC (see [Kri09] pags. 1-
8). However, we don’t need to delve so deeply into history to find numerous
contemporary examples of auctions. Nowadays, a variety of goods and services is
regularly traded through auction forms, spanning wholesale fish, treasury bonds,
art, and much more, examples go as far as the readers imagination.

We can say that an auction is the procurement of a good or service though
competitive bidding.

1.4.1 Some Common Auction Forms

The open ascending price, or English Auction, is one of the oldest and perhaps
the most prevalent auction form.

In an English auction, an auctioneer begins by calling a base price, an then
proceeds to increment it as long as there are two or more interested bidders, the
auction ends when only one bidder remains, and the last called price is the price at
which the object is sold, this is, the price at which the second-last bidder dropped
out (this can also be seen as the reservation price of the second-last bidder).

A Dutch Auction is an open descending price counterpart for its English cousin,
in this modality the auctioneer begins by calling a high price, with presumably no
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buyers interested, and the proceeds to lower it until a bidder indicates interest, the
object is then sold at that price.

The Sealed-Bid First-Price Auction, in which bidders indicate their bids in a
sealed envelope and the highest bid wins and that is the price of the sell, the
Sealed-Bid Second-Price Auction also exists, where the winner is the highest bidder
as well, but the selling price is that of the second highest bid (see [Kri09] pags.
1-8).

1.4.2 Valuation

Auctions have such a prevalence in the modern world because the seller is un-
sure about the values that the bidders attribute to the object, as such they are an
excellent tool for price discovery.
Bidders typically know the value of the object to themselves at the time of the bid-
ding, although not necessarily the ones of the other bidders, we call that situation
one with private values.

Private values can typically be assumed if the objects valuation of each bidder
is independent from one another (see [Kri09] pags. 1-8), this is not always the case
since some objects value can be correlated to others valuations of them, for in-
stance, a tradeable stocks value won’t necessarily be the price at which the holder
attributes to it, rather than the value at which it can be sold at the marketplace. On
top of it we can introduce expectations on the price development, which further
complicate the valuation of some objects in which the value is drawn not only
from a joint distribution, but where each agent has a different expectation for it’s
future value. We will debate this in due time, but let’s keep it simple for the time
being.

1.4.3 Private Auctions

Let us consider a single object for sale, where n bidders are interested and
concur to the auction.

Each bidder i assigns the value vi to the good , we will also call this valuation
the agent’s type. At the price vi, bidder i would be indifferent between keeping the
money or buying the object. Let us further impose that this value is only known by
the bidder and that valuations are prior free, this is, no bidder has any information
on the valuations of other bidders, nor can they bound it in an interval.

Let us also assume that bidders are risk-neutral and seek to maximize utility.
Finally, let us impose that bidders are not subject to budget constraints, and

that they can pay the required price should they win the auction.
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In order to transform the value an agent perceives from an object to a bid, we
use a bidding strategy βi : V → R+ (see [Kri09] pags. 11-13), which is the function
according to which bidder i will determine their bid.

1.4.4 Second Price Private Auctions

If we circumscribe to private valuations, second-price private auctions are
equivalent to open ascending price auctions (or English auctions as we referred
them before) (see [Kri09] pags. 11-13). In a second price auction each bidder
submits a bid bi, the payoff for bidder i is then:

ψi(bi) =

{
vi − maxj ̸=i bj if bi > maxj ̸=i bj

0 if bi ≤ maxj ̸=i bj

Proposition 1.6. In a second-price sealed bid auction, bidding according to βi(vi) = vi

is a weakly dominant strategy

Proof. If we consider bidder i then let pi = maxj ̸=i bj be the highest bid. By bidding
bi = vi the bidder will win the auction if vi > pi and loose if vi < pi. At the price
vi = pi the bidder is indifferent between winning and loosing. Remember that pi

equals the second highest bid in this auction modality.
Now suppose that the bidder bids zi instead of vi and zi < vi, then if vi > zi >

pi he still wins but his profit remains the same: vi − pi.
On the other hand if vi > pi > zi he would leave the same profit of vi − pi

unmaterialised.
The homologous argument can be done to disqualify bidding bi > vi.

Having considered proposition 1.6 we wonder. How much is each bidder
expected to pay in equilibrium? Fix bidder i let the variable Yi ≡ Yn−1

i denote the
highest bid among the n − 1 remaining bidders. Then provided that we rearrange
V = v1, v2, ..., vi−1, vi+1, ..., vn we can say that Yi is the highest order statistic of V.
Now if we denote G as the distribution function of Yi, then ∀y G(y) = F(y)n−1

so the expected payment for a bidder with valuation v in a second price auction
(see [Kri09] pags. 11-13) can be written as:

m(x) = P[Win]× E[2nd highest bid | v is the highes bid]

= G(x)× E[Yi|Yi < v]
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1.4.5 Revenue and Efficiency

When comparing two auctions we will pay special attention to the concepts of
revenue, or the expected selling price, and efficiency, this is, that the object ends up
in the hands of the person that values it the most.

Efficiency is typically measured ex post and pays attention not to an individual but
to the society as a whole, we can rephrase the latter asseveration as the following.
An auction is efficient (see [Kri09] pags. 1-8) if it maximises the aggregated utility
of its participants.

But, can’t we trust the market to allocate objects efficiently?

The naive neoclassical answer would be yes, efficiency is relatively easy to
achieve in oversimplistic models, but reality tends to be more complex.

Market failures often arise if we relax hypothesis, and not in vain, efficiency is
one of the most studied properties in auction theory, just because when auctions
become sufficiently complex, efficiency cannot be assumed.

This brings us to the next section, where we wonder on the best way to struc-
ture an auction so it has the best properties, among them we will aim to make our
auctions efficient.

1.5 Introduction to Mechanism Design

So far we have introduced the concepts of games and auctions, yet we have not
mentioned the governing institutions where they are circumscribed.

Both concepts deeply rely in the interaction with other individuals, and will
follow certain governing procedures, either legally binding rulings or socially ac-
cepted courses of action. We need a protocol that rules over this institutions, and
that partakers accept and abide by when taking part on them.

This rules need not be complex, for instance, when voting for the major of a
town we can establish that the person with the most votes will get elected, when
taking part on an auction we can accept that the highest bidder will get the object,
etc.
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1.5.1 Mechanisms

Since we don’t intend to delve in social choice theory, we will define allocation
rule and payment rule for the specific propose of studying bids, although the reader
should consider that a more general definition is possible.

Allocation Rule (see [Rou13] chapter 3)

An allocation rule is a function

x : Rn → Rn

b 7→ x(b)

that provides an allocation of the good(s) as a function of the bids b.

The allocation rule will serve us to identify the agent(s) to whom the good(s)
is assigned. But for our considerations we will not simply be interested in any
allocation rule, our attention will be centered in demanding that the allocation
rule is efficient.

Efficient Allocation Rule (see [Kri09] pag. 75)

An allocation rule is said to be efficient if it maximizes social welfare, that
is, for all b ∈ B,

x∗(b) ∈ arg max
x∈X

∑
j∈N

xjbj

For instance if we have two ping pong paddles to gift, and Bob and Alice love
ping-pong and Iosif hates it, then providing a paddle to Bob and Alice would
carry more social welfare than gifting one to Iosif. We also need to introduce a
concept to see what are the payments imposed after our auctions:

Payment Rule (see [Rou13] chapter 3)

A payment rule is a function

p : Rn → Rn

b 7→ p(b)

that provides a price for the good(s) as a function of the bids.
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For instance, in a second-price sealed bid auction the winner is the highest
bidder and pays the second highest bid as a price, if we consider the bidder i as
the winner and bj as the second highest bid:

x(b) = (0, . . . , 0, 1
i-entry

, 0, . . . , 0)

p(b) = (0, . . . , 0, bj
i-entry

, 0, . . . , 0)

But allocation and payment rules are of little use for us by themselves, we still
have to establish a connection between them, as such we can say that a mechanism
is the set of rules that serve of guidance to assign a good under certain conditions.
A good mechanism should provide incentives for rational agents to achieve the
best aggregated outcome. This is often a decision in hands of the policy maker,
without getting into detail the policy maker has an utility function too, which will
typically depend on the aggregated utilities of the agents governed.

Without further ado let’s define mechanism formally:

Mechanism

A Mechanism is a pair M = (x, p) where x and p are the aforementioned
allocation and payment rules.

After this general definition we will typically refer to:

General Mechanism

We will say that a mechanism is a General Mechanism if:

• n strategic participants, or "agents;"

• a finite set Ω of outcomes;

• each agent i has a private valuation vi = ui(o) for each outcome o ∈ Ω.

After this couple of definitions it is a good time to revisit our definition of
utility. The reader might have already deduced that given the bids b = (b1, ..., bn)

and a mechanism we could easily compute the utility of our n bidders.
Indeed, we can establish that bidder i with valuation vi will use strategy

β(vi) = bi to obtain a bid, if we do this for all the bidders we would get b. Hav-
ing obtained all the bids we can use M(x(b), p(b)) to obtain a map of bids and
payments of the n bidders, where we can calculate u′

i(bi, pi) = ui(M(x(b), p(b)) =
vix(bi)− p(bi) ∈ R
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Moving forward we will use u’ as our utility function by default, assuming it is
quasi-linear, or in other words, that agents want to maximise u′

i(b, p) = xi(b)vi −
pi(b).

Let us follow by introducing some desirable properties of a mechanism.

1.5.2 Various Properties for our Mechanisms

One of such properties we should aim at having when designing a mechanism
is ex post efficiency. We have briefly introduced the concept in the previous section,
but let us formally define it now:

Ex Post Efficiency

In the context of an auction, an allocation rule is said to be ex-post efficient
if it assigns the good to the player that values it the most.

In an auction we typically have a non divisible good to assign, giving it to the
bidder that has a highest valuation of it maximizes the aggregated utility.
Note that our definition refers to the allocation rule, despite of it we will (very)
often abuse the concept and refer to ex post efficient mechanisms.

Individual Rationality (IR) (see [Kri09] pag. 66)

A mechanism is individually rational if ∀i and bi the equilibrium expected
payoff ui(bi) ≥ 0.

This definition follows the assumption that by not participating, an agent can
"lock in" to a payoff of zero, thus an agent only has incentives for participation if
the expected payoff is equal or better than in a non participation situation.

Truthfullness [Dob+18]

A mechanism is truthful if no player can strictly increase her utility by
misreporting or lying about her valuation.

Pretty self explanatory, agents have incentives to report their true valuation if
this property exists.
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Incentive Compatibility (IC) (see [MC95] pag. 868)

An allocation rule x(·) is incentive compatible if the mechanism is in-
dividually rational and M = (x, p) has an equilibrium (s∗1 , ..., s∗n) where
s∗i (vi) = vi ∀vi ∈ Vi.

The reader can note the subtle difference between truthfulness and incentive
compatibility (if only because we require individual rationality for the latter), de-
spite of this fact it is common to refer them indistinctly in the literature2.

We say a mechanism is dominant-strategy incentive-compatible (DSIC) if truth
telling is also the dominant strategy for agent i, regardless of the actions of the
rest of agents.

This is, truth telling by every agent constitutes an equilibrium for

M = (x, p)

Implementable Allocation Rule (see [Rou13] chapter 3)

We say that a single parameter allocation rule is implementable if there is
a payment rule p such that the mechanism M = (x, p) is dominant-strategy
incentive-compatible.

1.5.3 Theory in Action: Applying What we Learned

It is a good time to connect the concepts we have introduced this far, in fact
we have already seen an example of a ex post efficient, truthful and incentive com-
patible mechanism: The second price sealed bid auction, where we proved that
bidders have incentives to bid the exact amount at which they value the good, and
which also ensures that the good goes to the bidder which values it the most.

Let’s go ahead and prove it. As we can recall from 1.6, we have already seen
truthfulness, lets see ex post efficiency and incentive compatibility.

Proposition 1.7. A second-price sealed bid auction, is incentive compatible

Proof. The intuition behind this is pretty straight forward, in plain words an equi-
librium strategy for every bidder should be telling the truth.

2We will keep up appearances in this chapter but relax our diction in the following sections
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It is no coincidence that we made a generalisation for every player when we
proved 1.6, we can again take advantage of the proof to see that every bidder’s op-
timal strategy is to bid according to its type, we will then arrive at an equilibrium
where s∗i (vi) = vi.

Individual rationality is also easy to see: Only the highest bidder has to make
a payment, and as we can see p1 = v2 and the utility is then u1 = v1 − v2 ≥ 0
directly from the fact that ui = xi(b)vi − pi(b), for the rest xj = 0 and pj = 0 so
uj = 0, therefore ui(bi) ≥ 0.

This serves us as a perfect example to illustrate how a mechanism can provide
incentives to rational utility maximising agents to behave in a socially optimal
manner, avoiding equilibria as the one we can recall from the prisoners dilemma.

Having this result let us move forward to prove ex-post efficiency.

Proposition 1.8. A second-price sealed bid auction, with utility function:

ui = xi(b)vi − pi(b)

allocation rule :

xi(b) =

{
1 if bi > bj ∀j ̸= i
0 otherwise

and payment rule:

pi =

{
maxj ̸=i bj if bi > maxj ̸=i bj

0 if bi ≤ maxj ̸=i bj

is efficient ex post.
In the unlikely event of a tie we will choose the winner randomly between the winner
subset.

Proof. The auction proposed in the proposition assigns the good to the highest
bidder and compels the second highest bid as payment, without loss of generality
consider that v1 > v2 ≥ . . . ≥ vn. Using the property of truthfullness we know
that vi = bi, then it is easy to see that x = (1, 0, . . . , 0) and p = (v2, 0, . . . , 0), utility
then is null for every bidder other than the first, who has u1 = v1 − v2 > 0.

Due to the property of truthfulness we just mentioned we can asseverate that
v1 > vj ∀j ∈ N \ {1} and the ex post efficiency is trivial.

In the event of a winning bid tie we have established that each winner has
an equal probability of getting the good, the proof follows the same. Consider
v1 = v2 > v3 ≥ . . . ≥ vn (for a tie with more than two bidders the proof is
homologous).
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Now x = (1, 0, . . . , 0) and p = (v3, 0, . . . , 0) with probability
1
2

, and x =

(0, 1, 0, . . . , 0) and p = (0, v3, 0, . . . , 0) with equal probability. Efficiency wise we
are indifferent on which one of the two gets the good, since both v1 = v2 and
u1 = u2 if they are assigned the good, to discard any other assignation we can
refer to the sole winner proof in the above paragraph.

1.5.4 Meyerson’s Lemma

Let us end this section by stating a couple of theorems that will come in handy
later:

Theorem 1.9. Myerson’s Lemma (see [Rou13] chapter 3)

(a) An allocation rule x is implementable if and only if it is monotone 3.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mecha-
nism (x, p) is DSIC (assuming the normalization that bi = 0 implies pi(b) = 0).

(c) The payment rule in (b) is given by an explicit formula.

Proof. Let us have the DSIC mechanism M(x, p), let us then establish that bidder
i’s bid is bi and let b−i be the set of bids of every other player. The notion of
bidding anything other than bi ̸= vi can be disqualified in a similar manner as
what we did in 1.6:
Let us have the bids 0 ≤ y < z, and let us assume that z = vi by the DSIC property
the utility of bidding y would then be:

z · x(z, b−i)− p(z, b−i) ≥ z · x(y, b−i)− p(y, b−i)

Similarly, the bidder i might have the valuation y submit z as a false bid

y · x(y, b−i)− p(y, b−i) ≥ y · x(z, b−i)− p(z, b−i)

And we can rearrange the previous equations in:

z · [x(y, b−i)− x(z, b−i)] ≤ p(y, b−i)− p(z, b−i) ≤ y · [x(y, b−i)− x(z, b−i)]

We have established the monotony of x, now if we fix z and let y tend to z from
above, then, x is flat except for a finite number of "jumps." If we then take the limit
y → z in the previus equation, both sides of the equation become 0 if there is no

3a function f is monotonous if and only if x ≤ y implies that f (x) ≤ f (y)
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jump in x at z. If there is a jump of magnitude h at z, then the left- and right-hand
sides both tend to z · h, which implies the following constraint on p, for every z:

jump in p at z = z · jump in x at z

Thus, assuming the normalization p(0) = 0, we’ve derived the following payment
formula, for every bidder i, bids b−i by other bidders, and bid bi by i:

pi(bi, b−i) =
ℓ

∑
j=1

zj · jump in xi(·, b−i) at zj (1.2)

where z1, . . . , zℓ are the breakpoints of the allocation function xi(·, b−i) in the range
[0, bi]. In the event of x being monotone but not piecewise constant we can pro-
vide another approach, for instance, suppose that x is differentiable. Dividing the
payment difference sandwich by y − z and taking the limit as y → z yields the
constraint

p′(z) = z · x′(z)

and, assuming p(0) = 0, the payment formula

pi(bi, b−i) =
∫ bi

0
z · d

dz
xi(z, bi) dz (1.3)

for every bidder i, bid bi, and bids b−i by the others. When x is monotone and
piecewise constant and p is defined by (1.2), then (x, p) is a DSIC mechanism. The
same argument works more generally for monotone allocation rules that are not
piecewise constant such as (1.3).

Now that we have covered the mechanism design concepts we needed let us
move forward to the next section, where we will briefly cover the concept of public
goods and their peculiarities.

1.6 Introduction to Public Goods

In this section we intend to introduce a special type of good which can be
consumed by several agents at the same time, this feature of non-rival consumption
will also induce some differences on the way that these goods are traded respect
to the goods we have studied this far. Another feature that typically characterises
public goods is non-excludability, this is, the inability to limit its consumption. This
features often lead to the free-rider problem.

In order to illustrate this think of a fireworks spectacle and two citizens, Alice
and Bob as the consumers. Fireworks are non-rival, since its consumption by Alice
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doesn’t erase them from the firmament, so Bob can enjoy the show too simultane-
ously, without diminishing the capacity of any other viewer to enjoy them.

They are also non-excludable, since once the firework is shining in the sky
there is no way to preclude anybody from raising the head and observing them.

But then if Bob can enjoy a good and there is no credible way to exclude him
from its consumption, what is the incentive for Bob to pay for a good he’ll already
be able to enjoy?

Imagine that both Bob and Alice have the wish to enjoy a firework spectacle
which costs $100 to organise. And both Bob and Alice would pay $100 to do so.
Now if Bob knows that Alice will pay anyways he can disclose a false willingness
to pay in the interval [0, 100], and he could enjoy the show for free or pay only a
fraction of it.

This summarises the free-rider problem, a typical challenge for the financing
of public goods that our mechanisms have to take into consideration in order to
avoid or, at least, mitigate such problems.

A rival good is a good whose consumption by one individual precludes the
consumption by others.

Most of the goods are rival in its consumption, since its consumption typically
depletes the good. For instance, if Alice purchases an ice cream and consumes it,
nobody else can eat that ice cream.

A good is excludable if its consumption can be restricted to an individual or
collective.

For instance, a plane ticket can only be used by the passenger that figures in
the reservation.

Moving forward we will abuse the notation and consider public excludable
goods unless stated otherwise, this not only is more aligned with the problem we
want to tackle but also simplifies the elimination of the free-rider problem.

A public excludable good is a non-rival, excludable good.

As foreshadowed, the excludability feature allows for the selective provision
of the good to certain individuals. Although free-riding is not eliminated by this
feature alone it certainly simplifies things, since now we can have a traceability of
who contributed to the financing of the good and who didn’t, and exclude them
from the consumption of the good (if that action of exclusion has credibility).

Imagine then we want to finance a public phone company, providing a phone
to an individual costs $50 and the operating costs of the network is 1M regardless
of the number of users.
In this example we have the excudability feature, nobody can use the network
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without a phone and the permission of the network owner. We could provide
the service only to those who paid for it. For instance, imagine that Alice an
Bob pay each 500k to finance the fixed costs of the network and each of them
has a phone. Now opening this service to other uses can only increase Alice
and Bob’s utility, since being able to call their friends and family doesn’t increase
their cost. If Rick buys a phone Bob and Alice have incentives to let him use
the network they already paid for, and Rick has the incentive to use the network
without contributing to its financing, what is more, if Alice and Bob’s combined
utility of having Rick use the network exceeds $50 they would even provide the
phone for him!

In this example we have inadvertently introduced secuentiality: Alice and Bob
made the fist move in financing the company, only to discover that nobody else
wants to pay after them. We have also introduced network economics, for the
time-being let us only note that there are several goods that provide more utility
the more people use them. A social network could be a perfect example of it, there
is no gain on using a social network where you are the only user, who would see
the pictures of your breakfast then?

1.6.1 Financing Concepts

In order to develop this freshly introduced concepts and dig deeper in the
financing of this type of goods let us make some definitions:

Cost Function [Dob+18]

A cost function C : 2N → R+ is a function that specifies the cost of every
possible allocation of goods and services.

We consider monotone cost functions throughout this dissertation unless stated
otherwise.

We will also consider C(∅) = 0
In the previous example we assumed our cost function to be linear C(Network) =

1M+ $50 × i
So, if cost depends on the number of users and we face the financing of a

public excludable good two questions rapidly arise. Who has to pay for the good?
And how much?

We can now take advantage of what we learned on the auction theory and
mechanism design sections and propose an auction-like mechanism to discover
the value the bidders place in the public good, and then deliver the good to those
willing to pay their share of it.
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Let us provide another example where we can see this exclusion feature:

Consider that a group of friends is debating the purchase of a Ping-Pong table,
the table costs $1000 and every friend has its subjective valuation of the good vi, in
this heterogeneous group of friends there are some who like ping-pong and some
who really don’t care about it, which reflects in their valuation.

Now, let us take truthful bids from every friend in the group β(vi) = bi for the
i ∈ N fiends in the group.

As in [Maz23], let us take the subset S⋆ ∈ argmaxS⊆N{∑n
i=1 bi : bi ≥

Cr

|S| }

In equilibrium a friend will be included in S⋆ if bi ≥
Cr

|S⋆|
This is, if that friend’s willingness to pay for the ping-pong table is greater or

equal to its share of the table. For instance, if we have only 5 friends want to play
pong-pong, and b1 = 500, b2 = 450, b3 = 400, b4 = 300 and b5 = 100

Then player 5 (Iosif) doesn’t like pong-pong enough to pay the share that

would correspond to him if all 5 were to buy the table together, since
1000

5
= 200 ≥

b5, on the other hand
1000

4
= 250 = p ≤ bi for i ∈ [1, . . . , 4], so Alice earns an util-

ity of v1 − p = 500 − 250 = 250, Bob earns an utility of v2 − p = 450 − 250 = 200
and so on.

Since Iosif doesn’t like ping-pong that much and forcing him to play would
carry a disutility, we can exclude him from the purchase and the consumption of
the good. This previous example presents us with a great opportunity to define a
couple of more concepts:

A mechanism is said to balance the budget (see [Kri09] pag. 78) if for every
realization of values, the net payments from agents sum to zero

∑
i∈N

pi(bi, b−i) = 0

Where bi is the bid of player i and b−i is the bids of the players other than i.

This general definition could suit us finely, yet we have introduced the notion
of cost (more precisely cost function), this cost needs not necessarily imply that an
agent is bearing it/collecting such amount.
Instead we will fine tune our budget balance definition to the following:
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Budget Balance

A mechanism is said to balance the budget if for every realization of values,
the net payments from agents sum equals to the cost of the mechanism

∑
i∈N

pi(bi, b−i) = C(S)

Where S ⊆ N is the subset of agents being serviced with the good, we will
later explore its financing, let it suffice from now that we want that the sum of
payments of the agents enjoying the good equals its cost.

A lesser restrictive property, deeply related to the previous is no-deficit, we
say that a mechanism has such property if:

∑
i∈N

pi(bi, b−i) ≥ C(S)

Whereas budget balance is preferable, there are scenarios where we won’t be able
to attain it, having to satisfy ourselves with the no deficit property instead.



Chapter 2

Economic Efficiency

In the latter chapter we centered our efforts in providing the necessary tools
for our analysis, we will now capitalise in our previous effort and put the theory
to work, we will introduce a baseline cost-sharing scenario for a public excludable
good, rich in axioms and hypothesis, and we will follow by relaxing some of those
hypothesis, arriving at a more complex but also rich model.

In this chapter we aim to study efficient mechanisms for the financing of public
excludable goods, we will use the concepts previously introduced and we will also
specify some others to our particular topic. The reader might wonder, why such
insistence in excludability?

We have previously mentioned the free-rider problem, let us provide now a
more concise explanation on why we circumscribe our study in public excludable
goods.

First of all we have implicitly assumed the absence of any institution with
power to impose its sovereignty. Indeed, free-riding would not be a problem if an
entity such a State could impose a tax, and then used that revenue to finance a
public non excludable good.

If payment can’t be compelled agents have an incentive to misreport their val-
uations and still enjoy the good.

For the avid reader a more detailed dissertation on private provision of public
goods can be found in [MC95], section 11.C. Let us suffice with the notion that
the following analysis cannot be extended to any public good, only to those which
can be excluded at its consumption.

24



2.1 Some Well Known Mechanisms 25

2.1 Some Well Known Mechanisms

In this section we heavily rely in the work of Roughgarden et al. ([Dob+18]),
we will start with a collection of a couple of basic cost sharing mechanisms. We
will put our focus in the advantages and disadvantages of each and expose the
intricacies of the trade-off between the advantages and disadvantages of both.

2.1.1 The Vickrey Clarke Groves Mechanism

Let us then start with our definition of VCG mechanism for public excludable
goods, we can provide the following algorithm:

VCG Mechanism (Public Excludable Good) [Dob+18]

1. Accept a bid bi from each player i.

2. Choose the outcome S := N if ∑i∈N bi > 1, and S := ∅ otherwise.

3. Charge each winner i ∈ S the minimum bid for which she would still
win (holding others’ bids fixed), namely max{0, 1 − ∑j∈N\{i} bj}.

Where S ⊆ N is the subset of "winners" of the auction. We also intend to max-
imize the total utility, and since the VCG mechanism is efficient by construction,
∑i∈N vi − C(S) is maximal.

As explained in [Dob+18], the VCG mechanism is truthful and is also efficient,
but among all the good properties of a VCG mechanisms there is one that we
(dearly) miss.

Indeed, budget balancing is a desirable property that the VCG mechanism

does not have by default, for instance if players have a valuation vi ≥ 1
|N| − 1

,

then the VCG mechanism obtains a revenue of zero, yet the cost is still unitary,
this means that, at least someone "in the game" ends up with a negative utility
(typically the provider of the good, that can not recover its cost).

Example 2.1. Imagine that we want to finance a public transport route, let us
unitarise the cost and consider a population of 5 subjects with values v1 = 0.5, v2 =

0.4, v3 = 0.35, v4 = 0.2 and v5 = 0.1.
Since the VCG is truthful bi = vi for all our players, so since ∑i∈N bi = 1.55 > 1

we are going to provide the good, and according to the VCG mechanism we just
discussed the payments are:
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p5 = max{0, 1 − (0.5 + 0.4 + 0.35 + 0.2)} = 0

p4 = max{0, 1 − (0.5 + 0.4 + 0.35 + 0.1)} = 0

p3 = max{0, 1 − (0.5 + 0.4 + 0.2 + 0.1)} = 0

p2 = max{0, 1 − (0.5 + 0.35 + 0.2 + 0.1)} = 0

p1 = max{0, 1 − (0.4 + 0.35 + 0.2 + 0.1)} = 0

So in this example nobody contributes to the financing of our public transport
route yet the cost is still C(S) = 1.

But if VCG mechanism doesn’t balance the budget, what other mechanisms
can do this? Which trade-offs will we face? And why do we insist so much in
balancing the budget?

Without budget balance there are little agents that would be inclined to pro-
vide a public good, it certainly complicates the private provision of it, let us then
explore some alternatives.

2.1.2 The Shapley Value Mechanism

Since the VCG mechanism is not budget balanced and that is indeed a property
we would like our mechanisms to have let us consider alternatives that do balance
the budget, one of such is the following:

Shapley Value Mechanism (Public Excludable Good) [Dob+18]

1. Accept a bid bi from each player i.

2. Initialize S := N.

3. If bi ≥ 1/|S| for every i ∈ S, then halt with winners S, and charge
each player i ∈ S the price pi = 1/|S|.

4. Let i∗ ∈ S be a player with bi∗ < 1/|S|.

5. Set S := S \ {i∗} and return to Step 3.

Where we have unitarised the cost since we can normalise the valuations too
without loss of generality.

As the VCG mechanism, the shapley value mechanism is also truthful and it is
budget balanced, yet it is not efficient.
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Whereas VCG mechanism sacrifices budget balancing in pursuit of efficiency,
the Shapley value mechanism dose the inverse trade-off.

Example 2.2. Imagine the same scenario as in example 2.1
Since the Shapley value mechanism is also truthful bi = vi for all our players.
Then if we follow the algorithm, in the first iteration:
S = N, and 1

|S| = 0.2, thus pi = 0.2 and bidders 1,2,3 and 4 make the cut after
the first iteration since bi ≥ 0.2 for all players in i ∈ {1, 2, 3, 4}

Now let us set S = {1, 2, 3, 4} and proceed analogously, since now 1
|S| = 0.25

now player 4 is left behind and S = {1, 2, 3}
The next iteration leaves pi = 0.33 so now we can halt our algorithm, for

b1, b2, b3 ≥ 0.33 and thus S∗ = {1, 2, 3}.
Our mechanism is indeed budget balanced, since we are collecting ∑ pi∈S∗ =

3 × 0.33 = 1 (well, with our poetic license).
On the other hand, our mechanism is not efficient, but we have to wait a little

longer until we discuss social welfare to see why.

2.1.3 Truthful Mechanisms Discussion

In order to ease the discussion regarding the winners of an action S we will
use the following generalised proposition when referring to truthful mechanisms:

Proposition 2.3. [Dob+18] Let M be a deterministic, truthful, and individually rational
cost-sharing mechanism with player set N. Then, for every player i ∈ N and bid vector
b−i for players other than i, there is a threshold ti(b−i) ∈ R+ ∪ {+∞} such that:

(i) If player i bids more than ti(b−i), then she is included in the output set S, at the
price ti(b−i).

(ii) If player i bids less than ti(b−i), then she is excluded from S.

This previous proposition, which is actually a corollary of Meyersons lemma
(1.9), will prove quite handy in several proofs later on, providing us with a pow-
erful tool in the next section.

In the case of the VCG mechanism the threshold ti(b−i) would be the difference
between the maximum reported welfare that can be achieved between the rest of
the agents when agent i is not included in S and the welfare when i is indeed
included in S.

On the other hand, when focusing on the Shapley value mechanism [Dob+18]
the threshold is then:

ti(b−i) =
1

fi(b−i)
+ 1 (2.1)
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Where fi(b−i) is the size of the largest subset S of N \ {i} such that bj ≥
1

|S|+ 1
∀ j ∈ S. The following proposition will also help later on when studying effi-
ciency in the next section.

Proposition 2.4. [Dob+18] For every truthful cost-sharing mechanism M, there is a
universally truthful cost-sharing mechanism M′ such that, for every bid vector b, the
expected revenues of M and M′ are equal.

We now have the means to select a subset of agents that have access to the
good or service, and exclude those who don’t value the good or service enough to
pay for their share, thus avoiding the free-rider situation.

The mechanisms that we have studied this far are truthful and either budget
balanced or efficient, yet we would like to attain all three properties at once.

A natural question emerges from this situation: Can we tailor a mechanism
that, aside from being truthful, is both efficient and budget balanced?

The answer requires yet a bit more patience, generally speaking no truthful
mechanism can be both efficient and budget balanced [Dob+18; GL79].

Still, everything is not lost (imagine reading though all this stuff only to end
with: "Okay, this cite says impossible, that’s all folks"), we will be able to tune the
trade off between this two concepts to achieve a mechanism that suits the agents
taking part in the game, some games will allow us to construct such mechanism,
whereas we will find impossibility theorems in other scenarios.

2.2 Cost and Efficiency Comparison

So far we have stated what a public excludable good is, we have also intro-
duced the notion of cost along with several other concepts related to the posterior
analysis of a mechanism and we have wrapped up in an introductory example,
yet the question we have hinted remains unasked: How can we finance a public
excludable good?
And also, given several alternatives. How can we compare them and select the
one with the best properties?

We will need a criteria to classify mechanisms and make such decisions, luck-
ily, there are several ways to study the economic efficiency of a mechanism.

In this section we will measure the inefficiency of a cost sharing mechanism
using the social cost, we will require a couple additional concepts to measure
efficiency and we will also require some standard additional properties for our
mechanism, that will facilitate our task (or make it possible in some cases).
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2.2.1 Social Cost and Social Welfare

As exposed, we are in need of tools to compare mechanisms objectively, the
most prevalent ones refer to the ex post efficiency of the society as a whole, we will
first introduce social cost and social welfare as part of such tools.

Let us start by the notion of social cost, which we define as

π(S) = C(S) + ∑
i/∈S

vi (2.2)

This is, the actual cost of the good and the valuations "unsatisfied" of the agents
who do not value the good enough to pay their share.

Now that we have delved on the concept of social cost, it is a good moment to
introduce social welfare as well.

We can define social welfare as the value provided by the mechanism minus
its cost:

SW(S) = ∑
i∈S

vi − C(S)

We can now show that our Shapley value mechanism in example 2.2 is not
efficient, since ∑ vi∈S∗ − C(S∗) = 0.5 + 0.4 + 0.35 − 1 = 0.25, which is not the
highest social welfare attainable.

Indeed, we could open the consumption of the good to players 3 and 4, for it
doesn’t increase the cost but the social welfare increases up to ∑ vi∈S − C(S∗) =

0.5 + 0.4 + 0.35 + 0.2 + 0.1 − 1 = 0.55.
The social welfare criteria is the standard when analysing the economic ef-

ficiency of a mechanism, yet Feigenbaum et al. [Fei+03] show that we cannot
achieve a finite social cost approximation for a dominant strategy and budget bal-
anced mechanism. The result holds even if we only require no deficit instead of
budget balance, so we are forced to consider alternative criteria.

2.2.2 Alternative Criteria

Since we cannot solely rely on social cost and social welfare solely we are
once again forced to explore alternative criteria for our efficiency analysis. It is to
overcome this recently exposed limitations on the social cost and welfare criteria
that Roughgarden and Sundararajan [RS09] propose the α-approximation criteria,
which compares the mechanism with the optimally efficient one.

With that in mind, let us introduce a couple of new concepts:
Given a truthful mechanism, we say that a mechanism is α-approximate if the

expected social cost is at most α ≥ 1 the expected social cost of the optimal out-
come.
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This is:
π(S) ≤ απ(S⋆)

For instance, since the VCG mechanism is efficient (produces an outcome with
minimal social cost), it is 1-approximate.

The other mechanism we have studied so far, the Shapley value mechanism, is
Hn-approximate, as proved by Roughgarden and Sundararajan [RS07]

Where Hn is the nth harmonic number, this is:

Hn =
n

∑
i=1

1
i

We say that a mechanism is β-budget-balanced, if the

∑
i∈S

pi ∈
[

C(S)
β

, C(S)
]

where β ≥ 1.
For instance, the Shapley value cost-sharing mechanism is 1-budget-balanced,

since the price charged is pi = 1/|S|, trivially the sum of |S| times this amount
equals to C(S), since we have made the cost unitary, if such were not the case the
price would the be pi = C(S)/|S| and we would arrive at the same conclusion.

Before following on we will introduce a couple of more properties:

1. Equal Treatment: A mechanism satisfies equal treatment if and only if every
two players i and j that submit the same bid receive the same allocation and
price.

2. Upper Semi-Continuity: A mechanism satisfies upper semi-continuity if
and only if the following condition holds for every player i and bids b−i of
the other players: if player i wins with every bid larger than bi, then it also
wins with the bid bi.

3. Consumer Sovereignty: A mechanism satisfies consumer sovereignty if and
only if, for all players i and bids b−i of the other players, there exists a bid bi

such that player i wins when the bid profile is (bi, b−i).

We can now take advantage of this new definitions with the following charac-
terization:

Proposition 2.5. [Dob+18] A deterministic, truthful, and budget-balanced cost-sharing
mechanism for public excludable good problems satisfies equal treatment, consumer sovereignty,
and upper semi-continuity if and only if it is the Shapley value mechanism.
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The following proof (fully extracted from [Dob+18]) is of no particular interest
for us, but it will help us later:

Proof. Fix such a mechanism M. We first note that all thresholds ti(b−i) induced
by M must lie in [0, 1]: every threshold is finite by consumer sovereignty, and is at
most 1 by the budget-balance condition. We proceed to show that for all players i
and bids b−i by the other players, the threshold function ti has the same value as
that for the Shapley value mechanism (2.1). We prove this by downward induction
on the number of coordinates of b−i that are equal to 1.

For the base case, fix i and suppose that b−i is the all-ones vector. Suppose
that bi = 1. Since all thresholds are in [0, 1] and M is upper semi-continuous, all
players win. By equal treatment and budget-balance, all players pay 1/n. Thus,
ti(b−i) = 1/n when b−i is the all-ones vector, as for the Shapley value mechanism.

For the inductive step, fix a player i and a bid vector b−i that is not the all-ones
vector. Set bi = 1 and consider the bid vector b = (bi, b−i). Let S denote the
set of players j with bj = 1. Let R ≥ S denote the output of the Shapley value
mechanism for the bid vector b-the largest set of players such that bj ≥ 1/|R| for
all j ∈ R.

As in the base case, consumer sovereignty, budget-balance, and equal treat-
ment imply that M allocates to all of the players of S at a common price p. For
a player j outside S, b−j has one more bid of 1 than b−i (corresponding to player
i), and the inductive hypothesis implies that its threshold is that of the Shapley
value mechanism for the same bid vector b. For players of R \ S, this thresh-
old is 1/|R|. For a player outside R, this threshold is some value strictly greater
than its bid. Since bj ≥ 1/|R| for all j ∈ R and M is upper semi-continuous, it
chooses precisely the winner set R when the bid vector is b. This generates rev-
enue |S|p + (|R| − |S|)/|R|. Budget-balance dictates that the common threshold p
for all players of S, and in particular the value of ti(b−i), equals 1/|R|. This agrees
with player i’s threshold for the bids b−i in the Shapley value mechanism, and the
proof is complete.
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2.2.3 Upper and Lower Efficiency Bounds

Now we move forward to discussing the upper and lower bounds of determin-
istic mechanisms, which will serve us later in our efficiency comparison. We will
start with the symmetric lower bound case and then jump to discuss the random-
ization and its effects in efficiency.

Theorem 2.6. Lower Bound for Deterministic Symmetric Mechanisms [Dob+18]
No deterministic and budget-balanced cost-sharing mechanism for public excludable good
problems that satisfies equal treatment is better than Hn-approximate, where n is the
number of players.

Proof. Let us have a mechanism M as the one we describe. If M was to violate the
consumer sovereignty rule, then we could find a player i and bids b−i such that
ti(b−i) = +∞. If we were to let any valuation tend to infinity, then our mechanism
would fail to achieve a finite social cost approximation factor.

Suppose now that our mechanism grants the consumer sovereignty property.
The proof of proposition 2.5 shows that the outcome of the mechanism agrees
with that of the Shapley value mechanism except on the measure-zero set of bid
vectors for which there is at least one bid equal to 1/i for some i ∈ {1, . . . , n}. As
in Example 1.1, setting players’ valuations to vi =

1
i − δ for each i, for arbitrarily

small δ > 0, shows that M is no better than Hn-approximate.

So far we have centered our efforts in the study of symmetric and deterministic
mechanisms, but we are now in position to study upper and lower bounds for
the non symmetric case, in particular we will take keen interest in our β-budget-
balanced and α-approximated mechanisms.

But first, let us consider randomized mechanisms and their impact in our anal-
ysis before moving forward.

Randomization and its effects in the Upper and Lower Bounds

The theorem 2.6 is a crucial one in our discussion, we will now proceed to
generalise its effects, we will address a 2-player scenario in order not to complicate
the exposition, since the proceedings can be expanded to an arbitrary number of
players with ease.

Proposition 2.7. Lower Bound for Deterministic Mechanisms [Dob+18] A deter-
ministic budget-balanced cost-sharing mechanism for a 2-player public excludable good
problem is at least 1.5-approximate.
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Proof. Let us have a unitary bid for both players, so that our bid vector is b1 =

b2 = 1. If a mechanism’s outcome is a social cost approximation ratio better than
2, then it has to allocate the good or service to both players. Let us assume that we
have such a mechanism, then player 1 pays p while player 2 pays 1 − p. Without
loss of generality, let p ≤ 0.5. By proposition 2.3, the second player’s threshold
function satisfies t2(1) = 1 − p.

Now let b1 = 1 and b2 = 1 − p − ϵ for ϵ > 0 but sufficiently small. If both
players win and our social cost is optimal, then our social cost equals 1. Since
t2(1) = 1− p, then player 2cannot win in the presented mechanism, and the social
cost is 1 + (1 − p − ϵ) ≥ 1.5 − ϵ regardless of player 1 winning or loosing.

We can also use a similar proof to asseverate that the best possible universally
truthful and budget-balanced cost-sharing mechanism is 1.25-approximate, this is
again in a in a two player scenario for public excludable goods.

Randomized Mechanisms
A randomized mechanism is a probability distribution over a deterministic

mechanism. Randomization has several effects on efficiency, let us explore some
of them related to our binding efforts:

Proposition 2.8. [Dob+18] There is a universally truthful, budget-balanced, and 1.25-
approximate mechanism for the two-player public excludable good problem.

Proof. Let us select γ ∈ [0, 1] uniformly at random for the first iteration. When
players bids are at least γ and 1−γ, respectively for the 1st and 2nd player, then the
mechanism halts with S = {1, 2}, p1 = γ, and p2 = 1 − γ. In the scenario where
one of the player did not bid enough, such player is removed in the following
iteration and the remaining player is asked to pay the full cost 1.

The mechanism is universally truthful and budget-balanced, since so far we’re
merely proposing that one player is expelled form S and the other bears the full
cost. Regarding the expected social cost, leet us assume truthful bids so that
v1 ≥ v2 and let x = v1 + v2 − 1.

If x < 0, the optimal outcome is not providing the good, since players valu-
ations are inferior to the cost, this is S = ∅ with probability 1. This outcome is
also welfare-maximizing. If v2 ≥ 1, then S = {1, 2} (since we are assuming that
v1 ≥ v2).

Now that we have considered the trivial scenarios, let x, v1, v2 ∈ [0, 1], since
the optimal social cost is 1 the mechanism will then select γ such that v1 ≥ γ and
v2 ≥ 1 − γ with probability x. Both players win in this scenario, and the incurred
social cost remains to be 1.
As opposed to this scenario consider now that, neither player wins, then the social
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cost would be 1 + x, and the expected approximation ratio we attain with the use
of this algorithm and this valuation profile is x · 1+ (1− x) · (1+ x). Now, x = 0.5
maximizes this ratio, where the ratio is 1.25.

Last, if v1 ≥ 1 but v2 < 1, both players win with probability v2, and only player
1 wins with probability 1 − v2. The optimal social cost remains the same, 1, and
the expected social cost is v2 · 1 + (1 − v2)(1 + v2). Again, this is maximized when
v2 = 0.5, and the expected social cost is 1.25.

Now that we have the upper bound for a randomized mechanism let us analyse
the lower bound for it. Then we will proceed to the definition of a new mechanism.

Proposition 2.9. [Dob+18] There is a constant c > 0 such that: no truthful-in-expectation
and β-budget-balanced mechanism for public excludable good problems is better than
c · Hn

β -approximate, where n is the number of players.

Proof. Fix values for n and β ≥ 1. No mechanism can be better than a 1-approximate,
so we can assume that n is sufficiently large (otherwise let c = β/Hn).

We will try to define a distribution over valuation profiles where the sum of
the valuations is likely to be large but every mechanism is likely to produce an
empty allocation. So let a1, . . . , an be independent draws from the distribution
with density 1/z2 on [1, n] and remaining mass (1/n) at zero. Set vi = ai/(4nβ)

for each i and V = ∑n
i=1 vi. We can note that V is likely to be at least a constant

fraction of (ln n)/β. To see why, we have

E[V] = nE[vi] =
ln n
4β

and
Var[V] = nVar[vi] ≤ nE[v2

i ] =
1

16β2 ,

thus
σ[V] ≤ 1

4β
.

We can now use Chebyshev’s inequality,and have

Pr[|X − E[X]| ≥ γ · σ[X]] ≤ 1
γ2

for all γ > 0 , we now can state that V ≥ (ln n − 2)/(4β) with probability at least
3/4. For sufficiently large n, (ln n − 2)/(4β) is at least Hn/(8β).

Let us now have a mechanism M, truthful in expectation and β-budget-balanced
in expectation, this is, for every bid vector, the expected revenue of M is at least
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a β fraction of its expected cost, the latter equals 1 minus the probability that no
player wins.
We claim that the expected revenue of M, over both the random choice of the
valuation profile and the internal coin flips of the mechanism, is at most 1/(4β).
To see why the claim implies the theorem, note that this would imply that the
expected cost of M is at most 1/4, and so with probability at least 3/4, M chooses
the empty allocation.

Conditioned on the event that ∑i∈U vi ≥ Hn/(8β), the probability that M
chooses the empty allocation is at least 1/2. Then, there exists a valuation profile
v with ∑i∈U vi ≥ Hn/(8β) such that, with probability at least 1/2 over the internal
randomness of M, M chooses the empty allocation. The expected social cost of M
on this valuation profile is at least Hn/(16β), while the optimal social cost remains
at most 1.

In order to prove the previous claim and upper bound the expected revenue of
our mechanism with respect to this distribution over valuation profiles, we need
first assume that M is a truthful deterministic mechanism. For every fixed thresh-
old t = ti(b−i) that arises in the mechanism (2.3), the expected revenue extracted
from player i is t · Pr[vi ≥ t] ≤ 1/(4nβ). Using now the linearity of expectation,
the expected (over v) revenue of every deterministic truthful mechanism is at most
1/(4β). Now, we can observe that a universally truthful mechanism is just a dis-
tribution over a deterministic truthful mechanisms, then the expected revenue of
every such mechanism is at most 1/(4β). Finally, thanks to 2.4 we have that for
every truthful-in-expectation mechanism M, there is a universally truthful mech-
anism M′ where M and M′ have the same expected revenue on every bid profile.
We then can asseverate that the expected revenue of every truthful-in-expectation
mechanism is at most 1/(4β).

We can now scale down the prices of a Shapley value mechanism by β ≥ 1,

which will provide us with a β-budgeted and
(
Hn

β
+ β

)
-approximate mechanism

that is truthful, thus a linear degradation in β of the lower bound in 2.9 is necessary
at least up to β ≈

√
Hn.
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2.2.4 The Hybrid Mechanism

We have now paved the row introduce a new mechanism, with all this progres-
sion in mind we can now mix both the VCG and the Shapley mechanisms to attain
a truthful and approximately efficient mechanism (Hn-approximate), this hybrid
mechanism is not budget-balanced, but it has the no deficit property.

Hybrid Mechanism [Dob+18]

1. Accept a bid bi from each player i.

2. Let

S∗ ∈ arg maxS⊆N {∑i∈S bi − C(S)}

denote a welfare-maximizing outcome.

3. Initialize S := S∗.

4. If bi ≥
C(S∗)

|S| for every i ∈ S, then halt with winners S.

5. Let i∗ ∈ S be a player with bi∗ <
C(S∗)

|S| .

6. Set S := S \ {i∗} and return to Step 4.

7. Charge each winner i ∈ S a payment equal to the minimum bid at
which i would continue to win (holding b−i fixed).

Both the Shapley Value and the VCG mechanisms are truthful, the hybrid
mechanisms inherits this property but we still consider necessary to prove that it
is Hn-approximate:

Proposition 2.10. The proposed hybrid mechanism is Hn-approximate

Proof. Following [Dob+18] consider S∗ the set of winners that optimises the so-
cial cost function (2.2), we can make use of the work by Roughgarden and Sun-
dararajan ([RS09]) showing that the Shapley value mechanism causes an additive
efficiency loss of (Hn − 1), scaling that by our cost C(S∗), we get:

C(S) + ∑
i/∈S

vi ≤ C(S∗) + ∑
i/∈S∗

vi + (Hn − 1) · C(S∗) ≤ Hn ·
(

C(S∗) + ∑
i/∈S∗

vi

)
And we have the desired result.
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We can conclude the present chapter with this proof regarding the hybrid
mechanism, we have provided two mechanisms, basic in the literature (Shapley
value mechanism and VCG) and have followed the work of Roughgarden et al. in
[Dob+18] to construct an hybrid mechanism, balancing the best of both words.

We would like to make an additional comment referring to the algorithms
implementability before passing to the next chapter. As shown in [GS19], we can
point out that the hybrid mechanism does not escalate well computationally on
the number of players due to the second step of the algorithm.

Indeed Roughgarden et al. [Dob+18] also concur in the fact that the hybrid
mechanism is computationally expensive, they propose to use VCG and Shapley
mechansim based alternatives instead.



Chapter 3

Extending the Model

So far we have assumed the players valuations to be private and that our mech-
anisms are prior free.

This assumptions imply that our previous mechanisms are sufficient for the
analysis of the financing of several public excludable goods that fit this axioms,
yet they still fall short to tackle other models.

Take for instance the financing of the auctioneer that conducts a bid, either an
online portal or a person with a hammer and a baroque wig, this trusted third
party is necessary to conduct an auction. We could view the cost of operating this
third party as the public excludable good we want to finance, since it only renders
a service to the parties concurring to the auction, but a new problem arises: The
value of the auctioneer’s services to each bidder might be correlated to the value
that other bidders perceive from it, if only because the underlying good in auction
might have this property too.

But, Why can’t we use the previous models?

Since we have assumed private interdependent valuations there are several
axioms that would deem our model inaccurate to the study of the proposed case.

Indeed, there are scenarios where the value of the good does not only depend
on the private individual assessment of their value. We provided the stocks valua-
tion as an example in section 1.4.2, but many more come to mind where the value
of an object is not solely determined by the individual perception of it.

Art is another good example, for instance the price of a statue might not only
depend on how much I enjoy contemplating it, but also on experts valuations, the
amount of potential buyers (liquidity) of the piece, etc.

This particularity makes us wonder on the concept of interdependent valua-
tions, which can affect the dynamics we have analysed so far and make it necessary
for us to adapt our model.

38
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In interdependent settings, it is not possible to design DSIC mechanisms be-
cause an agents valuation depends on all the signals elicited, thus precluding us
from naively applying any of the previously discussed mechanisms.

The next strongest equilibrium notion we can consider is the ex-post efficiency,
which we have already discussed up to some point, but it will require adaptations
to tackle the signaling model.

As we just discussed, one of the mechanisms exposed this far can capture the
fact that valuations might depend on each other, so in this chapter we are going to
adapt the scope of our mechanism to consider public interdependent valuations
in the scenario of submodularity over signals.

But why?

To answer this question we can use the following impossibility theorem [Ede+18],
it will help us understand why we can’t rely on the previously exposed mecha-
nisms, and thus, we are forced to extend our models, we can summarize it as
follows:

We cannot obtain a deterministic mechanism with any bounded ratio that is
truthful, prior-free when the valuations do not satisfy single crossing. We refer to
the same citation, where Eden et al. show that deterministic prior-free mechanisms
do not satisfy the single crossing property, deeming the theorem applicable to our
case.

3.1 Interdependent Values

In this line of research, the Interdependent Value Model (IDV) was first in-
troduced by Milgrom and Weber [MW82] to consider this interdependent value
interactions between agents.

In this model, valuation functions are public and each agent has a private
signal about several outcomes.

3.1.1 Signals and Concept Adaptation

Since we are extending our model it is only natural that some of the concepts
we have used this far in the prior free private independent valuation model require
a fine tune to fit the public interdependent model, let us start this section by
defining what a signal is:

Broadly speaking we can say that a signal is "incomplete information" about
something. Perhaps the most prevalent example in the literature to illustrate this
is the "lemons market" proposed by Akerloff [Geo+70].
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Picture that you want to buy a used car, you can’t possibly know the state of
the vehicle at first glance, this happens due to the information asymmetry, where
the seller knows the condition of the vehicle, but the buyer does not have the same
information, and can not distinguish a car in good condition from a car in a bad
shape (lemon). Even if you can’t possibly know the precise condition of the car
you can collect shreds of information, such as mileage, sensations on a test drive,
the general overview, cosmetic damage, price, etc. that serve as a proxy of the
state of the car. You can then aggregate those signals and form expectations about
the state of the car and its value.

Formally a signal is a random variable W ∈ [0, ω], where ω can be ∞.
We will use wi ∈ [0, ωi] to denote player i’s private signal. Since we are dis-

cussing interdependent values, signals are to be drafted from a joint distribution
function F with density f over Ω = [0, ωi]

n.
We will use the vector w = (w1, · · · , wn) to denote the collection of all signals.
Along this chapter we will consider that a players valuation can be expressed

as a function of the signals, we will denote player i’s valuation as vi(w).
As opposed to the previous chapter, where we treated vi as a value, we will

now define the map:

vi : Ω → R

w 7→ vi(w)

To clarify it, if v′i were the valuation as defined in the previous chapter, we short-
ened vi(good) to equal to the perceived value of the good for player i, v′i.

In order not to complicate the model further we will introduce some standard
assumptions in this line of research, specifically about the valuation functions vi,
we consider them:

• Public for every player

• Non-negative and normalized: (vi (⃗0) = 0)

• Twice continuously differentiable

• Non-decreasing in all variables and strictly increasing in wi

• Expectations are finite: Ew[vi(w)] < ∞

A mechanism is ex-post Incentive Compatible (IC) [RTC16] if, for every i, true
signals wi, signal profile w−i and false signals w̃i:

xi(w)vi(w)− pi(w) ≥ xi(w̃i, w−i)vi(w)− pi(w̃i, w−i), (3.1)
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The reader can recollect the incentive compatibility concept as previously ex-
posed in section 1.5.2, now we have complemented the concept with the signals
and a rough interpretation of the concept would be that, if the mechanism is IC
the player prefers the payment of a truthful signal (the utility derived from the
signal profile wi is: xi(w)vi(w)− pi(w)) over the payment of lying over the signal
(w̃i).

A mechanism is ex-post Individualy Rantional (IR) [RTC16] if, for every i and
signal vector w:

xi(w)vi(w)− pi(w) ≥ 0. (3.2)

Again, as we can recall from the definition in section 1.5.2 we require that the
utility form participating in the mechanism is non negative, we again impose that
principle, since the utility for player i is xi(w)vi(w)− pi(w).

If a mechanism is both ex-post IC and IR we will also call it EPIC-IR following
the notation in Eden et al. ([EGZ22]).

A further step we need to extend our model is the definition of conditional
virtual values

φi(wi|w−i) = −
d

dwi
Bi(wi|w−i)

fi(wi|w−i)
= vi(w)− 1 − Fi(wi|w−i)

fi(wi|w−i)
· d

dwi
vi(w) (3.3)

Where d denotes the derivative and the conditional revenue curve Bi(·|w−i)

of bidder i is:

Bi(wi|w−i) = vi(w)

∫
ωi

wi

fi(t|w−i) dt

In plain words the conditional revenue curve serves us to represent the expected
revenue perceived by bidder i of the threshold price vi(w) given the signals w−i.

Also the conditional marginal density fi(·|w−i) for player i given the signals
w−i can be written as:

fi(wi|w−i) =
f (w)∫

ωi

0
f (t, w−i)

dt

This three previous concepts, further developed in [RTC16] will provide a handy
tool when adapting the Meyerson theorem we introduced in our first chapter (in
section 1.9).

Proposition 3.1. For every interdependent values setting, a mechanism is ex post IC and
ex post IR if and only if for every i, w−i, the allocation rule xi is monotone non-decreasing
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in the signal wi, and the following payment identity holds:

pi(w) = xi(w)vi(w)−

∫
vi(wi ,w−i)

vi(0,w−i)

xi(v−1
i (t|w−i), w−i) dt− (xi(0, w−i)vi(0, w−i)− pi(0, w−i))

pi(0, w−i) ≤ xi(0, w−i)vi(0, w−i)

Myerson Mechanism for Interdependent Values [RTC16]

1. Elicit signal reports w from the bidders

2. Maximize the conditional virtual surplus by allocating to the feasible set
S with the highest non-negative conditional virtual value ∑i∈S φi(wi|w−i),
breaking ties lexicographically

3. Charge every winner i a payment pi(w) = vi(w′
i, w−i), where w′

i is the
threshold signal such that, given the other signals w−i, if i’s signal were
below the threshold, he would no longer win the auction

Where v−1
i (t|w−i, w−i) is the only element w′ such that vi(w′, w−i) = t

Proposition 3.2. [RTC16] The expected revenue of an EPIC-IR equals its expected con-
ditional virtual surplus, up to an additive factor:

Ew

[
∑

i
pi(w)

]
= Ew

[
∑

i
xi(w)φi(wi|w−i)

]
−∑

i
Ew−i [xi(0, w−i)vi(0, w−i)− pi(0, w−i)]

for every interdependent values setting.

The latter suggest that we need just maximize the conditional virtual surplus
pointwise so we also maximise the expected revenue.

Whereas the previous characterization serves us generally in any interdepen-
dent valuation scenario, on the following pages we will restrain our efforts to the
public interdependent valuation scenario.

3.1.2 The Potential Mechanism

Once again we have the tools to introduce a new mechanism at the twilight of
our chapter, before we do this let us ask a rhetorical question to the reader:

Shouldn’t we share our signals?
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A classic example to illustrate the latter could prove convenient is the oil
drilling rights auctions. First exposed by Wilson ([Wil66]), it serves us as as perfect
example.

Imagine that Alice and Bob want to acquire the rights to drill oil in a tract of
land, they are uncertain on the quantity they can extract from the well, and they
each hire a specialist to aid with the measuring.

Alice’s expert comes back with the signal w1, whereas Bob’s provides signal
w2.

Now both Alice and Bob can form expectations on the amount of oil they can
extract. So, if they don’t share the expert assessment:

E[v1|w1] represents Alice’s valuation and E[v2|w2]represents Bob’s. But the
amount of oil remains the same, so the value for Alice and Bob, although it can
differ, is correlated.

Then, what happens if Bob’s expert made an error, severely overestimating the
quantity of oil? That would lead to Bob’s valuation E[v2|w2] to be artificially high,
and would cause Bob to overbid for the drilling rights.

When Bob realises that the signal he had used to form expectations was anoma-
lous it’s too late, the winners curse is complete.

Signals are positively correlated and having access to Alice’s signal would af-
fect Bob’s expectations, and consequently, the value he attributes to the well. This
is, if Bob had access to Alice’s signal perhaps he would have been able to see that
the value he was ready to pay for the rights was too high, avoiding (or at least
moderating) his overbidding.

Now let us take a further step and define a new mechanism:

Potential Mechanism for Public Interdependent Values [Maz24]

Input: Signals w1, . . . , wn.
Output: The set of agents S∗ that are served and the payment vector p =

(p1, . . . , pn).

1. Choose set S∗ ∈ arg maxS⊆N
{

∑i∈S vi(w)−H|S|
}

.

2. Set payments pi = infw≥0{vi(w′, w−i) : xi(t, w−i) = 1} if i ∈ S∗, and 0
otherwise.

The potential mechanism has some of our favourite properties:

Proposition 3.3. The potential mechanism for interdependent public valuations is EPIC-
IR, no-deficit and at most Hn-approximate.
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Proof. Let us split the proof into parts:

• EPIC-IR: Since the allocation is determined in the first step of the algorithm,
we can then refer to proposition 3.1 for the payment rule, let’s break it down:
The allocation rule is monotone and non decreasing in w1, . . . , wn, since vi(w)

are monotone an non-decreasing in w.
If i /∈ S∗, then the payment of pi(w) = 0 and xi(w) = 0
Now let w̃i = argminw≥0{vi(w′, w−i) : xi(t, w−i) = 1}, if w̃i = 0, then
pi(w) = vi(0, s−i) = vi(0, s−i)xi(0, s−i) when we hold the inequality of propo-
sition 3.1. Else, if i /∈ S∗ we find ourselves in the same situation, in either
case pi(w) = vi(0, s−i) = vi(0, s−i)xi(0, s−i). Last if i ∈ S∗:

xi(w)vi(w)−

∫
vi(wi ,w−i)

vi(0,w−i)

xi(v−1
i (t|w−i, w−i)) dt = xi(w)vi(w)−

∫
vi(wi ,w−i)

0

1t≥vi(w̃,w−i) dt

= xi(w)vi(w)− [vi(w)− vi(w̃, w−i)]

= vi(w̃, w−i) = pi(w)

Thus, the mechanism is EPIC-IR by the application of proposition 3.1.

• Hn-approximate: Let S∗ be the set of bidders served by our mechanism, then
∑i∈S∗ vi(w)−H|S∗| ≥ ∑i∈N vi(w)−Hn, therefore:

Hn ≥ Hn −H|S∗| ≥ ∑
i∈N\S∗

vi(w) + C(S∗) = π(S∗)

• No-deficit: Let S∗ be a non empty allocation, let w̃i be the signal that realizes
pi, also let Si be the allocation with signals (w̃i, w−i), then by its definition

pi =
1
|Si|

.

Since the valuations vi are monotone and w̃i ≤ wi then |Si| ≤ |S∗| and thus

pi ≥
1

|S∗| .

Therefore adding all payments results in: ∑i∈S∗ pi ≥ 1 = C(S∗)

In this chapter we have seen the inability of our previous models, namely the
VCG, the Shapley value and the hybrid mechanisms, to tackle a scenario where
valuations are interdependent, we have also seen that when players share their
signals the potential mechanism is a perfect candidate to come to rescue and that
has several of the properties we like on a mechanism.



Chapter 4

Conclusions

Along this paper we have introduced the theoretic prerequisites needed for
the comprehension and understanding of the financing of public exludable goods
from an algorithmic mechanism design perspective.

We have provided the necessary background to understand the concept of
mechanism, we have then introduced several mechanisms and then elaborated a
review of their most significant properties. We have analysed the VCG mecha-
nism, the Shapley value mechanism and the hybrid mechanism for the prior free
and private valuations case. We have also provided the tools for the economic effi-
ciency comparison of a mechanism and later introduced the hybrid mechanism, a
blend of the aforementioned two that balances the strengths of both mechanisms.
We have also analysed the public interdependent valuations scenario, where we
have provided the potential mechanism algorithm as our reference tool.

After passing that milestone we feel that there are still open questions left
behind:

• In our annex we propose a protocol that forces the bidder to share a bound-
ary of their signals to participate in the mechanism, we sill wonder: Are
there better ways to stimulate individual incentives on signal sharing?

• Can we further extend the model to consider Private Interdependent Valua-
tions?
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Appendix A

Annex

A.1 Theory in Action

In this last section we will expose the problem that motivated our research,
the relayer financing in a PBS schema. We will prescind of the definitions of the
blockchain architectural concepts, which are not strictly necessary for our analysis,
sufficient to say that we will trace parallelisms between the agents that participate
in this schema, and our model. The reader can find more in the Proposer-Builder
separation (PBS) in [But21; Hei+23], we will content ourselves with a basic ap-
proach to the concept as follows.

The PBS splits the block proposer and the builder in two different roles, the
builder, aggregates the transactions in a blockchain and constructs the block,
which then sends to the proposer. The proposer is tasked with the validation
and proposition of the block to its peers, this mechanics require from a trusted
third party mediator in order to ensure the adequate functioning of the protocol,
the relayer.

As of the moment of writing this, the relayer infrastructure is financed at a
deficit in the Ethereum blockchain, some agents pay for the cost of operating the
relay upfront and then cry about it.

Since the existence of relayers is necessary for the PBS block building, the
absence of this figure is not an option in this block building method blockchains.

We don’t intend to delve into the details of this protocol, sufficient to say that
this distribution ensures the specialization of agents in different aspects of the
block production.

Typically the builders have better understanding on the miner extractable value
(MEV) and the proposers have the infrastructure demanded by the protocol to
build blocks.

Since proposers are "not that good" as builders in observing MEV they "out-
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source" the construction of the block to specialised agents (builders) and collect
payments from them to accept their blocks and then send them to their peers.

On a nutshell, the relayer infrastructure is the public excludable good to be
financed, the proposers sell their capacity to build blocks to builders, that get their
revenue from the MEV extraction minus the cost of "buying" the block proposing
rights.

The interactions between builders and proposers constitute a zero sum game,
so we don’t intend on paying attention to it, on the other hand, MEV is not observ-
able, so the builders may have (and in fact is typical) different valuations regarding
the proposition of a block.

We will now capitalize in our theoretical recompilation and apply the different
models to the problem at hand.

A.2 First Attempt, a Naive Application of the Hybrid Mech-
anism

As we promised in the second chapter, we will first apply the hybrid mecha-
nism (2.2.4) assuming private independent valuations.

We will leave out the application of the VCG and Shapley value mechanisms at
this time, since they don’t improve the current real live scenario (the VCG runs at
a deficit which is the same scenario we see in the Ethereum chain and the Shapley
value mechanism is not efficient and we are not willing to propose that trade-off)

Consider Cr to be the cost of operating the relay, let us also commit to a fee
parameter γ ∈ [0, 1] and consider an arbitrary number of bidders.

We can apply the algorithm we provided in 2.2.4 pretty straight forwardly, we
will only modify the steps 2, 4 and 5, since we are considering the possibility of a
fee (if the fee is 0 the reader can disregard this comment and apply the algorithm
for the mechanism directly).

If γ > 0 then, as we said, we have to adapt the algorithm:
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Hybrid Mechanism with fee

1. Accept a bid bi from each player i.

2. Let

S⋆ ∈ argmaxS⊆N{
n

∑
i=1

bi : (1 − γ)bi ≥
Cr

| S | }

denote a welfare-maximizing outcome.

3. Initialize S := S∗.

4. If (1 − γ)bi ≥
C(S∗)

|S| for every i ∈ S, then halt with winners S.

5. Let i∗ ∈ S be a player with (1 − γ)bi∗ <
C(S∗)

|S| .

6. Set S := S \ {i∗} and return to Step 4.

7. Charge each winner i ∈ S a payment equal to the minimum bid at
which i would continue to win (holding b−i fixed).

This alternative is practically equal to the original hybrid mechanism, but we
are considering that the protocol owner may charge a fee, as is typical in the
blockchain ecosystem.

On a separate note on implementation, we should also consider that all trans-
actions are public by default in a typical blockchain, and our mechanisms assume
private bids for an adequate functioning.

We can easily bypass this limitation with the use of criptographical proofs to
show that (1 − γ)bi ≥ Cr

|S| without the publication of the bid.
The application of the mechanism will then result in an Hn-approximate and

no deficit financing of the relay, we need also consider the fee γ in the efficiency
loss, but since our proposed fee is a constant times the bid, the task is trivial.

A.3 Second Attempt, an Application of Potential Mecha-
nism for Public Interdependent Valuations

In this scenario we need our protocol to publish the signals of the agents,
(otherwise we would have to explore a private interdependent valuations model),
remember that in this model the valuation functions are public, so any agent can
calculate another ones valuation given that they now the signals.

But the fact remains, How can we make out participants share heir signals?
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We can establish a commit and reveal phase through the use of smart contracts,
on the first one players input their signal in the commit phase, when all players
have done so the signal vector w is then published.

We can now start our potential mechanism by following our algorithm and as
3.3 dictates we have an EPIC-IR, no-deficit and at most Hn-approximate mecha-
nism.

A.4 Criticism

In the present annex we have considered two scenarios, one with private in-
dependent and prior free valuations and another one with public interdependent
valuations both our proposed scenarios have good theoretical results, yet in the
relays financing problem is a bit more complex than that. First we extended the
model from the private independent valuation model to a public interdependent
one. An argument could be made that the public knowledge of the valuation func-
tions is quite a stretch, and indeed, quoting Bergemann and Morris in [BM05] "The
mechanism design literature assumes too much common knowledge of the environment
among the players and planner". This one we just made (publicly known valuation
functions) could arguably be one of such assumptions, on the other hand we could
try interpolating every agents valuation given sufficient iterations of the game if
not for one other limitation:

The blockchain environment is quite prone to enabling false name strategies,
this feature comes with the privacy it provides, but any agent could easily set up
a secondary (tertiary or even n-esimal) address to operate, for third parties those
accounts could look and even operate as separate entities.

This feature makes it imperative that we demand Sybil resistance in our mecha-
nisms, following the research of Mazorra [MDP23; Roi23] we can establish that the
VCG mechanism, the Shapley value mechanism or the hybrid mechanism for the
financing of public exludable goods we introduced in chapter 2.1 and 2.2.4 are not
Sybil-proof. Our potential mechanism of chapter 3.1.2 for public interdependent
valuations is no better (the proof Mazorra provides in [Roi23] is meant for a dif-
ferent scenario, luckily it applies to our case of public interdependent valuations
potential mechanism just the same).

The options we provided clearly fall short to tackle a complex and intricate
problem, further research is needed to adapt our mechanisms to be sybil-proof.
As we also mentioned in 2.2.4, our algorithms should also be computationally
implementable and should also be realistic in the assumptions they make.
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