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Abstract

The main goal of this work is to present an introduction to quantum compu-
tation and Quantum Key Distribution (QKD). The first chapter is dedicated to the
basics of quantum mechanics needed to understand further concepts. Then the
definition of quantum circuits is presented, along two examples: Quantum telepor-
tation and the Deutsch-Josza problem.In the chapter about QKD, we will explain in
detail the BB84 algorithm and some eavesdropping techniques, and we will take
a look at the theory behind the EPR Protocol. Finally, we will explain the CHSH
Game.

Resum

El propòsit d’aquest treball és presentar una introducció a la computació quàn-
tica i a la distribució de claus quàntica (QKD). El primer capítol serà dedicat a
explicar els conceptes bàsics de mecànica quàntica necessaris per entendre els
conceptes posteriors. Després, es presentarà la definició de circuits quàntics, amb
un parell d’exemples: la teleportació quàntica i el problema de Deutsch-Josza. En el
capítol sobre QKD explorarem en detall l’algorisme BB84, i explorarem la teoria
que hi ha darrere del Protocol EPR. Finalment, explicarem el joc CHSH.

2020 Mathematics Subject Classification. 81P48, 81P94
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Chapter 1

Introduction

Cryptography is the study of communication in the presence of adversaries
[21], and can be traced all the way back to Ancient Egypt, when in the year
1900B.C. an inscription was carved using non-common hieroglyphics instead of
the ordinary ones [18]. Since then, cryptography has evolved and played an im-
portant role in the history of communication. With the invention of computers in
the first half of the 20th century, the modern age of cryptography began.

During the second half of the 20th century, modern age cryptography was
dominated by symmetric key algorithms. In 1997, a symmetric-key algorithm named
Data Encryption Standard (DES) became the standard to be used for Federal depart-
ments and agencies of the United States, to encrypt non-classified data [19]. These
types of algorithms used the same key K to both encrypt and decrypt the data,
and therefore the two parties communicating needed to have an exact copy of that
key. That posed the problem of key distribution, i.e., how would the two parties
obtain the copy of the key.

The problem of creating a secure private key was solved in November 1976,
when Whitfield Diffie and Martin Hellman presented a new protocol named Diffie-
Hellman key exchange, where a public key could be used in order for two parties
to obtain an identical secret key. This started a new set of cryptographic algo-
rithms named asymmetric-key cryptography. A notable example of an asymmetric-
key algorithm was introduced the following year by Ron Rivest, Adi Shamir and
Leonard Adleman, named RSA. The public key in the RSA algorithm is created
with two numbers: the modulus and the exponent. The modulus is a number
obtained by multiplying two - and only two - large prime numbers. The secu-
rity of the RSA algorithm relies on the premise that given only the modulus, it
is impossible to find the prime factors in a reasonable amount of time, but if an
eavesdropper were to obtain its prime decomposition, then the communication
using that particular public key would become unsecure.

1



2 Introduction

The RSA algorithm is used worldwide to allow for two parties to secretly gen-
erate a secure key that can then be used in combination with a chosen symmetric-
key protocol. For the RSA public key to be secure, the National Institute of Stan-
dards and Technology (NIST) recommends that the modulus of the key is at least
2048 bits long. This ensures that the key will be resilient against any attack done
by classical computers.

Quantum computing was also developing during the second half of the 20th cen-
tury, with new discoveries being made every decade. In the 1970s, the no cloning
theorem was presented [5], a result that would become crucial when studying the
security of cryptographic algorithms using quantum computing. In the 80s, the
first key distribution algorithm that used quantum computation was presented
by C. H. Bennett and G. Brassard [7], bringing the fields of cryptography and
quantum computing together. And then, in the 1990s, Peter Shor discovered an
algorithm that could solve the factoring problem and the discrete log problem with
super polynomial speedup compared to any algorithm using classical computers.

The discovery of that algorithm posed a thread to asymmetric-key cryptog-
raphy, like the RSA algorithm, that relied on prime decomposition, since a suf-
ficiently powerful quantum computer could theoretically make any public key
insecure. However, at that time Shor’s algorithm was purely theoretical, and to
this day the largest composite number that was decomposed using the algorithm
was the number 21 in 2012.

With the fear that some day quantum computers will be able to break some
asymmetric-key algorithms, two subjects that combine cryptography and quan-
tum computation started to gain traction: post-quantum cryptography and quantum
key distribution. The former studies classical cryptography algorithms that are the-
oretically resilient to attacks with quantum computers, but they are not our point
of interest for this work. Here, we will study Quantum key distribution (QKD),
a set of algorithms that use quantum computing to allow two parties to generate
a secret private key. Instead of relying on computational complexity, the security
of these algorithms are based on quantum mechanics, and as long as the eaves-
dropper is restricted to the laws of physics, it is provably impossible to obtain any
information on the key without being detected.

In order to get to QKD algorithms, we will explore some basics about quantum
computation and the notation used in the field, and how to represent quantum cir-
cuits. Then we will take a look at two examples of quantum algorithms that can
be represented by quantum circuits: quantum teleportation and the Deutsch-Jozsa al-
gorithm. Once we are familiarized with the language we need, two QKD protocols
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will be presented: the BB84 algorithm and the EPR Protocol. Finally, we will take a
look at the CHSH Game, where using an algorithm that takes advantage of quan-
tum mechanics offers a considerable increase in probability of success compared
to using classical strategies.
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Chapter 2

Qubits

In this chapter, the notion of a quantum bit - qubit from now on - will be presented.
Quantum algorithms work by manipulating them, just like classical computers
work by manipulating classical bits. The main difference between classical bits
and qubits is that, while the former can only have two states (0 and 1), qubits can
have more than two states. Those states will be represented by vectors on a Hilbert
space.
Here we will present the definition of Hilbert spaces, the various ways of repre-
senting qubits and the mathematical concepts behind their properties.

2.1 Dirac Notation

A qubit is a two-state quantum system, it can exist in any quantum superpo-
sition between two independent quantum states. To represent the state of a single
qubit, we will use unitary vectors on a 2-dimensional complex Hilbert space.

Definition 2.1. A Hilbert space is a real or complex inner product space that is also a
complete metric space with respect to the distance function induced by the inner product.

From now on, if not stated otherwise, H will denote the two-dimensional com-
plex Hilbert space.

To correctly define the state of a qubit in H, we will choose two linearly inde-
pendent vectors to form a basis, and each of them will represent one of the two
independent quantum states. If a qubit is in neither of those two states, rather in
a superposition of those, a linear combination of the basis states will represent the
superposition. Therefore, given the vectors(

1
0

)
and

(
0
1

)
(2.1)

5



6 Qubits

the state of a qubit can be described with the unitary vector(
α0

α1

)
(2.2)

where α0, α1 ∈ C and |α0|2 + |α1|2 = 1. These complex values that describe the
state are called amplitudes. From now on, we will assume the condition of unitary
for every vector representing a qubit.

However, using this notation for vectors in quantum mechanics can have some
drawbacks, and for that reason another notation is used [1]. Since 1939 the Dirac
Notation - sometimes called Bra-Ket notation - is used in quantum mechanics, and
it is the notation that will be used here. Its goal is to represent vectors in a Hilbert
space and linear applications corresponding to their dual counterparts in a similar
way.

Definition 2.2. Let ψ ∈ H be a vector in a Hilbert space. With the Dirac notation, we
will write the vector inside of a ket, |ψ ⟩.

The notation of the ket is particularly useful when given vectors with sub-
scripts, for example, we could represent ψa, ψb ∈ H like | a ⟩, | b ⟩. From now on,
the two basis vectors in 2.1 will be written in Dirac notation as follows:

| 0 ⟩ ≡
(

1
0

)
| 1 ⟩ ≡

(
0
1

)
(2.3)

The basis {| 0 ⟩, | 1 ⟩} is called the computational basis, and the state of a qubit, like
in 2.2, will be written as

|ψ ⟩ = α0| 0 ⟩+ α1| 1 ⟩ (2.4)

with the same constraint, |α0|2 + |α1|2 = 1.

Definition 2.3. Given a vector on a Hilbert space ψ ∈ H, we define the bra as the linear
functional that maps any vector φ ∈ H to the inner product ψ · φ

⟨ψ | : H → C

φ 7→ ψ · φ

We represent the linear functional with ⟨ψ |. Then, the inner product is written as ψ · φ ≡
⟨ψ || φ ⟩ = ⟨ψ | φ ⟩

We can also represent the outer product of two vectors |ψ ⟩, | φ ⟩ ∈ H, defined
as the linear function

|ψ ⟩⟨ φ | : H → H
| ϕ ⟩ 7→ |ψ ⟩⟨ φ | ϕ ⟩
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An interpretation that will be quite useful is thinking about bra-vectors as
complex-conjugated transposed kets, and both the inner and outer products as ma-
trix multiplications.

⟨ 0 | = | 0 ⟩† =
(

1 0
)

⟨ 0 | 1 ⟩ =
(

1 0
)(0

1

)
= 0

| 0 ⟩⟨ 1 | =
(

1
0

)(
0 1

)
=

(
0 1
0 0

)

2.2 The Bloch Sphere

While the vector representation using Dirac’s notation is the most common to
represent the state of a single qubit, other representations also exist. The most
used and also one that will help understand future concepts presented here, is the
Bloch Sphere. Given a qubit in the state |ψ ⟩ ∈ H, we know that ⟨ψ |ψ ⟩ = 1, and
this constraint allows us to write the vector in the form

|ψ ⟩ = eiγ
(

cos
θ

2
| 0 ⟩+ eiφ sin

θ

2
| 1 ⟩
)

(2.5)

with θ, γ, φ ∈ R. However, quantum mechanics tells us that we can actualy
ignore the factor eiγ because it has no observable effect. Therefore we can rewrite
the equation 2.5 and obtain:

|ψ ⟩ = cos
θ

2
| 0 ⟩+ eiφ sin

θ

2
| 1 ⟩ (2.6)

with 0 ≤ θ ≤ π and 0 ≤ φ < 2π. This representation is always unique, since
given θ, φ the qubit state represented is unique. Reinterpreting the parameters
θ, φ in spherical coordinates, we can specify a point in the unit sphere S2 ⊂ R3

p = (sin θ cos φ, sin θ sin φ, cos θ)

And it is with this spherical coordinates that we define the Bloch Sphere, seen in
figure 2.1. With this representation, the first and second vectors of the computa-
tional basis {| 0 ⟩, | 1 ⟩} sit at the north and south pole respectively. In fact, any
two antipodal points on the Bloch sphere will form an orthonormal basis of the
2-dimensional complex Hilbert space. The three pairs of antipodal points that lie
on the three axis of the Bloch sphere are:
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Figure 2.1: The Bloch Sphere

1. The X-basis, called the Hadamard basis, formed by the two points that lie on
the x-axis:

|+ ⟩ ≡ 1√
2
(| 0 ⟩+ | 1 ⟩) | − ⟩ ≡ 1√

2
(| 0 ⟩ − | 1 ⟩) (2.7)

2. The Y-basis, formed by the two points that lie on the y-axis:

|+i ⟩ ≡ 1√
2
(| 0 ⟩+ i| 1 ⟩) | −i ⟩ ≡ 1√

2
(| 0 ⟩ − i| 1 ⟩) (2.8)

3. The Z-basis, formed by the two points that lie on the z-axis, is the computa-
tional basis {| 0 ⟩, | 1 ⟩}.

2.3 Entanglement

One of the key concepts of quantum mechanics and also quantum computation
is entanglement. This phenomenon occurs when the state of a particle cannot be
described independently of the state of other particles. It is a key concept, since
one can show that a classical computer can simulate a quantum computer that
does not make use of entanglement [3]. In quantum mechanics, one can define
entanglement of two or more particles using the tensor product.

2.3.1 The tensor product

Let Hm, Hn be two complex Hilbert spaces of dimensions m and n respectively.
Then the space Hm ⊗ Hn is the complex Hilbert space of dimension m · n that
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contains all linear combinations of the tensor product | v ⟩⊗ |w ⟩, | v ⟩ ∈ Hm, |w ⟩ ∈
Hn. If | v ⟩ and |w ⟩ are defined as

| v ⟩ =

α1
...

αm

 |w ⟩ =

β1
...

βn

 (2.9)

then the vector resulting of the tensor product is

| v ⟩ ⊗ |w ⟩ =



α1

β1
...

βn


...

αm

β1
...

βn




=



α1β1
...

α1βn
...

αmβ1
...

αmβn


(2.10)

Instead of writing | v ⟩ ⊗ |w ⟩, we will denote the tensor product of two vectors by
| v ⟩|w ⟩, or even | vw ⟩. The tensor product satisfies the following properties:

1. For any z ∈ C, | v ⟩ ∈ Hm, |w ⟩ ∈ Hn

z (| v ⟩ ⊗ |w ⟩) = z| v ⟩ ⊗ |w ⟩ = | v ⟩ ⊗ z|w ⟩ (2.11)

2. For any | v1 ⟩, | v2 ⟩ ∈ Hm, and |w ⟩ ∈ Hn

(| v1 ⟩+ | v2 ⟩)⊗ |w ⟩ = | v1 ⟩ ⊗ |w ⟩+ | v2 ⟩ ⊗ |w ⟩ (2.12)

3. For any | v ⟩ ∈ Hm and any |w1 ⟩, |w2 ⟩ ∈ Hn

| v ⟩ ⊗ (|w1 ⟩+ |w2 ⟩) = | v ⟩ ⊗ |w1 ⟩+ | v ⟩ ⊗ |w2 ⟩ (2.13)

The definition of the tensor product is also extended to linear operators. Let
A be a m × n matrix and B a p × q matrix. Then the result of A ⊗ B is a linear
operator defined by the mp × nq matrix

A ⊗ B ≡

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 (2.14)

Finally, given any vector |ψ ⟩ ∈ H or any linear operator A : H 7→ H′, we define
the notation |ψ ⟩⊗n, A⊗n as follows

|ψ ⟩⊗n ≡ |ψ ⟩ ⊗ · · · ⊗ |ψ ⟩ (2.15)

A⊗n ≡ A ⊗ · · · ⊗ A (2.16)
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2.3.2 Multiple qubits systems

In sections 2.1 and 2.2 we have seen the notation used when working with a
single qubit. However, as we discussed earlier, when developing algorithms for
quantum computers we are interested in using quantum entanglement, therefore
we will be working with systems that use two or more qubits.

Firstly, we will describe the two-qubit systems, and the extrapolation to n-qubit
systems will follow naturally. When working with a single qubit, we described
its state with a unitary vector on a two-dimensional complex Hilbert space H.
With two qubits, the state of the system will be described by a unitary vector on
the space H1 ⊗H2, where both H1 and H2 are two-dimensional complex Hilbert
spaces. Furthermore, if the state of the first system is |ψ1 ⟩ ∈ H1 and the state of
the second system is |ψ2 ⟩ ∈ H2, then the state of the composite system will be
|ψ1 ⟩ ⊗ |ψ2 ⟩ ∈ H1 ⊗H2.

When working with multiple qubit systems, we can also define the computa-
tional basis. In the case of H⊗H = H⊗2 we define the basis as

{| 0 ⟩ ⊗ | 0 ⟩, | 0 ⟩ ⊗ | 1 ⟩, | 1 ⟩ ⊗ | 0 ⟩, | 1 ⟩ ⊗ | 1 ⟩} = {| 00 ⟩, | 01 ⟩, | 10 ⟩, | 11 ⟩} (2.17)

And we can extrapolate the idea to n-qubit systems defining the computational
basis as

{| x ⟩| x ∈ {0, 1}n} (2.18)

We have seen that given two states on each space |ψ1 ⟩ ∈ H1 and |ψ2 ⟩ ∈ H2

we can assign to it a state in the two-state space H1 ⊗H2. However, the reciprocal
is not true. Given any state | ϕ ⟩ ∈ H1 ⊗H2, it is not guaranteed that there exist
two vectors |ψ1 ⟩ ∈ H1 and |ψ2 ⟩ ∈ H2 such that | ϕ ⟩ = |ψ1 ⟩ ⊗ |ψ2 ⟩. If a state
| ϕ ⟩ satisfies that no such decomposition exists, we say that the state is entangled.

In the 4-dimensional space of two-state systems, there is a particular basis of
entangled states that has proven to be particularly useful.

Definition 2.4. The Bell’s states or EPR pairs are four entangled pairs that form a basis
in the four dimensional complex Hilbert space representing the state of a two-qubit system.
The Bell’s states are defined as

1. | β00 ⟩ = 1√
2
(| 00 ⟩+ | 11 ⟩)

2. | β10 ⟩ = 1√
2
(| 00 ⟩ − | 11 ⟩)

3. | β01 ⟩ = 1√
2
(| 01 ⟩+ | 10 ⟩)

4. | β11 ⟩ = 1√
2
(| 01 ⟩ − | 10 ⟩)
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It is easy to see that any Bell state is, in fact, an entangled state. Take for
example the state | β00 ⟩. We know by definition that

| β00 ⟩ =
1√
2


1
0
0
1


and suppose that there exists two vectors | a ⟩, | b ⟩ ∈ H such that

| a ⟩ =
(

a1

a2

)
| b ⟩ =

(
b1

b2

)

and | β00 ⟩ = | a ⟩ ⊗ | b ⟩, then it follows that

a1b1 = 1 a1b2 = 0

a2b1 = 0 a2b2 = 1

and this results in a contradiction.
The four Bell states form a base of H⊗H called the Bell basis.

2.4 Measurements

The final part of this chapter is dedicated to understanding qubit measure-
ment. If we have a qubit |ψ ⟩ ∈ H in an unknown state, and we choose two
orthonormal states from H to form a basis, B = {| a ⟩, | a⊥ ⟩}, then there exists two
complex values α0, α1 ∈ C such that

|ψ ⟩ = α0| a ⟩+ α1| a⊥ ⟩ (2.19)

But having no prior information of the state of the qubit |ψ ⟩, means that there
is no possible action that can give information about the values α0, α1. There is
only one action one can perform to extract information from a qubit: making a
measurement.

Once the basis B has been established, we can make a measurement to the
qubit |ψ ⟩ with respect to the basis B. The action of measuring |ψ ⟩ will collapse
its state to either | a ⟩ or | a⊥ ⟩. By collapse, we mean that if, for example, the
measurement results in the state | a ⟩ being observed, from that moment the qubit
|ψ ⟩ will be in the state | a ⟩, and if it results in the state | a⊥ ⟩ being observed then
|ψ ⟩ will be in the state | a⊥ ⟩.

If we are given a qubit in the state 2.19, and we know the values of α0, α1 ∈ C,
we can know the probabilities that the state collapses to either | a ⟩ or | a⊥ ⟩. The
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probability that |ψ ⟩ collapses on the state | a ⟩ is p(a) = |α0|2, and the probability
that the qubit collapses on the state | a⊥ ⟩ is p(a⊥) = |α1|2. We can also calculate
the probabilities using the inner product:

p(a) = |⟨ a |ψ ⟩|2 = |α0|2 p(a⊥) = |⟨ a⊥ |ψ ⟩|2 = |α1|2 (2.20)

It is important to note that the action of making a measurement is destructive,
i.e. all the information that we had about the state before the measurement will
be lost.

In the case of n qubit systems, given an orthonormal basis { | i ⟩ }0≤i<n, n ∈ N,
and a unitary state

| ϕ ⟩ =
n−1

∑
i=0

αi| i ⟩ (2.21)

with αi ∈ C, 0 ≤ i < n, after measuring each qubit individually, the probability
that the resulting state is | i ⟩ is

p(i) = |⟨ i | ϕ ⟩|2 = |αi|2 (2.22)

If the n-qubit system is not entangled, then one can measure each qubit in-
dependently and know that the results of the measurements are not correlated.
However, this is not the case with entangled systems. If we have n entangled
qubits, measuring a subset of them can give us information about the probabili-
ties of the qubits that are not yet measured. This behavior is clear to see using the
bell states defined in 2.4:

Example 2.5. Consider the first Bell state

| β00 ⟩ =
1√
2
(| 00 ⟩+ | 11 ⟩) . (2.23)

Given that the amplitude of | 00 ⟩ is 1/
√

2, and the same applies to | 11 ⟩, we
know that the Bell state will collapse to either of those states when measured with
probability 1/2 for each state.

Knowing this, if we measured the first qubit of the system and got a | 0 ⟩ as
a result of the measurement with respect to the computational basis, we would
know that the second qubit is also in the state | 0 ⟩, having collapsed without us
measuring it directly.

In the same way, if the result obtained after measuring the first qubit with
respect to the computational basis was | 1 ⟩, then the second qubit will also collapse
to the state | 1 ⟩ even before we make the measurement.
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This property of entanglement is extremely useful and the key to quantum
algorithms. If used properly, one can find algorithms that exploit the entanglement
of qubits in order to redesign classical algorithms, making them exponentially
faster. In the next chapters, we will see some examples of this behavior.
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Chapter 3

Quantum Circuits

With the necessary preliminaries to understand what qubits are and their most
important properties, we can go a step further and begin to build algorithms using
those properties. In this chapter we will present the notion of quantum gates,
explain the most common ones, how they interact with each other and how they
take advantage of both superposition and entanglement. At the end of the chapter,
we will take a look at two algorithms: quantum teleportation and the Deutsch-Jozsa
algorithm.

3.1 Reversible operations on qubits

In the previous chapter we talked about measurement and saw that it was an
irreversible operation, i.e. once you measure a qubit with respect to a certain base,
its state is changed and any previous information about amplitudes is lost. When
building quantum algorithms, we want to be able to interact with qubits without
losing said information. This is where reversible operations come into place.

Reversible operations on qubits are represented by unitary linear operators.

Definition 3.1. A linear operator on a vector space V is a linear transformation T :
V → V of the vector space to itself.

As we saw in section 2.1, the outer product of any two vectors of a Hilbert
space is a linear transformation.

Definition 3.2. Given a vector field V, a linear operator U is called unitary if

U†U = UU† = I (3.1)

Where I denotes the identity matrix and U† is the transposed and complex conjugated
matrix U.

15
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Given a unitary operator U ∈ U (H), where U (H) represents the set of unitary
transformations of H, and a qubit in the state |ψ ⟩ ∈ H, we can apply U to the state
of the qubit and obtain a new state U|ψ ⟩. The condition of unitary on the linear
operator guarantees that the state after the operator is applied is also represented
by a unitary vector. Furthermore, we can apply the inverse operator U−1 = U† if
we desire to obtain the original state:

U†(U|ψ ⟩) = (U†U)|ψ ⟩ = |ψ ⟩

A linear operator is not limited to one qubit states, and it can operate on
n qubits simultaneously. Given n qubits in the state | φ ⟩ ∈ H⊗n, a unitary
transformation acting on all n qubits at once is represented by a unitary matrix
U ∈ U (H⊗n) of dimension 2n.

3.2 Quantum logic gates

In quantum computing, logic gates are the building blocks of quantum algo-
rithms. Quantum algorithms consist of an input - n qubits -, a set of gates (unitary
transformations) and an output. We assume that, after running the circuit, the
qubits on the output are measured using the computational basis, unless stated
otherwise. In some particular cases, it might be necessary to measure a qubit dur-
ing the algorithm, and in that case a measuring gate will be drawn and the basis
in which we make the measurement will be stated.

To represent quantum circuits, we will make use of diagrams. The building
blocks of the diagrams are wires and gates (unitary operators or measurement
gates). Given that quantum circuits sometimes make use of classical bits of in-
formation sometimes, we will represent quantum wires and classical wires with
different diagrams:

|ψ ⟩ (3.2)

x (3.3)

where ψ ∈ H and x ∈ {0, 1}. In the previous diagram, 3.2 represents a quantum
channel and 3.3 represents a classical channel. The diagrams are read from left to
right, and multiple rows represent calculation happening at the same time. If we
have a unitary operator U, we represent it in the circuit with a box:

|ψ ⟩ U (3.4)

and the result of the circuit 3.4 is U|ψ ⟩.
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In the next circuit, 3.5, we give an example of an algorithm with multiple input
qubits, and composed with multiple gates:

| 0 ⟩ U1

U3
U4

| 0 ⟩
U2

| 0 ⟩

| 0 ⟩

(3.5)

The qubits pass through a series of gates (U1, U2, U3, U4), with Ui ∈ U (H⊗i), 1 ≤
i ≤ 4, where each of the gates Ui acts on i qubits simultaneously. Finally, the four
resulting qubits are measured, and a result is obtained. The output of the mea-
surement gate, when measuring with respect to the computational basis, is the bit
0 if | 0 ⟩ is observed, and the bit 1 if | 1 ⟩ is observed.

To be able to understand and construct quantum circuits, the next sections will
present the most used quantum gates that act on single qubits or sets of up to
three qubits. Then, we will see how to extend any gate acting on m qubits to a
gate acting on n qubits, with m < n.

3.2.1 Single qubit gates

Definition 3.3. The Pauli gates are a set of three gates (X, Y, Z) represented by the three
matrices (σx, σy, σz) respectively. The matrices are defined by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(3.6)

Each matrix represents a rotation of π rad around an axis of the Bloch Sphere.
Each gate leaves one of the three basis {| 0 ⟩, | 1 ⟩}, {|+ ⟩, | − ⟩}, {|+i ⟩, | −i ⟩} un-
changed. The Pauli X gate is also called the NOT gate, since it maps | 0 ⟩ 7→ | 1 ⟩
and | 1 ⟩ 7→ | 0 ⟩, similar to how the binary NOT gate works. The three Pauli gates
are represented in quantum circuits by the following diagrams:

X ≡ NOT ≡ X ≡ (3.7)

Y ≡ Y (3.8)

Z ≡ Z (3.9)
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Definition 3.4. The Hadamard gate is represented by the Hadamard matrix

H =
1√
2

(
1 1
1 −1

)
(3.10)

And in quantum circuits is represented by the following diagram:

H (3.11)

The most important property about the Hadamard gate is that, in contrast
to the Pauli gates, when applied to the computational basis the gate returns a
state in superposition - assuming that the measurements are also made in the
computational basis. This superposition comes from the fact that the gate maps
the computational basis to the Hadamard basis:

| 0 ⟩ 7→ H| 0 ⟩ = |+ ⟩ ≡ | 0 ⟩+ | 1 ⟩√
2

| 1 ⟩ 7→ H| 1 ⟩ = | − ⟩ ≡ | 0 ⟩ − | 1 ⟩√
2

(3.12)

Therefore, measuring H| 0 ⟩ using the computational basis yields | 0 ⟩ with proba-
bility 1/2 and | 1 ⟩ with probability 1/2.

3.2.2 Multiple qubit gates

Definition 3.5. Controlled gates are operations performed on sets of m + n qubits, with
m, n ∈ N\{0}. The first group of m qubits are called the control bits, and when a
condition over the state of the m bits is satisfied, an operation U is performed on the other
n bits.

A controlled operation with one control qubit and a gate U that acts on exactly
one qubit is represented by the following diagram

|ψ ⟩ •

| φ ⟩ U
(3.13)

In 3.13, the gate U is applied to | φ ⟩ if the qubit |ψ ⟩ is | 1 ⟩, and if |ψ ⟩ = | 0 ⟩,
then no operation will be performed. In the case that we have information about
the gate U, we can represent the controlled operation over it in terms of matrices.
Suppose that the gate is given by the matrix

U =

(
u00 u01

u10 u11

)
(3.14)
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Then, the matrix representing the circuit 3.13 will be of the form

CU =


1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

 (3.15)

where CU denotes Controlled-U.
It is true that no operation is applied to any qubit if the control qubits are all

| 0 ⟩, and that the gate U is applied to the corresponding qubits if the control bits
are all | 1 ⟩. However, unlike classical controlled gates, the control qubit can be in
any state and is not limited to | 0 ⟩ or | 1 ⟩. If that is the case, where the control
qubits are not in any of those two states, their states could also be modified when
the gate is applied. In example 3.7 we will see an example of this behavior.

The most used controlled gate is the controlled Pauli X gate, with one or two
qubits:

Definition 3.6. The controlled-not gate or CNOT gate is the Pauli X gate with one
control qubit, and is represented by the following diagram

|ψ ⟩ •

| φ ⟩
(3.16)

where |ψ ⟩ is the control qubit.

It is interesting to see how the gate behaves on the states of the computational
basis compared to the states of the Hadamard basis:

Example 3.7. The following table shows the output to the controlled-not gate when
certain inputs are applied:

Input Output Input Output

| 00 ⟩ | 00 ⟩ |++ ⟩ |++ ⟩
| 01 ⟩ | 01 ⟩ |+− ⟩ | −− ⟩
| 10 ⟩ | 11 ⟩ | −+ ⟩ | −+ ⟩
| 11 ⟩ | 10 ⟩ | −− ⟩ |+− ⟩

As we have seen before, if the computational basis is used on the CNOT gate,
it flips the state of the second qubit if the first qubit is in the state | 1 ⟩. However,
if the Hadamard basis is used, the roles of the qubits are inverted, meaning that is
the second qubit that acts as the control. One can see in the table that if the second
qubit is | − ⟩, then the state of the first qubit is changed.
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Definition 3.8. The Toffoli gate, also called the CCNOT (controlled-controlled-not) is a
Pauli X gate with two control qubits. The matrix and circuit representation of the gate are
the following:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



•

• (3.17)

Definition 3.9. Classically controlled gates are unitary transformations that are applied
to the corresponding qubit depending on the state of a classical bit. There are two types of
classically controlled gates:

x •

|ψ ⟩ A

y

| φ ⟩ B

(3.18)

where x, y ∈ {0, 1}, ψ, φ ∈ H and A, B ∈ U (H). Then, in the first circuit, the gate A is
applied to |ψ ⟩ if, and only if, x = 1. Inversely, in the second circuit, the gate B is applied
to | φ ⟩ if, and only if, y = 0.

3.3 Circuit composition

In order to build more complex quantum circuits, one has to work with mul-
tiple gates, wiring them together either serially or in parallel. Depending on how
the gates are wired one would obtain a certain result or another, and in every al-
gorithm a careful choice has to be made in order to select the gates used and their
distribution in the circuit to obtain the desired result.

Serially wired gates are connected end to end in the circuit, and will be applied
to the specific qubit. Given two unitary operators X, Y and a state |ψ ⟩ ∈ H, then
the matrix Y · X has the same effect as serially connecting the gates X and Y in
said order, i.e. the following circuits are equivalent:

|ψ ⟩ X Y |ψ ⟩ Y · X (3.19)

Parallel gates are sets of independent gates, where every gate acts on a different
set of qubits. If the gates are all applied at the same time, one can combine them
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and obtain a single gate that acts on all the qubits at the same time, obtaining the
same result. If we have two unitary vectors |ψ ⟩, | ϕ ⟩ ∈ H representing two states
and two unitary transformations X, Y, the state after applying the gate X to |ψ ⟩
and Y to | ϕ ⟩ will be (X ⊗ Y)|ψ ⊗ ϕ ⟩. In terms of circuit diagrams, the following
are equivalent:

|ψ ⟩ X

| ϕ ⟩ Y

|ψ ⟩
X ⊗ Y

| ϕ ⟩
(3.20)

Combining parallel gates is essential when working with entangled states. If we
have a state |ψ ⟩ ∈ H⊗(m+n) and we want to apply a unitary transformation U ∈
U (H⊗m) to the first m qubits of the system, we have to be extra careful when
writing the operation.

If the system is not entangled, we can represent |ψ ⟩ like |ψ ⟩ = |ψm ⟩⊗ |ψn ⟩ ∈
H⊗m ⊗H⊗n. With this representation, applying U to the first m qubits is equiva-
lent to computing (U|ψm ⟩)⊗ |ψn ⟩.

However, if the system is in a entangled state, then there exists no decomposi-
tion such that |ψ ⟩ = |ψm ⟩ ⊗ |ψn ⟩ ∈ H⊗m ⊗H⊗n. Therefore, if we want to apply
the transformation U to only the first m qubits, there is no easy way to make the
calculation. Instead, we can combine the gate U with the unity matrix I2n using the
tensor product. The resulting unitary transformation U ⊗ I2n will have the desired
effect: the gate U will be applied to the first m qubits and the other n will remain
in the same state.

|ψ ⟩
{

U
=

U
= U ⊗ I2n

}
(U ⊗ I2n)|ψ ⟩

I2n
(3.21)

To end the section, we will take a look at the Hadamard transform

Definition 3.10. The Hadamard transform is the Hadamard gate H applied in parallel
to n qubits. It is represented by the tensor product of n Hadamard gates:

n⊗
1

H = H⊗n = Hn (3.22)

When applied to a system where n qubits are initialized to | 0 ⟩, the Hadamard transform
will create a superposition, with equal probability of measuring any of the 2n possible
states. We can represent this superposition with

H⊗n| 0 ⟩⊗n =
1√
2n ∑

x∈{0,1}n

| x ⟩ (3.23)
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3.4 Circuit examples

To end the chapter about quantum circuits, two examples are presented: Quan-
tum Teleportation and the Deutsch-Jozsa Algorithm. These algorithms will present
circuits using the formerly introduced gates, and also quantum entanglement.

3.4.1 Quantum Teleportation

Preliminaries

The first algorithm presented is called Quantum Teleportation. Here we have
two parties, A and B - we will call them Alice and Bob respectively - and Alice has
a qubit in the unknown state represented by the unitary vector |ψ ⟩A ∈ H with
|ψ ⟩A = α0| 0 ⟩+ α1| 1 ⟩, α0, α1 ∈ C. In the end, Alice wants Bob to have a qubit
in the same state |ψ ⟩, but she has no information on the amplitudes α0, α1 and
cannot send the qubit to Bob over a quantum channel.

Alice faces two more problems in order to send the qubit to Bob. The first
problem is that the information that Alice can get to help Bob replicate the state
of the qubit is almost null, as the state of a quantum system cannot fully be deter-
mined by making measurements. The second problem is that there is no way for
Alice to clone the state of the qubit and obtain a second qubit in the same state as
the one that Alice possesses without destroying the original, a limitation proven
by the no cloning theorem [5].

In order to send the state |ψ ⟩A to Bob, the two parties will use a shared Bell
state | β00 ⟩ defined in 2.4 as their initial state. Alice will have the first half of the
Bell state, and Bob the second one. Therefore, the state at the start of the algorithm
is

(α0| 0 ⟩+ α1| 1 ⟩)A ⊗ 1√
2
(| 0A0B ⟩+ | 1A1B ⟩) (3.24)

After the teleportation algorithm, any information from Alice’s original qubit
|ψ ⟩A will be lost due to measurement, and the second qubit from the Bell state
that was in Bob’s possession will be in the state |ψ ⟩B.

The Algorithm

The algorithm starts with Alice in possession of |ψ ⟩ = α0| 0 ⟩ + α1| 1 ⟩, the
qubit that she wants to send to Bob. Furthermore, Alice and Bob each have one
qubit of the entangled state β00 such that

| β00 ⟩AB =
1√
2
(| 0A0B ⟩+ | 1A1B ⟩) (3.25)
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The state of the three qubits combined can be represented with:

|ψ ⟩A| β00 ⟩AB = (α0| 0 ⟩+ α1| 1 ⟩)⊗ 1√
2
(| 0A0B ⟩+ | 1A1B ⟩) (3.26)

And using the following identities:

| 0 ⟩ ⊗ | 0 ⟩ = 1√
2
(| β00 ⟩+ | β10 ⟩), | 0 ⟩ ⊗ | 1 ⟩ = 1√

2
(| β01 ⟩+ | β11 ⟩)

| 1 ⟩ ⊗ | 0 ⟩ = 1√
2
(| β01 ⟩ − | β11 ⟩), | 1 ⟩ ⊗ | 1 ⟩ = 1√

2
(| β00 ⟩ − | β10 ⟩)

we can represent both qubits in Alice’s possession using the Bell basis. By doing
so, we obtain

|ψ ⟩A| β00 ⟩AB =
1
2
| β00 ⟩AA ⊗ |ψ ⟩B+

1
2
| β01 ⟩AA ⊗ X|ψ ⟩B+

1
2
| β10 ⟩AA ⊗ Z|ψ ⟩B+

1
2
| β11 ⟩AA ⊗ XZ|ψ ⟩B

(3.27)

Therefore, if Alice measures the two qubits in her possession with the Bell
basis, she will get one of the four Bell states, each with probability 1/4. And after
Alice makes the measurement, the qubit in Bob’s possession will be in one of the
following four states: {|ψ ⟩, X|ψ ⟩, Z|ψ ⟩, XZ|ψ ⟩}. In order for Bob to be sure
that he has the state |ψ ⟩ he applies the X and Z gates conditionally, depending on
Alice’s measurement. If the state of Alice’s qubits after the measurement is | βab ⟩,
with a, b ∈ {0, 1}, then b tells Bob if he needs to apply the X gate, and a if he has
to apply the Z gate. After performing the required operations, the state of Bob’s
qubit will be |ψ ⟩.

The following diagram represents the algorithm of Quantum teleportation:

|ψ ⟩A
Bell

• a

| β00 ⟩AB

{ • b

X Z |ψ ⟩B

(3.28)

The main limitation of the algorithm is that Alice and Bob have to share a
classical channel in order to communicate the values of a and b, and therefore
the speed of the quantum teleportation algorithm is limited to the speed of the
classical channel that connects the two parties.
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3.4.2 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa Algorithm is a quantum algorithm that, even though it is
of little use, is a good example of a solution to a problem that is exponentially
faster if solved with a quantum algorithm compared to a classical algorithm. The
problem that the algorithm solves is the following:

Definition 3.11. In The Deutsch-Jozsa Problem we are given a reversible circuit for
computing an unknown n-qubit function

f : {0, 1}n 7→ {0, 1} (3.29)

The circuit is treated as a black box, so no information can be obtained about the function
f , we can only evaluate any state | x ⟩ with x ∈ {0, 1}n and obtain f (x). We are given
the promise that the function f is either balanced or constant, and our task is to determine
which is true.

To start we define the unitary operator U f

U f : | x ⟩| y ⟩ 7→ | x ⟩| y ⊕ f (x) ⟩, (3.30)

where x is a n-bit string and ⊕ denotes addition modulo 2. Then the circuit that
solves the Deutsch-Jozsa Problem is the following:

| 0 ⟩⊗n H⊗n

U f

H⊗n

| 0 ⟩−| 1 ⟩√
2

(3.31)

Initially, the state of the circuit is

| 0 ⟩⊗n ⊗
(
| 0 ⟩ − | 1 ⟩√

2

)
. (3.32)

The first step of the circuit is to apply the Hadamard transform to | 0 ⟩⊗n, and
obtain the state

H⊗n| 0 ⟩⊗n ⊗
(
| 0 ⟩ − | 1 ⟩√

2

)
=

1√
2n ∑

x∈{0,1}n

| x ⟩ ⊗
(
| 0 ⟩ − | 1 ⟩√

2

)
. (3.33)

We then apply the formerly defined operator U f to the combined state 3.33, and
we obtain

1√
2n ∑

x∈{0,1}n

(
| x ⟩ ⊗ | 0 ⊕ f (x) ⟩ − | 1 ⊕ f (x) ⟩√

2

)
(3.34)
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Given that the result of the function f is either 0 or 1 we can evaluate both cases,
and we see that the state of the last qubit is

f (x) = 0 :
1√
2
(| 0 ⟩ − | 1 ⟩) (3.35)

f (x) = 1 :
1√
2
(| 1 ⟩ − | 0 ⟩) . (3.36)

And since both results only differ by a minus sign, we can rewrite 3.34 like

1√
2n ∑

x∈{0,1}n

(
| x ⟩ ⊗ (−1) f (x) | 0 ⟩ − | 1 ⟩√

2

)
(3.37)

Before analyzing the last step of the algorithm, let us consider the effect of the
Hadamard gate on | x ⟩, where x ∈ {0, 1}:

H| x ⟩ = 1√
2
(| 0 ⟩+ (−1)x| 1 ⟩)

=
1√
2

∑
z∈{0,1}

(−1)xz| z ⟩.
(3.38)

Therefore, if we have a n-qubit state | x ⟩, where x = (x1, . . . , xn) ∈ {0, 1}n, the
action of the Hadamard transform can be written as

H⊗n| x ⟩ = H| x1 ⟩ · · · H| xn ⟩

=
1√
2n

(
∑

z1∈{0,1}
(−1)x1z1 | z1 ⟩

)
· · ·
(

∑
zn∈{0,1}

(−1)xnzn | zn ⟩
)

=
1√
2n ∑

z1···zn∈{0,1}n

(−1)x1z1+···+xnzn | z1 ⟩ · · · | zn ⟩

(3.39)

and it can be rewritten more succinctly as

H⊗n| x ⟩ = 1√
2n ∑

z∈{0,1}n

(−1)x·z| z ⟩ (3.40)

where x · z denotes the inner product of x and z, reduced modulo 2.

Finally, in the last step of the algorithm, we apply (H⊗n ⊗ I) to the state 3.37, and
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using 3.40, we can write the final state of the algorithm like

|ψ ⟩ =
(

H⊗n ⊗ I
) ( 1√

2n ∑
x∈{0,1}n

(−1) f (x)| x ⟩ ⊗
(
| 0 ⟩ − | 1 ⟩√

2

))

=
1√
2n ∑

x∈{0,1}n

(−1) f (x)

(
1√
2n ∑

z∈{0,1}n

(−1)x·z| z ⟩
)
⊗
(
| 0 ⟩ − | 1 ⟩√

2

)

=
1
2n ∑

z∈{0,1}n

(
∑

x∈{0,1}n

(−1) f (x)+x·z
)
| z ⟩ ⊗

(
| 0 ⟩ − | 1 ⟩√

2

)
.

(3.41)

After the last step of the algorithm, the first n qubits of the state |ψ ⟩ are
measured in the computational basis. To interpret the result of the measurements,
we can consider the amplitude of | z ⟩ = | 0 ⟩⊗n in |ψ ⟩, that is

1
2n ∑

x∈{0,1}n

(−1) f (x). (3.42)

In the case that f were constant, the evaluations f (x) would yield either all 0 or
all 1, ∀x ∈ {0, 1}n. In this case, 3.42 evaluates to either 1 or −1, and this means
that the probability of measuring | 0 ⟩⊗n is 1. In the case that f were balanced,
the negative and positive amplitudes of 3.42 cancel out and the probability of
measuring the state | 0 ⟩⊗n is 0.

Therefore, we can conclude that if the measurement of the first n qubits of |ψ ⟩
is | 0 ⟩⊗n, then f is constant; and if the result of the measurement has at least one
qubit in the state | 1 ⟩, then f is balanced.

If we wanted to solve the Deutsch-Jozsa problem with a classical algorithm, we
would need to make 2n−1 + 1 queries to the function f in the worst case, in order
to determine if said function in either balanced or constant. With the quantum
algorithm presented in this chapter, we can determine that with just one query to
the function f , a considerable improvement over the classical solution.



Chapter 4

Quantum Key Distribution

Quantum Key Distribution (QKD) is a secure communication method that
takes advantage of the principles of quantum mechanics in order to generate a
secure key that two parties, Alice and Bob, can use to establish a secure commu-
nication channel.

In this chapter, the notion of Quantum Key Distribution (QKD) is presented,
along with two QKD protocols: The BB84 Algorithm and the EPR Protocol.

4.1 The basics of QKD

To better understand the QKD protocols, we need to understand the finality
and prerequisites of the QKD scheme. As stated before, the scheme allows two
parties to generate a secure key which can be used to securely establish a commu-
nication channel. In order to achieve this, the two parties need to be connected
over two channels, a classical one and a quantum one. The limitations of both
channels are explored later.

If the two parties already share a secure key K, Alice can send a message M
to Bob by using an encryption function and generating a ciphertext. When Bob
receives the ciphertext, he can recover the original message M by means of a
decryption function.

If an eavesdropper, named Eve, intercepts all the communications between
Alice and Bob, but has no information on the key K, then it is impossible for
Eve to decipher the message M from the ciphertext C. Therefore, it is extremely
important that Alice and Bob can generate a secure key.

In classical cryptography, the security of the communication relies on compu-
tational complexity. The most notable example of this is the RSA algorithm, which
relies on the assumption that there is no known algorithm working in polynomial
time to find the prime factors of an integer and is therefore impossible to find such

27
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factors for large integers in a reasonable amount of time. However, using quantum
computers, it is possible to find the factors of any integer N in polynomial time,
using an algorithm discovered by Peter Shor in 1994.

In this context, the importance of QKD algorithms is clear, given that the key
they produce is provably secure and does not rely on computational complexity
in order to be secure. Algorithms like the BB84 allow Alice and Bob to generate a
secure key that cannot be broken and in a way that both parties can be sure that
the information an eavesdropper can possess is minimal. The generated key can
then be used in combination with other classical algorithms, such as the one-time
pad algorithm.

4.1.1 QKD Prerequisites

In order to generate a secure key, Alice and Bob need to have two communica-
tion channels: a classical channel and a quantum one.

The classical channel is a two-way communication channel, so Alice can send
information to Bob and vice versa. In order for QKD to be effective, this channel
needs to be authenticated, i.e. Eve can only read the communication happening
on the channel, but cannot change the information in any way. This is crucial to
generate a secure key, given that if Eve could read and write to the channel, she
could impersonate Bob.

On the other hand, the quantum channel is less restricted. It is a one way com-
munication channel from Alice to Bob, and Eve can have full control over it. She is
able to perform any action to the qubits on the channel: measuring the qubits, in-
tercepting them and sending qubits in any other state, or even performing unitary
transformations on them - which includes entangling the qubits on the communi-
cation channel with ones in her possession.

There are some examples of QKD algorithms that do not require a quantum
channel connecting the two parties, usually because those already share entangled
states and can communicate using them. However, the classical channel is always
required and the condition that it needs to be authenticated is always assumed.

4.2 The BB84 Algorithm

The BB84 Algorithm was the first QKD algorithm proposed, created by Charles
Bennett and Gilles Brassard in 1984 - hence the name. This algorithm exploits the
states in superposition, the fact that measuring either | 0 ⟩ or | 1 ⟩ with respect to
the basis {|+ ⟩, | − ⟩} will yield any state from the basis with equal probability,
but measuring them with respect to the basis {| 0 ⟩, | 1 ⟩} will have no effect. In
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this chapter, we will represent the computational basis with H0{| 0 ⟩, | 1 ⟩} or ⊕
and the Hadamard basis with H1{| 0 ⟩, | 1 ⟩} or ⊗, a notation that will be useful to
describe the algorithm.

After describing the algorithm we will take a look at how an unauthorized
listener can try to obtain information, but in the attempt also introduce errors that
Alice and Bob can detect and decide, using a threshold, if the information that the
eavesdropper has obtained is relevant enough to abort the communication, or not
relevant enough and a secure key can still be extracted.

4.2.1 Steps of the algorithm

Suppose that Alice and Bob are already connected by a quantum channel and
an authenticated classical channel, as previously described. Then, the BB84 Algo-
rithm goes as follows:

Step 1: To start the algorithm, Alice prepares the raw key, a bit string of size
N. We represent the raw key with X ∈ {0, 1}N . For each bit Xj, 0 ≤ j < N, she
prepares a qubit in the state | Xj ⟩ ∈ {| 0 ⟩, | 1 ⟩}.

With all the qubits prepared, Alice chooses another Θ ∈ {0, 1}N at random.
This new bit string will dictate, for each qubit, if Alice applies the Hadamard gate
before sending it. Therefore, she applies the gate HΘj to the j-th qubit, where
H0 = Id and H1 = H. After this step, she obtains a string of qubits in the state
HΘ1 | X1 ⟩, . . . , HΘN | XN ⟩.

Step 2: At this point, Alice sends the N qubits HΘ1 | X1 ⟩, . . . , HΘN | XN ⟩ one by
one to Bob over the quantum channel. Since the quantum channel is public, if
an eavesdropper were to interfere with the communication to obtain as much
information as possible, it would be during this step. We will discuss the eaves-
dropping techniques in a later section.

Step 3: When Bob receives the qubits from Alice, he decides at random one basis
to measure the corresponding qubit, choosing between the computational basis
and the Hadamard basis. Again, we represent Bob’s choice with Θ′ ∈ {0, 1}N . In
this case, given 0 ≤ j < N, if Θj = 0 then Bob will measure the j-th qubit Alice
sent with respect to the basis {| 0 ⟩, | 1 ⟩}, and if Θj = 1, he will measure the j-th
qubit with respect to {|+ ⟩, | − ⟩}.

After measuring all the N qubits and interpreting both states | 0 ⟩, |+ ⟩ as a
binary 0 and | 1 ⟩, | − ⟩ as a binary 1, Bob obtains an N bit string Y ∈ {0, 1}N .

Notice that if Alice sent to Bob the state H| Xj ⟩ ∈ {|+ ⟩, | − ⟩}, and Bob mea-
sures said state with respect to the Hadamard basis H{| 0 ⟩, | 1 ⟩}, the resulting
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state obtained from the measurement will be the same state that Alice sent. How-
ever, if Bob had measured the state in the computational basis, the result from the
measurement would have randomly collapsed to either | 0 ⟩ or | 1 ⟩. The same hap-
pens when Alice sends a qubit in the state | Xj ⟩ ∈ {| 0 ⟩, | 1 ⟩} and Bob measures
with respect to the computational basis (obtaining the same state Alice sent) or
with respect to the Hadamard gate (obtaining a random result).

Therefore, X, the bit string corresponding to Alice, and Y, the bit string corre-
sponding to Bob, are identical at the positions j such that Θj = Θ′

j.

Step 4: In the last step of the algorithm, Alice and Bob share over the classi-
cal channel their choices of basis Θ, Θ′. They then consider the set of indices
J = { j : Θj = Θ′

j}, of size |J| ≈ N/2, and compute X̂ =
(
Xj
)

j∈J and Ŷ =
(
Yj
)

j∈J .
Given the definition of J, the two computed bit strings should be equal and could
be used as a key for communication. At this point, the key is called the sifted key.
In table 4.1 we can see an example of the BB84 algorithm, depicting all the steps,
where Alice sends to Bob 8 bits of information.

In reality, many errors can be introduced, due to either physical limitations or
eavesdropping. In order to correct those errors, Alice and Bob will run an error
correction algorithm in order to make sure that both X̂ and Ŷ are equal. And if
there is evidence of eavesdropping, another algorithm called privacy amplification
can be used to make sure that if Eve has gained some information, this information
is minimal.

In the next section, we will discuss how can Alice and Bob detect errors by
sharing some information over the public channel.

4.2.2 Eavesdropping and error detection

As we mentioned in the previous section, during the BB84 algorithm many
errors can be introduced, and therefore it is essential to check for errors after the
sifted key is generated, since if X̂ and Ŷ are not identical they cannot be used as a
key.

When discussing errors in the QKD scheme, the quantum bit error rate (QBER),
defined as the probability that a quantum bit experiences an error during the algo-
rithm, is used. Before starting the algorithm, the two parties agree on a threshold
for the QBER that, if it is reached, means that more errors occurred than what they
are willing to assume. If that were the case, then they would abort the communi-
cation. In practice, it is only possible to calculate an approximation of the QBER
without sharing too much information publicly.

To calculate an approximation of the QBER, Alice and Bob agree on a subset
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Step 1:

raw Key 0 1 1 1 0 1 0 0

Alice’s sending basis ⊗ ⊗ ⊗ ⊕ ⊕ ⊕ ⊗ ⊗
Alice sends |+ ⟩ | − ⟩ | − ⟩ | 1 ⟩ | 0 ⟩ | 1 ⟩ |+ ⟩ |+ ⟩

Step 3:

Bob’s measuring basis ⊕ ⊗ ⊕ ⊕ ⊗ ⊕ ⊕ ⊗

Bob measures | 0 ⟩ | − ⟩ | 0 ⟩ | 1 ⟩ |+ ⟩ | 1 ⟩ | 1 ⟩ |+ ⟩

Bob’s bit string 0 1 0 1 0 1 1 0

Step 4:

sifted key 1 1 1 0

Table 4.1: An example of the four stages of the BB84 algorithm presented in this
section, where Alice generates an 8 bit raw key.

of indexes T ⊂ {1, . . . , |J|} of size k, where |J| is the size of the set of indexes
of the sifted key. Then they share over the classical channel XT =

(
X̂i
)

i∈T and
YT =

(
Ŷi
)

i∈T . An approximation of the QBER is then calculated as the number of
disagreeing bits divided by k. Once the calculation has been made, if the QBER
is below the threshold they agreed on, they discard all the bits they used for the
calculation and use the other qubits indexed by J as the secret key.

To get a good approximation of the QBER it is important to agree on a large
number of bits to share. But since those are sent through the classical channel,
the chosen bits are made public and therefore cannot be used to generate the key.
It is important to find an equilibrium between these two factors, and usually the
length of bits to share is chosen such that k ≈ |J|/2.

The size of qubits that Alice initially shares is determined by the desired length
of the final key. To obtain a secret key of size n, Alice sends to Bob (4 + δ)n,
0 < δ < 1, qubits. After Bob measures all the qubits and they both share their re-
spective choice of basis, they discard slightly less than 2n qubits that Bob measured
in a different basis than Alice. From the remaining bits, they agree on exactly 2n
to keep, and discard the others. To calculate an approximation of the QBER, they
use n bits that are discarded afterward, leaving exactly n bits for the final key.
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Intercept and resend

Let’s consider now one of the most basic eavesdropping techniques, and see
how an approximation of the QBER can warn of the presence of Eve. The eaves-
dropping technique presented here is called intercept and resend strategy.

In this attack, each time Alice sends a qubit to Bob, Eve intercepts it and mea-
sures the qubit with either the computational or the Hadamard basis, selected at
random. For each qubit that Eve intercepts, she has a 50% chance of measuring it
in the same basis that Alice chose. If that is the case, after measuring the qubit it
will remain in the same state, and when Eve sends the qubit back to Bob over the
quantum channel, it will still be in the same state that Alice had initially prepared,
except that now Eve knows the value of the qubit.

However, if Eve selects a different basis than Alice for a certain qubit, after
making the measurement the state of the qubit will not be the same that Alice had
prepared. In this case, the presence of Eve can be detected when Alice and Bob
run the error detection protocol.

When Bob receives the qubit over the quantum channel, he is not aware of
Eve’s interaction with the qubit. Following the algorithm, he randomly chooses
between the computational or the Hadamard basis and makes a measurement
on each qubit. Just like we saw in the previous section, in around 50% of the
qubits, Bob will choose the same basis as Alice, and all the bits resulting from a
measurement with a different basis than Alice’s will be discarded.

From the remaining qubits, half of them were previously measured by Eve in
a different basis that Alice had chosen, so when Bob makes the measurement, half
of them will collapse onto the wrong bit, even though Bob measured the qubit in
the same Basis that Alice used to send it. This concludes that, in the intercept and
resend attack, the QBER is 0, 25.

In the error detection phase, Alice and Bob agree on a subset of n bits to share
publicly and detect errors. If Eve has measured all the qubits sent by Alice, then
Alice and Bob have a probability of 1 − (3/4)n of detecting an error, and thus, the
presence of Eve.

4.3 The EPR Protocol

In this section, we will present the EPR Protocol, proposed by Artur K. Ekert
and inspired by the original BB84 algorithm. The original algorithm proposed in
1991 was similar to the BB84 algorithm, but it used three different basis to make
the measurements, and entangled pairs of qubits. The entanglement allowed the
two parties communicating to detect the presence of an eavesdropper by checking
the Bell inequality.
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However, in this section we will only explain a simplified scheme for the EPR
Protocol, using entangled states and only two basis to make the measurements.

4.3.1 The simplified EPR Protocol

As we stated before, the EPR Protocol relies on Alice and Bob having entan-
gled qubits in their possession. In particular, they need to share N qubits in the
state | β00 ⟩, where Alice has the first qubit of the state and Bob the second. In
order to obtain the qubits in their entangled state, it is possible that one of the
parties prepared all the qubits, and sent the corresponding half of every bell state
over a quantum channel. It is also possible that the two parties met at the same
point in space, prepared the entangled states, and then they stored each their cor-
responding qubits for the next time they needed to communicate. However, we
will not explore in more detail than that how the two parties manage to prepare
the entangled states, and we will assume that this step is already completed.

For this protocol, Alice and Bob need to share a classical channel with the same
condition as in the BB84 algorithm: it needs to be authenticated to make sure that
an eavesdropper does not impersonate Bob. But unlike the BB84 protocol, if the
two parties have all the Bell states already prepared, the quantum channel is not
necessary.

For each Bell state, we will assume that Alice has the first qubit and Bob the
second, and we will denote this by

| β00 ⟩AB =
1√
2
(| 0A0B ⟩+ | 1A1B ⟩) (4.1)

l Therefore, at the start of the algorithm, the state including all the entangled
qubits is

N⊗
i=1

| β00 ⟩AB (4.2)

With the Bell states prepared, Alice and Bob can start communicating following
the steps described below.

Step 1: In the first step of the algorithm, Alice and Bob respectively choose Θ, Θ′ ∈
{0, 1}N . Alice measures the i-th qubit with respect to the basis HΘi{| 0 ⟩, | 1 ⟩}. If
Θi = 0 she obtains either | 0 ⟩ or | 1 ⟩, and then saves the result of the measurement
as a bit. However, if Θi = 1, she will measure either |+ ⟩ or | − ⟩. In this case, Al-
ice will identify |+ ⟩ with a binary 0 and | − ⟩ with a binary 1, and save the result
as a bit. At the same time, Bob measures the i-th qubit with respect to the basis
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HΘ′
i{| 0 ⟩, | 1 ⟩}, and identify the result of the measurement with either a binary 0

or a 1.
Notice that if we represent the state | β00 ⟩ in the Hadamard basis we obtain

| β00 ⟩ =
1√
2
(| 00 ⟩+ | 11 ⟩)

=
1

2
√

2
((|+ ⟩+ | − ⟩)(|+ ⟩+ | − ⟩) + (|+ ⟩ − | − ⟩)(|+ ⟩ − | − ⟩))

=
1

2
√

2
(|++ ⟩+ | −− ⟩+ |++ ⟩+ | −− ⟩)

=
1√
2
(|++ ⟩+ | −− ⟩)

(4.3)

With this equality we can be sure that, like in the BB84 algorithm, Alice and Bob
will have the same results for the measurement for the i-th qubit when Θi = Θ′

i.
This is due to entanglement. Suppose that Alice measures the first qubit with

respect to the Hadamard basis. Then, it will randomly collapse to either |++ ⟩ or
| −− ⟩. If it collapses to |++ ⟩, Alice will get a binary zero out of the measurement.
If Bob then, by chance, also measures with respect to the Hadamard basis, since
the qubit has already collapsed to |++ ⟩ he will measure |+ ⟩ with probability 1
and also get a binary zero out of the measurement.

In order to know at what positions Alice and Bob made the measurement with
respect to the same basis, they need to exchange some information first. This is
where the second step comes into place.

Step 2: This step consists of a public discussion. Now that all the qubits have
been measured, Alice and Bob need to know at which indexes did they coincide
making the measurements. For that reason, Alice shares her choice of Θ over the
public channel, and so does Bob. After that, they discard all the qubits with in-
dexes such that Θi ̸= Θ′

i. Since Alice and Bob have a 50% chance of choosing the
same basis for a given qubit, the length of the remaining qubits will be around
N/2. The key obtained after discarding those positions is called the raw key.

Step 3: The last step of the algorithm is also dedicated to error detection, and there
are two main reasons for this fact. The first and most important is eavesdropping.
In the case that Alice sent to Bob the entangled qubits through a quantum chan-
nel, Eve could have intercepted the qubits in order to obtain information. If that
were the case, a step of error detection should warn about the presence of Eve to
the two parties establishing communication. The second reason to have this step
of error correction is that entangled states can sometimes lose this property and
become unentangled. Therefore, without correlation between Alice’s and Bob’s
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qubits there could be errors in the raw key.
In order to check for errors, Alice and Bob agree on a subset of bits of the raw

key, of size exactly one half the length of that key. They share through the public
channel the value of the bits in those positions, and calculate an approximation of
the QBER as the number of disagreeing bits divided by the number of bits shared.

If the approximation of the QBER calculated is below the threshold of errors
that the two parties agreed on, then they use the remaining bits as the key. If not,
they discard the remaining bits and abort the communication. Contrarily to what
we did with the BB84 algorithm, we will not explore the eavesdropping techniques
for the EPR Protocol.
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Chapter 5

The CHSH Game

In this final chapter, we will analyze how a quantum strategy using entangle-
ment can outperform any classical strategy in the CHSH Game.

5.1 Rules of the CHSH Game

In the CHSH Game, we have three parties, Alice and Bob, who are the players,
and Charlie, the referee. To start the game, Charlie will choose x, y ∈ {0, 1} at
random, and send the bits to Alice and Bob respectively. When Alice receives
x, she will reply a ∈ {0, 1} to Charlie, and when Bob receives y, he will reply
b ∈ {0, 1} to Charlie. When the referee receives a, b checks whether a ⊕ b = x ∧ y,
where ⊕ denotes sum modulo two and ∧ denotes multiplication modulo two.
Alice and Bob win if the condition is satisfied.

It is important to note that Alice can have no information on y, and Bob no
information on x. From the moment that both parties receive their corresponding
bit, they are forbidden to communicate with one another. However, they can
establish a strategy before the referee sends the bits, and then act according to said
strategy to try and maximize their chances of winning.

We are going to study a classical strategy and a quantum one, to compare
them and see if, in the case that Alice and Bob shared an entangled state, it would
improve their chances of winning.

5.2 A Classical Approach

To study the classical version of the CHSH game, we will define what strategies
can Alice and Bob agree on before starting the game, and then evaluate those
against the referee’s choice of (x, y) ∈ {0, 1} × {0, 1}.

37
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referee’s choice (x, y) = (0, 0) (x, y) = (0, 1) (x, y) = (1, 0) (x, y) = (1, 1)

a(x)⊕ b(y) 0 0 0 0

x ∧ y 0 0 0 1

Result Win Win Win Fail

Table 5.1: Classical version of the CHSH game, where Alice and Bob always reply
0 to the referee.

Definition 5.1. A strategy is a pair of functions

a, b : {0, 1} −→ {0, 1}
x 7→ a(x)

y 7→ b(y)

Where a(x) represents Alice’s choice given a bit x ∈ {0, 1} and b(y) represents Bob’s
choice given y ∈ {0, 1}.

Given that there are only four applications that map {0, 1} 7→ {0, 1}, Alice and
Bob can only agree on 16 different strategies to play the game, and we can make
use of this fact in order to calculate the probability of them winning. Let’s consider
for a case study the following strategy:

a(0) ≡ 0 b(0) ≡ 0

a(1) ≡ 0 b(1) ≡ 0

With the strategy chosen, the referee elects one pair (x, y) ∈ {0, 1}× {0, 1} and
sends each bit to Alice and Bob. Then they both respond with a bit corresponding
to the chosen strategy. Considering the different four pairs (x, y) ∈ {0, 1} × {0, 1},
the results of the game are described in table 5.1. Therefore, with the chosen
strategy, Alice and Bob have a probability of 3/4 of winning.

Checking all the other possibilities, we can see that for any strategy there is at
least a pair (x, y) ∈ {0, 1} × {0, 1} in which the strategy will fail. Therefore, 75% is
the best probability that Alice and Bob have of winning the game.

5.3 A Quantum Approach

Let’s consider now that Alice and Bob prepared, before starting the game, a
two qubit system in the state | β00 ⟩AB = 1√

2
(| 0A0B ⟩+ | 1A1B ⟩). In this section, we
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will present a strategy that Alice and Bob can follow in order to obtain a better
winning probability than the 75% obtained by following the classical strategy. This
will be possible thanks to the properties of the entangled states.

Consider the following qubit state:

|ψθ ⟩ = cos θ| 0 ⟩+ sin θ| 1 ⟩, θ ∈ [0, 2π) (5.1)

And the matrix:

Uθ = | 0 ⟩⟨ψθ |+ | 1 ⟩⟨ψθ+π/2 | (5.2)

which is unitary by definition.
This state and the corresponding matrix will allow us to create a strategy that

Alice and Bob can follow. Once the entangled state is prepared, the game starts
and the referee chooses the corresponding pair (x, y) ∈ {0, 1} × {0, 1}.

Alice receives her bit, x, and applies a unitary transformation to her qubit
depending on the value of x. If the bit she has received is 0, she applies U0 to her
qubit, and if it is 1, she applies Uπ/4.

Simultaneously, Bob receives y. If the bit is 0 he applies to his qubit the unitary
transformation Uπ/8, and if it is 1, he applies U−π/8.

After applying the corresponding gates, Alice measures the qubit in her pos-
session with respect to the computational basis {0, 1}. If after the measurement
the qubit has collapsed to the state | 0 ⟩, she replies a 0 to the referee. and if the
qubit collapses on a | 1 ⟩, she replies a 1. Bob follows the same procedure, measur-
ing his qubit in the computational basis and replying to the referee the outcome
of the measurement. Finally, the referee computes a ⊕ b = x ∧ y and the game
concludes with either a win or a fail.

We can represent both Alice’s and Bob’s choices depending on Charlie’s x and
y using the following quantum circuit:

x •

| β00 ⟩
{

U0 Uπ/4 a

Uπ/8 U−π/8 b

y •

(5.3)

In the circuit 5.3, the second row represents the qubit in Alice’s possession,
and the gates that she applies depending on the value of x. And the third row
represents Bob’s qubit and the gates that he applies depending on the value of y.
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Let’s explore how this strategy guarantees a better probability of winning for
the two parties, compared to the 75% that guaranteed the classical strategy. We
will explore in depth the case when the referee chooses the pair (x, y) = (0, 0).
Given this choice, the equation a ⊕ b = x ∧ y = 0 will be satisfied in the case that
a = b = 0 or a = b = 1.

To see what is the probability of both cases, we can explore the amplitudes of
the two state qubit after the corresponding gates have been applied. Since we are
looking at the case (x, y) = (0, 0), Alice will have applied the gate U0, and Bob the
gate U π

8
. Hence, the state of the qubit before any measurement is made is given by

(
U0 ⊗ U π

8

)
| β00 ⟩ (5.4)

To calculate the probabilities of each measurement, it will be of great useful-
ness to be able to represent the state in 5.4 with the computational basis of H⊗2,
{| 00 ⟩, | 01 ⟩, | 10 ⟩, | 11 ⟩}. With this representation, we can know the probabilities
by looking at the corresponding amplitudes. There are two identities that are
going to help us greatly, and those are presented below.

Identity 5.2. The first identity comes easily by applying the properties of the tensor prod-
uct to Uθ , obtaining:

Uα ⊗ Uβ =
(
| 00 ⟩⟨ψα ⊗ ψβ |

)
+(

| 01 ⟩⟨ψα ⊗ ψβ+π/2 |
)
+(

| 10 ⟩⟨ψα+π/2 ⊗ ψβ |
)
+(

| 11 ⟩⟨ψα+π/2 ⊗ ψβ+π/2 |
)

.

(5.5)

Identity 5.3. The second identity that we will prove is

⟨ψα ⊗ ψβ | β00 ⟩ =
cos (α − β)√

2
(5.6)

To prove this identity, let’s first expand the tensor product ψα ⊗ ψβ and represent it in the
computational basis of H⊗2. Applying the linearity of the tensor product, we obtain

|ψα ⊗ ψβ ⟩ = cos α cos β| 00 ⟩ +
cos α sin β| 01 ⟩ +
cos β sin α| 10 ⟩ +
sin α sin β| 11 ⟩

(5.7)
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Now, expanding the inner product in 5.6, we obtain

⟨ψα ⊗ ψβ | β00 ⟩ = ⟨ψα ⊗ ψβ |
1√
2
(| 00 ⟩+ | 11 ⟩) ⟩

=
1√
2

(
⟨ψα ⊗ ψβ | 00 ⟩+ ⟨ψα ⊗ ψβ | 11 ⟩

)
=

1√
2
(cos α cos β + sin α sin β) =

cos(α − β)√
2

(5.8)

Proving the equation in 5.6.

Given that Charlie sent the pair (x, y) = (0, 0) to Alice and Bob respectively,
Alice has applied the gate U0 to her qubit, and Bob the gate U π

8
. Therefore, the

entangled qubit is in the state (
U0 ⊗ U π

8

)
| β00 ⟩ (5.9)

Using identities 5.2 and 5.3 we can represent the state in 5.9 using the compu-
tational basis: (

U0 ⊗ U π
8

)
| β00 ⟩ =

cos(−π/8)√
2

| 0A0B ⟩

+
cos(−5π/8)√

2
| 0A1B ⟩

+
cos(3π/8)√

2
| 1A0B ⟩

+
cos(−π/8)√

2
| 1A1B ⟩

(5.10)

Since the referee chose the pair (x, y) = (0, 0), Alice and Bob have to answer
either a = b = 0 or a = b = 1 in order to win the game. This translates to them
measuring the state | 00 ⟩ or the state | 11 ⟩, since both parties will answer the result
of the measurement with respect to the computational basis.

With the amplitudes calculated in 5.10, we can see that the probability of win-
ning the game is

(
cos(−π/8)√

2

)2

+

(
cos(−π/8)√

2

)2

=
2 +

√
2

4
≈ 0.85 (5.11)

and the probability of losing is(
cos(−5π/8)√

2

)2

+

(
cos(3π/8)√

2

)2

=
2 −

√
2

4
≈ 0.15 (5.12)
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It can be shown with similar arguments that for the remaining three cases of
referee’s choices, {(0, 1), (1, 0), (1, 1)}, Alice and Bob win with the same probabil-
ity of (2 +

√
2)/4.

It is clear then that the strategy using an entangled pair is more effective than
any classical strategy.
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