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Abstract
In this document we study the Poisson Process and some of its applications.

This is a point process which is intended to model situations where one has a
set of independent random points in a space. This situation appears naturally
in many circumstances and therefore, the process has been widely known for
decades. Throughout the memoir, a list of the abundant applications in which
the Poisson process is used is given, and some are explained in detail. In addi-
tion, using the theory explained during the thesis, the Poisson process in one
dimension is also applied to try to predict the number of traffic accidents in
Catalonia in a given time interval, as well as the number of associated fatalities.

Resum
En aquest document s’estudia el Procés de Poisson i algunes de les seves

aplicacions. Aquest és un procés de punts que té com a objectiu modelar
situacions en les quals hi ha un conjunt de punts aleatoris i independents en
un espai. Aquesta situació apareix de forma natural en moltes circumstàncies,
fent que el procés sigui àmpliament conegut des de fa dècades. Al llarg de la
memòria es proporciona una llista de les nombroses aplicacions en les quals
s’utilitza el Procés de Poisson i algunes d’aquestes s’expliquen en detall. A
més, usant la teoria explicada durant aquest treball, també s’aplica el Procés
de Poisson en una dimensió per intentar predir el nombre d’accidents de trànsit
a Catalunya en un interval de temps determinat, així com el nombre de víctimes
mortals associades.
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Introduction

In statistics and probability theory, a random collection of points in a
given space (henceforth called S) is called a point process This essay studies
the Poisson process, which is a random sequence of points in S that satisfies
the following two properties:

1. Independence: For any disjoint subsets A,B ⊆ S, the random varia-
bles N(A) and N(B) counting the number of points falling in each of
these subsets, are independent.

2. The Poisson distribution: Given a subset A ⊆ S, the variable N(A)
follows a Poisson distribution. That is, there exists µ(A) ≥ 0, called the
parameter of the Poisson variable, such that:

P[N(A) = k] = e−µ(A) · (µ(A))
k

k!
, for k = 0, 1, . . .

As a consequence of the Poisson distribution,

E[N(A)] = V[N(A)] = µ(A).

It can be proven that µ(A) gives rise to a measure in the underlying space
S called the intensity of the Poisson process.
Reciprocally, and perhaps more relevantly, for every σ-finite and non-atomic
measure µ in S, there exists a Poisson process with intensity µ. This is going
to be further developed in Chapter 1.7.

If S = Rd, generally, the intensity µ of a Poisson process is given by the
integral of a positive function on S (µ is absolutely continuous with respect to
the Lebesgue measure). The function λ is called the intensity function, i.e.:

µ(A) =

∫
A

λ(x)dx.

Although the two properties that define a Poisson process may seem as two
separate characteristics, it is worth mentioning that they are related, since the
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2 Introduction

fundamental property of independence implies, at least in regular situations,
that the counting function follows a Poisson distribution. This is seen in Chap-
ter 1.

Figure 1: A Poisson process and some disjoint subsets in S.

The Poisson process is used to model a variety of situations, precisely be-
cause of the independence condition. It is used to study in astronomy, statis-
tical mechanics, telecommunications, biology, economics, geology [14]...
For example, the distribution of chocolate chips in a biscuit can be viewed as
a Poisson process in 3 dimensions [22] since the chocolate chips are randomly
and independently distributed in the dough. In two dimensions, the location
of trees in a forest, or traffic accidents, can be modelled with a Poisson process
as well.
It is also used very often in queueing theory [14],[24]. For instance, in a su-
permarket queue, the arrival of the customers are the events and the average
number of available supermarket checkouts per minute is the intensity µ. This
situation can be studied as a Poisson process, since the arrivals are in principle
independent and at random times.

Even though the Poisson process is really helpful, obviously not everything
can be modelled with it. There are many situations where there is interaction
between the points. For example, the outbreaks of an infectious disease can-
not be modeled by a Poisson process, it is necessary to take into account that
there are positive correlations. In the opposite sense, if particles with the same
charge are modelled, there will be negative correlations. In the above cases,
the independence condition is not fulfilled.
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Figure 2: A 1-D Poisson process.

In words of J. Kingman: "There may be subtle effects which allow the
presence of points in one region to influence those in another. There may be
limitations which prevent two points from being too close together. There may
be unexpected geometric patterns or regularities ("ley lines2", for instance, in
archaeology). A Poisson model is usually the simplest and, in a sense, the
most random way in which to describe any particular phenomenon."3

The Poisson process is not called so because it was invented or studied by
the physicist and mathematician Siméon Denis Poisson (1781-1840) [14]. Ac-
tually, it takes this name because the Poisson distribution plays an important
role in the process. Determining the origins of the process is not an easy task,
since there are many notes with different notations from different authors in
different countries that refer to the same process. However, as [14] explains,
Norbert Wiener (1894-1964) is considered to be the first who provided a ri-
gorous mathematical definition of the Poisson process. He referred to it as
"discrete chaos" and "Poisson chaos".

In this project we mostly work on spaces S ⊆ Rd, for d ∈ N. A Poisson
process is called homogeneous (or stationary or uniform), when the parameter
µ(A) of the counting variable N(A), is precisely the Lebesgue measure of A,
or a multiple of this. That is, µ(A) = λ|A|, with λ > 0 independent of A.
In this case, the likelihood of having a given number of points is the same in
any subset of S of equal measure. Therefore, this probability is invariant by
rotations and translations. In any other case, the Poisson process is called
non-homogeneous (or non-stationary or non-uniform). Then, the probability
does depend on the location of the particular region and, in general, it will not
be the same if the set is rotated or translated.

The memoir adheres to the following outline. In Chapter 1, based mainly
on Kingman’s book Chapters 1 and 2 [15], we first formalise the definition of
Poisson process, constructing the probability space where it is defined.
Then, in Section 1.2 a heuristic argumentation is given to justify that the es-

2"Ley lines" are straight alignments drawn between various historic structures, prehis-
toric sites and prominent landmarks.

3p. 2 in Kingman’s book [15].
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sential property of the Poisson process, and the one that appears in so many
applications, is the independence of different points. It is proven that, in a
regular situation, this independence implies that the counting variable N(A)
follows a Poisson distribution.
From here, and bearing in mind that independence is the fundamental pro-
perty, a couple of natural properties are seen. First, that the superposition of
two Poisson processes is still a Poisson process (Theorem 1.11). Second, the
mapping of a Poisson process is also a Poisson process (Theorem 1.14).
The next step is to see that, given a subset B ⊆ S, the Poisson process in B
conditioned on N(B) = n, has a multinomial distribution [1] of parameters n

and p(A) = µ(A)
µ(B)

, for a subset A ⊆ B.
This indicates how to prove one of the most important results of this thesis:
the existence theorem (Theorem 1.19). This states that, given a σ-finite and
non-atomic measure µ in S, there exists a Poisson process with intensity µ.
This is seen in Section 1.7.
The existence theorem allows to construct Poisson processes having as average
distribution almost any reasonable measure µ.
To conclude the chapter we illustrate the versatility of the process by char-
acterising the measures µ in R for which a Poisson process is almost surely a
separate sequence.

Chapter 2 shows various applications of the Poisson process. The emphasis
is placed on the study of road accidents with victims in Catalonia in the period
from 2008 to 2020. This is done in Section 2.1. The above theory is applied to
predict, by means of a non-homogeneous Poisson process, the expected number
of accidents in a given period of 2021. Weighted Poisson processes are also
introduced in order to find the expected number of fatalities in the analysed
period. The usefulness of this could be crucial, as it could help governments to
predict failures, and try to find solutions to minimise these numbers as much
as possible. This application is based on two previous studies, one in Indonesia
and another in Poland [12],[10],[9].
The following section shows a study carried out by R. D. Clarke in 1946, on
the location of bombs dropped during World War II in London, by using a
two-dimensional Poisson process. In the study of this application we follow
the article by Shay and Shaw [24]. Along the same lines, and following [11],
Section 2.2.2 explains the current usefulness of the Poisson process in finding
the location of unexploded bombs.

In the last section of Chapter 2, right before the end of the project, we
detail a list of fields to which the Poisson process has been applied.



Chapter 1

Formalization of the Poisson
process

This chapter starts with the formalisation of the Poisson process. In the
next section it is shown that the important property is that of independence.
Subsequently, important theorems such as the Superposition Theorem and the
Mapping Theorem are detailed. In the last section of the chapter, the Exis-
tence theorem is proved.
In this chapter we mainly rely on Kingman’s book Chapters 1 and 2 [15].

1.1 Formal definition

To formally define a Poisson process it is necessary to recall some defini-
tions.

Definition 1.1. Let S be a set and Σ a σ-algebra over S. A positive measure
is a map function µ: Σ → [0,+∞] such that

1) µ(∅) = 0.

2) µ is σ-additive, that is, for all countable collections {An}∞n=1 of pairwise
disjoint sets in Σ,

µ(
∞⋃
n=0

An) =
∞∑
n=1

An.

The pair (S,Σ) is called a measurable space, and the members of the Σ are
called measurable sets.

5



6 Formalization of the Poisson process

Definition 1.2. A probability space is a triplet (Ω, F , P), where Ω is the
set of elementary outcomes (outcome space), F is a σ-field of subsets of Ω
(events) and P is a probability measure, assigning a number in [0,1] to every
event in F .

Definition 1.3. A real-valued random variable is a function X: Ω → R that
is measurable in (Ω, F , P), which means that for all x ∈ R the event {ω ∈ Ω:
X(ω) ≤ x} belongs to F .

Observe that X takes real values. A complex-valued random variables
could be similarly defined as X: Ω → C.
The random points, as in Figure 1, are either finite or countably infinite,
subsets of the underlying space S, where S is called the state space. Therefore,
S∞ = S × S × · · · × S × · · · can be identified with the set of all (countable)
sequences in S. A sequence {xk}∞k=1 is considered as an infinite vector in S∞,
{xk}∞k=1 = (x1, x2, . . . , xn, . . .). Our purpose is the construction of random
sequences in S, also known as point processes, with certain properties.

Definition 1.4. Let (S,F ) be a measurable space and µ a measure on it.
The measure µ in S is σ-finite if S can be written as a countable union of
measurable sets Sn with µ(Sn) < ∞, for all n ∈ N.

A measure with no atoms is called non-atomic, that is:

µ({x}) = 0, for any x ∈ S.

If µ is non-atomic, the probability of having two coincident points is zero.

The most common case in applications is S = Rd, d ∈ N and µ = m, the
Lebesgue measure. We will consider throughout the whole paper only state
spaces S ⊆ Rd, for some d ∈ N, equipped with a σ−finite, non-atomic and
positive measure µ. However, a more generic theory could be studied with not
many modifications.

Definition 1.5. Let (Ω,F ,P) be a probability space. A Poisson process in S
is a map Π : Ω → S∞ satisfying two specific conditions.

Let S be a state space with a measure µ, and (Ω,F ,P) a probability
space. In order to count the random points in subsets of S, it is fundamental
to make a distinction among all the subsets. A reasonable family of them
will be chosen and these will be called the test sets, as in Figure 1. Thus, if
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Π(w) = {xk(w)}∞k=1 and A is a test set, which means in particular that A is
µ-measurable, then the random variable

N(A) = #{Π(w) ∩ A} = #{k|xk(w) ∈ A}

is defined as the number of points of Π in A, which is a number in N. Observe
that the random variable

N(A) : Ω → N = {0, 1, 2, . . . ,∞}

is a function because the right-hand side depends on ω. Moreover, this function
must be measurable to become a random variable. Observe that for all µ-
measurable set A ⊆ S and n ∈ N = {0, 1, 2, . . .},

{ω ∈ Ω|N(A) = n} ∈ F . (1.1)

Then, Π is a Poisson process if:

1) For any A,B ⊆ S µ-measurable sets with A∩B = ∅, the random variables
N(A) and N(B) are independent.

2) For any A ⊆ S µ-measurable set, the random variable N(A) follows a
Poisson distribution with parameter µ(A), that is:

P[N(A) = k] = e−µ(A) · (µ(A))
k

k!
, for k ≥ 0.

In most applications S ⊆ Rd and the considered test sets A are Lebesgue
measurable in S, and the σ-field is the one generated by the open subsets of
Rd.

Remark 1.6. The Poisson process has been defined as a random sequence of
points in S∞. It is important to point out that it could be equivalently defined
as a random atomic measure in S.
Recall that for x ∈ S the Dirac measure δx on S, is defined on any set A ⊆ S
by:

δx(A) =

{
1, x ∈ A
0, x /∈ A.

The Poisson process Π(ω) = {xk(ω)}k can be equivalently defined as the ran-
dom atomic measure ν(ω) =

∑∞
k=1 δxk(ω). Then, for a µ−measurable A ⊆ S,

νω(A) =
∞∑
k=1

δxk
(A) =

∑
xk∈A

1 = #({λk(ω)}k ∩ A) = N(A).

More formally, denoting by T the set of measures of the form
∑∞

k=1 δxk
, where

xk ∈ S, the Poisson process can be equivalently defined as the map
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Π : Ω → T, ω 7→ νω =
∞∑
k=1

δxk(ω).

Clearly each sequence {xk}∞k=1 gives rise to a measure νω =
∑∞

k=1 δxk(ω). Cor-
respondingly, a random measure νω in T will be of the form νω =

∑∞
k=1 δxk

,
hence it brings associated a random sequence {xk}∞k=1, which is a subset in S.

1.2 Why independence is the strong condition?
As mentioned in the introduction, we show here that, under mild regularity

conditions, the independence hypothesis in definition 1.5 somehow implies that
the random counting variables N(A) must have Poisson distribution. There-
fore, the most determining property of a Poisson process is the independence
of the counting functions of disjoint sets.
We show this with a heuristic argument, in the simple setting Rd.
Let At be one parameter family of test sets, like a ball of radius t ≥ 0, a cube
of side t, or any increasing family of sets with regular boundary in Rd. For
n ≥ 0, define the probabilities

pn(t) = P{N(At) = n},

qn(t) = P{N(At) ≤ n}.
Observe that qn and pn have only jump discontinuities, because N(At) in-
creases with t and qn decreases with t, so they are both differentiable almost
everywhere.
The random variable N(At) jumps from n to n+1 when its enlarging boundary
crosses one of the random points. The probability that this occurs between t
and t+ h, with h ∈ R+, is the asymptotically probability that there is a point
in the region between At and At+h, which it is supposed small when h is small.
This is shown below.
More specifically, assume that

E[N(At+h)−N(At) ≥ 2] =
∞∑
k=2

k · {P[N(At+h)−N(At) = k]} = o(h).

Under this mild assumption, let us estimate the probability of having points
in At+h\At.

Claim:

P[N(At+h)−N(At) ≥ 1] = E[N(At+h)]− E[N(At)] + o(h)

= E[N(At+h\At)] + o(h).
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Proof. By definition and the assumption,

E[N(At+h)]− E[N(At)] = E[N(At+h)−N(At)]

=
∞∑
k=0

k · {P[N(At+h)−N(At) = k]} = P[N(At+h)−N(At) = 1]+

+
∞∑
k=2

k · {P[N(At+h)−N(At) = k]} = P[N(At+h)−N(At) = 1] + o(h).

Define now
µ(t) = E{N(At)},

so that the Claim reads as

P[N(At+h)−N(At) = 1] = E[N(At+h)]− E[N(At)] + o(h)

= µ(t+ h)− µ(t) + o(h).

From here on, the goal is to demonstrate that N(At) follows a Poisson
distribution of parameter µ(t).
Fixed n, consider the following event E = {N(At) ≤ n}, and let’s see what
happens when the time increases to t+ h. There are two options:

1. N(At+h) ≤ n. Since it is assumed that the probability of having two
or more points in At+h\At is o(h), thus, this essentially happens in two
different cases:

(a) N(At) < n.

(b) N(At) = n, and there is no point in At+h\At.

2. N(At) = n, and there is a point in At+h\At. So that, N(At+h) = n+ 1.

Hence, if E1 = {N(At+h) ≤ n} and E2 = {N(At) = n} ∩ {N(At+h\At) = 1},
then E = E1 ∪ E2 with E1 ∩ E2 = ∅. Therefore, P(E) = P(E1) + P(E2).
Because At and At+h\At are disjoint, by the independence assumption, N(At)
and N(At+h\At) are independent. Then, by the Claim,

P(E2) = P[N(At) = n] · P[N(At+h\At) = 1] = pn(t) · [µ(t+ h)− µ(t) + o(h)].

Also,

qn(t) = P(E) = P(E1) + P(E2) = qn(t+ h) + pn(t) · [µ(t+ h)− µ(t) + o(h)].
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Hence,
qn(t)− qn(t+ h) = pn(t) · [µ(t+ h)− µ(t) + o(h)].

Dividing by h, and letting h → 0,

−dqn
dt

= pn ·
dµ

dt
.

From this we will deduce that pn = P[N(At) = n] has the values of a Poisson
distribution of parameter µ(t).
Since pn = qn − qn−1 and p0 = q0 = P[N(At) = 0], then p1 = q1 − q0 = q1 − p0,
so q1 = p1 + p0.

For n = 0,

−dp0
dt

= p0 ·
dµ

dt
. (1.2)

Also,

−dq1
dt

= −d(p1 + p0)

dt
= p1 ·

dµ

dt
,

hence
dp1
dt

= −dp0
dt

− p1 ·
dµ

dt
= (p0 − p1) ·

dµ

dt
.

Let’s prove by induction that for n ≥ 1:

dpn
dt

= (pn−1 − pn) ·
dµ

dt
. (1.3)

So the case n = 1 has been proven in (1.2) above.
Assuming this for n− 1, then, for n:

dpn
dt

=
d(qn − qn−1)

dt
=

dqn
dt

− dqn−1

dt

= −pn ·
dµ

dt
+ pn−1 ·

dµ

dt
= (pn−1 − pn) ·

dµ

dt
,

as desired.
Now, integrating (1.2) on both sides and using that p0(0) = 1 and µ(0) = 0 =
E[N(A0)], the result is

log p0 + µ = 0,

and consequently,
p0(t) = e−µ(t), t ≥ 0. (1.4)
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From (1.3), also

d

dt
(pn · eµ) =

dpn
dt

· eµ + pn · eµ ·
dµ

dt

= eµ · (pn−1 − pn) ·
dµ

dt
+ pn · eµ ·

dµ

dt
= pn−1 · eµ ·

dµ

dt
.

As pn(0) = 0 for n ≥ 1:

pn(t) = e−µ(t)

∫ t

0

pn−1(s) · eµ(s)
dµ

ds
ds.

Now, starting from (1.4) and by induction on n, we see that:

P[N(At) = n] = pn(t) = e−µ(t) · µ(t)
n

n!
, (1.5)

which means N(At) follows a Poisson distribution of parameter µ(t) = E{N(At)}.
To see this for n = 1, observe that by (1.4), an integration yields

p1(t) = e−µ(t)

∫ t

0

p0(s) · eµ(s)
dµ

ds
ds = e−µ(t)

∫ t

0

dµ

ds
ds

= e−µ(t) · [µ(t)− µ(0)] = e−µ(t) · µ(t)
1

1!
.

Supposing (1.5) true until n− 1, and substituting the variable x = µ(s), then,
for n:

pn(t) = e−µ(t)

∫ t

0

(µ(s))n−1

(n− 1)!
· e−µ(s) · eµ(s) · dµ

ds
ds =

e−µ(t)

(n− 1)!

∫ t

0

(µ(s))n−1 · dµ
ds

ds

=
e−µ(t)

(n− 1)!

∫ µ(t)

0

xn−1dx =
e−µ(t)

(n− 1)!
· [x

n

n
]
µ(t)
0 = e−µ(t) · µ(t)

n

n!
.

1.3 The Superposition Theorem
The Poisson process has a number of special properties which make its use

and the calculation of associated probabilities often surprisingly simple. One
of them is the superposition property. Roughly stated, the superposition of
Poisson processes Πi of intensity µi is again a Poisson process with intensity∑

i µi.
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Definition 1.7. Let Π1 and Π2 be two general point processes in S. The
superposition of both point processes is the union of all points in Π1 ∪Π2. So,
if A ⊆ S, the new counting function for A is

NΠ1∪Π2(A) = NΠ1(A) +NΠ2(A).

Notice that superposition could as well be defined as the sum of two random
atomic measures, as explained in Remark 1.6.

Figure 1.1: Superposition of two point processes.

To introduce the Superposition theorem, which has a huge importance, the
following lemma needs to be stated. Its proof is very technical, so we skip it;
the interested reader can find it in [15] p. 15.

Lemma 1.8. (Disjointness Lemma) Let Π1 and Π2 be independent Poisson
processes on S with µ1 and µ2 as their respective intensities. Let A be a
measurable set with µ1(A) < ∞ and µ2(A) < ∞. Then Π1 and Π2 are disjoint
with probability 1 on A, this is:

P{Π1 ∩ Π2 ∩ A = ∅} = 1. (1.6)

This lemma actually extends to sets A which are countable unions of sets
of finite measure (for both µ1 and µ2).
The statement of Lemma 1.8 is not true without a finiteness assumption, as
shown in the example below.

Example 1.9. Let Π be the homogeneous Poisson process in R2, with intensity
the Lebesgue measure. Let ϕ be the projection ϕ(x, y) = x onto the first
coordinate. Then,

ϕ(Π) = {x|(x, y) ∈ Π}
is a random countable subset of R. Its counts have highly degenerate distri-
butions: if A ⊆ R is a Borel set, then

NΦ(Π)(A) = #{ϕ(Π) ∩ A} = #{Π ∩ (A× R)}
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has a Poisson distribution with parameter

µ(A) = |A× R| =
∫∫

A×R
dxdy =

{
0, if |A| = 0
+∞, if |A| > 0.

Then the variables NΦ(Π)(A) have degenerated distributions. For k ∈ N:

• If |A| = 0,

P[Nϕ(Π)(A) = k] = P[NΠ(A× R) = k] =

{
0, k > 1
1, k = 0.

• If |A| > 0,

P[Nϕ(Π)(A) = k] = P[NΠ(A× R) = k] =

{
0, k < ∞
1, k = ∞.

Now, Π1 = Π2 = ϕ(Π), with respective counting functions N1 and N2, are all
degenerate, and therefore independent of one another.
It is immediate to check, case by case, that Π1 and Π2 are independent: for
n1, n2 ∈ N and A1, A2 ⊆ R,

P[{N1(A1) = n1} ∩ {N2(A2) = n2}] = P[N1(A1) = n1] · P[N2(A2) = n2].

In summary, it has been proven that Π1 and Π2 are independent Poisson pro-
cesses but (1.6) does not hold when |A| > 0.

A random variable that follows a Poisson distribution with parameter
λ ≥ 0, is noted as P(λ).
The following theorem is a clear example of the high relevance of the inde-
pendence property. The result does not hold when the point processes have
correlation, that is, when there is repulsion or attraction between points. Be-
fore, two results need to be stated.

Lemma 1.10. (Countable Additivity) Let Xj, j = 1, 2, . . . be independent
random variables, and assume that Xj has the distribution P(λj) for each j.
If,

σ =
∞∑
j=1

λj (1.7)
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converges, then

S =
∞∑
j=1

Xj

converges with probability 1, and S has distribution P(σ). If on the other
hand, (1.7) diverges, then S diverges with probability 1.

In particular, this lemma explains why P(0) and P(∞) is well defined.
The proof is the same as the familiar proof that the sum of two independent
Poisson variables is again a Poisson variable, so we skip it.

Theorem 1.11. (Superposition) Let Π1, Π2,... be a countable collection of
independent Poisson processes on S and let Πn have intensity µn for each n.
Then, their superposition

Π =
∞⋃
n=1

Πn

is a Poisson process with intensity

µ =
∞∑
n=1

µn. (1.8)

Proof. Let Nn(A) denote the number of points of Πn in a µn-measurable set
A, for n ∈ N. If µn(A) < ∞ for all n, Lemma 1.8 shows that the random sets
Πn are disjoint on A almost surely, so that the number of points of Π in A is

N(A) =
∞∑
n=1

Nn(A). (1.9)

By the Countable Additivity Lemma, N(A) has distribution P(µ(A)), where
µ(A) is given by (1.8).
On the other hand, if µn(A) = ∞ for some n, then Nn(A) = N(A) = ∞ and
(1.9) holds trivially.
To prove the theorem it is enough to demonstrate that the random variables
N(A1), N(A2), ... , N(Ak) are independent if the sets Aj are disjoint. But,
this is clear because the double array of variables

Nn(Aj), j = 1, 2, . . . , k and n = 1, 2, . . .

are all independent, and N(Aj) is defined in terms of a subset of these variables
disjoint from those for other j.
This completes the proof, which for the sake of generality has been stated
for countably infinite superpositions; it contains as an obvious corollary the
corresponding result for finite superpositions.
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Before finishing this section, we show another general frequently used con-
sequence. Its proof is routine, so we skip it.

Theorem 1.12. (Restriction) Let Π be a Poisson process with intensity µ
on S, and let S1 be a measurable subset of S. Then, the random countable set

Π1 = Π ∩ S1

can be regarded either as a Poisson process on S with intensity

µ1(A) = µ(A ∩ S1)

or as a Poisson process on S1 whose intensity is the restriction of µ to S1.

1.4 The Mapping Theorem
Another important property of the Poisson process is that, under weak

conditions ensuring that all the random points are mapped to distinct points,
the mapping of a Poisson process into another space is also a Poisson process.
To properly state the Mapping Theorem we recall the following definition.

Definition 1.13. Given two measurable spaces (S,Σ1), (T,Σ2), a measurable
mapping f : S → T and a measure µ : Σ1 → [0,+∞], the push-forward of µ is
the measure f ∗

µ : Σ2 → [0,+∞] defined by

f ∗
µ(B) = µ(f−1(B)), B ∈ Σ2.

The push-forward measure is the induced measure from µ by the function
f . If the function f is clear from the context, it is noted as f ∗

µ(B) = µ∗(B).

Theorem 1.14. (Mapping): Let Π be a Poisson process with intensity µ on
the state space S, and let f : S → T be a measurable function such that the
push-forward measure µ∗ has no atoms. Then f(Π) is a Poisson process on T
having the induced measure µ∗ as its intensity.

Proof. The proof will be done only for injective functions, because the general
case is very technical and outside the scope of this work. See [15] p. 19.
Assume thus that f is a measurable and injective function. Then,

f−1(B) = {x ∈ S|f(x) ∈ B}

is measurable for all measurable subset B in T .
Hence, f(Π) = {f(x)|x ∈ Π} is a random countable set in T , and the aim is
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to prove that this is a Poisson process in T .
For B measurable in T , the function

N∗(B) = #{f(Π) ∩B}

counts the number of points of f(Π) falling in B. As f is injective, the new
points f(x), x ∈ Π are distinct, so

N∗(B) = #{x ∈ Π|f(x) ∈ B} = N(f−1(B)),

and its distribution is a Poisson with parameter µ∗(B).
Furthermore, if B1, B2, ..., Bk are disjoint, their inverse images are disjoint too
and, consequently, N∗(Bj) are independent.
In summary, it is been proven that if the points f(x), x ∈ Π are distinct, then
f(Π) is a Poisson process in T .

Figure 1.2: Application of a transformation s to each individual point in a
point process [3] p.17.

Remark 1.15. A careful reading of the proof shows that the result follows as
soon as f and Π are such that, almost surely, for every x, y ∈ Π with x ̸= y
one has f(x) ̸= f(y). This is the same as requiring that {f(x) = f(y)|x, y ∈
Π, x ̸= y} is a subset with null measure.
The Mapping Theorem does not work with every function f , as the constant
function shows, because of the fact that f maps the whole of Π onto a single
point of T , which means that there are two distinct points with the same
image. Note that if f is a constant function, µ∗ has a unique atom.
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Example 1.16. The projection of a higher-dimensional Poisson process is a
Poisson process.
To prove this, suppose that Π ⊆ RD is a Poisson process with intensity
dµ(x1, x2, ..., xD) = λ(x1, x2, ..., xD)dx1 · · · dxD, and consider the projection
f : RD → Rd, for d ≤ D,

f(x1, x2, ..., xD) = (x1, x2, ..., xd).

Then, for B ⊆ Rd,

µ∗(B) =

∫
B×RD−d

λ(x1, x2, . . . , xD)dx1 · dx2 · · · dxD

=

∫
B

λ∗(x1, x2, . . . , xd)dx1 · dx2 · · · dxd

where

λ∗(x1, x2, ..., xd) =

∫
RD−d

λ(x1, x2, ..., xD)dxd+1 · dxd+2 · · · dxD. (1.10)

As µ is σ-finite and µ∗ is non-atomic, the Mapping Theorem can be applied
and we can conclude that if (1.10) converges, then f(Π) is a Poisson process
with intensity λ∗ on Rd.

1.5 Transforming a point process
A convenient feature of point processes is that new point process can be

generated by some modifications. Two examples of such transformations have
been already seen: superposition and mapping. Without going into too much
detail, the purpose now is the discussion of two other possible modifications:
thinning and cluster processes [3].

1.5.1 Thinning

Let Π0 be a Poisson process in S. Then, thinning consists in deleting some
points from Π0. Suppose that every point x in Π0 is labelled with an indicator
random variable Ix taking the value 0 if the point x has to be deleted or 1 if
it has to be retained. Then the thinned process Πf is formed by those points
x from Π0 such that Ix = 1.
There are two different ways of thinning: dependent thinning, when the random
variables Ix are dependent, and independent thinning, when Ix are independent.
If an homogeneous Poisson process is subjected to independent thinning, the
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resulting thinned process is also Poisson. Just to show an example in R, see
Figure 1.3.

Figure 1.3: Thinning a point process [3] p.18.

1.5.2 Cluster Formation

We will now look at a point process, for instance a Poisson process, to
which a transformation is applied; the result is, in general, no longer another
Poisson process, precisely because of its fundamental characteristic of indepen-
dence between the points.

Let Π0 be a point process in S. Clustering is a modification which consists
in replacing each point in Π0 by a random finite set of points πx, called the
cluster associated to x. Then, the superposition of all clusters forms the new
point process Πf . It is usually assumed that the clusters πx for different points
x are independent. For example, see Figure 1.4.

Figure 1.4: Cluster formation (Zi) to a point process X. The resulting point
process is Y , [3] p. 19.

1.6 The Bernoulli process
We are interested in understanding, given a Poisson process Π in a state

space S, the distribution of the points in a region A ⊆ S after conditioning
on the number of points in A, which is N(A). As we shall see soon, we get a
multinomial distribution [1].

Definition 1.17. Let n ∈ N be a number of independent and identically dis-
tributed trials where, each of which can result in one of k classes. For each
i = 1, 2, ..., k, let the chance of getting class i on a single trial be pi, so that
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∑k
i=1 pi = 1.

For each i = 1, 2, ..., k, let Ni be the number of trials that result in class i, so
that

∑k
i=1Ni = n.

Then the joint distribution of N1, N2, ..., Nk is given by

P(N1 = n1, N2 = n2, ..., Nk = nk) =
n!

n1!n2!...nk!
· pn1

1 · pn2
2 · ... · pnk

k . (1.11)

where ni ≥ 0, for 1 ≤ i ≤ k and
∑k

i=1 ni = n.
This is called the multinomial distribution with parameters n and p1, p2, ..., pk.
Denoted as N ∼ Multinomial(n, p).
When there are only two classes, i. e. k = 2, the formula reduces to the
familiar binomial formula.

Let B be a subset in S, and let Π be a Poisson process on B with intensity
µ and satisfying 0 < µ(B) < ∞. Then, Π is a finite subset of B with proba-
bility one.

The goal now is to understand what happens if Π is conditioned on the
value of N(B), which has a Poisson distribution P(µ(B)). To this end, define
the conditional probability

Pn{·} = P{·|N(B) = n}.

Let A1, A2, ..., Ak be disjoint subsets of B and let n1, n2, . . . , nk be integers
such that n1 + n2 + . . .+ nk ≤ n. The aim is to determine

P{N(A1) = n1, . . . , N(Ak) = nk|N(B) = n}
= Pn{N(A1) = n1, . . . , N(Ak) = nk}.

Consider A0 = (A1 ∪ . . . ∪ Ak)
c and n0 = n −

∑k
j=1 nj. Then, B =

⋃k
j=0Aj.

By the independence,

Pn{N(A1) = n1, N(A2) = n2, ..., N(Ak) = nk} =

= P{N(A1) = n1, N(A2) = n2, ..., N(Ak) = nk|N(B) = n}

=
P{[N(A1) = n1, N(A2) = n2, ..., N(Ak) = nk] ∩ [N(B) = n]}

P{N(B) = n}

=
P{N(A1) = n1, N(A2) = n2, ..., N(Ak) = nk, N(A0) = n0}

P{N(B) = n}

=

∏k
j=0

e−µ(Aj)µ(Aj)
nj

nj !

e−µ(B)µ(B)n

n!

=
n!

n0!n1! · · · nk!
(
µ(A0)

µ(B)
)n0(

µ(A1)

µ(B)
)n1 · · · (µ(Ak)

µ(B)
)nk .
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Letting

pj = p(Aj) =
µ(Aj)

µ(B)
(1.12)

we see thus that
−−−→
N(A) = (N(A0), N(A1), . . . , N(Ak)) follows a multinomial

distribution of parameters n and p = (p0, p1, . . . , pk).

Remark 1.18. Another way of seeing this is the following. If X1, X2, ..., Xn are
independent random variables, distributed over the space S according to the
probability distribution p = (p0, p1, . . . , pk), then Xr are distinct with probabi-
lity one (as a consequence of the Disjointness Lemma), so that {X1, X2, ..., Xn}
is a random set with n elements. It is an easy multinomial calculation that

N(A) = #{r|Xr ∈ A}

satisfies (1.11) with (1.12).

Hence, given N(B), the points of a Poisson process look exactly like N(B)
independent random variables, with common distribution (1.12). In the follow-
ing section a fundamental consequence of this result is going to be presented.

Here we exhibit another simple consequence. Let Z = Z(Π) be a random
variable and Π a Poisson process with a finite intensity µ (so Z is defined
in terms of the Poisson process Π). Suppose that E(Z) could be computed
in terms of its intensity µ. Establishing µ(·) = µp(·), where p is a fixed
probability measure and µ = µ(S) can vary, then, there exists a function ϕ
such that E(Z) = ϕ(µ). If En(Z) = E(Z|N(S) = n) is the corresponding
expectation for the multinomial Process (1.11), then

E(Z) =
∞∑
n=0

µn

n!
e−µ · En(Z).

As En(Z) is independent of µ:

ϕ(µ)eµ =
∞∑
n=0

µn

n!
e−µ · En(Z) · eµ =

∞∑
n=0

En(Z)

n!
µn.

Thus, if cn =
En(Z)

n!
,

ϕ(µ)eµ =
∞∑
n=0

cnµ
n.

Expanding ϕ(µ)eµ as a power series in µ, En(Z) can be acquired from the
successive coefficients.
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1.7 The Existence Theorem

Given a non-atomic and σ-finite measure µ on S, one may want to know
if there exists a Poisson process with intensity µ, a process for which N(A)
has distribution P(µ(A)) for all A subset of S, and N(A) is independent of
N(B) if A ∩ B = ∅. The answer is positive assuming only mild conditions on
µ. Here it is shown how to construct such a process. In this way, a theory of
great generality and wide applicability is obtained.

Theorem 1.19. (Existence): Let µ be a σ-finite and non-atomic measure
on S, then, there exists a Poisson process on S having µ as its intensity.

Proof. Let µ =
∑∞

n=1 µn,, with µn(S) < ∞. Without loss of generality, sup-
pose µn(S) > 0, for all n ∈ N. On a suitable probability space construct
independent random variables

Nn, Xnr (n, r = 1, 2, 3, ...)

such that the distribution of Nn is P(µn(S)) and, for all r, the distribution of
Xnr is

pn(·) =
µn(·)
µn(S)

, (1.13)

where Nn = Nn(S) is the total number of points in S. Note that in the previous
section, the multinomial distribution shown how to choose pn(·). Write

Πn = {Xn1, Xn2, ..., XnNn}

and

Π =
∞⋃
n=1

Πn. (1.14)

Write

Nn(A) = #{Πn ∩ A}.

Take now A1, A2, . . . , Ak mutually disjoint and fix m ∈ N. Letting A0 =
(A1 ∪ A2 ∪ ... ∪ Ak)

c and m0 = m− (m1 +m2 + . . .+mk), then

P{N(A1) = m1, N(A2) = m2, . . . , N(Ak) = mk|Nn(S) = m} =

=
m!

m0!m1! · · ·mk!
pn(A0)

m0pn(A1)
m1 · · · pn(Ak)

mk (1.15)
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Hence, the joint distribution of Nn(A1), . . . , Nn(Ak) is given by

P{Nn(A1) = m1, Nn(A2) = m2, . . . , Nn(Ak) = mk} =

=
∞∑

m=
∑k

j=1 mj

P{Nn(A1) = m1, Nn(A2) = m2, . . . , Nn(Ak) = mk|Nn(S) = m}·

· P(Nn(S) = m).

By (1.13) and (1.15), since µn(S) =
∑k

j=0 µn(Aj),

P{Nn(A1) = m1, Nn(A2) = m2, . . . , Nn(Ak) = mk} =

=
∞∑

m=
∑k

j=1 mj

e−µn(S)(µn(S))
m

m!

m!

m0!m1!...mk!

k∏
j=0

pn(Aj)
mj

=
∞∑

m=
∑k

j=1 mj

(µn(S))
m

k∏
j=0

e−µn(Aj)

mj!

µn(Aj)
mj

µn(S)mj
.

Define πk(x) = xk · e
−x

k!
; then

P{Nn(A1) = m1, Nn(A2) = m2, . . . , Nn(Ak) = mk} =

=
∞∑

m=
∑k

j=1 mj

(µn(S))
m

k∏
j=0

πmj
(µn(Aj))

1

µn(S)mj

=
∞∑

m=
∑k

j=1 mj

(µn(S))
m−

∑k
j=0 mj

k∏
j=0

πmj
(µn(Aj))

=
∞∑

m=
∑k

j=1 mj

1 ·
k∏

j=0

πmj
(µn(Aj)).

Summing on all m ≥
∑k

j=1mj is the same as summing on all

m0 = m−
k∑

j=1

mj ≥ 0.

Thus, separating the product in the case j = 0 and the case j ≥ 1, and
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summing for all m0:

P{Nn(A1) = m1, Nn(A2) = m2, . . . , Nn(Ak) = mk} =

=
∞∑

m=
∑k

j=1 mj

πm0(µn(A0))
k∏

j=1

πmj
(µn(Aj))

=
∞∑

m0=0

πm0(µn(A0))
k∏

j=1

πmj
(µn(Aj))

=
k∏

j=1

πmj
(µn(Aj))

∞∑
m=m0

πm0(µn(A0)).

Since
∞∑

m0=0

πm0(µn(A0)) =
∞∑

m0=0

e−µn(A0) · (µn(A0))
m0

m0!
= 1,

it follows

P{Nn(A1) = m1, Nn(A2) = m2, . . . , Nn(Ak) = mk} =
k∏

j=1

πmj
(µn(Aj))

=
k∏

j=1

e−µn(Aj) · (µn(Aj))
mj

mj!
.

So the Nn(Aj) are independent random variables with distributions P(µn(Aj)).
Thus, Πn are independent Poisson processes with respective intensities µn. Ap-
plying the Superposition Theorem it is concluded that (1.14) defines a Poisson
process with intensity µ.

Before finishing this section it is important to remark that the theorem
is proven with the assumption of σ-finitude of the measure µ, which is not
strictly necessary.

Separated Poisson process

The existence theorem allows the generation of Poisson processes with pre-
fixed properties. To exemplify the importance of this theorem, we characterise
the non-homogeneous Poisson processes on the line that are almost surely sep-
arated.
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Let Π be a Poisson process in R with intensity µ. The objective is to find
the measures for which the random points of the Poisson process are separated
in R.

Definition 1.20. A sequence {xk}∞k=1 ⊆ R is separated if

inf
k ̸=j

|xk − xj| > 0.

It is said that {xk}∞k=1 is δ-separated if |xk − xj| > δ, for k ̸= j.

Separation is important in many problems, for example, interpolation in
numerical analysis. In order to state the result, the real line is split in unit
intervals In = [n, n+ 1), n ∈ Z.

Theorem 1.21. Let Π be a Poisson process in R with intensity µ. Then,

P(Π separated) =
{

1, if
∑

n∈Z µ
2(In) < ∞

0, if
∑

n∈Z µ
2(In) = ∞.

Thus, for instance, in S = R with dµ(x) = 1
1+|x| , then:

µ(In) =

∫ n+1

n

dx

1 + |x|
= log(

1 + |n+ 1|
1 + |n|

) ∽
1

1 + |n|
,

and ∑
n∈Z

µ2(In) ∽
∑
n∈Z

1

(1 + |n|2)
< ∞.

Hence, Π is almost surely a separated sequence.
On the other hand, considering the homogeneous Poisson process (i.e.: dµ =
dx), then

∑
n∈Z µ

2(In) =
∑

n∈Z 1 = ∞, so Π is not a separate sequence of
random points with probability 1.

The main tool of the proof are the Borel-Cantelli Lemmas.

Theorem 1.22. (Borel-Cantelli Lemma 1): Let {En}∞n=1 be events such
that

∞∑
n=1

P(En) < +∞.

Then,
P(lim sup

n→∞
En) = 0.
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Theorem 1.23. (Borel-Cantelli Lemma 2): Let {En}∞n=1 be independent
events such that

∞∑
n=1

P(En) = ∞.

Then
P(lim sup

n→∞
En) = 1.

Proof. First, assume that
∑

n∈Z µ
2(In) < ∞. Consider the family of random

variables
Xn = NΠ(In) = #{Π ∩ In}, n ∈ Z.

These variables are independent with E(Xn) = µ(In). Define the events

En = {Xn > 1}.

The aim is to see that P(Xn > 1) almost never happens. As
∑

n∈Z µ
2(In) < ∞,

then µ(In) → 0. On the other hand,

P(Xn > 1) = 1− P(Xn = 0)− P(Xn = 1) = 1− e−µ(In) − µ(In)e
−µ(In)

and, for µ(In) small enough, by Taylor’s expansion around 0 of the exponential,

1− e−µ(In) − µ(In)e
−µ(In) = 1− (1− µ(In) +

µ2(In)

2
− . . .)− µ(In) · (1− µ(In)

+
µ2(In)

2
− . . .) = 1− 1 + µ(In)−

µ2(In)

2
+ . . .

− µ(In) + µ2(In)−
µ3(In)

2
+ . . . =

µ2(In)

2
+ o(|µ(In)|3).

Therefore,

P(Xn > 1) =
µ2(In)

2
+ o(|µ(In)|3) ≈

µ2(In)

2
.

Thus,
∑

n∈Z µ
2(In) < ∞ implies that

∑
n∈Z P(Xn > 1) < ∞. Consequently, by

the first Borel-Cantelli Lemma, the probability of having an infinite number of
intervals with Xn > 1 is zero. So there are almost surely only a finite number
of intervals In such that contain more than one point of the Poisson process.
Strictly speaking, this is not enough to prove that Π is a separated Poisson
process, because there could be points arbitrarily approaching the boundaries
of adjacent intervals Ik. To check that this case has null probability, consider
intervals of the form Jn = [n − 1

2
, n + 1

2
) for all n ∈ Z. As in the previous

computations, only a finite number of Jk has more than one point almost
surely. Let

A1 = {There are a finite number of In with Xn > 1},
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A2 = {There are a finite number of Jn with NΠ(Jn) > 1}.
As P(A1) = P(A2) = 1, it implies that P(A1 ∩ A2) = 1. Moreover, as A1 ∩ A2

is an event for which Π is separated, then, finally,

P({Π is a separated sequence}) = 1.

Suppose now that
∑

n∈Z µ
2(In) = ∞. To prove that almost surely Π is not

separated, it is enough to see that for all l0 > 0 in N,

P({Π is 2−l0- separated}) = 0.

Thus, fixing any l0 in N and a separation of 2−l0 , split the interval In into
2l0 intervals with length 2−l0 , which will be called I l0n,j for j = 1, 2, . . . , 2l0 .
Denoting X l0

n,j = #{Π ∩ I l0n,j}, it is enough to check that

P({X l0
n,j > 1 for an infinite number of n and j}) = 1.

As the random variables X l0
n,j are independent, applying the second Borel-

Cantelli Lemma, it is only necessary to see that

∑
n∈Z

2l0∑
j=1

P(X l0
n,j > 1) = +∞.

But this is easy: naming µl0
n,j = µ(I l0n,j), then

P(X l0
n,j > 1) = 1− P(X l0

n,j = 0)− P(X l0
n,j = 1) = 1− e−µ

l0
n,j − µl0

n,j · e−µ
l0
n,j .

The larger the value of µ(In), the greater the probability of having more points
in In. Therefore, the worst scenario is when µ(In) → 0, so that µl0

n,j is very
small. By the previous Taylor approximation,

P(X l0
n,j > 1) =

(µl0
n,j)

2

2
+ o(|µl0

n,j|3),

hence, ∑
n∈Z

2l0∑
j=1

P(X l0
n,j > 1) ≃ 1

2

∑
n∈Z

2l0∑
j=1

µ2(I l0n,j).

By the Cauchy-Schwarz inequality

µ2(In) ≤ 2l0
2l0∑
j=1

µ2(I l0n,j),
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then, finally

∑
n∈Z

2l0∑
j=1

P(X l0
n,j > 1) ≳

1

2
· 2−l0 ·

∑
n∈Z

µ2(In) = +∞.

Applying the second Borel-Cantelli Lemma the proof is completed.
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Chapter 2

Some applications of the Poisson
process

2.1 Non-homogeneous compound Poisson pro-
cess in one dimension applied to road traffic
accidents with victims in Catalonia

We show here an example of the Poisson process applied to traffic accidents.
We have mainly followed two studies, one from Indonesia [12], and the other,
more detailed, from Poland [10],[9].
From now on, road traffic accidents with victims will be referred to as traffic
accidents. The aim is to model traffic accidents to be able to predict the
number of accidents in a period of time, as well as the number of fatalities or
injured people. The use of a Poisson process in this situation seems reasonable,
because in principle traffic accidents are independent; the fact that there was
an accident yesterday does not affect the probability of having an accident
today. Two accidents in the same section of the road can be related to other
factors (road in bad condition, a sharp curve, etc.), but they are mutually
independent. Thus, a non-homogeneous compound Poisson process is used to
model traffic accidents with victims.

2.1.1 Model of the road accident number in Catalonia

A non-homogeneous Poisson processes (NPP) is considered due to the rea-
son that, clearly, the probability of having an accident in a particular section
of a road depends on time (season of the year, holidays, periods, etc.).
To formalise this, let {N(t) = N(0,t) : t ≥ 0} be a non-homogeneous Poisson

29
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process, where N(t) is the Poisson variable that counts the number of acci-
dents during the period (0, t). Let λ(x) be the intensity function, so that the
intensity of a time interval (s, t) is µ[(s, t)] =

∫ t

s
λ(x)dx.

In this case, µ[(t, t+ h)] =
∫ t+h

t
λ(x)dx and, by definition,

P[N(t+ h)−N(t) = k] = P[N(t,t+h) = k] =
{µ[(t, t+ h)]}k

k!
· e−µ[(t,t+h)]

=
(
∫ t+h

t
λ(x)dx)k

k!
· e−

∫ t+h
t λ(x)dx. (2.1)

The expectation and variance of NPP are given by

Λ(t) = E[N(t)] = E[N(0,t)] =

∫ t

0

λ(x)dx. (2.2)

V(t) = V[N(t)] = V[N(0,t)] =

∫ t

0

λ(x)dx.

The corresponding standard deviation is just D(t) =
√

V[N(t)].
Also, the expected value of an increment N(t+ h)−N(t) is

E[N(t+ h)−N(t)] = E[N(t,t+h)] =

∫ t+h

t

λ(x)dx. (2.3)

The corresponding standard deviation is given by the square root of V[N(t,t+h)].

Figure 2.1 details the number of accidents, including injuries and fatalities,
for the period from January 1st 2008 to December 31st 2020. The goal is,
placing ourselves temporarily in January 1st 2021, to try to predict the number
of traffic accidents and the number of fatalities for a particular period of time
in 2021. An accurate model would provide very valuable information.
The following data comes from the Statisical yearbook of traffic accidents in
Catalonia from Servei Català de trànsit de la Generalitat de Catalunya [23].
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Figure 2.1: Accident data in Catalonia
Number Year Interval Centre Accidents Fatalities in 30 days Injured α β

1 2008 [0,1) 0.5 24,590 452 32,659 0.018381 1.328142
2 2009 [1,2) 1.5 24,663 411 32,792 0.016665 1.329603
3 2010 [2,3) 2.5 24,132 381 32,329 0.015788 1.339673
4 2011 [3,4) 3.5 22,775 352 30,492 0.015456 1.338836
5 2012 [4,5) 4.5 23,368 336 31,630 0.014379 1.35356
6 2013 [5,6) 5.5 23,831 272 32,180 0.011414 1.350342
7 2014 [6,7) 6.5 23,828 272 32,087 0.011415 1.346609
8 2015 [7,8) 7.5 25,286 291 33,673 0.011508 1.331686
9 2016 [8,9) 8.5 26,995 282 35,999 0.010446 1.333543
10 2017 [9,10) 9.5 27,052 283 35,884 0.010461 1.326482
11 2018 [10,11) 10.5 26,907 326 35,426 0.012116 1.316609
12 2019 [11,12) 11.5 26,576 304 34,682 0.011439 1.305012
13 2020 [12,13) 12.5 17,779 204 22,530 0.011474 1.267225

Total 84.5 317,782 4166 422,363 0.170942 17.267324

In Figure 2.1 the parameter α is the rate of fatalities for accident and β
the rate of injured people for accident.

Estimation of model parameters

The first step is to evaluate empirically the intensity Λ(t). In both studies
followed, it is assumed that the empirical hazard rate can be approximated by
the linear function λ(t) = at + b. Of course, there are many other regression
models to approximate this kind of data, such as polynomial of various degrees,
exponential or logarithmic functions. The linear method is chosen to keep it
simple.
Standard spreadsheets, such as Excel, yield the parameters a, b of the linear
regression directly from the table, using the least squares approximation and
the standard formulas:

a =
n
∑m

i=0 XiYi −
∑m

i=0Xi

∑m
i=0 Yi

n
∑m

i=0X
2
i − (

∑m
i=0Xi)2

, b =

∑m
i=0 Yi − a

∑m
i=0 Xi

n
, (2.4)

where m is the number of studied years.

The computations have been rounded off to four decimals during the whole
model, although they are done with more decimals in Excel.
Figure 2.2 shows the center of the interval of time in the horizontal axis and the
number of accidents in the vertical axis. The blue line represents the empirical
intensity of road accidents with victims in Catalonia, whereas the dotted line
is the linear regression for the intensity λ(t). Using (2.4), we get a = 7.3571
and b = 24, 396.9478.
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Figure 2.2: The empirical intensity of road accidents.

The value R2 is a statistical measure that represents the proportion of
the variance for a dependent variable that is explained by an independent
variable in a regression model. Whereas correlation explains the strength of
the relationship between an independent and a dependent variable, R2 explains
the extent to which the variance of one variable explains the variance of the
second variable. So, if the R2 of a model is 0.50, then approximately half of
the observed variation can be explained by the inputs of the model. Thus, the
larger R2, the better the model. As it is explained in [8].

It is obvious that this graph is not the best approximation. Checking the
R2 value, it can be deduced that this approximation should be rejected, be-
cause R2 < 0.5, as it is said in [17]: "R2 is too low for an empirical model
in social science research. This range of R2 is not acceptable". After all, a
forecast model is just a model. Also, looking at the last section of the graph,
it is necessary to mention that the data from 2020 is quite exceptional, and
can hardly match a regular model, since the traffic patterns during Covid-19
were completely altered.
Every model has its assumptions, and, if these are not met, it should not be
relied upon. For example, just as a curiosity, if data from 2020 had not been
contemplated, the regression would have changed, as well as the graph and the
R2 value. It would be Figure 2.3.
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Figure 2.3: The empirical intensity of the road accidents until 2019.

In this instance, the X and Y axis are the same as for Figure 2.2. The blue
function represents the number of accidents over time, but in this case omitting
2020. The dotted line is the regression showing the intensity of accidents
but only until 2019. Then, the approximation improves substantially. So,
the proposed Poisson model fits well in an ordinary situation. Nonetheless,
this model does not predict correctly when extraordinary events occur, as it
happens with most models. It seems that specialists, currently, favor a model
based on approximation by a negative binomial over the Poisson model [21].
Keeping the data from 2020, the intensity function obtained is

λ(t) = 7.3571t+ 24, 396.9478, for t ≥ 0,

and from (2.2),

Λ(t) = E[N(t)] =

∫ t

0

(7.3571x+ 24, 396.9478)dx = 3.6786t2 + 24, 396.9478t;

where 0 ≤ t ≤ 13 [years].

Prediction of the accident number

The aim now is to anticipate the number of traffic accidents, estimate the
probability of a given number of these accidents and predict the fatalities in
Catalonia from April 1st to July 31st 2021.
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By (2.1) and (2.2), the present model gives, for any interval of time (t, t+ h):

P[N(t,t+h) = k] = P[N(t+ h)−N(t) = k] =
[Λ(t+ h)− Λ(t)]k

k!
e−[Λ(t+h)−Λ(t)].

As seen in (2.3), the expected number of accidents for the time interval (t, t+h)
is

E[N(t+h)−N(t)] =

∫ t+h

t

λ(x)dx =

∫ t+h

t

(ax+ b)dx = h(
ah

2
+ b+at). (2.5)

By (2.5), the standard deviation is then

D(t;h) =

√
h(

ah

2
+ b+ at). (2.6)

In this example, the period of time to study is in the interval [13, 14). Since
from January 1st to April 31st 2021 there are 90 days, the end of the interval
corresponds to t = 13+ 90

365
= 967

73
≈ 13.2466 years. From April 1st to July 31st

the number of years passed is h = 30+31+30+31
365

= 122
365

≈ 0.3342.
Using (2.5) and (2.6), the expected number of accidents is

E[N(t+ h)−N(t)] =
122

635
(
7.3571 · 122

635

2
+ 24, 396.9478 + 7.3571 · 967

73
)

≈ 8, 187.5819.

The corresponding standard deviation is

D(t;h) =

√
h(

ah

2
+ b+ at) =

√
8, 187.5819 ≈ 90.4853.

In conclusion, the predicted number of accidents, from April 1st to July 31st

2021 is around 8,188 accidents, with a standard deviation of around 90.

The Poisson model allows further predictions. For example, the probability
that the number of accidents in this period will be not less than c = 7, 991 and
not greater than d = 8, 340 is

P7,991≤k≤8,340 = P[7, 991 ≤ N(t+ h)−N(t) ≤ 8, 340]

=

8,340∑
k=7,991

8, 187.5819k

k!
· e−8,187.5819.

Counting this sum is not viable, so instead one uses the standard approxima-
tion of the Poisson with parameter λ by the normal distribution with mean
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λ and standard deviation
√
λ. Then, normalizing to the standard normal

Z ∼ N(0, 1), and denoting ϕ(t) = P(Z ≤ t), the approximated probability is

P7,991≤k≤8,340 ≈ ϕ(
8, 340− 8, 187.5819

90.4853
)− ϕ(

7, 991− 8, 187.5819

90.4853
)

≊ 0.95− 0.01 = 0.94.

2.1.2 Non-homogeneous compound Poisson process

In order to anticipate the fatalities number, we use the non-homogeneous
compound Poisson process.
A compound Poisson process is formed by adding random weights to each point
of the previous Poisson process. It is reasonable to add weights to accidents,
so that they account for the number of fatalities. For instance, an accident
with three fatalities should have a bigger weight than another in which there
are no deaths.
Formally, it is assumed that {N(t) : t ≥ 0} is a non-homogeneous Poisson
process (NPP) determined by a function λ(t) ≥ 0, for t ≥ 0 as before, and
X1, X2, . . . is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables such that, for every i ∈ N, Xi takes value in N and is independent
of {N(t) : t ≥ 0}. A Poisson process of the form

X(t) = X1 +X2 + · · ·+XN(t), t ≥ 0

is said to be a non-homogeneous compound Poisson process (NCPP).

Proposition 2.1. Let {X(t) : t ≥ 0} be an NCPP as above. If E[X2
1 ] < ∞,

then:

(1) E[X(t)] = E[N(t)]E(X1) = Λ(t)E(X1).

(2) V[X(t)] = Λ(t)E(X2
1 ),

where Λ(t) = E[N(t)] =
∫ t

0
λ(x)dx.

Proof. Applying the low of total expectation

E[X(t)] = E{E[X(t)|N(t)]},
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it is

E[X(t)] = E{E[X(t)]|N(t)} = E{E[
N(t)∑
i=1

Xi]|N(t)]}

=
∞∑
n=0

E[
N(t)∑
i=1

Xi|N(t) = n]P(N(t) = n) =
∞∑
n=0

E[
N(t)∑
i=1

Xi]P(N(t) = n)

=
∞∑
n=0

E[X1]nP(N(t) = n) = E(X1)E[N(t)].

For (2), using the law of total variance

V[X(t)] = E{V[X(t)|N(t)]}+ V{E[X(t)|N(t)]}, (2.7)

noting (I) the first part of the sum and (II) the second,
(I)

E[X(t)|N(t)] =
∞∑
n=0

V[
N(t)∑
i=1

Xi|N(t) = n]P(N(t) = n)

=
∞∑
n=0

V[
N(t)∑
i=1

Xi]P(N(t) = n) =
∞∑
n=0

V(X1)nP(N(t) = n)

= V(X1)E[N(t)] = V(X1)Λ(t).

(II)

V{E[X(t)|N(t)]} = V{E[
N(t)∑
i=1

Xi]|N(t)} = V[E(X1)N(t)]

= V[N(t)][E(X1)]
2 = [E(X1)]

2Λ(t).

Therefore,

V[X(t)] = V(X1)Λ(t) + [E(X1)]
2Λ(t) = Λ(t){E(X2

1 )− [E(X1)]
2+

+ [E(X1)]
2} = Λ(t)E(X2

1 ).

Corollary 2.2. Let {X(t+ h)−X(t) : t ≥ 0} be an increment of the NCPP.
If E[X2

1 ] < ∞, then:

1. E[X(t+h)−X(t)] = E[N(t+h)−N(t)] ·E(X1) = [
∫ t+h

t
λ(x)dx] ·E(X1).

2. V[X(t+ h)−X(t)] = E[N(t+ h)−N(t)]E(X2
1 ),

where Λ(t) = E[N(t)] =
∫ t

0
λ(x)dx.
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Prediction of accident consequences

As it is done in [9], [10] it is assumed that the random variables Xi, i =
1, 2, . . . have Poisson distribution with parameter E(Xi) = V(Xi) = η, i =
1, 2, . . . , N(t) and that the parameter η also depends on time, that is η = η(t).

In our opinion it is not obvious that the number of deaths per accident
behaves as a Poisson, since, for example, the probability of 100 fatalities in a
traffic accident is negligible. Perhaps it would be more reasonable to assume
that Xi follows a binomial with possible values k = {0, 1, 2, 3, 4} and adding
weights to it. But of course there may be a compelling reason for this assump-
tion that we do not see. Anyway, we explain the study with this assumption.

The purpose at this point is to estimate η(t), using the linear regression
η(t) = a2t+ b2 described in (2.4).
To get the linear regression in this case, one considered the center of the time
interval in the horizontal axis, as before, but now the frequency of fatalities
with respect the road accident number is in the vertical axis, that is:

Yi =
#{fatalities}

#{accidents with victims}
.

The result can be seen in Figure 2.4.

Figure 2.4: Frequency of fatalities against the road accident number (by a
linear function).

Here the dotted line is η(t), which is the new linear regression, and the blue
function represents the frequency of fatalities with respect to the number of
road accidents. As this graph shows, now R2 = 0.7251, which is clearly better
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than before.
One could still try to improve the value of R2 by, for instance, approximating
the data by a quadratic function instead of a linear one, in that case, we would
get the Figure 2.5.

Figure 2.5: Frequency of fatalities against the road accident number (by a
polynomial function).

Here R2 = 0.9322, which is better than the previous value.

Continuing with the linear case, the regression line obtained is,

η(t) = −0.0006t+ 0.0169, t ≥ 0. (2.8)

In principle, in the interval of prediction (t, t + h), for small h, the random
variables Xi are i.i.d. Nevertheless, the linear function above is almost constant
in (t, t + h) if the parameter h is small. Thus, to simplify the model, it is
supposed that

E(Xi) = V(Xi) = η̂ =
η(t) + η(t+ h)

2
. (2.9)

From (2.5) and Corollary (2.2) it is deduced that:

E[X(t+ h)−X(t)] = E[N(t+ h)−N(t)] · η̂ = E[N(t+ h)−N(t)]

= h(
ah

2
+ b+ at) · η̂. (2.10)

V[X(t+ h)−X(t)] = E[N(t+ h)−N(t)] · E(X2
1 ).

Now, recall that the expected number of fatalities at the time interval (t, t+h)
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is given by the increment X(t+h)−X(t). Thus, in order to predict the number
of fatalities in road accidents in Catalonia from April 1st to July 31st 2021, the
above identities are applied to the value η(t) estimated in (2.8).
By (2.8) and (2.9),

η̂ =
η(13.2466) + η(13.2466 + 122

365
)

2
≊

0.0093 + 0.0091

2
= 0.0092.

Also
E(X2

i ) = V(Xi) + [E(Xi)]
2 = η̂ + η̂2 = 0.0092.

Denoting by EFN to the expected number of fatalities and using (2.10), the
predicted number of fatalities in the considered period of time is:

E[X(t+ h)−X(t)] = E[N(t+ h)−N(t)] · η̂ = 8187.5819 · 0.0092
= EFN = 74.9998 ≈ 75.

Also by (2.10), the standard deviation of the fatality number (DFN) is:

D[X(t+ h)−X(t)] =
√

E[N(t+ h)−N(t)] · (η̂ + η̂2)

≈
√

8, 187.5819 · 0.0092 = DFN = 8.6998.

To conclude, the actual number of fatalities in this period is not known
to us. Nonetheless, it is known that the total number for 2021 was 241. If
distributed uniformly over the year, this would give approximately 80 fatalities
for the period from April to July [23]. Note that this number is a bit off the 75
predicted by the model. This is not surprising since, in addition to the possible
shortcomings of the model, it is observed in previous years that the majority
of casualties happen in interurban zones and during the summer (i.e., they are
not spread uniformly during the year) [23].
To compare the actual number of accidents with victims with the expected
value found above, the same process could be applied.

After conducting some research, it seems that the Poisson process was
applied some time ago (before 1995) to model traffic accidents in Catalonia,
but it was later observed that this model has at least two drawbacks. On the
one hand, the Poisson distribution assumes that the expected value and the
variance are equal, which is generally not true in traffic accidents (the variance
is usually greater [21]. On the other hand, by modelling traffic accidents by
kilometres, there could be a huge number of kilometres with no accidents,
which will produce a high frequency of zeros. This is not well suited for the
Poisson distribution, even on stretches of 1 km in length, there are many
intervals where no accidents occur, as [7] explains.
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2.2 Non-homogeneous spatial Poisson process ap-
plied to the bombs location in London dur-
ing the Second World War

2.2.1 South London

In this application we have mainly relied on a study from [24].

Figure 2.6: Computer simulation of part of the London grid and bombs location
( Freutci, via Wikimedia Commons).

An enthralling usage of the Poisson process in two dimensions is the mod-
eling of the location of the V-1 bombs in south London during the WWII done
by R. D. Clarke in 1946, a 31-year-old worker at the Prudential Assurance
Company. He was interested in whether the bombs were dropped in clusters
or randomly. He thought that humans are good in finding patterns and as-
cribing reasons to them, but statistical analysis could help to decide whether
those patterns may be due to chance or to planing. Clarke decided to apply a
statistical test to discover this allegation.

In his paper he chose an area of 144 km2 situated in South London, where
the mean number of V-1s seemed roughly constant. There were a total of
537 V-1 hits in this region. Then, the region was divided up into smaller
squares measuring 0.25 km2, and Clarke counted the number of V-1 hits in
each individual square. After that he counted how many squares had no V-
1s, how many squares had one V-1, and so on. With this notation, clusters
would show up as squares with multiple V-1 hits. To test if V-1s tended to be
clustered or not it was necessary to compare these results with what would arise
from a random pattern. But there was a drawback. Nowadays, a computer
can be used in order to simulate 537 random points. However, Clarke could
not do this, so, deciding whether the bomb locations were random became
essential for the study. At some point he believed that the Poisson process

https://commons.wikimedia.org/wiki/File:Bombardeig_Londres.svg
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could be applied to his project.
In this piece of work, an hypothetical uniform as well as random distribution
of V-1s across South London was assumed, which means that the intensity
λ is assumed to be constant. In addition, he supposed that every V-1 was
independent from the others. So, defining an event as a V-1 landing in one of
his 537 squares and considering that the intensity was the average density of
V-1s over the whole area, Clarke was able to obtain the expected results and
compare them with the actual ones. Thus, according to the data, (see Figure
2.7)

λ =
#{V-1}

#{squares}
=

537

576
≊ 0.932.

He used the Poisson distribution to find the expected number of squares with
k V1-s hits for k = 0, 1, . . . , 4 and k ≥ 5. This is, for X ∼ P(λ), then:

P[X = 0] = e−λ = e−
537
576 ≈ 0.394

P[X = 1] = e−λλ = e−
537
576

537

576
≈ 0.367

P[X = 2] = e−λλ
2

2!
= e−

537
576

(537
576

)2

2!
≈ 0.171

. . .

Clarke obtained the following results:

V1-s in Absolute Relative Poisson Expected
square frequency Frequency Probability value

0 229 0.398 0.394 226.743
1 211 0.366 0.367 211.39
2 93 0.161 0.171 98.539
3 35 0.061 0.053 30.622
4 7 0.012 0.012 7.137

5 and over 1 0.002 0.003 1.569
Total 576 1 1 576

Figure 2.7: Results obtained by Clarke [6]. The expected number of squares is
given by P(λ, k) · 576, where P(λ, k) is the mass function of observing k events
in a time interval for a Poisson variable of parameter λ.

Comparing the expected values with his observed values, Clarke concluded
that it looked as if they adjusted almost perfectly. To confirm this, a chi-
squared test was performed, where the null hypothesis was V-1s did indeed
follow the Poisson distribution and a result of p = 0.88 was obtained, which
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means that the null hypothesis was true with a 88% of probability.

During the following years, Clarke’s publication became widely known. In
1950 Professor W. Feller of Cornell University said that the above table indi-
cates that there is perfect randomness and homogeneity, [...] but that to the
untrained [eye], the randomness appears as regularity [...] [26].
Nonetheless, Clarke only presented the summary table of his results [6], rather
than the original. Maybe it was classified information at that time, but the
trouble is that even now no one has been able to replicate the same results.

To confirm the veracity of this experiment, it has been repeated after 75
years. As Clarke published only a summary, the analysed area remains un-
known. Therefore, an area with similar characteristics to that considered by
Clarke has been chosen. In this case, however, it has been divided into 532
squares, so λ = 532

576
≊ 0.924. After doing the chi-square test, p = 0.70 is ob-

tained. It is not as good as Clarke’s, but it is really similar and also a positive
result.

Figure 2.8: Black points indicate V-1 hits. Image from [24].

During these decades some studies have been presented with computational
methods. However, no better results have been obtained. Statisticians think
that the analysis performed by Clarke is correct but maybe only in this region;
it is believed that Clarke was aware about this fact too.

In 1973, Thomas Pynchon wrote Gravity’s Rainbow, a novel in which the
Poisson distribution plays an important role. The "flying bombs" in this novel
are not V-1s, but V-2s, and the statistician Roger Mexico realised that: "More
likely, Pynchon chose the V-2 because it suited his story better as a powerful
image of random chance, falling without any warning whatsoever.", [24].

The interested reader can read more about this in [24]. This article, written
by Shay and Shaw, is the winner of Statistical Excellence Award for Early-
Career Writing, awarded in partnership with the Young Statisticians Section
of the Royal Statistical Society in 2019.
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2.2.2 Germany

In this section we have mainly relied on a study from [11].
After these results, many other studies have been conducted. It is no longer
just a question of curiosity, but of trying to find with reasonable certainty
whether there were areas with greater risks, and if there were, which ones.
This kind of studies are of great value to help finding unexploded bombs in
old war zones, which can represent a threat for many years.

As an illustration, there is a whole paper conducting a study for WWII
in Germany, where about 1.5 millions of tons of bombs were pounded and it
is believed that around 10 − 15% have not yet exploded [11]. Studying the
spatial pattern of exploded bombs helps to determine risk-zones, regions with a
likelihood of containing unexploded bombs. Assume that X is a point process
of the spatial locations of all bombs dropped in a particular window W ⊆ R2,
and let Y denote the observed point process of exploded bombs; then Z = X\Y
is the point process of unexploded bombs. In this case, Y is observed but Z
is not. If q is the probability of a dropped bomb not exploding, assuming
that this is homogeneous in W , and that X is a non-homogeneous Poisson
point process with intensity λX(t) for t ∈ W , then, λY (t) = (1− q)λX(t) and
λZ(t) = qλX(t) are the respectively intensity functions for Y and Z.
The entire statistical study to find high risk-zones can be read in [11].

Figure 2.9: NCAP aerial photo from 1944 showing the bombing of the V-2
rocket facility at Peenemünde, Germany. Image is available under a custom
NCAP license - higher resolution images are available from NCAP, from [11].
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2.3 Other examples
In this section we present briefly interesting applications of the Poisson

process and give their references.

2.3.1 1D - Examples

Examples abound in one dimension because the random arrival of inde-
pendent events in time is a very frequent occurrence in everyday life, like in
the queueing theory mentioned previously [14],[24]. Examples of this are the
forecasting of emergency calls or arrivals at an emergency service, goals scored
in a football match [14], or email arrivals in an inbox.
In addition to those stated above, the Poisson process is to:

• Economics. As far back as 1903, Filip Lundberg studied in his doctoral
thesis the probability of ruining an insurance company [26]. Some years
later, Harald Cramér extended this study, which today is known as the
Cramér-Lundberg theory (or ruin theory). Under the assumption that
the times an insurer has to pay the costumers follows a Poisson process,
the authors developed a theory of risk that is still in use [13].

• Neural research. Assuming that synapses are activated by independent
Poisson processes [5].

• Emission of alpha particles or heavy nuclei. [18] It is found in the
paper by Pere Puig and Joan-Francesc Barquinero, from the UAB [19].

2.3.2 2D - Examples

In two dimensions, the Poisson process is applied to the location of certain
events, for instance, the distribution of salmon in the sea or the resolution of
naval research problems [14].
Other examples are:

• Molecules under a microscope. The distribution density of these
molecules is usually estimated to locate them under the microscope. In
this study, the two-dimensional Poisson process is used to model the
random activation of the molecules, in order to determine the location
density in real time. In this way it is possible to optimise the performance
of the microscope images without compromising the image quality [16].

• Forest fires. In [25] there is a study about forest fires in Portugal be-
tween 2009 and 2015, aiming to estimate the occurrence of these events
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in time. Both the homogeneous and the non-homogeneous Poisson pro-
cesses were used. A similar study was done in the Valencian Community
[20].
In parallel and taking into account the danger of fires in Portugal, as it is
explained in [4], "fire stations [4] are typically non-uniformly distributed
across space, and their service area is, in general, defined based on ad-
ministrative boundaries". But the location of FS is important when a
fire starts. Obviously, the further away a FS is, the longer it will take
before the fire fighters can start working. Therefore, studies are needed
to find where FS would be best located. The study of FS using a spatial
Poisson process is detailed in this article.

• Wireless networks. Around 1960, Edgar Gilbert developed a model
of wireless networks based on the Poisson process. Today, this is consid-
ered the birth of the percolation theory. Mobile phone networks are an
example of this (see [14]).

• Distribution of plants. The Swedish chemist Theodor Svedberg pro-
posed, as early as 1922, to study the distribution of plants in plant
communities by means of the Poisson point process. Years later more
mathematicians joined the study and were able to make important con-
tributions. Theodor Svedberg was awarded a Nobel prize in chemistry
in 1926 [14].

2.3.3 3D - Examples

• Astronomy. The example in [22] shows how the Poisson process can
be applied in 2 and 3 dimensions for modelling the stars in the sky.

• Traffic accidents. Considering the location and time of traffic accidents
in an area, the 2D Poisson process becomes a 3-D model. This leads to
a map with the location of the accidents and a third dimension for the
time in which they occur [2].

To conclude, there are many applications of the Poisson process that are
not going to be even mentioned in this essay due to lack of space. The in-
tention was just to prove that the Poisson process is very versatile and has a
huge range of applications. That a mathematical process is applied to so many
scopes and for so long, is quite remarkable.
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