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Abstract

The Gauss-Bonnet Theorem was first published by Gauss in 1827 for the case
of a geodesic triangle on a surface. Since then, the theorem has progressively
increased in generality. The purpose of this work is to prove it for the case of
2-dimensional Riemannian manifolds, while discussing the historic development
of its other versions. For that, the necessary concepts of differential geometry are
introduced, such as smooth manifolds, their tangent spaces, and the measurement
of areas and angles via Riemannian metrics. The concepts of curves, lifts, ori-
entability, and curvature are also adapted to the nature of manifolds. With that
toolbox, the Rotation Index Theorem is proved, subsequently the Gauss-Bonnet
Formula, and finally the Gauss-Bonnet theorem for orientable and non-orientable
manifolds. The latter employs combinatorial arguments, combining local results
to yield a global one. The most remarkable aspect of this theorem is precisely that
it connects local properties of differential geometry, specifically the integral of the
curvature, with a global topological invariant, the Euler characteristic.

2020 Mathematics Subject Classification. 53-01 , 53-03 , 53A55 , 53B21 , 53C05.



Chapter 1

Preliminary Theory

This chapter will present the majority of the necessary theory for establish-
ing the Gauss-Bonnet Theorem. However, certain foundational results concerning
manifolds will be presumed known, and in such instances, a source with the proof
will be provided. Many of the definitions and derivations that appear here have
interest on their own, and more details are available on [2], and [3]. Nevertheless,
here only results relevant to the Gauss-Bonnet Theorem will be treated.

1.1 Smooth Manifolds

In this section, we delve into the realm of smooth manifolds: a framework
essential for proving the Gauss-Bonnet theorem on 2-dimensional Riemannian
spaces. They are the tool required to explore a geometric terrain where calcu-
lus extends beyond Euclidean spaces.

Definition 1.1. A topological space is locally Euclidean of dimension n if every point
has a neighborhood homeomorphic to an open subset of Rn.

Definition 1.2. An n-dimensional topological manifold or simply an n-manifold is
a topological space that is second-countable Hausdorff and locally Euclidean of
dimension n.

Definition 1.3. An n-dimensional topological manifold with boundary is a second-
countable Hausdorff space in which every point has a neighborhood homeo-
morphic to either an open subset of Rn, or to an open subset of the closed
half-space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, whose boundary is ∂Hn ={(

x1, . . . , xn) ∈ Rn : xn = 0
}

.

Notice that the term manifold with boundary comprises in particular the mani-
folds without boundary. Therefore, one refers to manifolds without boundary simply
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4 Preliminary Theory

as manifolds. Manifolds with boundary might be referred to as manifolds with or
without boundary.

Definition 1.4. Let M be an n-dimensional manifold (without boundary). Then. a
coordinate chart for M is a pair (U, φ) such that

1. U ⊆ M is an open subset,

2. φ : U → “U is a homeomorphism, where “U is an open subset of Rn or Hn.

(U, φ) is said to be a chart containing p if p ∈ U ⊆ M.

Definition 1.5. Let U ⊆ Rn be open, and let F : U → Rk be a map. F is said
to be smooth or of class C∞ if the partial derivatives of any order of its component
functions are all continuous. A bijective smooth map whose inverse is also smooth
is called a diffeomorphism.

Definition 1.6. Let M be a topological n-manifold with or without boundary, and
let (U, φ), and (V, ψ) be two coordinate charts for M. The maps ψ ◦ φ−1, and
φ ◦ ψ−1 are called transition maps. Their domains are φ(U ∩ V), and ψ(U ∩ V),
respectively.

Definition 1.7. The charts (U, φ), and (V, ψ) are said to be smoothly compatible if
their transition maps are smooth on their domain. Since they are the inverse of
each other, they are diffeomorphisms.

M

U

V

U ∩ V

Rn

ϕ(U)

ψ(V )ϕ(U ∩ V )

ψ(U ∩ V )

∼=
ψ ◦
ϕ −

1

Figure 1.1: The figure on the left represents U and V in M, while the figure on the
right represents their image by φ and ψ, respectively, in Rn.

Definition 1.8. A collection of coordinate charts whose domains cover M is called
an atlas for M. Additionally, an atlas is smooth if any two charts in it are smoothly
compatible. A smooth atlas A is maximal if it is not properly contained in any
larger smooth atlas, which means that any chart that is smoothly compatible with
every chart in A is already in A.
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Definition 1.9. A smooth structure on M is a smooth atlas that is maximal. A is a
topological manifold with boundary equipped with a smooth structure is said to
be a smooth manifold with boundary.

Let M, and N be m-, and n-dimensional smooth manifolds with or without
boundary, respectively.

Definition 1.10. Let F : M → N be a map. It is said to be smooth if for any p ∈ M

1. there is a smooth chart (U, φ) for M containing p, and a smooth chart (V, ψ)

for N containing F(p),

2. F(U) ⊆ V,

3. F̂ = ψ ◦ F ◦ φ−1 : Rm → Rn is smooth. This function is called the coordinate
representation of M.

M
N

F

ϕ ψ

Rn

F̂ = ψ−1 ◦ F ◦ ϕ
Rm

Figure 1.2: Representation of two distinct smooth manifolds M, and N, with
dimensions m, and n, respectively. Additionally, the charts outlined in Defini-
tion 1.10 are illustrated along with their resulting coordinate representations.

Definition 1.11. The set of smooth maps from M to N is denoted by C∞(M, N),
and the set of smooth maps from M to R is simply notated as C∞(M).

Now, manifolds with corners are introduced. For that, let M be a topological
n-manifold with boundary, and let R

n
+ denote the set

R
n
+ =

{(
x1, . . . , xn

)
∈ Rn : x1 ≥ 0, . . . , xn ≥ 0

}
. (1.1)
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Definition 1.12. A chart with corners for M is a pair (U, φ) such that U ⊆ M is
open and φ is a homeomorphism from U to an open subset “U ⊆ R

n
+. Two charts

with corners are said to be smoothly compatible the same way as it was described in
Definition 1.7.

Definition 1.13. A smooth structure with corners on M is a collection of

1. smoothly compatible charts (U, φ) such that φ(U) ∩ ∂Hn = ∅,

2. charts (U, φ) with corners, which means that φ is a homeomorphism from
U to an open subset of Rn

+,

that is maximal (in the sense of Definition 1.8), and whose domains cover M.

Now, the concept of tangent vectors is introduced. For that, now let M be a
smooth manifold with or without boundary.

Definition 1.14. Let v : C∞(M) → R be a map, p ∈ M, and f , g ∈ C∞(M). Then, v
is said to be a derivation at p if

v( f g) = f (p)vg + g(p)v f . (1.2)

Definition 1.15. A smooth vector bundle of rank k is a pair of smooth manifolds E (to-
tal space) and M (base) with or without boundary, and map π : E → M (projection)
such that for every p ∈ M

1. Ep = π−1(p) is endowed with the structure of a k-dimensional real vector
space,

2. there is a neighborhood U of p, and a diffeomorphism Φ : π−1(U) → U ×Rk

(smooth local trivialization) such that

(a) πU ◦ Φ = π, where πU is the projection onto the first factor: πU : U ×
Rk → U,

(b) the restriction of Φ on q ∈ U, i.e. Φ(q, ·), is a linear isomorphism
Eq → q × Rk ∼= Rk.

Definition 1.16. Let π : E → M be a smooth vector bundle over M. Then, a section
of E is a continuous map σ : M → E such that π ◦ σ = IdM. This is equivalent to
imposing that σ(p) ∈ Ep, since by definition Ep = π−1(p). Let U ⊆ M be an open
subset, then a continuous map σ : U → E that satisfies π ◦ σ = IdU is called a local
section of E over M. For a smooth vector bundle E → M, the set of smooth sections
of E is denoted by Γ(E).



1.1 Smooth Manifolds 7

Definition 1.17. A local frame for E on U is an ordered k-tuple (σ1, . . . , σk) of local
sections over an open subset U ⊆ M such that at each p ∈ U, they form a base for
Ep.

Definition 1.18. A tangent vector at p is a linear derivation at p. The set of all
tangent vectors at p is called the tangent space at p and it is notated as Tp M.

Definition 1.19. Let M be an n-manifold, and φ : U → “U ⊆ Rn a smooth coor-
dinate chart where U ⊆ M is open. If the coordinate functions of φ are notated
as (x1, . . . , xn) then the coordinate vectors ∂/∂x1|p, . . . , ∂/∂xn|p are defined as the
derivations that satisfy

∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
. (1.3)

Definition 1.20. Let F : M → N be a smooth map, and p ∈ M a point. The
differential of F at p is defined as the linear map

dFp : Tp M → TF(p)N

v 7→ dFp(v),
(1.4)

given by dFp(v) f = v( f ◦ F), where f ∈ C∞(M).

Proposition 1.21. Let F : M → N be a smooth map, and p ∈ M a point. Then dFp is a
well-defined linear map Tp M → TF(p)N.

Proof. Let v1, v2 ∈ Tp M be arbitrary derivations, and f ∈ C∞(M) a function.

(
(dF)p(v1 + v2)

)
f = (v1 + v2)( f ◦ F) = v1( f ◦ F) + v2( f ◦ F). (1.5)

Definition 1.22. The tangent bundle of M is the disjoint union of tangent spaces for
all the points of M:

TM = ⨿
p∈M

Tp M. (1.6)

The set Γ(TM) is notated as X(M). A section of TM is called a vector field on
M.

Remark 1.23. The tangent bundle is indeed a vector bundle, and that is a conse-
quence of Lemma A.34 of [3], as exposed in page 384 of the same source.
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Definition 1.24. Let X, Y ∈ X(M). The Lie Bracket is defined as the map

[X, Y] : C∞(M) → C∞(M)

f 7→ [X, Y] f = X(Y f )− Y(X f ). (1.7)

Proposition 1.25. (Properties of Lie Brackets) Let M be a smooth manifold with or
without boundary, and let X, Y, Z ∈ X(M). Then the Lie Bracket

1. is bilinear over R as a function of the first or second argument. For example, for the
first argument: [aX + bY, Z] = a[X, Z] + b[X, Z], where a, b ∈ R,

2. is antisymmetric: [X, Y] = −[Y, X],

3. satisfies [ f X, gY] = f g[X, Y] + ( f Xg)Y − (gY f )X, for f , g ∈ C∞(M).

Proof. 1. and 2. are trivial. 3. is shown below:

[ f X, gY] = f X(gY)− gY( f X) = f (X(g)Y + gXY)− g(Y( f )X − f YX)

= f g[X, Y] + ( f Xg)Y − (gY f )X.
(1.8)

Finally, there are some intuitive concepts in the Euclidean spaces that are to
be translated to the realm of manifolds via the connections. While the notion
of geodesics – the equivalent of straight lines in Euclidean spaces – may look
as a safe path, characterizing them as shortest paths poses technical challenges.
Instead, connections offer a powerful framework for differentiating vector fields
along curves, defining geodesics, and enabling the concept of "parallel transport"
of vectors along these curves.

Definition 1.26. Let M be a smooth manifold with or without boundary, a connec-
tion in the tangent bundle TM is defined as any map

∇ : X(M)×X(M) → X(M)

(X, Y) 7→ ∇XY (1.9)

such that ∇

1. is linear over C∞(M) in the first argument:

∇ f X1+gX2Y = f∇X1Y + g∇X2Y, (1.10)
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2. is linear over R in the second argument:

∇X(aY1 + bY2) = a∇XY1 + b∇XY2, (1.11)

3. satisfies this product rule:

∇X( f Y) = f∇XY + (X f )Y, (1.12)

where f , g ∈ C∞(M), X, X1, X2, Y, Y1, Y2 ∈ X(M), and a, b ∈ R.
The vector field ∇XY is called the covariant derivative of Y in the direction X.

1.2 Tensors

In the context of this document, it is understood that only real vector spaces
will be discussed, and this will not be reiterated further.

Definition 1.27. Let V be an n-dimensional vector space, and let V∗ be its dual
space, whose elements are called covectors. A mixed tensor of type (j, k) is a multi-
linear map

F :

j︷ ︸︸ ︷
V∗ × · · · × V∗ ×

k︷ ︸︸ ︷
V × · · · × V → R, (1.13)

where, for simplicity of notation, it has been assumed that the arguments are
grouped in vectors and covectors, but this is not mandatory. The set of mixed
(j, k)-tensors on V is denoted as T j,k(V).

Definition 1.28. A covariant j-tensor F on V is a mixed tensor of type (0, j),

F :

j︷ ︸︸ ︷
V × · · · × V → R. (1.14)

The set of covariant j-tensors on V is denoted as T j(V∗).

Definition 1.29. A contravariant j-tensor F on V is a mixed tensor of type (j, 0),

F :

j︷ ︸︸ ︷
V∗ × · · · × V∗ → R. (1.15)

The set of contravariant j-tensors on V is denoted as T j(V).

There is a particularly interesting subset of Tk(V∗):
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Definition 1.30. Let F ∈ Tk(V∗) be a covariant tensor. It is said to be symmetric if
it is invariable under an interchange of any two of its arguments:

F(. . . , ui, . . . , uj, . . . ) = F(. . . , uj, . . . , ui, . . . ), ui, uj ∈ V, 1 ≤ i < j ≤ k. (1.16)

Then, the set of symmetric k-tensors of V, denoted by Σk(V∗), is clearly a linear
subset of Tk(V∗).

Conversely, if the sign changes under an interchange of any two of its argu-
ments, F is said to be alternating. The set of alternating k-tensors of V is denoted
by Λk(V∗), and it is a linear subset of Tk(V∗).

In the study of manifolds, the vector spaces under consideration are predom-
inantly Tp M, for p ∈ M. Consequently, it could be interesting to explore the
disjoint union of tangent spaces at every point in M.

Definition 1.31. The bundle of (j, k)-tensors on M is defined as

T(j,k)TM = ⨿
p∈M

T(j,k) (Tp M
)

(1.17)

The bundle of covariant j-tensors is denoted as T jT∗M = T(0,j)TM, and the bundle
of contravariant j-tensors is denoted as T jTM = T(j,0)TM.

The bundle of symmetric j-tensors is

ΣkT∗M = ⨿
p∈M

Σk
(

T∗
p M

)
. (1.18)

Definition 1.32. A tensor field on M is a section of a tensor bundle over M. If it is a
section of T(0,1)TM (a covariant 1-tensor field) then it is called a covector field. The
space of all smooth covariant k-tensor fields is denoted as T k(TkT∗M). Similarly,
the subbundle of TkT∗M formed by the alternating tensor tensors is denoted by
ΛkT∗M, and an alternating tensor field on M is known as a k-form.

Definition 1.33. Let (E1, . . . , En) be a smooth local frame for TM. Its associated
dual coframe, (ε1, . . . , εn), is a smooth covector field for which εi(Ej) = δi

j.

Definition 1.34. Let V be an n-dimensional vector space, then a density on V is a
function

µ :

n︷ ︸︸ ︷
V∗ × · · · × V∗ → R. (1.19)

such that for every linear map T : V → V, it holds
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µ(Tv1, . . . , Tvn) = |det T| µ(v1, . . . , vn). (1.20)

Let (v1, . . . , vn) be a base for V. If µ(v1, . . . , vn) > 0, then µ is said to be positive.

Proposition 1.35. The previous definition is independent of the base of V.

Proof. Let (v1, . . . , vn), and (u1, . . . , un) be two bases of V, µ(v1, . . . , vn) > 0, and
let A = (v1 . . . vn), and B = (u1 . . . un) be the matrices whose columns are the
vectors of these bases, respectively. Via a series of elementary transformations,
T1, . . . , Tk, one can obtain matrix B from matrix A: if T = Tn . . . T1, then B =

TA. In that case, T is a linear map and thus, µ(u1, . . . , un) = µ(Tv1, . . . , Tvn) =

|det T| µ(v1, . . . , vn) > 0.

Proposition 1.36. Let V be a vector space of dimension n ≥ 1, and let µ1 and µ2 be
densities on V. If µ1(E1, . . . , En) = µ2(E1, . . . , En) for some basis (Ei)i=1,...,n of V, then
µ1 = µ2.

Proof. Let u1, . . . , un be arbitrary vectors. Define T : V → V as the unique linear
map such that T(Ei) = u1, for i = 1, . . . , n. Then,

µ1 (u1, . . . , un) = µ1 (TE1, . . . , TEn) = |det T|µ1 (E1, . . . , En)

= |det T|µ2 (E1, . . . , En) = µ2 (TE1, . . . , TEn)

= µ2 (u1, . . . , un)

(1.21)

Definition 1.37. Let (M, g) be a Riemannian manifold (with or without boundary).
The Riemannian density is defined as the unique density such that for every local
orthonormal frame (Ei)i=1,...,n

µ(E1, . . . , En) = 1. (1.22)

Additionally, if (M, g) is oriented, the Riemannian volume form dVg is defined
in the same way by means of a positively oriented orthonormal local frame:

dVg(E1, . . . , En) = 1. (1.23)

Proposition 1.38. The Riemannian density is well defined: it exists and is unique. Addi-
tionally, it is smooth and positive.
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Proof. Let (Ei)i=1,...,n be a local orthonormal frame for TM on an open set U ⊆ M,
and let (ε1, . . . , εn) be its corresponding dual coframe. Define µ as µ = |ε1 ∧ . . . ∧ εn|.
For this definition, the wedge product is used (its exact definition can be promptly
found at page 400 of [3]). Here, its explicit expression is given:

ε1 ∧ . . . ∧ εn(v1, . . . , vn) = Σσ∈Sn sgn(σ) (ε1 ⊗ . . . ⊗ εn)
(

vσ(1) , . . . , vσ(n)

)
, (1.24)

where Sn is the set of all n-permutations. This clearly shows that µ(E1, . . . , En) = 1,
and thus is positive.

To prove it is an smooth function it suffices to see that each ε i is smooth.
Therefore, the goal is to show that given a smooth frame (Ei), its associated dual
coframe (ε i) is smooth. First, express each Ei, and εj in terms of the coordinate
frame (∂/∂xi), and coordinate coframe (λi), respectively:

Ei = ak
i

∂

∂xk , εj = bj
lλ

l . (1.25)

Notice that from the condition εj(Ei) = δ
j
i it follows that the matrices (ak

i ) and
(bj

l) are inverses of each other. Since the map of the matrix inversion is an smooth
endomorphism of GL(n, R), if either (ak

i ) or (bj
l) are smooth, the other matrix will

be smooth as well. In order to see that the coefficients ak
i of Ei are continuous,

notice that Ei : U → TM is smooth. For a p ∈ U ⊆ M, there is a coordinate chart
(W, φ), W ⊆ M open, and so its coordinate functions are notated as (x1, . . . , xn),
where xi = πi ◦ φ, and where πi : Rn → R is a projection. Finally, notice that
ai = Ei(xi), φ, πi and Ei are smooth, and it can be concluded that µ is smooth.

To see that µ is a density, observe that (ε1 ⊗ . . . ⊗ εn) is an n-form, and then

(ε1 ⊗ . . . ⊗ εn) (Tv1, . . . , Tvn) = T (ε1 ⊗ . . . ⊗ εn) (v1, . . . , vn) , (1.26)

where T is a linear map. Then, if one applies the modulus to the expression at
Eq. (1.24), it yields that µ (Tv1, . . . , Tvn) = |det(T)|µ (v1, . . . , vn). Thus, unique-
ness stems from Proposition 1.36. If two smooth coordinates, (U, φ) and (V, ψ),
overlap, U ∩V ̸= ∅, then the two associated definitions of µ coincide, by the same
uniqueness of Proposition 1.36, which means that the definition of µ is global.

Corollary 1.39. The Riemannian volume form is well defined and unique. Let
(E1, . . . , En) an oriented orthonormal frame (E1, . . . , En), and (ε1, . . . , εn) its cor-
responding dual coframe. In this base, dVg is given by

dVg = ε1 ∧ . . . ∧ εn. (1.27)
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Definition 1.40. Let F : M → N be a smooth map, p ∈ M a point, and α a k-tensor
α ∈ Tk(T∗

F(p)N). Let v1, . . . , vk ∈ Tp M be arbitrary derivations. Then the pointwise

pullback of α by F at p is a tensor dF∗
p (α) ∈ Tk

(
T∗

p M
)

given by

dF∗
p (α) (v1, . . . , vk) = α

(
dFp (v1) , . . . , dFp (vk)

)
. (1.28)

If A is a covariant k-tensor field on N, the pullback of A is a k-tensor field F∗A
on M such that

(F∗A)p = dF∗
p

(
AF(p)

)
. (1.29)

Lastly, two results necessary for the proof of the Gauss-Bonnet Formula (The-
orem 3.29) are presented:

Proposition 1.41. Let ω be a smooth 1-form, and X, Y smooth field vectors. It holds that

dω(X, Y) = X(ω(Y))− Y(ω(X))− ω([X, Y]). (1.30)

Proof. This result is very specific, and would require the introduction of more
theory. Therefore, if necessary, consult Theorem 14.24 of [2].

1.3 Riemannian Metrics

Definition 1.42. Let V be a vector space. An inner product on V is a map

⟨·, ·⟩ : V × V → R

(u, v) 7→ ⟨u, v⟩
(1.31)

such that for any u, v , w ∈ V, and a, b ∈ R, the following properties hold:

1. Symmetry: ⟨u, v⟩ = ⟨v, u⟩,

2. Linearity on the first argument: ⟨au + bv, w⟩ = a⟨u, w⟩+ b⟨v, w⟩ (which im-
plies bilinearity when combined with the previous property),

3. Positive definiteness: ⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 if and only if u = 0.

Definition 1.43. A vector space that possesses a specific inner product is called an
inner product space.

Definition 1.44. The length or norm of v ∈ V corresponds to

|u| = ⟨u, u⟩ 1
2 . (1.32)
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Definition 1.45. Let u, v ∈ V. The angle between u and v is defined uniquely as the
angle θ comprised in [0, π] given by

cos θ =
⟨u, v⟩
|u| |v| . (1.33)

The vectors u and v are said to be orthogonal if ⟨u, v⟩ = 0. If on top of that, each
of their norm is 1, they are called orthonormal.

Definition 1.46. Let S = {u1, . . . , uk}, k ∈ a, ui ∈ V, be a set of vectors of V.
Their linear span or span of S, notated as span(S), is the set of all the possible
linear combinations of the vectors in S. A set of vectors is said to be orthogonal
(orthonormal) if they are pairwise orthogonal (orthonormal).

Proposition 1.47. (The Gram-Schmidt Algorithm) Suppose V has dimension n and
is endowed with an inner product. Let (u1, . . . , un) be an ordered basis for V. Then, a new
orthonormal basis (b1, . . . , bn) may be retrieved such that

span({u1, . . . , uj}) = span({b1, . . . , bj}), 1 ≤ j ≤ n. (1.34)

This base is obtained by applying the following recursive algorithm:

b1 =
u1

|u1|

bj =
uj − ∑

j−1
i=1

〈
uj, bi

〉
bi∣∣∣vj − ∑

j−1
i=1

〈
uj, bi

〉
bi

∣∣∣
, 2 ≤ j ≤ n.

(1.35)

Proof. Notice that b1 is well defined because u1 ̸= 0. Similarly, bj is well defined
because since (u1, . . . , un) is a basis, then uj /∈ span(u1, . . . , uj−1), for j = 1, . . . , n.
It is trivial to see that bj is a linear combination of u1, . . . , uj, which implies the
condition in Eq. (1.34), and also the linear independence of the new base.

Definition 1.48. A Riemannian metric on M is a smooth covariant 2-tensor field
g ∈ T 2(M) such that when evaluated at any p ∈ M, notated as gp, it corresponds
to an inner product on Tp M. A Riemannian manifold is a pair (M, g), where M is a
smooth manifold with or without boundary, and g is a Riemannian metric on M.

Proposition 1.49. Let M be a smooth manifold. Then, M admits a Riemannian metric.
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Proof. Page 376 of [3] introduces the partitions of unity and smooth bump func-
tions related to a manifold M, and shows their existance. Then, there is a partition
of unity that covers M, and a collection of bump functions that are equal to 1 in
some neighborhood of p, for every p ∈ M, and vanish outside a larger neighbor-
hood. These functions, together with a Riemannian metric on Rn (the Euclidean
metric, for instance), can be used to pull back metrics to M from Rn, locally.

1.4 Curves

Let (M, g) be a Riemannian manifold with or without boundary.

Definition 1.50. A curve in M is a continuous map γ : I → M, where I ⊆ R is an
interval that may or may not include endpoints, or be bounded. It is said to be
smooth if it is an smooth map from the manifold I ⊆ R, which has boundary, to
the manifold M. A curve is said to be a curve segment if its domain is a compact
interval.

Definition 1.51. A regular curve is a smooth curve γ such that γ′ ̸= 0 for each t ∈ I.

Definition 1.52. Let [a, b] ⊆ R be a closed bounded interval. A partition of [a, b] is
a finite sequence (a0, ..., ak) of real numbers such that a = a0 < a1 < · · · < ak = b.
The intervals [ai−1, ai] are called subintervals of the partition.

Definition 1.53. A curve is piecewise regular if there is a partition (a0, . . . , ak) of [a, b]
such that γ|[ai−1,ai ]

is a regular curve segment for each i = 1, . . . , k. An admissible
curve is a piecewise regular curve segment. An admissible partition for a curve γ is a
partition (a0, . . . , ak) such that γ|[ai−1,ai ]

is smooth for each i = 1, . . . , k.

1.5 Covering maps

Let M̃ and M be topological spaces that are both connected and locally path-
connected, and let π : M̃ → M be a surjective continuous map.

Definition 1.54. A set A ⊆ M is evenly covered if π maps each connected compo-
nent of π−1(A) homeomorphically onto A.

Definition 1.55. A map π is a covering map if every point of M has a connected
neighborhood of U that is evenly covered. A covering map is smooth if M̃ and M
are smooth manifolds with or without boundary and for each p ∈ M there is a
neighborhood U such that π maps each component of π−1(U) diffeomorphically
onto U.
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Definition 1.56. Let U ⊆ M be an evenly covered open set, and π a covering map.
The connected components of a of π−1(U) are called the sheets of the covering over
U.

Definition 1.57. Let π : M̃ → M be a covering map, and let F : B → M be a map
from a topological space B into M. A lift of F is a continuous map F̃ : B → M̃ such
that π ◦ F̃ = F.

Some relevant properties of these maps are displayed below:

Proposition 1.58. (Lifting Properties of Covering Maps)
Let π : M̃ → M be a covering map.

(a) Unique lifting property: Let B be a connected topological space and F : B → M be a
continuous map. Then, any two lifts of F are identical if they coincide at one point.

(b) Path Lifting Property: Let f : [0, 1] → M be a continuous path. For every p̃ ∈
π−1( f (0)), there is a unique lift f̃ : [0, 1] → M̃ of f such that f̃ (0) = p̃.

Proof. See [2]; Theorem 11.12, Corollary 11.4, and Theorem 11.15, respectively.

Theorem 1.59. (Lifting Maps from Simply Connected Spaces) Let π : M̃ → M be
a covering map, let B be a connected, locally path-connected, and simply connected map.
Let F : B → M be a continuous map. Take b ∈ B, and p ∈ M̃ such that π(e) = F(b).
Then, there is a lift M̃, F̃ : B → M̃ of F such that F̃(b) = p.

Proof. See Theorem 11.18 and Corollary 11.19 of [1].

1.6 Orientability

Definition 1.60. Let V be a finite-dimensional vector space. An orientation of V is
an equivalence class of ordered bases for V such that two ordered bases are related
if the determinant of the corresponding change-of-basis matrix is positive.

As a consequence, in every vector space there are two orientations.

Definition 1.61. Once an orientation is chosen, every basis is said to be positively
oriented if it belongs to the chosen orientation, or negatively oriented if it does not.
The orientation of the standard basis (e1, . . . , en) is referred to as the standard orien-
tation of Rn, where ei = (0, . . . , 1, . . . , 0), with the 1 occupying the i-th position.
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Let M be a smooth manifold with or without boundary. With the concept of
orientability of a vector space, one can define the orientability for M.

Definition 1.62. An orientation for M is a choice of orientation for each tangent
space of M that is continuous. That means that for every point p ∈ M there is a
neighborhood in which there is a local frame that determines an orientation in the
neighborhood of p.

Definition 1.63. Let M be n-dimensional. The manifold M is orientable if there
exists an orientation for M. A smooth orientable manifold together with a choice
of orientations forms an oriented manifold. A smooth coordinate chart (U, (Xi)) is
an oriented chart if the coordinate frame (∂/∂x1, . . . , ∂/∂xn) is positively oriented
for every point in U.

Proposition 1.64. (Orientation Determined by an n-Form) Let M be an n-manifold
with or without boundary. If µ ∈ Ωn(M) is a nonvanishing n-form, then it determines a
unique orientation of M by declaring a base (b1, . . . , bn) for Tp M positively oriented if and
only if µp(b1, . . . , bn) > 0. Conversely, if M is oriented, there is a smooth nonvanishing
n-form that determines its orientation.

Proof. See Prop. 15.5 of [2].

This proposition inspires the following definitions.

Definition 1.65. A nonvanishing n-form on a smooth n-manifold is called an ori-
entation form. If M is an oriented smooth n-manifold and an orientation form µ

determines its orientation, then µ is positively oriented.

Let M, and N be smooth n-manifolds with or without boundary, F : M → N a
local diffeomorphism, and µ any positively oriented orientation form for N.

Definition 1.66. If N is oriented, F∗µ determines an orientation on M known
as the pullback orientation on M induced by F, where µ is any positively oriented
orientation form for N.

Definition 1.67. Let ω ∈ Λk(V∗) be an alternating k-vector, and let v ∈ V be
a vector. The operation named interior multiplication by v yields a (k − 1)-tensor
notated as v⌟ω such that

(v⌟ω)(u1, . . . , uk−1) = ω(v, w1, . . . , wk−1). (1.36)
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Proposition 1.68. (Orientation of a Hypersurface) Let M be an oriented smooth n-
manifold with or without boundary, and µ any positively oriented orientation form. Let
S ⊆ M be a smooth immersed hypersurface, ι : S ↪→ M the inclusion, and N : S → TM a
continuous vector field (this implies that N is a continuous map such that Np ∈ Tp M, for
every p ∈ S). If S is nowhere tangent to N, then S has a unique orientation determined
by the (n − 1)-form ι∗(N ⌟ µ).

An instance in which this proposition may be applied is when M has a bound-
ary, since ∂M is a hypersurface.

Definition 1.69. Let M be a smooth manifold with boundary, and let N be a vector
field along ∂M. N is said to be an outward-pointing vector field if for each p ∈ ∂M
there is a smooth curve γ : (−ε, 0] → M for which γ(0) = p, γ′(0) = Np, and
Np /∈ Tp(∂M).

Proposition 1.70. (Existence of a Global Smooth Outward-Pointing Vector Field)
For every smooth manifold with boundary M there exists a global smooth outward-pointing
vector field.

Proof. It suffices to take −∂/∂xn in boundary coordinates in a neighborhood of
each p ∈ ∂M, and grouping them together with a partition of unity, whose defini-
tion is presented in page 376 of [3].

Theorem 1.71. (Stokes’ Theorem of Manifolds with Corners) Let M be an oriented
smooth n-manifold with corners, and let ω be a compactly supported smooth (n + 1)-form
on M. Then

∫

M
dω =

∫

∂M
ω. (1.37)

Proof. See Theorem 16.11 of [2] first for the proof of the Stokes’ Theorem of Mani-
folds without corners, and then see Theorem 16.25 of [2] which uses that previous
result to prove the theorem for manifolds with corners.

Since an outward-pointing vector field is nowhere tangent to ∂M, the next
result follows from the last proposition.

Proposition 1.72. (Induced Orientation on a Boundary) Let M be an oriented
smooth manifold with boundary, ι : ∂M ↪→ M the inclusion map, N any outward-pointing
vector field along ∂M, and µ a positively oriented orientation form for M. Then, ∂M is
orientable, and there is a canonical orientation determined by ι∗(N ⌟ µ). The canonical
orientation is referred to as the induced orientation or Stokes orientation.

Proof. See [2] of Prop. 15.24,.
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1.7 Curvature

For this section, notate the first, and second fundamental forms as I(X, Y), and
I I(X, Y), and the Weingarten map as WN(X), with X, Y ∈ X. It will be assumed
that the reader is familiar with them, with the Gauss formula, and with the Gauss
and Codazzi formula. However, these concepts are reviewed at pages 227-229 and
244 of [3].

Definition 1.73. Let (M, g) be a Riemannian manifold, and let R be a map defined
as

R : X(M)×X(M)×X(M) → X(M) (1.38)

(X, Y, Z) 7→ R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z.

Proposition 1.74. The map R(X, Y)Z is multilinear over C∞(M).

Proof. The linearity of R in X, and Y is shown on Prop. 7.3 of [3]. The linearity on
Z is shown using the properties in Proposition 1.25 and in Definition 1.26.

R(X, Y)( f Z) =∇X∇Y( f Z)−∇Y∇X( f Z)−∇[X,Y]( f Z)

=∇X ( f∇YZ + (Y f ) Z)−∇Y ( f∇XZ − (X f ) Z)− f∇[X,Y]Z − ([X, Y] f ) Z

= f∇X∇YZ + (X f )∇YZ + (Y f )∇XZ + X (Y f ) Z

− f∇Y∇XZ − (Y f )∇XZ − (X f )∇YZ − Y (X f ) Z

− f∇[X,Y]Z − ([X, Y] f ) Z.
(1.39)

Finally, note that in the expression of the last identity, the first terms of each
line correspond to f R(X, Y)Z. Also, the last term of lines 1, and 2 correspond
to ([X, Y] f ) Z, and then this and the rest of the terms cancel out. In conclusion,
R(X, Y)( f Z) = f∇[X,Y]Z, and R defines a (1, 3)-tensor field on M.

Definition 1.75. The (Riemann) curvature tensor is a (0, 4)-tensor field defined as

Rm(X, Y, X, W) = ⟨R(X, Y)Z, W⟩g. (1.40)

Throughout the remaining part of this section, let (M, g) be an embedded
n-dimensional Riemannian submanifold of an (n + 1)-dimensional Riemannian
manifold (M̃, g̃); (M, g) ↪→ (M̃, g̃). For every p ∈ M, local coordinartes x1, . . . , xn+1

may be chosen in a local neighborhood of p, U, such that locally U ∩ M =

{M̃ : xn+1 = 0} ↪→ U ⊆ M̃. This shows that there is a smooth unit normal vector
field along M, ∂/∂xn+1 on a sufficiently small neighborhood of p ∈ M, and so it
may be used when performing local calculations.
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Definition 1.76. The scalar second fundamental form of M is the symmetric covariant
2-tensor field h ∈ Γ(Σ2T⋆M) given by h = IIN , so that

h(X, Y) = ⟨N, II(X, Y)⟩, X, Y ∈ T⋆M. (1.41)

Equivalently, by virtue of the Gauss formula, ‹∇XY = ∇XY + II(X, Y); and the
fact that N and ∇XY are orthogonal, an alternative definition is

II(X, Y) = h(X, Y)N. (1.42)

Definition 1.77. Let N be a unit normal field. Then, the shape operator of M, s, is
defined as

s = WN : X(M) → X(M), (1.43)

where WN is the Weingarten map determined by N.

The relation between h and s is given by

⟨sX, Y⟩ = h(X, Y), ∀X, Y ∈ X(M). (1.44)

Definition 1.78. The Gaussian curvature is given by K = det(s),

since WN : X(M) → X(M) satisfies

⟨WN(X), Y⟩ = IIN(X, Y) = ⟨N, II(X, Y)⟩. (1.45)

Since the ultimate goal of this document is to prove the Gauss-Bonnet theo-
rem for a 2-dimensional Riemannian manifold, it will be advantageous to find
a more comfortable expression for the Gaussian curvature locally, one that uses
coordinates.

Proposition 1.79. Let (M, g) be a 2-dimensional Riemannian manifold, p ∈ M arbitrary,
and (a1, a2) an orthonormal basis for Tp M. Then

K(p) = Rmp(a1, a2, a2, a1). (1.46)

Proof. It suffices to see that K(p) = det(si
j) = det(hij) = h2

11 + h2
22 − h12h21 using

the Gauss and Codazzi equations (Eq. 8.21 of [3]).



Chapter 2

Historical Development of the
Gauss Bonnet Theorem

This chapter has primarily relied on sources such as [9] and [10], which pro-
vide an overview of the evolution of the Gauss-Bonnet theorem. They discuss
the theorem’s evolution in terms of its generality and also explore the various
geometric insights offered by different proof methods.

The first proof of the Gauss-Bonnet Theorem was published on a a paper called
Disquisitiones Generales Circa Superficies Curvas (1827) by Carl Friedrich Gauss (1777
– 1855) for the case of a geodesic triangle. A generalized version would later be
published on 1848 by Pierre Ossian Bonnet (1819 – 1892), which was formulated
as it follows:

Theorem 2.1. Let M ⊂ R3 be a surface whose domain D is simply connected and with a
boundary ∂D, which is composed of finite number of smooth curves. If g is the Euclidean
metric, let kg be the geodesic curvature of the boundary. The interior angles at a vertex
of the boundary are notated as αj, K is the Gaussian curvature of M, and dA is the area
element of M. Then

∫

∂D
kgds + ∑

j

(
π − αj

)
+

∫

D
KdA = 2π. (2.1)

According to Bonnet’s own memoir, Mémoire sur la théorie générale des surfaces,
the mathematician Jacques Binet (1786–1856) similarly proved Gauss’s Theorem in
a note appended to a Memoir by Mr. Olinde Rodrigues that appeared in Volume
III of the Correspondence of the École Polytechnique. However, Binet never offi-
cially published the theorem in question, which might explain why the theorem
was eventually named the Gauss-Bonnet theorem.

21
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What is modernly referred to as the Gauss-Bonnet Theorem for compact orientable
surfaces is a version from 1888 attributed to Walther von Dyck (1856 – 1934):

Theorem 2.2. Let M be a compact orientable surface in R3, and let its Euler characteristic
(Definition 3.32) be χ(M). Then

1
2π

∫

M
KdA = χ(M). (2.2)

Notice that up until now, the term surface referred to the image of a map
F : U → R3, where U ⊆ R2 is open. In this work however, the Gauss-Bonnet
theorem is proved on 2-dimensional manifolds, introducing a geometry that goes
beyond Euclidean spaces. The history of this abstraction is parallel to the develop-
ment of the theorem, when Bernhard Riemann (1826 – 1866) submitted his Ph.D.
dissertation. His supervisor was Gauss, and the contents of his thesis were the
introduction of what are now called Riemannian manifolds. From then onward,
the theorem could be formulated in terms of smooth Riemannian 2-manifolds.

According to [11], Heinz Hopf (1894 – 1971) proposed in the late 1920s the
generalization of the Gauss-Bonnet theorem to all manifolds with even dimen-
sion, and in 1925, he published the proof for the particular case of an embedded
Riemannian hypersurface in an Euclidean space.

This problem was first solved in general by Allendoerfer and Weil in 1943.
Nonetheless, the paper by Allendoerfer and Weil is rather complex. In contrast,
Shiing-Shen Chern (1911 – 2004) offered a more straightforward, 6 pages long
proof in 1944, which contributed to the popularization of the Gauss-Bonnet theo-
rem. This result is known as the Chern-Gauss-Bonnet T-heorem.



Chapter 3

The Gauss-Bonnet Theorem

As previously mentioned, the Theorem of Gauss-Bonnet exists in multiple ver-
sions, and its generality varies based on the space in which it is formulated. This
section begins by introducing essential notation and subsequently establishes the
Rotation Index Theorem. Armed with these fundamental tools, combined with the
concepts developed in Chapter 1, one embarks on proving the theorem specifically
for smooth Riemannian 2-manifolds.

The reader who wants to explore more proofs can go to:

1. Chapter 13 of [5] proves the Gauss-Bonnet theorem for compact parametrized
surfaces in R3, and give some notions about the integration over such sur-
faces. It uses the same combinatorial arguments over the triangulations of a
surface as the ones used in this document.

2. Chapter 9 of [3] proves the theorem the same as done way here: for the case
of a 2-dimensional Riemannian surface orientable or non-orientable.

3. Chapter 6 of [4] offers a different method for the proof. The result is shown
for a regular surface S ⊂ R3 endowed with an arbitrary Riemannian metric.
First, it is shown that the integral

∫
S dA is independent of the Riemannian

metric. Then, a convenient Riemannian metric is manufactured for the com-
putation of the integral, which allows to analytically compute the result of
the Gauss-Bonnet theorem.

4. Chapter 8 of [6] also proves the theorem with combinatorial arguments on a
compact, regular surface of class C3, S ⊂ R3.

As stated in Corollary 5.4.5 of [5], every compact regular surface S in R3 is
orientable, thus in that case the books just assume S to be oriented.

23
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3.1 The Rotation Index Theorem

Let γ : [a, b] → R2 be an admissible curve of the plane.

Definition 3.1. A curve γ is a simple closed curve when γ(a) = γ(b), but it is
injective on [a, b).

Definition 3.2. The unit tangent vector field of γ is a vector field defined along each
smooth segment of γ. Its expression is

T(t) =
γ′(t)
|γ′(t)| (3.1)

Definition 3.3. A tangent angle function for γ is a continuous function θ : [a, b] → R

such that T(t) = (cos θ(t), sin θ(t)), for every t ∈ [a, b].

θ

θ

θ

T

T

T

γ

Figure 3.1: Representation of the tangent angle function at certain points of γ.

Proposition 3.4. A tangent angle function θ : [a, b] → R exists for γ : [a, b] → R2.

Proof. Define the map q : R → S1 as q(s) = (cos s, sin s). Notice q is a smooth
covering map. By the Path Lifting Property (Proposition 1.58 b)), there exists a lift
θ : [a, b] → R of T(t):

q ◦ θ(t) = (cos θ(t), sin θ(t)) = T(t). (3.2)

Furthermore, lifts are uniquely determined by the image of a single point, due
to the Unique Lifting Property (Proposition 1.58 a)). Hence, any two of these lifts
differ by a multiple of 2π.
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Figure 3.2: Representation of the covering map q and of the composition q ◦ θ.

Definition 3.5. Let γ : [a, b] → R2 be a continuously differentiable simple closed
curve such that γ′(a) = γ′(b), and let θ be any tangent angle function for γ. The
rotation index of γ is

ρ(γ) =
1

2π
(θ(b)− θ(a)) (3.3)

Proposition 3.6. ρ(γ) is a multiple of 2π and it is independent of the choice of the tangent
angle function.

Proof. Since γ′(a) = γ′(b), the result arises from the identity

T(a) = (cos θ(a), sin θ(a)) = (cos θ(b), sin θ(b)) = T(b). (3.4)

ρ(γ) is independent of the choice of the tangent angle function because the
difference between two different angle functions is a multiple of 2π.

This definition is quite straightforward. However, it raises a question. What
would happen if the curve was just piecewise regular instead of continuously
differentiable? The next step is to define a certain type of piecewise regular curve
that admits a tangent angle function.

Consider an admissible simple closed curve γ : [a, b] → R2, and an admissible
partition (a0, . . . , ak) of [a, b].

Definition 3.7. The points γ(ai) are called the vertices of γ. The curve segments
γ|[ai−1,ai ]

are called the edges or sides of γ.

Definition 3.8. For a vertex γ(ai), its left- and right-hand velocity vectors are indi-
cated by γ′(a−i ) and γ′(a+i ), respectively. Then, T(a−i ) and T(a+i ) are the left-hand
and right-hand unit vectors, obtained by using the corresponding velocities.
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Definition 3.9. Vertices are classified into three categories, for each one an associ-
ated exterior angle is defined. Let (a = a0, . . . , ak = b) be a partition of γ. A vertex
γ(ai), 1 < i < k is

(a) an ordinary vertex if T(a−i ) ̸= ±T(a+i ). Its exterior angle is defined as the
oriented measure of the angle from T(a−i ) to T(a+i ) in the interval (−π,+π).
It is defined with a positive sign if (T(a−i ), T(a+i )) is a positively oriented
basis for R2, and negative otherwise,

(b) a flat vertex if T(a−i ) = T(a+i ). Its exterior angle is zero.

(c) a cusp vertex if T(a−i ) = −T(a+i ). Its exterior angle is undefined, since it
could be ambiguously π or −π.

b

b

b

γ

γ(ai)

T (a+i )

T (a−i )

γ(ai+1)

T (a+i+1)

T (a−i+1)

γ(ai−1)
T (a+i−1)

T (a−i−1)

Figure 3.3: Representation of a curve γ with partition (a0, . . . , ai−1, ai, ai+1, ak), k ∈
N. γ(t) has a regular, a cusp, and a flat vertex at t = ai−1, ai, and ai+1, respectively.

Definition 3.10. Let ε i be the exterior angle of γ(ai). Then, the interior angle at
γ(ai) is defined as θi = π − ε i.

Figure 3.4: Curve with an ordinary vertex γ(ai). The exterior angle ε i and interior
angle θi are indicated.

If i = 0 or i = k, then the vertex γ(a) = γ(b) is being considered, and the
definitions above need to be modified. In that case the vectors T(b) and T(a) must
be used in the place of T(a−i ) and T(a+i ) , respectively.
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Definition 3.11. A curved polygon in the plane is an admissible simple closed curve
without cusp vertices such that its image is the boundary of a precompact open
set Ω ⊆ R2, which is named the interior of γ.

Definition 3.12. A curved polygon with exactly three edges and three vertices in
M is called a curved triangle.

Now, let γ : [a, b] → R2 be a curved polygon with an admissible partition
(a0, . . . , ak), k ∈ N.

Definition 3.13. γ is said to be positively oriented if it is parametrized so that at
its smooth points γ′ is positively oriented with respect to the induced or Stokes
orientation on ∂Ω, as defined at Proposition 1.72. Intuitively, this means that γ is
parametrized in the counterclockwise direction, and therefore Ω is always to the
left.

Definition 3.14. Let ε i be the exterior angle at γ(ai), and εk at γ(b). A tangent angle
function for a curved polygon γ is a piecewise function θ : [a, b] → R such that

(a) T(t) = (cos θ(t), sin θ(t)) at each point where γ is smooth,

(b) it is continuous from the right: θ(ai) = limt↘ai θ(t),

(c) it satisfies θ(ai) = limt↗ai θ(t) + ε i for i > 0.

Proposition 3.15. (Existence of the Tangent Angle Function for a Curved Poly-
gon) There is a tangent angle function θ : [a, b] → R for each curved polygon γ : [a, b] →
R.

Proof. The first step is to define θ for t ∈ [a0, a1] as any lift of T on this interval.
Secondly, for i such that 1 ≤ i < k, θ is defined on [ai, ai+1] as the unique lift
that satisfies the property b) of Definition 3.14. For the uniqueness of the lift,
Proposition 1.58 a) was used. Additionally, given any two tangent angle function,
they differ by a constant multiple of 2π, which motivates the following definition.

Definition 3.16. The rotation index of γ, a curved polygon, is defined as

ρ(γ) =
1

2π
(θ(b)− θ(a)). (3.5)

Definition 3.17. The secant angle function of γ, ϕ(t1, t2), measures the angle between
the positive x-direction and the vector going from γ(t1) to γ(t2).

ρ(γ) =
1

2π
(θ(b)− θ(a)). (3.6)
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Theorem 3.18. (Rotation Index Theorem or Umlaufsatz, Heinz Hopf, 1935) The
rotation index of a positively oriented curved polygon in the plane is +1.

Proof. Let γ : [a, b] → R2 be a positively oriented curved polygon. For simplicity,
first it is assumed that all the vertices of γ are flat. Hence, γ′ is continuous and
γ′(a) = γ′(b). Then, since additionally γ(a) = γ(b), then the curved polygon γ

can be extended to a continuous map from R → R2 just by making it periodic of
period b − a. Consequently, the periodic γ has a continuous first derivative.

From now on, assume γ is periodic. If T(t) = γ′(t)
|γ′(t)| , then let θ : R → R be a

lift of T : R → S1, as it was argued in Definition 3.3 using the mapping function q.
The restriction of θ to [a, b], θ

∣∣∣[a,b] , is a tangent angle function for γ that satisfies

θ(b) = θ(a) + 2πρ(γ). (3.7)

With that, define θ̃ as θ̃(t) = θ(t + b − a)− 2πρ(γ), which is another lift of T:

(cos θ̃(t), sin θ̃(t)) = (cos θ(t+ b− a), sin θ(t+ b− a)) = T(t+ b− a) = T(t), (3.8)

where the first equality is true because, as it had been argued, ρ(γ) is an integer
number, the second follows from the fact that θ is the lift of T, and the last is
consequence of the periodicity of γ.

Observe that both θ̃ and θ are lifts of T that coincide at one point (θ̃(a) =

θ(a)). The symbol ≡ will be used to denote that two maps are equal all over their
domain. Then, by Proposition 1.58, θ̃ ≡ θ, which entails that

θ(t + b − a) ≡ θ̃(t) = θ(t) + 2πρ(γ). (3.9)

Now, let a1 be any number a1 ∈ [a, b], and define b1 = a1 + b − a. Then the
restriction γ

∣∣∣[a1,b1] is also a positively oriented curved polygon whose vertices are

all flat, and whose tangent angle function is θ
∣∣∣[a1,b1] . Then, γ

∣∣∣[a1,b1] and γ
∣∣∣[a,b] .

The rotation index of this curved polygon index γ
∣∣∣[a1,b1] coincides with that of

γ:

θ(b1)− θ(a1) = θ(a1 + b− a)− θ(a1) = (θ(a1)+ 2πρ(γ))− θ(a1) = 2πρ(γ), (3.10)

where it has been used that θ̃ ≡ θ.
This result implies that the interval [a, b] can shifted arbitrarily. Thus, assume

[a, b] ia an interval such that the y-coordinate of γ is minimum at the point a.
Furthermore, γ′ is independent of translations in the xy-plane so it can also be
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b γ(a) = γ(b)
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Figure 3.5: On the left, an arbitrary curved polygon. On the right, the curved
polygon with a shift in its domain and with translation described.

assumed that γ(a) is the origin. Consequently, the image of γ resides in the closed
upper half-plane, and T(a) = T(b) = (1, 0). Also, θ will be chosen such that
θ(a) = 0 since different tangent angle functions differ by multiples of 2π.

Now, define t ∆ ⊆ R2 as the region ∆ = (t1, t2) : a ≤ t1 ≤ t2 ≤ b. Let V : ∆ → S1

be the map

V (t1, t2) =





γ(t2)−γ(t1)
|γ(t2)−γ(t1)| , t1 < t2 and (t1, t2) ̸= (a, b);

T (t1) , t1 = t2;

−T(b), (t1, t2) = (a, b).

(3.11)

Figure 3.6: Region ∆ ⊂ R2.

The next step is to show that V is a continuous function. This is readily seen for
(t1, t2) such that t1 < t2 and (t1, t2) ̸= (a, b) because γ is continuous and injective.

Next, the continuity at (t, t) ∈ ∆ must be shown: let (t1, t2) ∈ ∆ be such that
t1 < t2 and apply the fundamental theorem of calculus:
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γ(t2)− γ(t2) =
∫ 1

0

d
ds

γ(t1 + s(t2 − t1))ds =
∫ 1

0
γ′(t1 + s(t2 − t1))(t2 − t1)ds.

(3.12)
An inequality may be obtained from this equation, which in turn will be useful

for computing the limits that verify the continuity of V(t1, t2).

γ(t2)− γ(t1)

t2 − t1
− γ′(t) =

1
t2 − t1

∫ 1

0
γ′(t1 + s(t2 − t1))(t2 − t1)ds − γ′(t)

=
∫ 1

0

[
γ′(t1 + s(t2 − t1))− γ′(t)

]
ds.

(3.13)

This implies that
∣∣∣γ(t2)−γ(t1)

t2−t1
− γ′(t)

∣∣∣ ≤
∫ 1

0 |γ′(t1 + s(t2 − t1))− γ′(t)| ds.
Considering that [a, b] is a compact set in which γ′ is continuous, by the Heine-

Cantor theorem γ′ is uniformly continuous. Then, the left-hand side of the pre-
vious equation can be made arbitrarily small by choosing (t1, t2) close to (t, t),
resulting in

lim
(t1,t2)→(t,t)

t1<t2

γ (t2)− γ (t1)

t2 − t1
= γ′(t), (3.14)

At last, it is shown that the limit of V(t1, t2), t1 < t2, coincides with V(t, t),
(t, t) ∈ ∆.

lim
(t1,t2)→(t,t)

t1<t2

V(t1, t2) = lim
(t1,t2)→(t,t)

t1<t2

γ (t2)− γ (t1)

|γ (t2)− γ (t1)|

= lim
(t1,t2)→(t,t)

t1<t2

γ (t2)− γ (t1)

|γ (t2)− γ (t1)|
|t2 − t1|
t2 − t1

= lim
(t1,t2)→(t,t)

t1<t2

γ (t2)− γ (t1)

γ (t2)− γ (t1)∣∣∣∣∣
γ (t2)− γ (t1)

γ (t2)− γ (t1)

∣∣∣∣∣

=
γ′(t)
|γ′(t)| = T(t) = V(t, t).

(3.15)
Similarly, the limit of V(t1, t2), t1 = t2, coincides with V(t, t), (t, t) ∈ ∆.

lim
(t1,t2)→(t,t)

t1=t2

V(t1, t2) = lim
t1→t

T(t1) = T(t) = V(t, t), (3.16)

because T(t) is a continuous function.
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With these two results, it is concluded that V is continuous at (t, t).
Lastly, the continuity at (a, b) is yet to be proved. For that, recall that γ has

been extended by making it periodic with period b − a. Then

lim
(t1,t2)→(a,b)

t1<t2

V(t1, t2) = lim
(t1,t2)→(a,b)

t1<t2

γ (t2)− γ (t1)

|γ (t2)− γ (t1)|

= lim
(t1,t2)→(a,b)

t1<t2

γ (t2)− γ (t1 + b − a)
|γ (t2)− γ (t1 + b − a)|

= lim
(s1,s2)→(b,b)

s1>s2

γ (s2)− γ (s1)

|γ (s2)− γ (s1)|
= −T(b) = V(a, b).

(3.17)

Finally, the continuity of V has been shown.
On the other hand, Theorem 1.59 implies that V : ∆ → S1 has a continuous lift

φ : ∆ → R, which is uniquely determined if one sets φ(a, a) = 0. The theorem can
be applied because ∆ is connected, locally path-connected, and simply connected
map.

Additionally, the secant angle function φ defined at Definition 3.17 is related
to the rotation index by

ρ(γ) =
1

2π
(θ(b)− θ(a)) =

1
2π

(φ(b, b)− φ(a, a)) =
1

2π
φ(b, b). (3.18)

To see the second identity, define the map φ : [a, b] → S1 as φ(t) = φ(t, t).
Notice that since φ(s1, s2), with (s1, s2) ∈ ∆, is a lift of V(s1, s2), then φ(t) is a lift
of V(t, t) = T(t), as well as θ(t). Hence, φ(t) and θ(t) differ only by a multiple of
2π, and the equality follows.

The only thing left to do is to compute the value of φ(b, b). In order to do that,
observe the points (t1, t2) ∈ ∆ on the side of ∆ for which t1 = a, and t2 ∈ [a, b]. On
such a side, V(a, t2) is a vector whose tail is at the origin, and whose tail remains
above the upper half-plane. Since φ(a, a) = 0 has been set, then it is necessary that
φ(a, t2) ∈ [0, π]. Additionally, seeing that φ(a, b) represents the tangent angle of
−T(b) = (−1, 0) shows that φ(a, b) = π by continuity.

Analogously, on the side of ∆ on which t2 = b, and t1 ∈ [a, b] the vector
V(t1, b) has its head at the origin and its tail in the upper half-plain, consequently
φ(t1, b) ∈ [π, 2π] (taking into account that φ(a, b) = π). Since φ(b, b) represents
the tangent angle of T(b) = (1, 0), it can be concluded that φ(b, b) = 2π. As a
result, ρ(γ) = 1.

The theorem has been proven now for a positively oriented curved polygon γ

with only flat vertices. That first version of the theorem will be leveraged to show
the result for a γ with ordinary vertices.
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b

γ(a) = γ(b)

0 1 2 3−1−2−3
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γ(a) = γ(b)

0 1 2 3−1−2−3
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bb

γ γ

γ(t)

V (a, t)

γ(t)

V (t, b)

Figure 3.7: Visualization of V(a, t) and V(t, b), for t ∈ [a, b].

Then let γ(ai) be an ordinary vertex of γ. Its exterior angle is notated as ε i. Let
α be a positive number smaller than 1

2 (π − |ε i|). By definition, θ is continuous from
the right at ai and limt↗ai θ(t) = θ(ai) − ε i (Definition 3.14). As a consequence,
there is a δ small enough such that if t ∈ (ai, ai + δ) then |θ(t)− θ(ai)| < α, and if
t ∈ (ai − δ, a1) then |θ(t)− (θ(ai)− ε i)| < α.

The image of the compact set [a, b] \ (ai − δ, ai + δ) is a compact set, because
γ is a continuous map. Moreover, this image does not contain the point γ(ai),
and so there exists an r small enough such that γ may only enter Br(γ(ai)) when
t ∈ (ai − δ, ai + δ). The point for which γ(t) enters Br(γ(ai)) is noted t1 ∈ (ai −
δ, ai), whereas t2 ∈ (ai, ai + δ) is the point for which γ(t) leaves this ball (see
Fig. 3.8). Because of how δ was chosen, the variance of θ(t) is smaller than α both
in t ∈ (t1, ai), and t2 ∈ (ai, t2). In the end, the total change of θ(t) when going
through the interval [a, b], ∆θ, is bounded as ε i − 2α < ∆θ < ε i + 2α, which in turn
means that −π < ∆θ < π, considering the definition of α.

b b

b

b

γ(t1)

γ(t2)

γ(ai)γ(ai)

γ γ

Figure 3.8: On the left, a Br(γ(ai)) where its r is too big. On the right, r is
sufficiently small, and it fixes t1 and t2.

As a final step, γ|[t1,t2]
is replaced by a smooth curve segment δ whose velocity

coincides with that of γ at γ(t1) and γ(t2), and whose tangent angle either in-
creases or decreases monotonically from θ(t1) to θ(t2), just like an arc of a conic
would do (Fig. 3.9). Since the change in tangent angle of δ is the angle between
T(t1) and T(t2), comprised between −π and π0, it must be exactly ∆θ.

In order to find this conic in an explicit way, it is convenient to transform the
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γ(t1)

γ(t2)

γ(ai)

Figure 3.9: Curve segment used to smooth the vertex γ(ai).

problem into a projective one. For that, notate A = γ(t1) and B = γ(t2), and let
r = γ(t1) + ⟨γ′(t1)⟩ and s = γ(t1) + ⟨γ′(t1)⟩ be lines. The conic that is mentioned
must have r and s as tangent lines at A and B, respectively. Additionally, let C ∈ R2

be a point that is not aligned with A and B. Then, homogeneous coordinates may
be established: (0 : 0 : 1) is the point r ∩ s, (1 : 0 : 0) is the point A, (0 : 1 : 0) is
the point B. Then (a : b : 1) is the point C, a, b ∈ R, a ̸= 0, b ̸= 0.

The conic may be seen as conic section in a 3-dimensional projective space.
Then, homogeneous coordinates (x : y : z : w) are used. Then, A = (1 : 0 : 0 : 0),
B = (0 : 1 : 0 : 0), and C = (a : b : 1 : 1), and these points determine the plane

αx − βy + γz − δw = 0, where

α =

∣∣∣∣∣∣∣

0 0 0
1 0 0
b 1 1

∣∣∣∣∣∣∣
= 0, β =

∣∣∣∣∣∣∣

1 0 0
0 0 0
a 1 1

∣∣∣∣∣∣∣
= 0, γ =

∣∣∣∣∣∣∣

1 0 0
0 1 0
a b 1

∣∣∣∣∣∣∣
= 1, δ =

∣∣∣∣∣∣∣

1 0 0
0 1 0
a b 1

∣∣∣∣∣∣∣
= 1.

(3.19)
The equation of the cone is x2 + y2 + z2 = (x + y)2, or xy = z2 if one cancels

terms and applies the transformation z 7→
√

2z.
The final equation, z = w, yields the quadratic equation xy = w2, using the

equation of the cone. This is a homogeneous quadric equation in (x : y : w) deter-
mining a conic in the plane. Then, one could undo the projective transformation
and obtain the desired conic in the original space.

3.2 The Gauss-Bonnet Formula

In this case, let (M, g) be an oriented 2-manifold.
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Definition 3.19. A curved polygon in M is an admissible simple closed curve γ : [a, b] →
M such that

1. it is the boundary of a precompact open set Ω ⊆ M,

2. there is an oriented smooth coordinate disk (U, φ) such that Ω ⊆ U and such
φ ◦ γ is a curved polygon on the plane R2. A coordinate disk is a coordinate
chart (U, φ) such that φ(U) = D, where D ⊆ R2 is an open disk.

Definition 3.20. The interior of γ in this context corresponds to Ω.

The goal will be to follow an schema similar to the one used for the case of a
plane curve, and as a result, the definitions used previously are now adapted.

Definition 3.21. Since (M, g) is an oriented manifold, by Proposition 1.72 ∂M has
an induced orientation called the Stokes orientation. γ is said to be positively
oriented if it is parametrized in the direction of the Stokes orientation.

Definition 3.22. The unit tangent vector field is defined on every smooth segment
of γ as

T(t) =
γ′(t)

|γ′(t)|g
(3.20)

Definition 3.23. The exterior angle of γ at γ(ai), ε i, is the oriented measure of the
angle T(a−i ) to T(a+i ) with respect to the g, the inner product of M, and the given
orientation of M. It can be expressed as

ε i =
dVg

(
T
(
a−i

)
, T

(
a+i

))
∣∣dVg

(
T
(
a−i

)
, T

(
a+i

))∣∣ arccos
〈
T
(
a−i

)
, T

(
a+i

)〉
g . (3.21)

Definition 3.24. The interior angle of γ at γ(ai) is

θi = π − ε i. (3.22)

Interior and exterior angles at γ(a) = γ(b) are defined the same way they were
at Definition 3.9.

With these definitions at hand, now the rotation index formulation can be
adapted to the case of an oriented Riemannian 2-manifold. For that, let γ : [a, b] →
M be a curved polygon whose interior is Ω, and let (U, φ) be an oriented smooth
chart such that Ω ⊆ U. If γ, Ω, and g are transferred to the plane, then g may
be assumed to be a metric on some open set “U ⊆ R2, and γ is a curved polygon.
The oriented orthonormal frame for g, (E1, E2) will be that obtained by applying
the Gram-Schmidt algorithm to (∂x, ∂y), which implies that E1 is a positive scalar
multiple of ∂x everywhere in “U.
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Definition 3.25. The tangent angle function for γ is a piecewise continuous function
θ : [a, b] → R such that it satisfies

T(t) = cos(θ(t)) E1|γ(t) + sin(θ(t)) E2|γ(t) , (3.23)

at each t in which γ′(t) is continuous, and it is also continuous from the right and
it satisfies θ(ai) = limt↗ai θ(t) + ε i and θ(b) = limt↗ai θ(t) + εk. The existence of
such a function, similarly to the planar case, arises from the fact that

T(t) = u1(t)E1|γ(t) + u2(t)E2|γ(t) , (3.24)

where u1, u2 : [a, b] → R are piecewise continuous functions that can be regarded
as the coordinate functions of a map (u1, u2) : [a, b] → S1 since |T(t)|g = 1, for
every t ∈ [a, b].

Definition 3.26. The rotation index of γ corresponds to

ρ(γ) =
1

2π
(θ(b)− θ(a)) . (3.25)

Note that the coordinate-independence of the rotation index is not evident
since now the frame used is the varying (E1, E2).

Lemma 3.27. Let M be an oriented Riemannian 2-manifold. The rotation index of every
positively curved polygon in M is +1.

Proof. As described above, the definition of a curved polygon in M implies that
there is an oriented coordinate chart that verifies the condition 2. of Definition 3.19.
Such a chart can be used to regard γ as a curved polygon in the plane. Observe
that θ(a) and θ(b) represent an angle between the same two vectors, and then
ρ(γ) must be an integer. However, notice that θ may be computed with different
metrics such as the Euclidean, g, or with g, hence ρ(γ) could vary with the metric.
Now, let gs be an inner product defined as gs = sg + (1 − s)g, for s such that
0 ≤ s ≤ 1. Then as it has been noted, the rotation index with respect to gs, ρgs(γ),
is an integer for each s, and therefore f (s) = ρgs(γ) is integer-valued.

Additionally, these facts show that f is a continuous function:

1. the gs-orthonormal frame
(

E(s)
1 , E(s)

2

)
described above depends continuously

on s since they are computed via the Gram-Schmidt algorithm whose formu-
las are continuous on s,

2. on every interval [ai−1, ai] in which γ is smooth, the functions u1 and u2 cor-
responding to the ones introduced at Eq. (3.24), but for gs, can be expressed
as
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uj(t, s) =
≠

Ts(t), E(s)
j

∣∣∣
γ(t)

∑
gs

, (3.26)

where Ts = γ′(t)
|γ′(t)|gs

. As a result, u1 and u2 depend continuously on (t, s) ∈
[ai−1, ai] × [0, 1], and therefore the function (u1, u2) : [ai−1, ai] × [0, 1] → S1

has a continuous lift θ : [ai−1, ai]× [0, 1] → R, which is unique once the value
at one point is determined (Proposition 1.58).

3. at every vertex, it follows from Eq. (3.21) that the exterior angle depends con-
tinuously on s. This is true because θ(b) is defined as θ(b) = limt↗ai θ(t) + εk

(Definition 3.25).

Then, as it had been declared, f is continuous and integer valued, and so it
follows that

ρg(γ) = f (1) = f (0) = ρg(γ) = 1, (3.27)

where the last identity is given by the Theorem 3.18.

From now on, for simplicity, the curved polygon γ will be given a unit-speed
parametrization (|γ′(t)| = 1), and so T(t) = γ′(t). Moreover, a normal vector
field along the smooth parts of γ is uniquely determined if one imposes that
(γ′(t), N(t)) is an oriented orthonormal basis for Tγ(t)M. This is equivalent to say
that N points inward over ∂Ω if γ is positively oriented.

Definition 3.28. The signed curvature of γ at its smooth points of is given by

κN(t) =
〈

Dtγ
′(t), N(t)

〉
g . (3.28)

Notice that if the expression |γ′(t)|2g = ⟨γ′(t), γ′(t)⟩g ≡ 1 is differentiated, it
yields ⟨Dtγ

′(t), γ′(t)⟩g = 0, thus Dtγ
′(t) = κN(t)N(t). κN(t) is positive if γ is

curving toward Ω, and negative if it is curving away.

Theorem 3.29. (The Gauss-Bonnet Formula) Let (M, g) be an oriented Riemannian
2-manifold, let γ : [a, b] → M be a positively oriented curved polygon in M with an
admissible partition (a1, . . . , ak), and Ω its interior. It follows that

∫

Ω
K dA +

∫

γ
κN ds +

k

∑
i=1

ε i = 2π, (3.29)
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with K being the Gaussian curvature of g, dA the Riemannian volume form, ε i the exterior
angle of γ at γ(ai), for i such that 1 ≤ i ≤ k, and the second integral is taken with respect
to arc length .

Proof. Let (x, y) be oriented smooth coordinates on an open set U containing Ω.
As it has been already argued, the existence of such coordinates stems directly
from the definition of a curved polygon in M. Let θ : [a, b] → R be a tangent angle
function for γ. By means of the Rotation Index Theorem (θ(b) − θ(a)), and the
Fundamental Theorem of Calculus (

∫ ai
ai−1

θ′(t) dt = ai − ai−1), it follows that

2π = θ(b)− θ(a) =
k

∑
i=1

ε i +
k

∑
i=1

∫ ai

ai−1

θ′(t) dt. (3.31)

Notice that when adding up the terms ai − ai−1, all but the first and last terms
cancel out. Consequently, in order to obtain Eq. (3.29), a relation among θ′, κN ,
and K must be retrieved.

Again, let (E1, E2) be the oriented g-orthonormal frame obtained from (∂/∂x, ∂/∂y)

via the Gram-Schmidt algorithm. Then, by the definitions of θ and N, these iden-
tities hold:

γ′(t) = cos θ(t) E1|γ(t) + sin θ(t) E2|γ(t) ,

N(t) = − sin θ(t) E1|γ(t) + cos θ(t) E2|γ(t) .
(3.32)

Henceforth, the dependence on t will not be explicitly noted to unburden the
notation.

Subsequently, γ′ is differentiated, which yields

Dtγ
′ = −(sin θ)θ′ E1|γ + (cos θ)θ′ E2|γ + (cos θ)∇γ′ E1|γ + (sin θ)∇γ′ E2|γ =

= θ′N + (cos θ)∇γ′ E1|γ + (sin θ)∇γ′ E2|γ .
(3.33)

On the other hand, since (E1, E2) is an orthonormal frame, a few relations may
be derived from the covariant derivatives of the different inner products, which
are constant. Let v ∈ Tγ M be any vector, then

Let (M, g) be a Riemannian manifold, and γ a smooth curve segment. If f : [a, b] → R is a
continuous function, the integral of f with respect to arc length is

∫

γ
f ds =

∫ b

a
f (t)

∣∣γ′(t)
∣∣
g dt. (3.30)
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0 = ∇v |E1|2 = ∇v ⟨E1, E1⟩ = 2 ⟨∇vE1, E1⟩ , (3.34)

0 = ∇v |E2|2 = ∇v ⟨E2, E2⟩ = 2 ⟨∇vE2, E2⟩ , (3.35)

0 = ∇v ⟨E1, E2⟩ = ⟨∇vE1, E2⟩+ ⟨E1,∇vE2⟩ . (3.36)

From Eq. (3.34) and Eq. (3.35), it is deduced that ∇vE1 is a multiple of E2, and
that ∇vE2 is a multiple of E1. Eq. (3.36) is used to define the 1-form ω such that

ω(v) = ⟨E1,∇vE2⟩ = − ⟨∇vE1, E2⟩ . (3.37)

If all these facts are combined, the covariant derivatives of the basis vectors
may be expressed as

∇vE1 = −ω(v)E2,

∇vE2 = ω(v)E1.
(3.38)

Hence, ω completely determines the connection in U. If one replaces Eq. (3.38)
in Eq. (3.33), then the signed curvature of γ yields

κN =
〈

Dtγ
′, N

〉
g

=
〈
θ′N, N

〉
g + cos θ

¨
∇γ′ E1|γ , N

∂
g
+ sin θ

¨
∇γ′ E2|γ , N

∂
g

=
〈
θ′N, N

〉
g − ω(γ′) cos θ ⟨E2, N⟩g + ω(γ′) sin θ ⟨E1, N⟩g

=
〈
θ′N, N

〉
g − ω(γ′) cos2 θ − ω(γ′) sin2 θ

= θ′ − ω(γ′).

(3.39)

Accordingly, Eq. (3.31) becomes

2π =
k

∑
i=1

ε i +
k

∑
i=1

∫ ai

a1−1
κN(t) dt +

k

∑
i=1

∫ ai

a1−1
ω(γ′(t)) dt

=
k

∑
i=1

ε i +
∫

γ
κN ds +

∫

γ
ω.

(3.40)

The only remaining thing to show is that
∫

γ ω =
∫

Ω K dA. Observe that Ω is a
smooth manifold with corners, and as a result, the Stokes’ Theorem of Manifolds
with Corners (Theorem 1.71) may be applied on

∫
γ ω , which yields

∫

γ
ω =

∫

Ω
dω. (3.41)



3.3 The Gauss-Bonnet Theorem 39

Hence, if one can prove that dω = K dA, the proof would be completed. For
that, it is necessary to use Corollary 1.39, which shows that dA(E1, E2) = 1 since
(E1, E2) is an oriented orthonormal frame. Then,

K dA(E1, E2) = K = Rm(E1, E2, E2, E1)

= ⟨R(E1, E2)E2, E1⟩g
(3.42)

Now, the expression R(E1, E2)E2 may be expanded using the definition of the
curvature tensor (Definition 1.75), Eq. (3.38), and the properties of the connections
(Definition 1.26):

R(E1, E2)E2 =∇E1∇E2 E2 −∇E2∇E1 E2 −∇[E1,E2]E2

=∇E1 (ω(E2)E1)−∇E2 (ω(E2)E1)− ω ([E1, E2]) E1

= (E1 ω(E2)) E1 + ω(E2)∇E1 (E1)

− (E2 ω(E2)) E1 − ω(E2)∇E2 (E1)− ω ([E1, E2]) E1

(3.43)

Finally, the resulting expression can be replaced at Eq. (3.42):

K dA(E1, E2) = ⟨(E1 ω(E2)) E1 + ω(E2)∇E1 (E1)

− (E2 ω(E2)) E1 − ω(E2)∇E2 (E1)− ω ([E1, E2]) E1, E1⟩g

= (E1 ω(E2))− (E2 ω(E2))− ω ([E1, E2])

=dω(E1, E2),

(3.44)

where, again, Eq. (3.38) has been used, altogether with Proposition 1.41.

3.3 The Gauss-Bonnet Theorem

Definition 3.30. Let M be a compact 2-manifold. A triangulation of M is a finite
collection of curved triangles such that, when any two of them intersect, they do
so exactly at one of their vertices or along one of their edges. If M is smooth, the
triangulation is said to be smooth.

Theorem 3.31. (Existence of the Triangulation of Compact 2-manifolds)
Any compact 2-manifold without boundary M has a triangulation.

Proof. A succinct proof can be found in [7]. However, this proof in turn employs
the Jordan-Schoenflies Theorem. Alternatively, a self-contained proof can be found
at Section 3 of [8] for regular surfaces in R3.
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a) b)

Figure 3.10: a) Intersections allowed between triangles. b) Forbidden intersections.

Definition 3.32. Let M be a 2-manifold with a given triangulation. The Euler(–Pointcaré)
characteristic of M is defined as

χ(M) = T − E + V, (3.45)

where T is the number of triangles or faces of the triangulation, E is the number
of edges, and V the number of vertices.

Figure 3.11: An example of the triangulation fo the sphere. In this case, χ(S2) =

T − E + V = 6 − 9 + 5 = 2, respectively. On the right, the curved triangles have
been replaced by triangles.

It cannot be presumptively assumed that the Euler characteristic of M does not
depend on the chosen triangulation. Nevertheless, it will be demonstrated that, in
fact, it does not.

Theorem 3.33. (The Gauss-Bonnet Theorem for orientable 2-manifolds) Let
(M, g) be a smoothly triangulated compact Riemannian 2-manifold. dA denotes the Rie-
mannian density. If K is the Gaussian curvature of g, and dA is its Riemannian density,
then

∫

M
K dA = 2πχ(M). (3.46)
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Proof. M can be assumed to be connected because if it is not, the following deduc-
tion can be applied to each of its connected components and then these results can
be added up.

Since M is a triangulated manifold, there is a triangulation {Tj}j=1,...,T of M.
Then, T is the number of triangles, and let the number of edges, and vertices be E,
and V, respectively. For each triangle Tj, their three edges, three vertices, and three
interior angles are notated as Ejk, Vjk, and θij for k = 1, 2, 3, respectively. Assume
for the time being that M is orientable with a given orientation. Then, by the
definition of triangulation, for each triangle Tj there is a positively oriented curved
polygon Ẽ : [aj1, bj3] → M such that its regular curve segments are Ẽjk : [ajk, bjk] →
M. If θij is an interior angle, then 2π − θij is its corresponding external angle.
Using this notation, one can apply the Gauss-Bonnet formula, Eq. (3.29), on the
curved triangle Tj:

∫

Tj

K dA +
3

∑
k=1

∫

Ẽjk

κN ds +
3

∑
i=1

(π − θjk) = 2π. (3.47)

Thus, the addition of Eq. (3.47) for all the triangles Tj, j = 1, . . . , T yields

T

∑
j=1

∫

Tj

K dA +
T

∑
j=1

3

∑
k=1

∫

Ẽjk

κN ds +
T

∑
j=1

3

∑
k=1

(π − θjk) = 2Tπ. (3.48)

Before continuing, it will be useful to show that the sum of the interior an-
gles of each vertex is 2π. This is obvious for the standard metric, but it needs
to be shown for an arbitrary Riemannian metric. For a given vertex e = Vjk, its
corresponding interior angles are those between the curves in contact with e that
compose the triangles of the triangulation. In turn, the angle between two curves
is the angle between their tangent vectors at the point where they coincide. Let
u1, . . . , uk, uk+1 = u1 be these tangent vectors at e in Tp M. Let (e1, e2) be an or-
thonormal basis of Tp M with respect to g. Then, the unit tangent vectors may be
expressed as û = cos(θi)e1 + sin(θi)e2, with θ1 = 0, and the sum of the interior
angles corresponds to θ(sk+1), which must be a multiple of 2π. To conclude that
is 2π, use the same argument found in the proof of Theorem 3.18.

Now, several terms of Eq. (3.48) may be simplified:

1. ∑T
j=1

∫
Tj

K dA =
∫

M K dA, since the collection of triangles of the triangulation
cover M and Ti ∩ Tj has measure 0, for every i ̸= j, i, j = 1, . . . , T,

2. ∑T
j=1 ∑3

k=1
∫

Ẽjk
κN = ∑jk

∫
Ẽjk

κN = ∑jk,lm,Ejk=Elm

(∫
Ẽjk

κN +
∫

Ẽlm
κN

)
=

∑jk,Ejk

(∫
Ẽjk

κN −
∫

Ẽjk
κN

)
= 0. This identity comes from regrouping the

terms and noticing that for each edge Ejk there are two curve segments that
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go through the edge but have opposite direction (observe the edges of figure
Fig. 3.12),

12

3

4

1

2

3 4

a

b c

d

e

a

b

d
e

a

b

c

d

Figure 3.12: The triangulation of Fig. 3.11 has been cut out and "flattened" so that
it is easier to be analyzed on the paper. Therefore, the vertices have been named
with letters and the edges through which the cutting has been made are labeled
with numbers. Once the cutting has been performed, the edges that appear twice
should be identified. Notice each triangle has an orientation compatible with the
original orientation of M = S2.

3. ∑T
j=1 ∑3

k=1
(
π − θjk

)
= 3Tπ − ∑T

j=1 ∑3
k=1

(
θjk

)
= ∑Vjk ∑θlm of Vjk = ∑Vjk 2π =

2Vπ, where, in the additions, all the interior angles pertaining to each vertex.
The result arises then from realizing that the sum of all the interior angles
associated with a each vertex add up to to 2π,

b

M

TpM
p TpM

b

Ẽ1 Ẽ2
Ẽ3

Ẽ3

Ẽ1

Ẽ2

θ1
θ2

θ3

p

Ẽ′
1(p)

Ẽ′
2(p)

Ẽ′
3(p)

Figure 3.13: Depiction of the tangent space of the vertex p of the triangulation on
Fig. 3.11. Some curve segments of the triangulation have been notated as Ẽi. Ẽi(p)
are tangent angle of M at p. It is shown that the sum of the interior angles of this
vertex, i.e., the sum of the angles between the tangent vectors of Ẽi(p) corresponds
to θ1 + θ2 + θ3 = 2π.

4. Notice that if the sum of the number of edges of each separate triangle of
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the triangulation (3E) is computed, then each edge has been counted twice,
and therefore 2E = 3T, or equivalently, T = 2E − 2T.

All in all, it follows that
∫

M
K dA = 2Vπ − Tπ = 2Vπ − (2E − 2T)π = 2πχ(M). (3.49)

Lemma 3.34. Let (M̃, g̃) and (M, g) be compact and connected Riemannian manifolds,
and let π : M̃ → M be a k-sheeted Riemannian covering. Then

∫

M̃
dVg̃ = k

∫

M
dVg. (3.50)

Proof. ∫

M̃
dVg̃ =

∫

M̃
π∗dVg = k

∫

M
dVg. (3.51)

For more information on the integration on manifolds see Chapter 16 of [2].

Theorem 3.35. (The Gauss-Bonnet Theorem for nonorientable 2-manifolds) The
Eq. (3.46) of Theorem 3.33 holds if M is nonorientable as well. Now, dA denotes the
Riemannian volume form.

Proof. Just as in Theorem 3.33, M can be assumed to be connected. Also, observe
that

∫
M K dA is the same regardless of whether dA is the Riemannian density or

the Riemannian volume form.
The hypothesis of the theorem satisfy those of Proposition B.18 of [3]. There-

fore, there is an oriented smooth manifold M̂ and a two-sheeted smooth cover-
ing map π̂ : M̂ → M. This result might indicate a possible path for proving the
theorem: one could construct an orientable Riemannian manifold that meets the
hypothesis of the orientable version of the Gauss-Bonnet Theorem (Theorem 3.33)
in such a way that the computations on (M̃, g̃) are related to those on (M, g).

In that order of ideas, M̃ is compact because it is the preimage of the compact
M by π, a covering with finite fibers. On the other hand, M̃ can be endowed with
the Riemannian metric corresponding to the pull back of g: ĝ = π̂∗g. For that
metric, the Gauss curvature is K̂ = π̂∗K, and then π̂∗(KdA) = K̂”dA

Assume M has a given triangulation. Now, the complex part is to fabricate a
triangulation on M̂ such that its Euler characteristic is related to that of M.
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Let γ be a curved triangle of the triangulation of M whose interior is notated
as Ω. By the definition of curved polygon (Definition 3.11), there is a smooth
coordinate disk (U, φ) , such that Ω ⊆ U. Additionally, φ ◦ γ is a curved polygon
on R2 whose interior is notated as Ω0. Therefore, φ(Ω) = Ω0. Hence, F =

φ|Ω0
: Ω0 → Ω is a diffeomorphism, by the definition of chart (see Fig. 3.14).

U φ(U)

φ(U) φ(U)

idφ

φ

id ◦φ ◦ φ−1 = id

φ(U) U

φ(U) φ(U)

φid

φ−1

φ−1 ◦ φ ◦ id = id

Figure 3.14: Let (U, φ) be a chart of a smooth manifold M. Since φ, and id are
charts of U, and φ(U), respectively, the diagram on the left shows that id is a
diffeomorphism. Then, the diagram on the right shows that φ−1 is smooth.

Then, Corollary A.57 of [3] implies that φ−1 and F have a lift to M̂. If two
lifts have a point in common in their image, they are identical (Proposition 1.58),
and since M̂ is 2-sheeted, then there are exactly two lifts F1, F2 : Ω0 → M̂ such that
F = π̂ ◦ Fi, with i = 1, 2. From this identity, and the fact that F is injective, it
is shown that Fi is injective. Finally, the triangles derived from the triangulation
of M can be lifted, which yields a triangulation of M̂ with as many triangles,
edges, and vertices as those of the original triangulation times the number of lifts:
χ(M̂) = 2χ(M).

Ultimately, the Gauss-Bonnet theorem for the orientable 2-manifold M̂ (The-
orem 3.33), together with the properties found for its constructed triangulation
yield the desired result:

2
∫

M
K dA =

∫

M̂
K̂”dA = 2χ(M̂) = 4πχ(M). (3.52)

3.4 Application of the Gauss-Bonnet Theorem

First, a few terms and notation must be introduced:
If two Riemannian manifolds S1 and S2 are homeomorphic, one writes S1 ≃ S2.

The connected sum operation is notated with #. The connected sum of n copies of

a surface S is indicated as nS = S#
n︷︸︸︷. . . #S. Denote the sphere as S2, the torus as

T, and the projective plane P. Then, remember this famous topological result:
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Theorem 3.36. (Classification Theorem for Compact Topological 2-manifolds)
Let M be a compact and connected topological 2-manifold.

1. If M is orientable, then M is homeomorphic to S2 or to nT,

2. If M is nonorientable, then M is homeomorphic to nP.

Proof. See Theorems 6.15 and 10.22 of [2] for a proof for Topological manifolds.

Additionally, for the connected sum of a pair of 2-manifolds, M1 and M2,
it holds χ(M1#M2) = χ(M1) + χ(M2) − χ(S2), and then χ(nT) = 2 − 2n, and
χ(nP) = 2 − n. As a result,

χ(M) =





2, if M ≃ S2,

2 − 2n, if M ≃ nT,

2 − n, if M ≃ nP.

(3.53)

Then, this theorem combined with the Gauss-Bonnet theorem yields the fol-
lowing result.

Corollary 3.37. Let (M, g) be a compact Riemannian 2-manifold, and let K be the corre-
sponding Gaussian curvature. Then

1. if M ≃ S2 or M ≃ P, then K > 0 somewhere,

2. if M ≃ T or M ≃ 2P, then either K ≡ 0 or K takes both negative and positive
values,

3. otherwise, K < 0 somewhere.

Proof. The sign of the characteristic of Euler may be computed for each scenario.
The case 1. corresponds to χ(M) > 0 (χ(S2) = 2, χ(P) = 1). The case 2. corre-
sponds to χ(M) = 0. The case 3. corresponds to χ(M) < 0.

By the Gauss-Bonnet Theorem,
∫

M K dA = 2πχ(M), and then deductions
about the sign of K can be made for each case. In 1., if χ(M) > 0, then K > 0
somewhere. In 2., if χ(M) = 0, then K = 0 everywhere, or K takes negative and
positive values. In 3., χ(M) < 0, and then K < 0 somewhere.
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