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Abstract

Regularity theory for Partial Differential Equations might be one of the most
important topics in the field. With many applications, some of them in areas
further away like Mathematical Physics, learning the basic regularity estimates for
the Laplacian seems a crucial step into understanding more general results and
solutions. This project intends to provide the tools and proofs of the Calderón-
Zygmund estimates for the Laplacian equation ∆u = f , with f ∈ Lp. We will
separate in three distinct cases: p = 2, p ∈ (2, ∞) and p = ∞, each with a different
proof. Further, using blow-up techniques introduced in [1] a new proof for the
limiting case p = ∞ will be provided. Finally, we intend to remark a few points
that could potentially lead towards a blow-up proof for the general Lp case.

2020 Mathematics Subject Classification. 35B65, 35J05, 46E35



Introduction

After a long and interesting journey studying both Mathematics and Physics,
I have come to realize that there are many things given as granted. Some of
them not so obvious, like the recurrent example that any equation has a smooth
solution, specially in the field of Physics. Of course, although not explained in the
courses, these are checked, but the general feeling is that they are omitted. From a
mathematical point of view it has always stricken me this kind of reasoning, since
it is a little bit against the logical and rational thinking that mathematics have
taught me.

For this reason, when speaking with Dr. Xavier Ros-Oton at the start of the
project, it became clear that the study of regularity for Partial Differential Equa-
tions (PDE) would put my mind at ease, or at least try to. This field in PDE has
been one of the most important, since it is not only a unifying problem in the
area, but also has many important implications in other fields of study, such as
Harmonic Analysis or Mathematical Physics.

Of course, there is no way of checking it for every single equation or case, and
for simplicity, we decided that the best would be to just consider the Laplacian:

∆u = f in Ω,
u = g in ∂Ω.

(1.1)

The idea, is that the function f is usually known, which means we know what type
of regularity it follows, and we want to find out what happens with our solution
u. Before continuing, we will usually consider that g ≡ 0, which considerably
simplifies some arguments. The reason why we can do so, is that if it were not the
case, then we could always re-define our problem such that a harmonic function
v is the solution of:

∆v = 0 in Ω,
v = g in ∂Ω.

(1.2)

Then the function ω = u − v would have the form of (1.1) with ω = 0 in ∂Ω,
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2 Introduction

and studying it’s regularity would allow us to learn much from u as well. What
is implicit here, are the known results on harmonic functions, which will later be
revised in the following chapter. Therefore, form now on, we will always consider
problems of the type (1.1) with g = 0, except otherwise stated.

The next step, was to decide where would f belong to. The classical results on
the matter consider the following two cases:

f ∈ Cα(Ω) for α ∈ (0, 1).
f ∈ Lp(Ω) for p ∈ (1, ∞).

(1.3)

In the first one, the results are called Schauder estimates and consider functions that
can be treated point-wisely. In the second, called Calderón-Zygmund estimates, the
functions have less information since they are only integrable. These results state
that our solution u is "two-times" better than f .

The first goal of the project was to understand the tools and proofs required for
these estimates to be true, specially focusing on the Lp case. After this deep com-
prehension, the original idea was to propose a new way of proving the Calderón-
Zygmund estimates using a different type of approach, with a blow-up method, as
in some of the Schauder estimates proofs. Up to the moment, this has not been
possible for the general Lp case. Nonetheless a positive proof has been found for
the special case p = ∞.

In the following sections, we will first introduce the basic tools needed for the
Lp estimates, with a short mentioning on the Cα case. Then, we will show the
proofs of the estimates for three different cases: p = 2, p ∈ (2, ∞) and p = ∞, each
following a different line of action. Finally, some of the problems encountered
during the work will be remarked.



Preliminaries

The aim of this section is to introduce the basic tools needed for the following
chapters, as well as some basic notations and results.

Before jumping into the regularity of our solution of (1.1), one might ask him-
self if this problem has, indeed, a solution. And even if existence is proved, that
still does not mean it is unique. Thankfully, there are many methods to prove
existence or uniqueness for the Laplacian, like the energy method, which are thor-
oughly explained in the references [1, 2, 3].

Nonetheless, it is still important to understand what it really means to be a
solution of the Dirichlet problem (1.1). There are two basic ways of defining them, in
the weak or in the viscosity sense, and although both have different and interesting
properties, in our case we are only motivated to define the first one:

Definition 2.1. We say that u is a weak solution to (1.1), whenever u ∈ H1(Ω), u∂Ω = g
and: ˆ

Ω
∇u∇v =

ˆ
Ω

f v for all v ∈ H1(Ω) such that v = 0 in ∂Ω. (2.1)

Notice that the concept of H1 has not yet been introduced, but will become
clear in the Sobolev spaces section. At this point, we could start to think about the
regularity, but first we introduce the main spaces we will be dealing with, and
some of their properties.

2.1 Hölder spaces

Even if this project is not centered around the Schauder estimates, before defin-
ing the more complex Sobolev space, a short mentioning of Hölder spaces will be
helpful.

Definition 2.2. Consider k ∈N and α ∈ (0, 1), the space Ck,α(Ω) is the set of functions
u ∈ Ck(Ω) such that the following norm is finite:

||u||Ck,α(Ω) = ||u||Ck(Ω) + [Dku]C0,α(Ω), (2.2)

3



4 Preliminaries

where the norm:

||u||Ck(Ω) =
k

∑
j=1
||Dju||L∞(Ω), (2.3)

and the semi-norm:

[u]C0,α(Ω) = sup
x,y∈Ω
x ̸=y

|u(x)− u(y)|
|x− y|α . (2.4)

Usually we will refer the C0,α as Cα. As we will later see, there are some similar-
ities with the BMO semi-norm. Despite that there are many interesting properties
associated to this space, like the Arzelà-Ascoli theorem or some interpolation inequal-
ities, these will not be covered. Again, one can find a very good recollection in
[1].

2.2 Lp and Sobolev spaces

2.2.1 Lp spaces

First we will introduce the Lp spaces.

Definition 2.3. Given Ω ∈ Rn and 1 ≤ p < ∞ we define the Lp(Ω) space as:

Lp(Ω) = {u measurable in Ω :
ˆ

Ω
|u|pdx < ∞}. (2.5)

It is a Banach space with the following norm:

||u||Lp(Ω) =

(ˆ
Ω
|u|p

)1/p

. (2.6)

In the case when p = ∞, L∞(Ω) is the set of bounded functions in Ω (up to a
subset of measure 0) with ||u||L∞(Ω) = esssupΩ|u| = in f {a ∈ R, µ(u(x) < a) ̸= 0},
where µ is the measure associated to the space.

There are three theorems worth mentioning at this point. The proofs will not
be provided, but can easily be found in chapters 2 and 4 from Ref. [4]. These will
be used constantly throughout the project:

Theorem 2.4. (Hölder’s inequality) Let (Ω, Σ, µ) be a measure space and let p, q ∈ [1, ∞]

with 1/p + 1/q = 1. Then for all measurable real valued functions f and g on Ω:

|| f g||L1(Ω) = || f ||Lp(Ω) · ||g||Lq(Ω). (2.7)
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Theorem 2.5. (Minkowski’s inequality) Let (Ω, Σ, µ) be a measure space and let p, q ∈
[1, ∞) with 1/p + 1/q = 1. Then for f , g ∈ Lp(Ω) we have that f + g ∈ Lp(Ω) and
the triangle inequality holds:

|| f + g||Lp(Ω) ≤ || f ||Lp(Ω) + ||g||Lp(Ω). (2.8)

Theorem 2.6. (Young’s convolution inequality) Let (Ω, Σ, µ) be a measure space and let
p, q, r ∈ [1, ∞] with 1/p + 1/q = 1/r + 1. Then for f ∈ Lp(Rn) and g ∈ Lq(Rn) we
have:

|| f ∗ g||Lr(Rn) = || f ||Lp(Rn) · ||g||Lq(Rn). (2.9)

where ∗ denotes the integral convolution:

( f ∗ g)(x) =
ˆ

Rn
f (y)g(x− y)dy =

ˆ
Rn

f (x− y)g(y)dy. (2.10)

The idea, is that these inequalities allow us to compare p− norms for different
values of p, as well as using the triangular inequality. For example, with Hölder’s
inequality we can see that the L2 norm is comparable to the L1 norm, with a con-
stant that only depends on the domain Ω:

|| f ||L1(Ω) = ||1||L2(Ω) · || f ||L2(Ω) = |Ω|1/2 · || f ||L2(Ω), (2.11)

where again |Ω| = µ(Ω) refers to the measure of Ω. Young’s convolution inequality,
allows us to bound the norm of a convolution by the norms of our functions,
which will be an important step in some of the proofs. Lastly, a very well known
formula:

Theorem 2.7. (Integration by parts). Assume Ω ⊂ Rn is any bounded C1 domain. Then,
for any u, v ∈ C1(Ω) we have

ˆ
Ω

∂iu · v dx = −
ˆ

Ω
u · ∂iv dx +

ˆ
∂Ω

uv · νi dS, (2.12)

where ν is the unit (outward) normal vector to ∂Ω, and i = 1, 2, . . . , n.

This theorem holds as well for functions u, v ∈ H1, as will be later used in the
L2 chapter and has an implicit definition of weak derivative.
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2.2.2 Sobolev spaces

Now, it is time to introduce the the Sobolev spaces Wk,p(Ω):

Definition 2.8. Given Ω ∈ Rn and 1 ≤ p ≤ ∞ we define the Sobolev space Wk,p(Ω) as:

Wk,p(Ω) = {u ∈ Lp(Ω), ∂m
j u ∈ Lp(Ω) for m = 1, ..., k, j = 1, ..., n}. (2.13)

This space is basically defined such that the weak derivatives of u up to order
k are found in Lp. We can also see that it is a Banach space [3] when we endow it
with the following norm:

||u||Wk,p(Ω) =

(
∑
|α|≤k

ˆ
Ω
|Dαu|p

)1/p

for 1 ≤ p < ∞. (2.14)

When p = ∞ we have to consider ||u||Wk,∞(Ω) = ∑|α|≤k ess supΩ |Dαu|. As with the
Lp spaces, it is interesting to quote two properties which will be used along the
project.

Proposition 2.9. The space H1(Ω) := W1,2(Ω) is a Hilbert space with the following
scalar product:

(u, v)H1(Ω) =

ˆ
Ω

uv +

ˆ
Ω
∇u∇v. (2.15)

Any bounded sequence {uk}k ∈ H1(Ω) contains a weakly convergent subsequence {uk j}j,
meaning that there exists u ∈ H1(Ω) such that:

(uk j , v)H1(Ω) −→ (u, v)H1(Ω) for any v ∈ H1(Ω). (2.16)

Moreover, such u will satisfy the lower semi continuity of the norm:

||u||H1(Ω) ≤ lim inf
j→∞

||uk j ||H1(Ω), (2.17)

and since H1(Ω) is compactly embedded in L2(Ω):

||u||L2(Ω) = lim
j→∞
||uk j ||L2(Ω). (2.18)

Although it might look simple, this proposition will have important conse-
quences later on. The main reason is that it will allow us to pass the limit for
sequences found in H1(Ω), as will be needed in the p = 2 and p = ∞ proofs. It
also relates to the fact that only for p = 2 we have a Hilbert space, meaning that
this space is the dual of itself at the same time. It is worth mentioning, that the
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second part of the proposition actually is a special case of the Rellich-Kondrachov
Compactness Theorem for p = 2, as well as with the Sobolev Embedding Theorem.
These ones can be found in [5, 3]. The second property is the following inequality
[1, 3]:

Theorem 2.10. (Poincaré inequality). Let Ω ⊂ Rn be any bounded Lipschitz domain,
and let p ∈ [1, ∞). Then, for any u ∈W1,p(Ω) we haveˆ

Ω
|u− uΩ|p dx ≤ CΩ,p

ˆ
Ω
|∇u|pdx. (2.19)

where uΩ :=
ffl

Ω u = 1
|Ω|

´
Ω u, and

ˆ
Ω
|u|pdx ≤ C′Ω,p

(ˆ
Ω
|∇u|pdx +

ˆ
∂Ω
|u|∂Ω|p dσ

)
. (2.20)

The constants CΩ,p and C′Ω,p depend only on n, p, and Ω.

In this case, the inequality allows us to bound both the u and ∇u norms by
the norm of D2u. This is the main reason why most of the proofs of the estimates
will not consider lower derivatives. Basically showing that ∇u ∈ Lp will already
be true if we can see that D2u belongs there.

2.2.3 BMO spaces

Finally it is of interest to explain the BMO space. it shares some similarities with
the Sobolev and Hölder spaces. In the first case is because of the definition of the
Wk,BMO space, while on the second because of the semi-norm we will see. It will
become important later on, when considering the p = ∞ case for the estimates.

Definition 2.11. Given Ω ∈ Rn and 1 ≤ p < ∞ we define the BMO space over Ω as the
functions u ∈ Lp(Ω) for all p ∈ [1, ∞) such that the seminorm:

|u|BMO(Ω),p = sup
B⊂Ω

( 
B
|u− uB|p

)1/p

< ∞. (2.21)

As well as with the Sobolev spaces, we can endow this space with a norm:

||u||BMO(Ω) = |u|BMO(Ω),p + ||u||Lp(Ω). (2.22)

This norm is defined by any p, and by Jensen’s inequality [4] it can be seen
that they are all equivalent [5]. This allows us to use the norm that better suits our
problems. Later on we will be using it as:

||u||BMO(Ω) = |u|BMO(Ω),1 + ||u||L2(Ω). (2.23)

From now on, |u|BMO(Ω) will denote |u|BMO(Ω),1 to simplify notation. Considering
the already defined norm, as with the Sobolev spaces, we can define:
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Definition 2.12. Given Ω ∈ Rn we define the Wk,BMO(Ω) space as:

Wk,BMO(Ω) = {u ∈ BMO(Ω), ∂m
j u ∈ BMO(Ω) for m = 1, ..., k, j = 1, ..., n}. (2.24)

2.3 Harmonic functions

Now that we already have a little idea on the spaces we will be dealing with, it
is time to understand some of the basic properties related to harmonic functions.
Just to remember, a harmonic function is the unique weak solution to the Dirichlet
problem (1.1) when f = 0 [1]:

∆u = 0 in Ω, (2.25)

As has already been mentioned, we are already omitting the boundary conditions,
since g = 0 unless otherwise stated. Using energy methods to proof the existence
of solutions to the harmonic problem [1], one can see that these minimize the
following integral: ˆ

Ω
|∇u|2. (2.26)

Therefore, any other function v that has the same value as u on ∂Ω will have a
larger

´
Ω |∇v|2. There are some very interesting properties which can only be

defined for harmonic functions. For example, one of them is the Poisson kernel
representation:

u(x) =
cn

r

ˆ
∂Br

(
r2 − |x|2

)
u(y)

|x− y|n dy, (2.27)

defined in a domain Ω such that Br ⊂ Ω. This one has an immediate consequence
[1]:

Corollary 2.13. Let Ω ⊂ Rn be any open set, and u ∈ H1(Ω) be any harmonic function
satisfying (2.25) in the weak sense. Then, u is C∞ inside Ω. Furthermore, if u is bounded
and harmonic in B1, then the estimate:

∥u∥Ck(B1/2)
≤ Ck∥u∥L∞(B1), (2.28)

holds for all k ∈N, and for some constant Ck depending only on k and n.

Proof. For any ball Br(x0) ⊂ Ω, we will have it’s Poisson kernel representation.
and thanks to it, it is immediate to see that u ∈ C∞(Br/2(x0)) and the estimate
above holds. Since this can be done for any ball Br (x◦) ⊂ Ω, we deduce that u is
C∞ inside Ω.
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This corollary also implies that if u is harmonic in Ω, then all of it’s derivatives
will be harmonic in Ω as well. This is because u is C∞ inside Ω and therefore the
partial derivatives can be interchanged. The same equation (2.25) then, is valid for
all of it’s derivatives.

A second and last property, similar to the Poisson Kernel representation, is the
following:

Proposition 2.14. (Mean value property) If u is harmonic in Ω, then:

u(x) =
 

Br(x)
u(y)dy for any ball Br(x) ⊂ Ω. (2.29)

It allows us to determine the value of a harmonic function at a given point x
just by considering one of the averages around that point. Finally, a well known
result:

Theorem 2.15. (Liouville’s theorem with growth). Assume that u is a solution of ∆u = 0
in Rn satisfying |u(x)| ≤ C (1 + |x|γ) for all x ∈ Rn, with γ > 0. Then, u is a
polynomial of degree at most ⌊γ⌋, where ⌊γ⌋ denotes the floor function.

Proof. Following the proof we can find in [1], let us define uR(x) := u(Rx), and
notice that it is still harmonic: ∆uR = 0 in Rn. From the above mentioned corollary
2.13 and the growth assumption we get:

Rk||Dku||L∞(BR/2) = ||D
kuR||L∞(B1/2) ≤ Ck||uR||L∞(B1) = Ck||u||L∞(BR) ≤ CkRγ.

(2.30)
In particular, if k = ⌊γ⌋+ 1, then:

||Dku||L∞(BR/2) ≤ CkRγ−k → 0 as R→ ∞. (2.31)

That is, Dku ≡ 0 in Rn, and u is a polynomial of degree k− 1 = ⌊γ⌋.

The theorem allows us to proof that a given function is a polynomial of a
certain degree. As we can see, the growth condition does no necessarily be on the
|u(x)|, since we find that the result holds for a bounded L1 norm. Using the mean
value property:

|u(x)| ≤ 1
|Br|

ˆ
Br(x)
|u(x)| = 1

rn ||u||L1(Br(x)), (2.32)

we find a bound on |u(x)| depending on the L1 norm in compact subsets. This
shows that the L∞ norm is comparable to the L1 norm for harmonic functions.
Choosing the subsets Br(x) accordingly, we will be able to use the above result for
bounded L1 functions.
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Regularity estimates

Eventually, we have most of the tools needed for the study of the regularity
estimates associated to the Laplacian. For simplicity, we will consider that the
domain Ω = B1. After translation and re-scaling it would hold for a general Ω
domain.

As mentioned before, the regularity of our solution u will depend on the reg-
ularity of f . Hence, the two most basic options are when:

f ∈ Cα(Ω) for α ∈ (0, 1),
f ∈ Lp(Ω) for p ∈ (1, ∞).

(3.1)

3.1 Schauder estimates

When f ∈ Cα(B1), the theorems regarding the regularity of u are called Schauder
estimates, and indeed prove that:

If u is a weak solution to the problem 1.1, with f ∈ Cα, then D2u ∈ Cα for
α ∈ (0, 1).

Following [1], there are different ways to prove these estimates. Usually they re-
quire to prove some propositions for C∞ functions, which then can be applied
to treat the estimates. These can follow different ways such as constructing se-
quences which require some convergence theorems like the Arzelà-Ascoli theorem;
the use of polynomial sequences to approximate the solution or through a blow-
up method where we compare the solution to a harmonic problem in a smaller
neighbourhood. All of them require some basic properties from Hölder spaces.

We could ask ourselves: what happens when α = 0 or α = 1, namely that f is
continuous or Lipschitz continuous?. The short answer to it is that we can not assure
the regularity of u, as can be seen with some counter-examples in [1].

11
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3.2 Calderón-Zygmund estimates

In the case when f ∈ Lp(B1), the theorems regarding the regularity of u are
called Calderón-Zygmund estimates, and prove that:

If u is a weak solution to the problem 1.1, with f ∈ Lp, then D2u ∈ Lp for
p ∈ (1, ∞).

As well as with the Schauder estimates, there some different ways of proving these
theorems, but these are more restricted since the Lp case is, up to my knowledge,
not possible to treat point-wisely. Therefore, most of the proofs follow the methods
introduced by Calderón and Zygmund, with the Calderón-Zygmund decomposition
argument that can be found in [6, 5]. These usually use interpolation theorems, like
the Marcinkiewicz interpolation theorem, the limiting case p = 2 as well as duality
arguments. Nonetheless, there are some specific cases, as the aforementioned
p = 2, when a much simpler approach can be taken.

Again, we could question ourselves what happens when p = 1 or p = ∞. The
answer, again, is that we cannot assure that D2u will be in Lp. When p = 1 we
find an example in [5]:

Example 3.1. Consider the ball B1 and the defined function over it as u(r) =

log(log(r−1)) written in polar coordinates. A straightforward computation leads
to:

∆u =
−1

r2log2(r)
, (3.2)

which has a bounded L1(B1) norm. On the other hand, one can compute the
second derivative over r:

∂rru = − log(r) + 1
r2log2(r)

= − 1
r2log(r)

(
log(r) + 1

log(r)

)
≥ −1

2r2log(r)
, (3.3)

where in the last inequality we have considered a small enough r. Since
´ ϵ

0
1

rlog(r)dr
is divergent for any ϵ ∈ (0, 1), we reach that D2u /∈ L1(B1) as we wanted to see.

An alternative simple example for the p = ∞ case is given in [1]:

Example 3.2. Consider the function u(x, y) = (x2 − y2)log(x2 + y2) in R2, then an
easy computation shows that:

∂xxu = 2log(x2 + y2) +
8x2

x2 + y2 − 2
(

x2 − y2

x2 + y2

)2

, (3.4)

∂yyu = −2log(x2 + y2) − 8y2

x2 + y2 + 2
(

x2 − y2

x2 + y2

)2

, (3.5)
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Clearly, one can see that both ∂xxu and ∂yyu are not in L∞(R2), since there is no
M ∈ R and set B with |B| = 0 such that |∂xxu| < M and |∂yyu| < M for any point
in R2 \ B. This shows that D2u /∈ L∞(R2). On the other hand, if we calculate:

∆u = ∂xxu + ∂yyu = 8
x2 − y2

x2 + y2 , (3.6)

we clearly see that it is in L∞(R2).

The main idea behind these examples is to combine a harmonic part with a
function, such as the log(), that cause an issue at a some point/set of the domain.

Still, one can modify these estimates and find that in the p = 1 case, then
u ∈ H1, which is the Hardy space and will not be explained in this project. While
when p = ∞, then D2u ∈ BMO [7], as will be seen in future chapters. The
relationship between these two spaces is given by Fefferman and Stein, stating that
one is the dual of the other [5].

The main idea of this project was to understand these different Lp proofs, and
try to apply the blow-up method normally used in the Schauder estimates for the
Lp case. Up to this moment, only for the limiting case p = ∞ a positive proof
has been found, due to the similarities between the BMO and Hölder semi-norms,
since both consider supremums. Therefore, adapting the Schuader estimate proofs
to the L∞ case is much simpler.
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L2 case

When treating Lp spaces, the most simple case is when p = 2, since it is a
Hilbert space and its dual is himself. This allows us to prove the Calderón-Zygmund
estimate directly and without much complications, in a similar fashion as in the Cα

cases. The proof is taken from [1], and then has a small follow up in order to end
it.

Proposition 4.1. Let u, f ∈ C∞(B1) be such that:

∆u = f in B1. (4.1)

Then the following estimate holds:

||u||W2,2(B1/2)
≤ C

(
||u||L2(B1) + || f ||L2(B1)

)
, (4.2)

where C is a constant that only depends on the dimension n.

Proof. Indeed, consider a fixed test function η ∈ C∞
c (B1) with η ≡ 1 in B1/2, η ≡ 0

in B1 \ B3/4 and η ≥ 0. Define w := ηu and integrating by parts twice leads to:

||D2u||2L2(B1/2)
=

n

∑
i,j=1

ˆ
B1/2

|Diju|2 ≤
n

∑
i,j=1

ˆ
B1

|Dijw|2

= −
n

∑
i,j=1

ˆ
B1

(Diijw)(Djw) =
n

∑
i,j=1

ˆ
B1

(Diiw)(Djjw)

=

ˆ
B1

(∆w)2 ≤ C
ˆ

B1

(
u2 + (∆u)2 + |∇η|2|∇u|2

)
. (4.3)

Since ∆w = ∇ · ∇(ηu) = ∇ · (∇η · u + η · ∇u) and C = C′ supB1
(η2 + |∆η|2) in

the last inequality. Notice that C′ is a dimensional constant. Again, integrating by

15
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parts twice:

ˆ
B1

|∇η|2|∇u|2 = −
ˆ

B1

∇
(
|∇η|2∇u

)
u = −

ˆ
B1

|∇η|2u∆u −
ˆ

B1

∇(|∇η|2)u∇u

= −
ˆ

B1

|∇η|2u∆u +

ˆ
B1

∇
[
∇(|∇η|2)u

]
u = −

ˆ
B1

|∇η|2u∆u +

ˆ
B1

1
2

u2∆|∇η|2

≤ C̃
ˆ

B1

(
u2 + (∆u)2) . (4.4)

Where we have taken C̃ = supB1

(
|∇η|2 + ∆|∇η|2

)
. We have also been omitting

the surface integral terms, because u = 0 at ∂B1. Adding all up leads to:

||D2u||2L2(B1/2)
≤ C

ˆ
B1

(
u2 + f 2) , (4.5)

which directly leads to the desired result.

This result, for C∞ functions, bounds our W2,2 norm, but we still need to prove
the estimate. In order to do so, we will adapt Corollary 2.16 found in [1]. We
will use convolutions to approximate our function u by a smooth C∞ function,
allowing us to use the aforementioned result:

Corollary 4.2. Let u ∈ H1(B1) be a weak solution to:

∆u = f in B1, (4.6)

with f ∈ L2(B1). Then u is W2,2 inside B1 and the estimate (4.1) holds.

Proof. Following the reference, let u be a solution in B1 from ∆u = f , with f ∈
L2(B1). Let η ∈ C∞

c (B1) be any smooth function with η ≥ 0 and
´

B1
η = 1. Let:

ηϵ = ϵ−nη(
x
ϵ
). (4.7)

It satisfies ηϵ ∈ C∞
c (Bϵ) and

´
Bϵ

ηϵ = 1. Consider the convolution:

uϵ(x) = u ∗ ηϵ(x) =
ˆ

Bϵ

u(x− y)ηϵ(y)dy, (4.8)

which is C∞ and satisfies:

∆uϵ = f ∗ ηϵ = fϵ in B1−ϵ. (4.9)

since uϵ is C∞ we can use proposition 4.1 to get:

||uϵ||W2,2(B1/2)
≤ C · (||uϵ||L2(B1) + || fϵ||L2(B1)). (4.10)
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Now, considering Young’s convolution inequality 2.6 for Lp norms, we get that:

||uϵ||L2(B1) ≤ ||u||L2(B1) ∗ ||ηϵ||L1(B1)
= ||u||L2(B1), (4.11)

and again:
|| fϵ||L2(B1) ≤ || f ||L2(B1) ∗ ||ηϵ||L1(B1)

= || f ||L2(B1). (4.12)

Notice then, that the sequence uϵ is uniformly bounded in B1/2. Using Proposition
2.9 there is a subsequence that converges to u ∈W2,2(B1/2) with:

||u||W2,2(B1/2)
≤ C · (||u||L2(B1) + || f ||L2(B1)). (4.13)

which completes the proof.

This shows this simple case. As will be seen in the following chapters, we
will constantly use this estimate to check some of the inequalities, as well as use
properties which are only related to the L2 space. Therefore, although simple, it is
a very important step for the upcoming sections.
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Lp case

Knowing the validity of the p = 2 case, it is time to understand and prove the
Calderón-Zygmund estimates for p ∈ (1, ∞):

Theorem 5.1. Let u ∈ H1(B1) be a weak solution to:

∆u = f in B1, (5.1)

with f ∈ Lp(B1). Then u is W2,p inside B1 and the following estimate holds:ˆ
B1

|D2u|p ≤ C
(ˆ

B2

|u|p +
ˆ

B2

| f |p
)

. (5.2)

As will become clear at the end, due to duality arguments, it is sufficient to
only prove the estimate for p > 2. The arguments in this chapter will follow the
notes on the matter [8].

Comparing with similar proofs like the Cα case, a small problem arises with
Lp functions because there is no straightforward way to treat them point-wisely.
Therefore, extra caution needs to be taken when treating inequalities and absolute
values. The reason for this statement comes from a well know property of Lp

functions (proposition 6.1 in [5]):ˆ
Ω
|u|p = p

ˆ ∞

0
λp−1 |{x ∈ Ω, |u(x)| > λ}| dλ, (5.3)

where |{·}| denotes the measure of the domain. If we want the norm to be finite,
then for large λ the set | {x ∈ Ω, |u(x)| > λ} | has to have a small value. This
allows us to treat the norm as the decay of this set knowing that the faster it
decays the larger p can be.

Therefore, if we were able to see that the measure of one of these sets, for
a fixed λ0, is smaller than for a fixed value, we could end up proving that our
function is in fact in Lp:

|{|u(x)| > λ0}| ≤ ϵ| {|u(x)| > 1} |. (5.4)

19
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This type of inequality can be easily re-scaled with proper conditions on the data.
Considering our estimate, we could try to prove something of the following sort:
for a fixed value of λ0, then for any ϵ there exists a δ0 such that:∣∣{|D2u| > λ0

}∣∣ ≤ ϵ
(∣∣{|D2u| > 1

}∣∣+ |{| f | > δ0}|
)

. (5.5)

It is straightforward to see that this estimate, after re-scaling:∣∣{|D2u| > λ0λ
}∣∣ ≤ ϵ

(∣∣{|D2u| > λ
}∣∣+ |{| f | > δ0λ}|

)
. (5.6)

leads to equation 5.2 by substituting in Equation (5.3) we get:

||D2u||pLp = p
ˆ ∞

0
λp−1 ∣∣{|D2u(x)| > λ

}∣∣ dλ

≤ ϵp
(ˆ ∞

0
λp−1

∣∣∣∣{|D2u(x)| > λ

λ0

}∣∣∣∣ dλ +

ˆ ∞

0
λp−1

∣∣∣∣{| f (x)| > λδ0

λ0

}∣∣∣∣ dλ

)
≤ ϵpλ

p
0 ||D

2u||pLp + C|| f ||pLp . (5.7)

Choosing ϵ as small as necessary, we can make that ϵpλ
p
0 < 1 and then the estimate

follows. But again, careful consideration has to be taken into account at this point,
since the condition |D2u(x)| < 1 is unstable in the W2,p theory because of the
nature of Lp functions. We cannot assure that this really happens for every point
x we consider. Therefore this inequality is not well defined, and there is a need
to find a much more stable function. The solution is using the Hardy-Littlewood
maximal function defined as follows:

Definition 5.2. For a locally integrable function v defined in Rn its maximal function at
any point x ∈ Rn is:

Mv(x) = sup
r>0

 
Br(x)

v. (5.8)

It can be defined as well for functions v over a domain Ω ∈ Rn, since we
can always extend v by 0 outside of Ω. We will usually be omitting the domain
where this function is defined, unless otherwise stated. The reason to introduce
the maximal function is the relationship it has to the Lp norms:

Theorem 5.3. Let Ω ∈ Rn, v ∈ Lp(Ω) and Mv(x) its Hardy-Littlewood maximal
function, then:

||Mv||Lp(Ω) ≤ C||v||Lp(Ω) for any 1 < p < ∞. (5.9)

|{x ∈ Ω,Mv(x) ≥ λ}| ≤ C
λ
||v||L1(Ω). (5.10)
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The first is called strong p-p estimate, while the second weak 1-1 estimate. It
shows us that the measures of {x ∈ Ω, |v(x)| > λ} and {x ∈ Ω,Mv(x) > λ} de-
cay similarly. Still, the statement Mu(x) ≤ 1 is more stable than |D2u(x)| ≤ 1,
because the maximal function is invariant to scaling. This brings us to rewrite the
inequality 5.5 in terms of the maximal function:∣∣B1 ∩

{
M|D2u|2 > λ2

0
}∣∣ ≤ ϵ

(∣∣B1 ∩
{
M|D2u|2 > 1

}∣∣+ ∣∣B1 ∩
{
M| f |2 > δ2

0
}∣∣) .
(5.11)

The value of δ0 can be taken as small as possible since it is about f which we
already know is in Lp. Again, in a similar fashion as the above case, we can see
that this inequality implies our desired estimate.

Another important tool, called the Vitali covering lemma will allow us to cover
a set with disjoint subsets which have a specific measure. This will partition our
domain into smaller ones, where we control the measure of our desired function.
During the proof of our theorem we will be using a similar result introduced and
proved in the Ref. [7]:

Theorem 5.4. (Modified Vitali) Let 0 < ϵ < 1 and C ⊂ D ⊂ B1 be two measurable
sets with |C| < ϵ|B1| and satisfying that for every x ∈ B1, with |C ∩ Br(x)| ≥ ϵ|Br|,
Br(x) ∩ B1 ⊂ D. Then |D| ≥ 1

20nϵ |C|.

There are certain similarities between this theorem and the usual covering
lemma used in the Calderón-Zygmund estimates proofs. This second is the Calderón-
Zygmund Decomposition which uses cubes instead of balls, and can be found in the
references [7, 5].

Now we move on to see the proof of a specific lemma, from which our estimate
will follow, as happens in most cases when treating this type of inequalities.

Lemma 5.5. Assume u is a solution of 1.1 in a domain Ω, with B4 ⊂ Ω. Then there exist
a constant N1 such that for any ϵ > 0, there exists a δ(ϵ) > 0 so that if:{

M| f |2 ≤ δ2} ∩ {M|D2u|2 ≤ 1
}
∩ B1 ̸= ∅, (5.12)

then: ∣∣{M|D2u|2 > N2
1
}
∩ B1

∣∣ < ϵ|B1|. (5.13)

Proof. From 5.12 we see that there is a point x0 ∈ B1 such that:
 

Br(x0)
|D2u|2 < 1,

 
Br(x0)

| f |2 < δ2, (5.14)
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for any ball Br(x0) ⊂ Ω, and in particular, considering a large enough r, for
example r = 8 such that B4 ⊂ Br(x0):

 
B4

|D2u|2 ≤ |Br(x0)|
|B4|

|
 

Br(x0)
|D2u|2 ≤

( r
4

)n
= 2n, (5.15)

and similarly:  
B4

| f |2 ≤ 2nδ2. (5.16)

Using Poincaré’s inequality (2.10) for ∇u leads to:
 

B4

∣∣∇u−∇uB4

∣∣2 ≤ C
 

B4

|D2u|2 ≤ C
 

B4

| f |2 ≤ 2nδ2C = C1, (5.17)

where in the before-last inequality we used the L2 - estimate (4.1). Let us define a
new function v as the solution to:{

∆v = 0 in B4

v = u−∇uB4 x− uB4 in ∂B4
(5.18)

By the properties of harmonic functions, since they minimize the gradient (2.26):
ˆ

B4

|∇v|2 ≤
ˆ

B4

|∇u−∇uB4 |2 ≤ C1. (5.19)

Therefore, using proposition 2.13 for the gradient as well as the mean value property
and Hölder’s inequality we reach:

||D2v||2L∞(B3)
≤ C||∇v||2L∞(B7/2)

≤ C̃||∇v||2L2(B4)
≤ C̃C1 ≡ N2

0 . (5.20)

At the same time we can consider the function u − v which thanks to the L2 -
estimate leads to:

ˆ
B3

|D2(u− v)|2 ≤ C
ˆ

B3

| f |2 ≤ C
ˆ

B4

| f |2 ≤ Cδ2, (5.21)

since ∆(u− v) = f in B3. Then using the weak 1-1 estimate 5.10 we reach:

λ|
{

x ∈ B3, MB3 |D2(u− v)|2(x) > λ
}
| ≤ C

ˆ
B3

|D2(u− v)|2 ≤ Cδ2, (5.22)

where MB3 g(x) denotes the maximal function over a domain B3 ⊂ Rn. After
taking λ = N2

0 and rewriting the constant:∣∣{x ∈ B1, MB3 |D2(u− v)|2(x) > N2
0
}∣∣ ≤ Cδ2. (5.23)
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We have considered B1 instead of B3 so that we can use the constant N0 defined
above. The point now is to prove:{

x ∈ B1, M|D2u|2(x) > N2
1
}
⊂
{

x ∈ B1, MB3 |D2(u− v)|2(x) > N2
0
}

. (5.24)

with N2
1 = max{4N2

0 , 2n}. We will see it through contra-positive. Notice that if
y ∈ B3 then using 5.20 and that a2 + b2 ≥ 2ab:

|D2u(y)|2 = |D2u(y)|2 − 2|D2v(y)|2 + 2|D2v(y)|2

≤ 2|D2u(y)− D2v(y)|2 + 2N2
0 . (5.25)

Let x ∈
{

x ∈ B1, MB3 |D2(u− v)|2(x) ≤ N2
0
}

, then, if r ≤ 2 we have that Br(x) ⊂
B3 and therefore:

sup
r≤2

 
Br(x)
|D2u|2 ≤ sup

r≤2

 
Br(x)

2|D2(u− v)|2 + 2N2
0 ≤

2MB3 |D2(u− v)|2(x) + 2N2
0 ≤ 4N2

0 , (5.26)

where in the last inequality we used the hypothesis over x. On the other hand, if
r > 2, by the definition of x0 given at the start, we have that x0 ∈ B1 ⊂ Br(x) and
therefore Br(x) ⊂ B2r(x0), then by 5.14:

 
Br(x)
|D2u|2 ≤ |B2r(x0)|

|Br(x)|

 
B2r(x)

|D2u|2 ≤ 2n, (5.27)

This proves thatM|D2(u− v)|2 ≤ N2
1 , as we wanted. Finally:∣∣{x ∈ B1, M|D2u|2(x) > N2

1
}∣∣ ≤ ∣∣{x ∈ B1, MB3 |D2(u− v)|2(x) > N2

0
}∣∣

≤ C
N2

0

ˆ
| f |2 < Cδ2 = ϵ|B1|, (5.28)

and taking δ satisfying the last equality leads to the desired result.

The idea now, is to compare {M|D2u|2 > N2
1} with {M|D2u|2 > 1} and

see, in fact, that the second is much larger than the first. This is an immediate
consequence from the Lemma 5.5 above:

Corollary 5.6. Assume u is a solution of 1.1 in a domain Ω and B a ball so that 4B ⊂ Ω.
If
∣∣{M|D2u|2(x) > N2

1

}
∩ B
∣∣ ≥ ϵ|B| then:

B ⊂
{
M|D2u|2(x) > 1

}
∪
{
M| f |2 > δ2} . (5.29)



24 Lp case

Proof. By doing the contra-positive argument of Lemma 5.5, we reach the desired
result.

Indeed, this Corollary is just a way of re-stating the anterior Lemma, but it is
easier to understand, specially when comparing sets. Before seeing the proof of
the theorem, we show the final piece:

Corollary 5.7. Assume u is a solution of 1.1 in a domain Ω, with B4 ⊂ Ω, and that∣∣{x ∈ B1, M|D2u|2 > N2
1

}∣∣ ≤ ϵ|B1|. Then for ϵ1 = 20nϵ:

1.
∣∣{x ∈ B1, M|D2u|2 > N2

1
}∣∣

≤ ϵ1
(∣∣{x ∈ B1, M|D2u|2 > 1

}∣∣+ ∣∣{x ∈ B1, M| f |2 > δ2}∣∣) . (5.30)

2.
∣∣{x ∈ B1, M|D2u|2 > N2

1 λ2}∣∣
≤ ϵ1

(∣∣{x ∈ B1, M|D2u|2 > λ2}∣∣+ ∣∣{x ∈ B1, M| f |2 > δ2λ2}∣∣) . (5.31)

3.
∣∣∣{x ∈ B1, M|D2u|2 >

(
N2

1
)k
}∣∣∣

≤
k

∑
i=1

ϵi
1

∣∣∣{x ∈ B1, M| f |2 > δ2 (N2
1
)k−i

}∣∣∣+ ϵk
1
∣∣{x ∈ B1, M|D2u|2 > 1

}∣∣ .

(5.32)

Where we have taken N1 and ϵ as in Lemma 5.5.

Proof. Let us start from the beginning. For case number (1) let us consider the
following 2 sets:

C =
{
M|D2u|2 > N2

1
}
∩ B1, (5.33)

D =
{
M|D2u|2 > 1

}
∪
{
M| f |2 > δ2} ∩ B1. (5.34)

Since N1 > 1, we have that C ⊂ D ⊂ B1. Given a point x ∈ B1, consider Br(x) with
r small enough such that B4r(x) ⊂ B1, and that |C ∩ Br(x)| ≥ ϵ|Br|. By Corollary
5.6, we have that Br(x) ⊂ D. Finally, applying Theorem 5.4 we get |C| ≤ ϵ1|D|,
which basically implies (1).

For (2) let us consider w = λ−1u, which obeys ∆w = ∆(λ−1u) = λ−1 f . Then,
applying (1) for w we end up with:∣∣∣{x ∈ B1, M|D2λ−1u|2 > N2

1

}∣∣∣
≤ ϵ1

(∣∣∣{x ∈ B1, M|D2λ−1
u|2 > 1

}∣∣∣+ ∣∣∣{x ∈ B1, M|λ−1 f |2 > δ2
}∣∣∣) . (5.35)



25

which is (2).
Lastly, for (3), notice that we can consider

(
N2

1

)k
=
(

N2
1

)k−1 · N2
1 , and taking

λ2
k−1 =

(
N2

1

)k−1 we can write:∣∣∣{x ∈ B1, M|D2u|2 >
(

N2
1
)k
}∣∣∣ = ∣∣{x ∈ B1, M|D2u|2 > λ2

k−1N2
1
}∣∣ . (5.36)

Applying (2), we get:

∣∣∣{x ∈ B1, M|D2u|2 >
(

N2
1
)k
}∣∣∣

≤ ϵ1
(∣∣{x ∈ B1, M|D2u|2 > λ2

k−1
}∣∣+ ∣∣{x ∈ B1, M| f |2 > δ2λ2

k−1
}∣∣) . (5.37)

We can repeat the same argument for λ2
k−1 till we reach λ2 = N2

1 , which leads to:

∣∣∣{x ∈ B1, M|D2u|2 >
(

N2
1
)k
}∣∣∣

≤ ϵ1(· · · ϵ1
(∣∣{x ∈ B1, M|D2u|2 > 1

}∣∣+ ∣∣{x ∈ B1, M| f |2 > δ2}∣∣)
+
∣∣{x ∈ B1, M| f |2 > δ2λ2

k−1
}∣∣). (5.38)

Rearranging all the terms finally leads to (3).

And finally we can prove the general result:

Proof. (Theorem 5.1) By multiplying, if necessary, u or f by a small constant, we
can assume that || f ||Lp(B4) = δ is small and that

∣∣{x ∈ B1, M|D2u|2 > N2
1

}∣∣ ≤
ϵ|B1|. If we can show thatM|D2u|2 ∈ Lp/2(B1), then we have that D2u ∈ Lp(B1).
By 5.9, if f ∈ Lp, thenM| f |2 ∈ Lp/2, therefore considering the sums of squares to
approximate the integral:

N1 − 1
N1

+∞

∑
i=1

(
δNi

1

)p ∣∣∣{M| f |2 > (δNi
1)

2
}∣∣∣

=
+∞

∑
i=1

(
δNi

1 − δNi−1
1

)
(δNi

1)
p−1
∣∣∣{M| f |2 > (δNi

1)
2
}∣∣∣

≤
ˆ ∞

0
λp−1 ∣∣{M| f |2 > λ2}∣∣ ≤ 1

p
||M| f |2||Lp/2(B1)

≤ C
p
|| f ||Lp(B1). (5.39)

Rewriting leads to:

+∞

∑
i=1

Nip
1

∣∣∣{M| f |2 > (δNi
1)

2
}∣∣∣ ≤ CN1

pδp(N1 − 1)
|| f ||Lp(B1) ≤ C. (5.40)
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Hence using Corollary 5.7 and bounding the integral by rectangles, we can write
that:

 
B1

|D2u|p
p
≤ sup

B⊂B1

 
B

|D2u|p
p
≤
ˆ

B1

(
M|D2u|2

)p/2

p

=

ˆ ∞

0
λp−1 ∣∣B1 ∩

{
M|D2u|2 ≥ λ2}∣∣ ≤ +∞

∑
k=0

Nkp
1

∣∣∣B1 ∩
{
M|D2u|2 ≥ N2k

1

}∣∣∣
≤ |B1|+

+∞

∑
k=1

Nkp
1

(
k

∑
i=1

ϵi
1

∣∣∣B1 ∩
{
M| f |2 > δ2N2(k−i)

1

}∣∣∣+ ϵk
1
∣∣B1 ∩

{
M|D2u|2 > 1

}∣∣) .

(5.41)

Rewriting the first term in the parentheses:

+∞

∑
k=1

Nkp
1

k

∑
i=1

ϵi
1

∣∣∣B1 ∩
{
M| f |2 > δ2N2(k−i)

1

}∣∣∣
=

+∞

∑
i=1

Nip
1 ϵi

1 ∑
k≥i

N(k−i)p
1

∣∣∣B1 ∩
{
M| f |2 > δ2N2(k−i)

1

}∣∣∣ . (5.42)

Then the first inequality finally leads to :

 
B1

|D2u|p
p
≤ |B1|+ 2C

+∞

∑
i=1

Nip
1 ϵi

1, (5.43)

where we have assumed that
∣∣B1 ∩

{
M|D2u|2 > 1

}∣∣ can be bounded with the L2

- estimate. Taking ϵ1 such that ϵ1Np
1 < 1 finishes the proof.

What is interesting about this proof is that it shows a way of treating the
Lp spaces. Since there is little information given by the functions, we have to
find a way that is potentially "better". This is where the Hardy-Littlewood maximal
function comes into play. This special function allows us to have a much more
explicit treatment, since we can look at its absolute values at given points. The
stability of it, as already mentioned, comes from the fact that its a supremum over
the averaged integral around that point. Considering this, and the relationships
with the Lp norms given by (5.9) and (5.10), it seems that it is natural to use this
approach when trying to prove the estimate.



L∞ case

The last case in this project is to see what happens with the Calderón-Zygmund
estimate if f ∈ L∞(B1). As already mentioned, the estimates do not exactly hold
for this particular case, but these can be rewritten. This is the reason why the
BMO spaces have been introduced. We will see, in fact, that if f ∈ L∞(B1), then
u ∈W2,BMO(B1/2). What is interesting about the following proof, is that it follows
a blow-up method, usually used for the Cα case, and up to our knowledge never
applied for this type of problems. There are, of course, other ways to prove the
same result, one of which is found in Ref. [7].

Proposition 6.1. Let u ∈ W2,BMO(B2) and f ∈ L∞(B2) such that ∆u = f in B2. Then,
for any δ there exists a constant C, depending only on δ and n, such that the following
inequality holds:

|D2u|BMO(B1/2) ≤ δ · |D2u|BMO(B1) + C · ( ||D2u||L1(B1)
+ || f ||L∞(B1)). (6.1)

One can see, that this inequality is in fact very similar to the one found in the
reference Proposition 2.26. Before seeing the proof of this proposition, we will first
see a result for BMO functions when considering convergence in the L2 norm. The
proof follows a similar one from Lemma 3.4 in Ref. [1]:

Lemma 6.2. Let Ω be a bounded domain and (uk)k∈N, u ∈W1,2(Ω) a uniformly bounded
sequence such that uk −→ u weakly in W1,2(Ω). Then:

|∇u|BMO(Ω) ≤ lim inf
k→∞

|∇uk|BMO(Ω). (6.2)

27
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Proof. Let B ⊂ Ω be any ball, we will first see that:
 

B
|∇u−∇uB| ≤ lim inf

k→∞

 
B
|∇uk −∇ukB|. (6.3)

Consider η ∈ C∞
c (B1) smooth, with η ≥ 0 and

´
B1

η = 1, and let ηϵ = ϵ−nη( x
ϵ ) so

that the following convolutions are considered:

uk ϵ(x) = (uk ∗ ηϵ)(x) =
ˆ

Bϵ(x)
η(y)uk(x− y)dy and uϵ(x) = (u ∗ ηϵ)(x). (6.4)

Now, let B′ ⊂ B be such that for any x ∈ B′ we have that Bϵ(x) ∈ B. In particular,
since uk −→ u in W1,2(Ω) weakly, then the averages ukB −→ uB converge as
well, as do the average over the gradients, and for every x ∈ B′ we have that
∇uk,ϵ(x) −→ ∇uϵ(x). This allows us to use Fatou’s Lemma [4] over k:

 
B′
|∇uϵ −∇uϵB| ≤ lim inf

k→∞

 
B′
|∇uk ϵ −∇uk ϵB|. (6.5)

We rewrite the right-hand side of the equation as:
 

B′
|∇uk ϵ −∇uk ϵB| ≤

 
B′
|∇uk ϵ −∇ukB| + |∇ukB −∇uk ϵB|. (6.6)

The last term of this equation is not in the integral, since it is constant with respect
to it. Now we consider each term separately:

ˆ
B′
|∇uk ϵ −∇ukB| =

ˆ
B′
|
ˆ

Bϵ(x)
ηϵ(x− y)(∇uk(y)−∇ukB)dy|dx

≤
ˆ

B′

ˆ
Bϵ(x)

ηϵ(x− y)|∇uk(y)−∇ukB|dydx

≤
ˆ

B
|∇uk(y)−∇ukB|

ˆ
Bϵ(y)∩B′

ηϵ(x− y)dxdy ≤
ˆ

B
|∇uk(y)−∇ukB|dy. (6.7)

In the last steps we have interchanged the order of the integrals, which leads to
the redefinition of the sets over which we are integrating. On the second hand:

ˆ
B

ˆ
Bϵ(x)
∇uk(y)ηϵ(x− y)dydx =

ˆ
B̃
∇uk(y)

(ˆ
Bϵ(y)∩B

ηϵ(x− y)dx

)
dy

=

ˆ
B′
∇uk +

ˆ
B̃\B′
∇uk(y)

(ˆ
Bϵ(y)∩B

η(x− y)dx

)
dy. (6.8)

Where B ⊂ B̃ ⊂ Ω such that for every x ∈ B we have that Bϵ(x) ⊂ B̃. This can be
done since we can always choose ϵ at the start as small as desired for this condition
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to be true. Then by writing in terms of the average over B:

|∇uk ϵB −∇ukB| ≤
1
|B| |

ˆ
B̃\B′
∇uk(y)

(ˆ
Bϵ(y)∩B

ηϵ(x− y)dx

)
dy|

≤ 1
|B|

ˆ
B̃\B′
|∇uk| ≤

|B̃ \ B′|1/2

|B| ||∇uk||L2(B̃\B′) ≤
(
(2ϵ− ϵ2)|B̃|

)1/2

|B| ||∇uk||L2(Ω),

(6.9)

where we have used the fact that
´

Bϵ(x) ηϵ(x)dx = 1 and Hölder’s inequality 2.4 for
L1 and L2 norms. Putting all this together, we have that:

 
B′
|∇uk ϵ −∇uk ϵB| ≤

|B|
|B′|

 
B
|∇uk −∇ukB|+

(
(2ϵ− ϵ2)|B̃|

)1/2

|B| ||∇uk||L2(Ω).

(6.10)
Since the sequence is uniformly bounded, then there exists C ∈ R such that
||∇uk||L2(Ω) ≤ C1/2 and again by the weak convergence, we have that ∇uϵ −→ ∇u
as ϵ −→ 0 almost everywhere in B′, again by Fatou’s Lemma we can let ϵ −→ 0 to
deduce that:
 

B′
|∇u−∇uB| ≤ lim inf

ϵ→0

 
B
|∇uϵ −∇uϵB|

≤ lim inf
ϵ→0

lim inf
k→∞

|B|
|B′|

 
B
|∇uk −∇ukB| +

(
(2ϵ− ϵ2)|B̃|C

)1/2

|B| . (6.11)

If we now take into account that the measures of the sets and the second term of
the right part do not depend on k, these limits can be rewritten as:

lim inf
ϵ→0

|B|
|B′| lim inf

k→∞

 
B
|∇uk −∇ukB| + lim inf

ϵ→0

(
(2ϵ− ϵ2)|B̃|C

)1/2

|B|

−→ lim inf
k→∞

 
B
|∇uk −∇ukB|, (6.12)

which, after taking an increasing sequence of balls B′ whose union is B eventually
leads to our desired result:

 
B
|∇u−∇uB| ≤ lim inf

k→∞

 
B
|∇uk −∇ukB|. (6.13)

The following remains true:
 

B
|∇u−∇uB| ≤ lim inf

k→∞
sup
B∈Ω

 
B
|∇uk −∇ukB|. (6.14)
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Taking the supremum on the left-hand side, finally leads to:

|∇u|BMO(Ω) ≤ lim inf
k→∞

|∇uk|BMO(Ω). (6.15)

At this point we have all the tools for the proof of proposition 6.1:

Proof. (Proposition 6.1) Following the steps in the reference, we will show it holds
by contradiction. Let us suppose that there exists a δ ∈ R such that for any
constant K ∈ R there exist functions uk ∈ W2,BMO(B2) and fk ∈ L∞(B2) satisfying
∆uk = fk, and that (6.1) does not hold:

|D2uk|BMO(B1/2) > δ · |D2uk|BMO(B1) + k · ( ||D2uk||L1(B1)
+ || fk||L∞(B1)). (6.16)

We now have to reach a contradiction. Choose a ball Ωk ≡ Brk(xk) ⊂ B1/2 and a
β ∈ R such that:

β · |D2uk|BMO(B1/2) ≤
 

Ωk

|D2uk − D2ukΩk
|, (6.17)

Observe that this implies that rk → 0 when k→ ∞ as:

 
Ωk

|D2uk − D2ukΩk
| ≤

 
Ωk

|D2uk|+
 

Ωk

|D2ukΩk
|

=
1
|Ωk|
||D2uk||L1(Ωk)

+ |D2ukΩk
| ≤ 1
|Ωk|
||D2uk||L1(Ωk)

+
1
|Ωk|

ˆ
Ωk

|D2uk|

≤
2||D2uk||L1(B1)

|Ωk|
, (6.18)

using (6.16) and (6.17):

β · |D2uk|BMO(B1/2) ≤
2 · |D2uk|BMO(B1/2)

|Ωk|k
=⇒ |Ωk| ≤

2
βk

. (6.19)

Since |Ωk| = |Brk(xk)| = rn
k we reach the stated result. Let us now define the

following functions:

ũk(x) =
uk(xk + rkx)− pk(x)

r2
k · |D2uk|BMO(B1)

, f̃k(x) =
fk(xk + rkx)− fkΩk

|D2uk|BMO(B1)
, (6.20)

where x ∈ B1/2rk and pk(y) is a quadratic polynomial chosen such that the follow-
ing conditions are fulfilled:

ũkB1
= ∇ũkB1

= D2ũkB1
= 0, (6.21)
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meaning that it is of the form:

pk(x) = (ukΩk
+ M) + rk(∇ukΩk

+ N) · x + xT · r2
k

(
D2ukΩk

2

)
· x, (6.22)

with M, N ∈ R constants to be determined from (6.21). It is clear from the defini-
tion of ũk and fk that:

∆ũk =
∆uk(xk + rkx)− r2

k · ∆ukΩk

r2
k · |D2uk|BMO(B1)

=
r2

k · fk(xk + rkx)− r2
k · fkΩk

r2
k · |D2uk|BMO(B1)

= f̃k(x) in B1/2rk .

(6.23)
Notice that this new function has a bounded BMO norm:

|D2ũk|BMO(B1/2rk
) = sup

Br(x)⊂B1/2rk

 
Br(x)

|D2uk(xk + rrx)− D2ukBr(x)|
|D2uk|BMO(B1)

≤ sup
Br(y)⊂B1

 
Br(y)

|D2uk(y)− D2ukBr(y)|
|D2uk|BMO(B1)

=
|D2uk|BMO(B1)

|D2uk|BMO(B1)
= 1. (6.24)

We can see as well that its L1 norm, is strictly larger than 0:

||D2ũk||L1(B1)
=

ˆ
B1

|D2uk(xk + rrx)− D2ukΩk
|

|D2uk|BMO(B1)
=

1
rn

k

ˆ
Ωk

|D2uk(y)− D2ukΩk
|

|D2uk|BMO(B1)

=

ffl
Ωk
|D2uk(y)− D2ukΩk

|
|D2uk|BMO(B1)

≥
β · |D2uk|BMO(B1/2)

|D2uk|BMO(B1)
> βδ, (6.25)

where we have used equations (6.16) and (6.17). Using Hölder’s inequality 2.4 be-
tween the L1 and the L2 norms, as well as the Calderón-Zygmund estimate for p=2
we reach:

βδ < ||D2ũk||L1(B1)
≤ C · ||D2ũk||L2(B1) ≤ C · (||ũk||L2(B2) + || fk||L2(B2)). (6.26)

The constant C only depends on n and B1. On the other hand, for a given R > 1
with BR ⊂ B1/2rk :

|| f̃k||L∞(BR) =
|| fk(xk + rkx)− fkΩk

||L∞(BR)

|D2uk|BMO(B1)

≤
|| fk(xk + rkx)||L∞(BR) + || fkΩk

||L∞(BR)

|D2uk|BMO(B1)
≤
|| fk||L∞(B1) + || fkΩk

||L∞(BR)

|D2uk|BMO(B1)

≤
2 · || fk||L∞(B1)

|D2uk|BMO(B1)
<

2 · |D2uk|BMO(B1/2)

K · |D2uk|BMO(B1)
≤ 2

k
, (6.27)
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where we considered that the Minkowski’s inequality 2.5 still holds for L∞ if we
assume that the limits on fk exist. We used as well the definition of fkΩk

, that
fk ∈ L∞(B1) and again (6.16). This means, that as k → ∞ then || f̃k||L∞(B1/2rk

) → 0

and, therefore, that f̃k → 0 strongly in L∞. Moreover, for a large enough k, βδ <

C · ||ũk||L2(B2).
Using the proposition 2.9 from Sobolev spaces, in particular since W2,BMO ⊂

W2,2 and that the sequence D2ũk is uniformly bounded in compact subsets BR ⊂
B1/2rk for R > 1:

||D2ũk||L1(BR) =

ˆ
BR

|D2ũk| ≤
ˆ

BR

|D2ũk − D2ukBR
| +

ˆ
BR

|D2ukBR
|

≤ Rn +

 
BR

|D2ũk| = Rn +
1

Rn ||D
2ũk||L1(BR), (6.28)

meaning that ||D2ũk||L1(BR) ≤
R2n

Rn−1 . By Poincaré’s inequality we have a bound on
ũk as well. Then, there exists a weakly convergent subsequence in W1,2 such that
ũk → u and ∇ũk → ∇u strongly in L2 while D2ũk → D2u weakly in L2. It follows
that the next properties are satisfied:

uB1 = ∇uB1 = 0 C · ||u||L2(B2) ≥ βδ. (6.29)

|D2u|BMO(Rn) ≤ lim
k→∞

inf |D2ũk|BMO(B1/2rk
) ≤ 1. (6.30)

Lemma 6.2 has been used for the BMO lower semi-continuity. considering the
definition of weakly convergent given in proposition 2.9, if we take a test function
η ≡ 1 then:

0 = D2ũkB1
=

 
B1

D2ũk · 1 −→
 

B1

D2u · 1 = D2uB1 , (6.31)

Since the left hand side of the above convergence is equally 0, then D2uB1 = 0.
And again by the definition of a weak solution of ∆ũk = fk, given η ∈W1,2:

ˆ
B1/2rk

∇ũk∇η −→
ˆ

Rn
∇u∇η = 0←−

ˆ
B1/2rk

f̃kη. (6.32)

This implies that ∆u = 0 in Rn, and hence u is harmonic in Rn and u ∈ C∞(BR) for
any ball BR. Moreover, considering the mean value property for harmonic functions
2.14 the above conditions can be rewritten as:

uB1 = ∇uB1 = D2uB1 = 0 =⇒ u(0) = ∇u(0) = D2u(0) = 0. (6.33)
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If we now consider a ball BR(x) ⊂ Rn sufficiently large such that B1 ⊂ BR(x):

1
Rn ||D

2u||L1(BR(x)) =

 
BR(x)

|D2u| ≤
 

BR(x)
|D2u− D2uBR(x)|+

 
BR(x)

|D2uBR(x)|

≤ 1 + |D2uBR(x)|. (6.34)

This, combined with the fact that:

1
Rn |D2uBR(x)| =

1
Rn |D2uB1 − D2uBR(x)| ≤

1
Rn

 
B1

|D2u− D2uBR(x)|

≤
 

BR(x)
|D2u− D2uBR(x)| ≤ 1, (6.35)

leads to ||D2u||L1(BR(x)) ≤ Rn(Rn + 1). Using Liouville’s theorem 2.15 for harmonic
functions defined on Rn with growth, we reach the conclusion that D2u has to be
a polynomial of degree at most n, which means that u will be a polynomial of
degree n+2. But, since the BMO semi-norm of D2u is bounded, if we use the same
argument as above for a polynomial with just one term of degree q ≤ n in a ball
BR with R > 1 large enough, then:

1
|BR|

ˆ
BR

|D2u| = M · Rq+n

Rn = M · Rq ≤ |D2u|BMO(BR) ≤ 1, (6.36)

will hold if and only if q = 0. Remembering the above mentioned properties, the
only possibility is that u ≡ 0 and since C · ||u||L2(B2) > βδ we reach a contradiction
as desired.

Remark 6.3. In this proof we used Liouville’s Theorem for a function that has a
bounded L1 norm, as has previously been introduced in the preliminaries section.
Recall, that our bound was ||D2u||L1(BR(x)) ≤ Rn(1 + Rn). Since u is harmonic
in Rn, then D2u is harmonic as well. Now, if R is large enough, namely, that
BR(x) is such that B1 ⊂ BR(x), then we have that R ≥ 1 + |x|. This leads to
|D2u(x)| ≤ (1 + Rn) ≈ C(1 + |x|n), which is the desired bound for the theorem.

At this point we have just proved the estimate for functions that are already in
W2,BMO. Again, following the steps in the references, two more propositions are
needed in order to reach the final result. First of all, a new estimate, in this case
for the BMO norm:

Proposition 6.4. Let u ∈W2,BMO(B1) and f ∈ L∞(B1) such that ∆u = f in B1. Then:

||u||W2,BMO(B1/4)
≤ C · (||u||L2(B1) + || f ||L∞(B1)), (6.37)

where C is a constant only depending on n.
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Proof. Following the first proof of theorem 2.20 in Ref. [1], let us define:

[ D2u] ∗B1/2
= sup

Bρ(x0)⊂B1/2

(2ρ)2|D2u|BMO(Bρ/2(x0)). (6.38)

Given a ball Bρ(x0) ⊂ B1/2, we can cover Bρ/2(x0) with N smaller balls Bρ/8(zj)1≤j≤N ,
with zj ∈ Bρ/2(x0). Considering that Bρ/2(zj) ⊂ B1, then by taking r = ρ/2 we get:(ρ

2

)2
|D2u|BMO(Bρ/8(zj)) ≤ sup

Br(x0)⊂B1/2

r2|D2u|BMO(Br/4(x0)), (6.39)

which leads to:

ρ2|D2u|BMO(Bρ/2(x0)) ≤ C · ρ2
N

∑
j=1
|D2u|BMO(Bρ/8(zj))

≤ C · 22N sup
Br(x0)⊂B1/2

r2|D2u|BMO(Br/4(x0)). (6.40)

Here we have used the sub-additivity of integrals and that C is an integration con-
stant not depending on ρ. By taking the supremum on the left hand side:

[ D2u] ∗B1/2
≤ C sup

Br(x0)⊂B1/2

r2|D2u|BMO(Br/4(x0)). (6.41)

Now, using the proposition (6.1) for a ball Bρ(x0) ⊂ B1/2:

ρ2|D2u|BMO(Bρ/4(x0)) ≤ δ · ρ2|D2u|BMO(Bρ/2) + C · ( ||D2u||L1(B1/2)
+ || f ||L∞(B1/2))

≤ δ[ D2u] ∗B1/2
+ C · ( ||D2u||L1(B1/2)

+ || f ||L∞(B1/2)). (6.42)

And again, taking the supremum on the left side, and using equation (6.41) as
well as |D2u|BMO(B1/4) ≤ [ D2u] ∗B1/2

(which can be seen for ρ = 1/2):

|D2u|BMO(B1/4) ≤ C · ( ||D2u||L1(B1/2)
+ || f ||L∞(B1/2)). (6.43)

Considering again Hölder’s inequality 2.4 and the Calderón-Zygmund estimate for
p = 2, we reach:

||D2u||BMO(B1/4) = |D2u|BMO(B1/4) + ||D2u||L1(B1/4)

≤ C · ( ||D2u||L1(B1/2)
+ || f ||L∞(B1/2))

≤ C · ( ||u||L2(B1) + || f ||L2(B1) + || f ||L∞(B1)), (6.44)

which after a proper constant leads to the desired result.
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Finally, we are ready to prove the estimate for the general case, which is a con-
sequence of the above results. This Corollary, follows the same idea as Corollary
2.16 found in Ref. [1].

Corollary 6.5. (Corollary 2.16 Ros-Oton) Let u be a weak solution to:

∆u = f in B1, (6.45)

with f ∈ L∞(B1). Then u is W2,BMO inside B1 and the estimate (6.37) holds.

Proof. Let u be a solution in B1 from ∆u = f , with f ∈ L∞(B1). Let η ∈ C∞
c (B1) be

any smooth function with η ≥ 0 and
´

B1
η = 1. Re-scale η as:

ηϵ = ϵ−nη(
x
ϵ
), (6.46)

which satisfies ηϵ ∈ C∞
c (Bϵ) and

´
Bϵ

ηϵ = 1. Consider the convolution:

uϵ(x) = u ∗ ηϵ(x) =
ˆ

Bϵ

u(x− y)ηϵ(y)dy. (6.47)

Recall that any convolution with a C∞ function is C∞ as well. In particular we
have that:

∆uϵ = f ∗ ηϵ = fϵ in B1−ϵ. (6.48)

Since uϵ is C∞ we can use proposition 6.37 to get:

||uϵ||W2,BMO(B1/4)
≤ C · (||uϵ||L2(B1) + || fϵ||L∞(B1)). (6.49)

Now, considering Young’s convolution inequality 2.6 for Lp norms, we get that:

||uϵ||L2(B1) ≤ ||u||L2(B1) ∗ ||ηϵ||L1(B1)
= ||u||L2(B1), (6.50)

and:
|| fϵ||L∞(B1) ≤ || f ||L∞(B1) ∗ ||ηϵ||L1(B1)

= || f ||L∞(B1). (6.51)

This proves that the sequence uϵ is uniformly bounded in B1/4 and using propo-
sition 2.9 there is a subsequence that converges to u ∈ W2,BMO(B1/4). Meaning
that:

||u||W2,BMO(B1/4)
≤ C · (||u||L2(B1) + || f ||L∞(B1)), (6.52)

because the limits for the L2, as well as the BMO norm, hold 6.2. After proper
re-scaling, we reach our desired result.
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This completes the proof of the Calderón-Zygmund estimates for p ∈ [2, ∞]. The
remaining cases, namely for p ∈ [1, 2), can be easily seen through a duality argu-
ment, which introduces the relationship between different Lp spaces. This is why
the proof is simplified to the mentioned cases.

If we were to consider interpolation arguments [5, 6] as well, we could indeed
proof the Calderón-Zygmund estimates just for the easier cases p = 2 and p = ∞,
and use both results to see the validity for the general Lp case.



Final remarks

Since the beginning, the main goal of the project was to adapt or find a blow-up
argument that could prove the general Lp case. There have been many difficulties
involved when trying this type of proof, as it usually requires a type of point-wise
interpretation. Of course, when treating with Lp functions, this is rather difficult,
and proving an estimate of the sort of (6.1) seems rather hard. The reason behind
it is that Lp functions are only integrable, and could be non-convergent in a 0
measure set. This is a problem, since we cannot choose smaller balls within our
domain, where, for example, the Lp norm has a larger density. This probably
helped to motivate the search and finding of the covering lemmas introduced in
the Lp section chapter 5.

Another aspect to take into account, could be not to directly work with Lp

norms. One could try to reach an inequality that involved the measurable sets
{x ∈ Ω, |M|D2u| > λ} seen in the provided Lp proof, or considering maximal
functions as the Hardy-Littlewood Mu(x) or the sharp M#u(x) one introduced in
Ref. [5]. The idea here, could be to bound the value of the maximal function at a
given point. Nonetheless, one has to be careful when doing so, because these type
of functions could have a value of ∞ at some points.

Further, another approach could have been to find a different inequality, which
would not require a specific point. One example of such is the one introduced in
Proposition 4.5 found in Ref. [9]. The idea behind this one, is that we define a
sequence based on the supremum and it’s characteristics, avoiding us the use of δ

as in Equation 6.1.

This short points remark a little bit the problems I have encountered when
trying to prove the Lp case, but I believe that further work in the matter could
provide a positive argument. In spite of that, it has been an interesting journey,
full of joy and frustration at given points and a first immersion into mathematical
research.
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38 Final remarks

Having said that, I would like to thank the advisor of this project, Dr. Xavier
Ros-Oton for the guidance and discussions along the way, as well as my family
and friends for these unforgettable years.
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