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Abstract

This thesis embarks on a mathematical journey, delving into the depths of
probability theory and a comprehensive exploration of the Central Limit Theo-
rem (CLT). The study begins with fundamental concepts such as characteristic
functions and basic probability theory, continuing with the laws of large num-
bers. Afterwards, the narrative progresses to focus on various versions of the CLT.
Essential theorems, including De Moivre-Laplace’s, Lindeberg-Lévy’s, and Lya-
punov’s, are studied, offering insights into the universal significance of the CLT.
The journey concludes with a glimpse of the constraints of this impactful theo-
rem, including the convergence of the compound Poisson distribution. This work
contributes to a nuanced understanding of probability theory as well as serves as
a guide through the elegance and applicability of the CLT.

Notation: Looking for a concise text, the following notation has been used: i.e.
stands for "that is", r.v. means "random variable" and s.t. stands for "such that".

2020 Mathematics Subject Classification. 60F05, 60B10, 60E05, 60E10, 62H05, 62H10
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Preface

In the vast landscape of mathematics, probability theory emerges as a lens
through which uncertainty and randomness are explored. At the heart of this field
lies the Central Limit Theorem (CLT), a transformative concept with far-reaching
implications. This introduction sets the stage for our exploration, weaving a nar-
rative that transitions from foundational probability concepts to the intricacies of
convergence.

The Central Limit Theorem asserts that, under specific conditions, the distribu-
tion of the standardized sample mean converges to a standard normal distribution.
Remarkably, this convergence holds true even when the original variables exhibit
non-normal distributions. This theorem is crucial in probability theory, as it sig-
nifies that probabilistic and statistical methods that work for normal distributions
can be extended to tackle problems involving diverse distribution types.

Chapter 1 provides an immersive introduction to probability theory, laying the
groundwork for further discussions on the convergence of random variables. As
we deepen into the nuances of characteristic functions in Chapter 2, we set the
stage for a more advanced exploration of the CLT.

The Law of Large Numbers, unfolded in Chapter 3, introduces essential in-
equalities and theorems, preparing the stage for our in-depth exploration of weak
convergence in Chapter 4. Here, we search through finite measures, probabilities,
and convolutions, laying a profound foundation for comprehending the various
versions of the Central Limit Theorem explored in Chapter 5.

The latter chapter, the pinnacle of our journey, unravels classical theorems and
their multidimensional extensions, illustrating the universal significance of the
CLT. Essential theorems will be included, such as De Moivre-Laplace’s, Lindeberg-
Lévy’s, and Lyapunov’s. This intellectual voyage concludes with a glimpse of the
constraints and limitations of this impactful theorem, offering insights into the
convergence of the compound Poisson distribution.

As the pages turn, the intent is not merely to present theorems but to provide a
lens through which the significance and applicability of the CLT become apparent.
This journey, from the basics of probability to the intricate details of the CLT, aims
to provide a solid foundation for researchers, academics, and enthusiasts alike.

Before we embark on this journey, I extend gratitude to you, dear reader, for
dedicating your time and attention to this work. Allow me a moment of cheeri-
ness; a joke that encapsulates the essence of the CLT:

"Why did the data point throw a party for the Central Limit Theorem? Because it wanted
to show its friends that even in a wild and diverse crowd, when you gather enough of

them, they all tend to behave like normal distributions!"
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Chapter 1

Introduction to probability and convergence

In this chapter, we will cover a concise introduction to the probability the-
ory. We will study fundamental concepts and connect them to the convergence
of random variables and see the most common ones. This chapter is very much
extracted from ([1], Chapter 7) and ([2], Chapter 9).

1.1 Introduction to probability theory

First of all, recall the next crucial theorem. The interpretation is that a push-
forward measure is defined by transferring a measure from one measurable space
to another one, using a measurable function.

Theorem 1.1.1. (Pushforward Measure Theorem). Let (X,A), (Y,B) be measurable
spaces, where A and B are σ-algebras1 on A and B, respectively, and let f : X −→ Y be
a measurable function. If µ is a measure on (X,A), then the pushforward measure f∗µ is

( f∗µ)(B) := µ( f−1(B)), ∀B ∈ B. (1.1.1)

Proof. The proof can be found in ([2], Proposition 6.9, Chapter 6). ■

Let (Ω,A, P) be a probability space, where Ω is the sample space, A denotes
a σ-algebra on Ω and P is a probability measure on (Ω,A). The probability of an
event B ∈ A is defined by

P(B) :=
∫

B
dP(ω) =

∫
Ω
1B(ω) dP(ω). (1.1.2)

1A is a σ-algebra on Ω if it is a collection of subsets of Ω such that: Ω ∈ A, it is closed under
complementation and it is closed under countable unions. It is also known as σ-field.

1



2 Introduction to probability and convergence

P satisfies summation to unity, i.e. P(Ω) = 1, and σ-additivity. The union bound
(or Boole’s inequality) states that if Bl ∈ A, l ∈ {1, ..., n} is a condition of events,

P

(
n⋃

l=1

Bl

)
≤

n

∑
l=1

P(Bl). (1.1.3)

A random variable (r.v.) X is a real-valued measurable function on (Ω,A), i.e.
X : Ω −→ R. Recall that X is called measurable if

X−1(A) := {ω ∈ A : X(A) ∈ A} ⊂ A,

for all Borel measurable subsets A ∈ R, i.e. A ∈ A(R). The law of X, PX, is

PX(B) := P(X−1(B)), (1.1.4)

for every B ∈ B(R), which is exactly the pushforward measure of P using X. The
distribution function F : R −→ [0, 1] of X, F := FX, is given by

F(t) := P{X ≤ t}, (1.1.5)

for t ∈ R. F must be non-decreasing, right-continuous, and the limits at infinity
such that limx→−∞ F(x) = 0 and limx→∞ F(x) = 1. Consider a, b ∈ R. A random
variable X has a probability density function f : R −→ R+ associated if

P{a < X ≤ b} =
∫ b

a
f (t) dt, (1.1.6)

for every a < b, then f = δ
δt F(t). f is non-negative everywhere and satisfies

integration to unity, i.e.
∫ +∞
−∞ f (x) = 1. If X is integrable, the expectation or mean

of X is
E(X) :=

∫
Ω

X(ω) dP(ω) =
∫
R

xPX(dx). (1.1.7)

X is integrable with relation to P if the previous integral is well-defined and finite.
If X has pth-order absolute moment, i.e. E(|X|p) < ∞, the pth-order moment of X
is E(Xp), for p > 0. If E(X2) < ∞, the quantity E[(X − E(X))2] = E(X2)− [E(X)]2

is the variance. Let X, Y be r.v. on a probability space (Ω,A, P). The Holder’s
Inequality states that for p, q ≥ 1 such that 1

p +
1
q = 1, then

|E[XY]| ≤ (E[|X|p])
1
p (E[|Y|q])

1
q (1.1.8)

The function t 7−→ P{|X| ≥ t} is the tail of X and it can be estimated by:

Theorem 1.1.2. (Markov’s Inequality). Let X be a random variable with E(|X|) < ∞,
then

P{|X| ≥ t} ≤ E(|X|)
t

, ∀t > 0. (1.1.9)



1.2 Convergence of random variables 3

Proof. Observe that P{|X| ≥ t} = E[1{|X|≥t}] and t1{|X|≥t} ≤ |X|. Therefore,
tP{|X| ≥ t} = tE[1{|X|≥t}] = E[t1{|X|≥t}] ≤ E(|X|), as we wanted. ■

Consequently, if p > 0, P{|X| ≥ t} = P{|X|p ≥ tp} ≤ t−pE(|X|p), for every
t > 0. If p = 2 this is called the Chebyshev’s inequality.

A random vector X = [X1, ..., Xn]T is a collection of n r.v. on a probability
space (Ω,A, P). The next definitions are similar to the univariant case. The joint
distribution function F of X is defined as

F(t1, ..., tn) := P{X1 ≤ t, ..., Xn ≤ t}, t1, ..., tn ∈ R. (1.1.10)

A random vector X has a joint probability density f : Rn −→ [0, 1] if

P{X ∈ D} :=
∫

D
f (t1, ..., tn) dt1....dtn, (1.1.11)

for every D ∈ B(R). The expectation of X is E(X) = [E(X1), ..., E(Xn)]T ∈ Rn.
A collection of random variables X1, ..., Xn is (stochastically) independent if

for all t1, ..., tn ∈ R,

P{X1 ≤ t1, ..., Xn ≤ tn} =
n

∏
l=1

P{Xl ≤ tl}. (1.1.12)

If they are independent r.v. with E(|Xl |) < ∞, for every l ∈ {1, ..., n} then they
satisfy that

E

[
n

∏
l=1

Xl

]
=

n

∏
l=1

E(Xl) (1.1.13)

and if they also have a joint density function f , then f (t1, ..., tn) = f1(t1)... f (tn),
where f1, ..., fn are the density functions of X1, ..., Xn. A collection of independent
r.v. that all have the same distribution are independent identically distributed.

Theorem 1.1.3. (Jensen’s inequality).: Let f : Rn −→ R be a convex function and
X ∈ Rn be a random variable with E(|X|) < ∞ and E[| f (X)|] < ∞, then

f (E[X]) ≤ E[ f (X)]. (1.1.14)

Proof. The proof can be found in ([1], Theorem 7.9, Chapter 7). ■

1.2 Convergence of random variables

Once the concept of random variables is introduced, it is only natural to con-
sider sequences of r.v., in particular their limit and convergence. Recall that if
{An, n ≥ 1} is a sequence of events of A, then P {lim supn An} ≥ lim supn P(An)

and P {lim infn An} ≤ lim infn P(An).



4 Introduction to probability and convergence

Lemma 1.2.1. The Borel-Cantelli’s Lemmas state the following:

1) (First Borel-Cantelli’s Lemma). Let {An, n ≥ 1} be a sequence of events of A.
If ∑∞

n=1 P(An) < ∞, then P {lim supn An} = 0.

2) (Second Borel-Cantelli’s Lemma). Let {An, n ≥ 1} be a sequence of indepen-
dent events of A. If ∑∞

n=1 P(An) = ∞, then P {lim supn An} = 1.

The next modes of convergence are the most common and important ones.

Definition 1.2.2. A sequence of r.v. {Xn, n ≥ 1} converges almost surely (a.s.) to X if
there is a set N ∈ A with probability zero s.t. limn→∞ Xn(ω) = X(ω), ∀ω /∈ N. This
is denoted Xn

a.s.−→ X.

The a.s. convergence is the most similar to pointwise convergence of a se-
quence of functions. A useful tool might be the following.

Proposition 1.2.3. A sequence of r.v. {Xn, n ≥ 1} converges a.s. to X if and only if

lim
m→∞

P

{
sup
n≥m

|Xn − X| ≤ ϵ

}
= 1, ∀ϵ > 0. (1.2.1)

Definition 1.2.4. A sequence of r.v. {Xn, n ≥ 1} converges in probability to X if

lim
n→∞

P {|Xn − X| ≥ ϵ} = 0, ∀ϵ > 0. (1.2.2)

or, equivalently, limn→∞ P {|Xn − X| ≤ ϵ} = 1. This is denoted Xn
P−→ X.

The probability function is more relevant and measures how close or distant
the sequence of random variables and the possible limit r.v. are. For p ∈ [1, ∞],
define Lp(Ω,A, P) as the set of r.v. with finite pth-order moment.

Definition 1.2.5. Let {Xn, n ≥ 1} be a sequence of r.v. of Lp(Ω,A, P). This sequence
converges in Lp-norm to a random variable X with finite pth-order moment, if

lim
n→∞

E[|Xn − X|p] = 0. (1.2.3)

This is denoted Xn
Lp
−→ X. If p = 1 it is called convergence in mean and if p = 2 it is

named convergence in mean square.

Some relevant relations between convergences are the next ones.

Theorem 1.2.6. Let {Xn, n ≥ 1} be a sequence of r.v. Let X be a r.v. Then

1) If Xn
a.s.−→ X, as n → ∞, then also Xn

P−→ X, as n → ∞.

2) If Xn
P−→ X, as n → ∞, then there exists a subsequence {Xnk , k ≥ 1} of random

variables such that converges almost surely to X, i.e. Xnk

a.s.−→ X, as k → ∞.

Proposition 1.2.7. Let {Xn, n ≥ 1} be a sequence of r.v. such that Xn
Lp
−→ X, then

Xn
P−→ X, as n → ∞.



Chapter 2

Characteristic functions

In this chapter, we explore the use and properties of characteristic functions,
introduced by Paul-Lévy. This will be fundamental to simplify the analysis of the
Weak Convergence of probabilities (Chapter 4) and prove versions of the Central
Limit Theorem (Chapter 5). This chapter is essentially from ([2], Chapter 9).

Definition 2.0.1. Let µ be a probability in R. The characteristic function of µ is the
map φµ : R −→ C, defined by

φµ(t) :=
∫
R

eitx µ(dx) =
∫
R

cos(tx) µ(dx) + i
∫
R

sin(tx) µ(dx). (2.0.1)

φµ is well-defined since the sine and cosine are continuous and bounded.

Definition 2.0.2. Let X be a random variable. The characteristic function of X is

φX(t) :=
∫
R

eitx PX(dx) = E(eitX). (2.0.2)

Definition 2.0.3. Let µ be a probability inRn. The characteristic function of µ is the map
φµ : Rn −→ C, defined by

φµ(t) :=
∫
Rn

ei<t,x> µ(dx). (2.0.3)

The characteristic function of a random vector X = (X1, ..., Xn) is the characteristic func-
tion of its distribution function.

2.1 Fundamental properties of characteristic functions

From now on, let µ be a probability in Rn. The following properties are basic.

1) Trivially, φµ(0) = 1.

5



6 Characteristic functions

2) |φµ(t)| ≤ 1, for every t ∈ Rn.

Proof. A consequence of the identity |ei<t,x>| = 1. ■

3) φµ(−t) = φµ(t).

Proof. Note that

φµ(−t) =
∫
Rn

e−i<t,x> µ(dx) =
∫
Rn

ei<t,x> µ(dx) =
∫
Rn

ei<t,x> µ(dx).

■

4) φµ is a uniformly continuous function.

Proof. Consider s, t ∈ Rn, then

∣∣φµ(t)− φµ(s)
∣∣ = ∣∣∣∣∫

Rn
(ei<t,x> − ei<s,x>) µ(dx)

∣∣∣∣ ≤ ∫
Rn

∣∣∣ei<t−s,x> − 1
∣∣∣ µ(dx).

Since
∣∣ei<t−s,x> − 1

∣∣ ≤ 2 and the last integrand converges to 0 as |t− s| −→ 0,
by the Dominated Convergence Theorem, we get the desired result. ■

5) Let X be a random n-dimensional vector, A a m × n matrix, b ∈ Rm. Then,

φAX+b(t) = ei<t,b>φX(A∗t), ∀t ∈ Rm. (2.1.1)

Proof. Observe that

φAX+b(t) = E(ei<t,AX+b>) = ei<t,b>E(ei(A∗t)∗X) = ei<t,b>φX(A∗t).

■

6) (Fundamental property of injectivity). If µ1 and µ2 are probabilities in Rn

satisfying that φµ1 = φµ2 , then µ1 = µ2.

Proof. Assume n = 1. Observe the following. Fix an interval [−T, T], then by
the Stone-Weierstrass’ Theorem, the finite linear combinations of e

iπkx
T , k ∈ Z,

are dense in the set of continuous functions in [−T, T]. These combinations
form an algebra of functions. Therefore, we want to show that∫

R

f dµ1 =
∫
R

f dµ2, (2.1.2)
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for every real continuous function f with a compact image. Take ϵ > 0 and
T > 0 satisfying that the image of f is in [−T, T] and also µ1([−T, T]c) ≤ ϵ,
µ2([−T, T]c) ≤ ϵ. By the previous observation, there exists a function

f̂ (x) =
m

∑
j=1

aj exp (
iπk jx

T
),

with aj ∈ C and sup|x|≤T

∣∣∣ f (x)− f̂ (x)
∣∣∣ < ϵ. By hypothesis,∫

R

f̂ dµ1 =
∫
R

f̂ dµ2.

On the other hand, since f̂ is periodic with period 2T, then

∥ f̂ ∥∞ = sup
x∈[−T,T]

∣∣∣ f̂ (x)
∣∣∣ ≤ ϵ + ∥ f ∥∞.

Consequently,∣∣∣∣∫
R

f dµ1 −
∫
R

f dµ2

∣∣∣∣ ≤ ∣∣∣∣∫
R

f dµ1 −
∫
R

f̂ dµ1

∣∣∣∣+ ∣∣∣∣∫
R

f̂ dµ2 −
∫
R

f dµ2

∣∣∣∣
≤ ϵ (µ1([−T, T]) + µ2([−T, T])) + 2ϵ (ϵ + 2∥ f ∥∞)

≤ 2ϵ(1 + ϵ + 2∥ f ∥∞),

and taking ϵ → 0, we have proved (2.1.2). Finally, we are done.1 ■

7) Let X = (X1, ..., Xn) be a random vector. The random variables X1, ..., Xn are
independent if and only if φX(t1, ..., tn) = φX1(t1)...φXn(tn).

Proof. Recall that X1, ..., Xn are independent if and only if it is satisfied the
equality P ◦ X−1 = P ◦ X−1

1 × ... × P ◦ X−1
n .2 Equivalently, using the Property

6), the corresponding characteristic functions must be equal. The character-
istic function of P ◦ X−1 is φX(t1, ..., tn) and of P ◦ X−1

1 × ... × P ◦ X−1
n is the

following∫
Rn

ei<t,X> (P ◦ X−1
1 )(dx1)...(P ◦ X−1

n )(dxn)

=

(∫
R

eit1X1 (P ◦ X−1
1 )(dx1)

)
...
(∫
R

eitnXn (P ◦ X−1
n )(dxn)

)
= φX1(t1)...φXn(tn),

which is exactly what we wanted. ■

1Note that ϵ > 0 is arbitrary.
2The used notation is reviewed in Chapter 1.
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8) If X1, ..., Xn are independent random variables, then

φX1+...+Xn(t) = φX1(t)...φXn(t). (2.1.3)

Proof. By hypothesis,

φX1+...+Xn(t) = E(eit(X1+...+Xn)) = E(eitX1)...E(eitXn) = φX1(t)...φXn(t).

■

2.2 Examples of characteristic functions

The following example will be crucial from now on.

1) Standard Normal distribution: The characteristic function of a probability
with distribution N(0, 1) is

φ(t) = e
−t2

2 . (2.2.1)

Let µ be the standard normal distribution N(0, 1). If α(t) =
∫
R

e
−x2

2 cos(tx) dx

and β(t) =
∫
R

e
−x2

2 sin(tx) dx, then

φµ(t) = (α(t) + iβ(t))
1√
2π

.

It is trivial that β(t) = 0. On the other hand, observe that∣∣∣∣∂ f
∂t

∣∣∣∣ = ∣∣∣∣−x cos(tx)e
−x2

2

∣∣∣∣ ≤ |x|e−x2
2

and also
∫
R
|x|e−x2

2 dx < ∞. Note that α(t) is differentiable and applying
Integration by parts, then

α′(t) = −
∫
R

xe
−x2

2 sin(tx) dx

=

[
e
−x2

2 sin(tx)
]+∞

−∞
−
∫
R

e
−x2

2 t cos(tx) dx = −tα(t).

Since α(0) =
√

2π, then α(t) =
√

2πe
−t2

2 . Finally, φ(t) = e
−t2

2 , as we desired.

2) Other interesting examples can be found in ([2], Chapter 9).



Chapter 3

Law of Large Numbers

Random events can be quite irregular and unpredictable. Nevertheless, stabil-
ity may be guaranteed when the same event is repeated several times, depending
on the hypothesis. In this chapter, we will study the behavior of the partial sum
Sn = X1 + ... + Xn of a sequence of independent r.v {Xn, n ≥ 1}. We will state
different versions of the Weak and Strong Law of Large Numbers. The versions
depend on the conditions of the r.v. {Xn, n ≥ 1}. We will also study previous
results such as Kolmogorov’s Inequalities and Kronecker’s Lemma, to complete
all the proofs. For a further analysis of the applications of the Laws of Large
Numbers, we suggest ([3], Chapter 10).

3.1 Weak Law of Large Numbers

The Weak Law of Large Numbers states that the average of many observations
will eventually be the population mean since the sample size can be increased.

Proposition 3.1.1. Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables. Suppose E (X1) = µ, E

(
X2

1

)
< ∞. Then,

Sn

n
L2

−→
n→∞

µ. (3.1.1)

Proof. Observe that

E

[∣∣∣∣Sn

n
− µ

∣∣∣∣2
]
= Var

(
Sn

n

)
=

1
n2 Var (Sn) =

1
n

Var (X1)
n→∞−→ 0,

where in the first equality we have used that

E
(

Sn

n

)
=

1
n

E (Sn) = E (X1) = µ,

and the other identities and basic properties of independent random variables. ■

9



10 Law of Large Numbers

Corollary 3.1.2. With the same hypothesis, then Sn
n

P−→
n→∞

µ.1

Now we may study another result for convergence in probability.

Theorem 3.1.3. Let {Xn, n ≥ 1} be a sequence of independent random variables such
that there exists a sequence {bn}n≥1 ↗ ∞ that satisfies

(a) ∑n
i=1 P {|Xi| > bn} → 0, as n → ∞

(b) ∑n
i=1

1
b2

n
E
[
|Xi|2 1{|Xi |≤bn}

]
→ 0, as n → ∞.

Then Sn−an
bn

P−→ 0, as n → ∞, where an = ∑∞
n=1 E

[
Xi1{|Xi |≤bn}

]
.

Proof. Define the sequence Ynj := Xj1{|Xj|≤bn} with 1 ≤ j ≤ n. Since {Xn, n ≥ 1}
are independent r.v., then {Ynj , 1 ≤ j ≤ n} are too. Consider Tn := ∑n

j=1 Ynj . First,
we want to see that if (a) is true, then P{Sn ̸= Tn} →

n→∞
0. Note that

P {Sn ̸= Tn} ≤ P
{

Ynj ̸= Xj, for some j ∈ {1, ..., n}
}

≤
n

∑
j=1

P
{

Ynj ̸= Xj

}
=

n

∑
j=1

P
{
|Xj| > bn

}
−→
n→∞

0.

Secondly, we see that Tn−an
bn

P−→
n→∞

0. By Chebyshev’s Inequality, for all ϵ > 0,

P
{∣∣∣∣Tn − an

bn

∣∣∣∣ > ϵ

}
≤ 1

ϵ2b2
n

E
[
|Tn − an|2

]
=

1
ϵ2b2

n
Var(Tn)

≤ 1
ϵ2b2

n

n

∑
j=1

Var(Ynj) ≤
1

ϵ2b2
n

n

∑
j=1

E
(

Y2
nj

)
−→ 0, ∀ϵ > 0,

where E
[
|Tn − an|2

]
= E

[
|Tn − E(Tn)|2

]
= Var(Tn) and E

(
Y2

nj

)
→ 0, using (b).

Lastly, we show that if P{Sn ̸= Tn} −→
n→∞

0 and Tn−an
bn

P−→ 0, then Sn−an
bn

P−→ 0.
Notice that

P
{∣∣∣∣Sn − an

bn

∣∣∣∣ > ϵ

}
= P

{∣∣∣∣Sn − an

bn

∣∣∣∣ > ϵ, Sn = Tn

}
+ P

{∣∣∣∣Sn − an

bn

∣∣∣∣ > ϵ, Sn ̸= Tn

}
≤ P

{∣∣∣∣Tn − an

bn

∣∣∣∣ > ϵ

}
+ P {Sn ̸= Tn} −→

n→∞
0.

■

1Remember that the L2-norm implies convergence in probability (Chapter 1).
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3.2 Kolmogorov’s Inequalities

Kolmogorov’s Inequalities provide a bound on the probability that the partial
sum Sn surpasses some specified bound. We will see two Kolmogorov’s Inequali-
ties, which will be necessary to prove Kolmogorov’s Three-Series Theorem.2

Proposition 3.2.1. (First Kolmogorov’s Inequality). Let {Xn, n ≥ 1} be a sequence of
independent r.v., centered and with finite second-order moment, for all n ≥ 1. Then,

P
{

max
1≤j≤n

|Sj| > ϵ

}
≤ σ2(Sn)

ϵ2 , ∀ϵ > 0. (3.2.1)

Proof. If n = 1, the statement is exactly Chebyshev’s Inequality.
Fix n > 1 and ϵ > 0, then M0 = Ω, Mk = max1≤j≤n |Sj| ≤ ϵ, for all

n ≥ 1. Observe that Mn ⊂ Mn−1 ⊂ ... ⊂ M1 ⊂ M0. Consider the disjoint
sets Ak = Mk−1 − Mk = {|Sj| ≤ ϵ, j = 1, ..., k − 1, |Sj| > ϵ}. Therefore, define

A =
⋃̇n

k=1Ak = {max1≤j≤n |Sj| > ϵ}. We want to prove that P(A) ≤ σ2(Sn)
ϵ2 , or,

equivalently, σ2(Sn) ≥ ϵ2P(A). Since Xn are centered, then Sn are too, and using
the definition of expectation,

σ2(Sn) = E(S2
n) ≥

∫
A
(Sn)

2 dP =
n

∑
k=1

∫
Ak

(Sn)
2 dP

=
n

∑
k=1

∫
Ak

(Sn − Sk + Sk)
2 dP =

n

∑
k=1

∫
Ak

[(Sn − Sk) + Sk]
2 dP.

(3.2.2)

Solving the square, then [(Sn − Sk) + Sk]
2 = (Sn − Sk)

2 + 2Sk(Sn − Sk) + S2
k . Ob-

serve that the first and the third values are always positive and the second one
satisfies the following∫

Ak

2(Sn − Sk)Sk dP = 2E[1Ak Sk(Sn − Sk)] = 2E[1Ak Sk]E[Sn − Sk] = 0,

using that 1Ak Sk and Sn − Sk are independent and also E[Sn − Sk] = 0 since Sn − Sk

are centered. Plugging it into (3.2.2) and omitting the first value, then

n

∑
k=1

∫
Ak

[(Sn − Sk) + Sk]
2 dP ≥

n

∑
k=1

∫
Ak

S2
k dP ≥ ϵ2

n

∑
k=1

P(Ak) = ϵ2P(A),

where it has been used that S2
k is greater than ϵ2 in Ak and the definition of A.

Finally, σ2(Sn) ≥ ϵ2P(A), as we desired. ■

2Remember the notation σ2(X) := Var(X).
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Proposition 3.2.2. (Second Kolmogorov’s Inequality). Let {Xn, n ≥ 1} be a sequence
of independent random variables such that E(|Xn|) < ∞, ∀n ≥ 1 and there exists a set
A > 0 such that |Xn − E[Xn]| ≤ A a.s., ∀n ≥ 1. Then,

P
{

max
1≤j≤n

|Sj| ≤ ϵ

}
≤ (4ϵ + 2A)2

σ2(Sn)
. (3.2.3)

Proof. Let M0 = Ω, Mk = {max1≤j≤k |Sj| ≤ ϵ}, for every k ≥ 1. Note that
Mn ⊂ Mn−1 ⊂ ... ⊂ M1 ⊂ M0. Consider also the disjoint sets Ak = Mk−1 − Mk =

{|Sj| ≤ ϵ, j = 1, ..., k − 1, |Sj| > ϵ}. Notice Mk+1 = Mk \ Ak+1. Therefore, define
A :=

⋃̇n
k=1Ak = {max1≤j≤n |Sj| > ϵ} = Ω \ Mn. Let X′

j = Xj − E(Xj), for every
j ≥ 1, which are centered and |X′

j| = |Xj − E(Xj)| ≤ A.3 Consider the partial sums

S′
0 = 0, S′

j = ∑
j
k=1 X′

k. Finally, a0 = 0, ak = 1
P(Mk)

∫
Mk

S′
k dP.4 We want to prove

P(Mn) ≤ (4ϵ+2A)2

σ2(Sn)
, equivalently, P(Mn)σ2(Sn) ≤ (4ϵ + 2A)2. Consider:

I :=
∫

Mk+1

(S′
k+1 − ak+1)

2 dP =
∫

Mk\Ak+1

(S′
k − ak + ak − ak+1 + X′

k+1)
2 dP = I1 − I2,

(3.2.4)
where

I1 :=
∫

Mk

(S′
k − ak + ak − ak+1 + X′

k+1)
2 dP,

I2 :=
∫

Ak+1

(S′
k − ak + ak − ak+1 + X′

k+1)
2 dP.

The procedure will be to find a lower bound of I by finding a lower bound of
I1 and an upper bound of I2. Afterwards, we will arrive at the desired result by
operating. We will begin with an upper bound for I2. Notice the next inequalities,

|S′
k − ak| =

∣∣∣∣Sk − E(Sk)−
1

P(Mk)

∫
Mk

(Sk − E(Sk)) dP
∣∣∣∣

≤
∣∣∣∣Sk − E(Sk)−

1
P(Mk)

P(Mk)(ϵ − E(Sk))

∣∣∣∣ ≤ |Sk|+ ϵ

and

|ak − ak+1| =
∣∣∣∣ 1
P(Mk)

∫
Mk

(Sk − E(Sk)) dP − 1
P(Mk+1)

∫
Mk+1

(Sk+1 − E(Sk+1)) dP
∣∣∣∣

=

∣∣∣∣ 1
P(Mk)

∫
Mk

(Sk − E(Sk))dP − 1
P(Mk+1)

∫
Mk+1

(Sk − E(Sk) + Xk+1 − E(Xk+1))dP
∣∣∣∣

≤
∣∣∣∣ 1
P(Mk)

∫
Mk

(ϵ − E(Sk)) dP − 1
P(Mk+1)

∫
Mk+1

(ϵ − E(Sk) + A) dP
∣∣∣∣

≤ ϵ + ϵ + A = 2ϵ + A.

3Since |Xn − E[Xn]| ≤ A, then also E[|Xn − E[Xn]|2] ≤ A2, so X′
n has bounded second-order

moment and therefore it is not necessary to remark it.
4Note that it is sufficient that P(Mk) > 0, otherwise the result is trivial.
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Plugging these into I2, then

I2 ≤
∫

Ak+1

(|S′
k − ak|+ |ak − ak+1|+ |X′

k+1|)2 dP

≤
∫

Ak+1

(|Sk|+ ϵ + 2ϵ + A + |X′
k+1|)2 dP ≤ (4ϵ + 2A)2P(Ak+1),

where in the last step it has been used that |Sk| ≤ ϵ and |X′
k+1| ≤ ϵ, by definition,

and also
∫

Ak+1
dP = P(Ak+1). We will find now a lower bound for I1. Developing

the notable product,

([S′
k − ak] + [ak − ak+1] + X′

k+1)
2

= (S′
k − ak)

2 + (ak + ak+1)
2 + (X′

k+1)
2 + 2(S′

k − ak)(ak − ak+1)

+ 2(S′
k − ak)X′

k+1 + 2(ak − ak+1)X′
k+1

and taking expectations, observe that

E[1Mk(S
′
k − ak)(ak − ak+1)] = (ak − ak+1)

∫
Mk

S′
k dP − P(Mk)

∫
Mk

S′
k dP = 0 ;

E[1Mk(S
′
k − ak)X′

k+1] = 0 ; E[1Mk(ak − ak+1)X′
k+1] = 0 ;

since X′
k are independent and centered, for all k ≥ 1, by hypothesis. Substituting

all these in I1 and using that (ak − ak+1)
2 is positive, then

I1 ≥
∫

Mk

(S′
k − ak)

2 dP +
∫

Mk

(X′
k+1)

2 dP

=
∫

Mk

(S′
k − ak)

2 dP + P(Mk)σ
2(Xk+1),

using that X′
k are independent and centered and therefore E[(X′

k)
2] = σ2(Xk+1).

Plugging these inequalities in (3.2.4) and since −I2 ≥ −(4ϵ + 2A)2P(Ak+1), then

I =
∫

Mk+1

(S′
k+1 − ak+1)

2 dP = I1 + (−I2)

≥
(∫

Mk

(S′
k − ak)

2 dP
)
+ P(Mk)σ

2(Xk+1)− (4ϵ + 2A)2P(Ak+1).

Taking sums, consider the series

Yn :=
n−1

∑
k=0

∫
Mk+1

(S′
k+1 − ak+1)

2 dP −
∫

Mk

(S′
k − ak)

2 dP

≥
n−1

∑
k=0

P(Mk)σ
2(Xk+1)− (4ϵ + 2A)2P(Ak+1)

≥ P(Mn)σ
2(Sn)− (4ϵ + 2A)2P(A),

(3.2.5)
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using in the last step that P(Mn) ≤ P(Mk), ∀k ∈ {1, ..., n − 1} (by construction)
and the definition of A and Sn. On the other hand, Yn is a telescoping series,
therefore Yn =

∫
Mn

(S′
n − an)2 dP, since S′

0 = 0, a0 = 0. Operating, then

Yn =
∫

Mn

[
Sn − E(Sn)−

1
P(Mn)

∫
Mn

(Sn − E(Sn))

]2

dP

≤
∫

Mn

(|Sn|+ ϵ)2 dP ≤ 4ϵ2P(Mn),
(3.2.6)

using the bound found for I2. Finally, by (3.2.5) and (3.2.6),

4ϵ2P(Mn) ≥ P(Mn)σ
2(Sn)− (4ϵ + 2A)2P(A),

equivalently and using that A = Ω \ Mn,

P(Mn)σ
2(Sn) ≤ 4ϵ2P(Mn) + (4ϵ + 2A)2P(Ω \ Mn)

≤ (4ϵ + 2A)2[P(Mn) + P(Ω \ Mn)] = (4ϵ + 2A)2.

■

Finally, we can prove Kolmogorov’s Three-Series Theorem, which provides a
condition for the a.s. convergence of an infinite series of r.v.

Theorem 3.2.3. (Kolmogorov’s Three-Series Theorem). Let {Xn, n ≥ 1} be a sequence
of independent r.v. Let the set A > 0 and the sequence Yn = Xn1{|Xn|≤A}, ∀n ≥ 1. Then,
the series ∑∞

n=1 Xn converges a.s. if and only if the next three series also converge:

(a) ∑∞
n=1 P{|Xn| > A},

(b) ∑∞
n=1 E(Yn),

(c) ∑∞
n=1 σ2(Yn).

Proof. Suppose (a), (b), (c). To see the a.s. convergence of ∑∞
n=1 Xn, we will prove

the a.s. convergence of ∑∞
n=1(Yn − E(Yn)). Consider the set

N :=
∞⋂

m=1

∞⋃
n0=1

∞⋂
n=n0

{∣∣∣∣∣ n

∑
i=n0+1

(Yi − E(Yi))

∣∣∣∣∣ ≤ 1
m

}
,

i.e. for any m ≥ 1, there is n0 ≥ 1 s.t. for all n ≥ n0,
∣∣∑n

i=n0+1(Yi − E(Yi))
∣∣ ≤ 1

m .
Consider Mn :=

{
maxn0≤k≤n

∣∣∑n
i=n0+1(Yi − E(Yi))

∣∣}, then observe the inclusion:

∞⋂
n=n0

{
Mn ≤ 1

m

}
⊆

∞⋂
n=n0

{∣∣∣∣∣ n

∑
i=n0+1

(Yi − E(Yi))

∣∣∣∣∣ ≤ 1
m

}
.



3.2 Kolmogorov’s Inequalities 15

Then taking probabilities,

P

{
∞⋂

n=n0

(
Mn ≤ 1

m

)}
≤ P

{
∞⋂

n=n0

(∣∣∣∣∣ n

∑
i=n0+1

(Yi − E(Yi))

∣∣∣∣∣ ≤ 1
m

)}
.

By the First Kolmogorov’s Inequality,

P
{

Mn >
1
m

}
≤

σ2(∑n
i=n0+1(Yi − E(Yi)))

1
m2

.

Therefore, considering the complement set,

P
{

Mn ≤ 1
m

}
≥ 1 − σ2

(
k

∑
i=n0+1

(Yi − E(Yi))

)
m2

= 1 − m2
k

∑
i=n0+1

σ2(Yi),

(3.2.7)

for all m ≥ 1, since Yn are independent and the variance of a constant is zero.
Taking limits and by (3.2.7), then

P(N) = P

{
∞⋂

m=1

∞⋃
n0=1

∞⋂
n=n0

(∣∣∣∣∣ n

∑
i=n0+1

(Yi − E(Yi))

∣∣∣∣∣ ≤ 1
m

)}

= lim
m→∞

lim
n0→∞

P

{
∞⋂

n=n0

(∣∣∣∣∣ n

∑
i=n0+1

(Yi − E(Yi))

∣∣∣∣∣ ≤ 1
m

)}

≥ lim
m→∞

lim
n0→∞

(
1 − m2

k

∑
i=n0+1

σ2(Yi)

)
= 1,

where ∑k
i=n0+1 σ2(Yi) → 0, as n0 → ∞, since this series is convergent by hypothesis

(c).5 As P(B) ≥ 1, then P(B) = 1,. Finally, the series ∑∞
n=1(Yn − E(Yn)) con-

verges a.s. Since ∑∞
n=1 E(Yn) converges by (b), then ∑∞

n=1 Yn converges a.s. Since
∑∞

n=1 P{|Xn| > A} converges by (a) and by definition of Yn, then ∑∞
n=1 P{Xn ̸= Yn}

converges. By the First Borel-Cantelli’s Lemma, P{lim supn{Xn ̸= Yn}} = 0, i.e.
{Xn, n ≥ 1}, {Yn, n ≥ 1} differ in an infinite number of points. Since ∑∞

n=1 Yn

converges a.s., then finally ∑∞
n=1 Xn converges a.s. too.

Suppose that ∑∞
n=1 Xn converges a.s. First, we prove (a) by contradiction. Let

A > 0, suppose ∑∞
n=1 P{|Xn| > A} = ∞. By the Second Borel-Cantelli’s Lemma,

P{lim supn{|Xn| > A}} = 1. Then ∑∞
n=1 Xn does not converge, which contradicts

the hypothesis. Therefore ∑∞
n=1 P{|Xn| > A} = ∞ converges and (a) is correct.

5Note the limit is independent of m.
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Now we prove (c) by contradiction. Following the previous argument, ∑∞
n=1 Yn is

convergent. By the Second Kolmogorov’s Inequality,

P

{
max

n0≤k≤n

∣∣∣∣∣ k

∑
i=n0+1

Yi

∣∣∣∣∣ ≤ 1

}
≤ (4 + 4A)2

∑n
i=n0

σ2(Yi)
,

using that |Yi − E(Yi)| < 2A, by hypothesis and σ2 (∑n
i=n0

Yi
)
= ∑n

i=n0
σ2(Yi), by

independence of Yn. Suppose ∑n
i=n0

σ2(Yi) does not converge, then the previous
probability tends to 0, as n → ∞, for all n0. Then the series ∑∞

n=1 Yn is not a Cauchy
series, which is a contradiction with the convergence of ∑n

i=n0
σ2(Yi). Finally,

∑∞
n=1 σ2(Yn) converges and (c) is proved. Now we prove (b). By E(Yi − E(Yi)) = 0,

then ∑∞
n=1 σ2(Yi − E(Yi)) = ∑∞

n=1 σ2(Yi) which is convergent as proved. By defini-
tion of variance and convergence, ∑∞

n=1 Yi − E(Yi) is convergent a.s. Since ∑∞
n=1 Yi

is convergent, then finally ∑∞
n=1 σ2(Yn) converges and (b) is proved. 6

■

Another curious result for almost sure convergence is the following.

Proposition 3.2.4. Let {Xn, n ≥ 1} be a sequence of independent and centered r.v, with
finite second-order moment. If ∑∞

n=1 σ2(Xn) < ∞, then ∑∞
n=1 Xn is a.s. convergent.

Proof. Applying the First Kolmogorov’s Inequality to Xm+1, ..., Xm+k, then

P{sup
j≥1

|Sm+j − Sm| > ϵ} = lim
k→∞

P{ sup
1≤j≤k

|Sm+j − Sm| > ϵ}

≤ lim
k→∞

1
ϵ2

k

∑
j=1

σ2(Xm+j) =
1
ϵ2

∞

∑
j=1

σ2(Xm+j),

where ∑∞
j=1 σ2(Xm+j) −→

m→∞
0. Finally, using basic properties of convergence in

probability and almost sure convergence, Sn is almost sure convergent. ■

3.3 Kronecker’s Lemma

Kronecker’s Lemma is a result of the relationship between the convergence of
infinite sums and the convergence of sequences.

Lemma 3.3.1. (Kronecker’s Lemma). Consider {xn, n ≥ 1}, {an, n ≥ 1} two se-
quences of real numbers such that 0 < an ↗ ∞. If ∑∞

n=1
xn
an

converges, then

lim
n→∞

1
an

n

∑
j=1

xj = 0.

6Notice that the independence of {Xn, n ≥ 1}, {Yn, n ≥ 1} is used throughout the proof.
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Proof. Define the sequence a0 = b0 = 0, bn = ∑n
j=1

xj
aj

, for all n ≥ 1. Therefore,
xn = an (bn − bn−1) , for all n ≥ 1. Then,

1
an

n

∑
j=1

xj =
1
an

n

∑
j=1

aj(bj − bj−1) = bn −
1
an

n−1

∑
j=0

bj(aj+1 − aj).

Define b∞ = limn bn. We want to prove that

lim
n→∞

1
an

n−1

∑
j=0

bj(aj+1 − aj) = b∞.

Observe that 1
an

∑n−1
j=0 (aj+1 − aj) = 1. Therefore, for all n > m,∣∣∣∣∣ 1

an

n−1

∑
j=0

bj(aj+1 − aj)− b∞

∣∣∣∣∣ =
∣∣∣∣∣ 1
an

n−1

∑
j=0

(bj − b∞)(aj+1 − aj)

∣∣∣∣∣
≤ 1

an

∣∣∣∣∣m−1

∑
j=0

(bj − b∞)(aj+1 − aj)

∣∣∣∣∣+ 1
an

∣∣∣∣∣n−1

∑
j=m

(bj − b∞)(aj+1 − aj)

∣∣∣∣∣ .

Fix ϵ > 0, consider m such that
∣∣bj − b∞

∣∣ < ϵ, for all j ≥ m. Since aj+1 − aj ≥ 0,
then the second part of the previous sum is bounded by ϵ for this m. If ϵ, m, then

lim sup
n→∞

∣∣∣∣∣ 1
an

n−1

∑
j=0

bj(aj+1 − aj)− b∞

∣∣∣∣∣ ≤ ϵ,

using that 1
an

∣∣∣∑m−1
j=0 (bj − b∞)(aj+1 − aj)

∣∣∣ −→
n→∞

0. Taking ϵ = 0, we are finally done.
■

3.4 Strong Law of Large Numbers

To close this chapter, we will see three versions of the Strong Law of Large
Numbers, using Kronecker’s Lemma and other previous results.

Theorem 3.4.1. Let {Xn, n ≥ 1} be a sequence of independent random variables, centered
and with finite second-order moment. Let {an, n ≥ 1} be a sequence of real numbers, such
that 0 < an ↗ ∞. If ∑∞

n=1
σ2(Xn)

a2
n

< ∞, then

Sn

an

a.s.−→
n→∞

0. (3.4.1)

Proof. Observe that ∑∞
n=1 σ2

(
Xn
an

)
= ∑∞

n=1
σ2(Xn)

a2
n

< ∞, therefore ∑∞
n=1

Xn
an

is a.s.

convergent, using Proposition 3.2.4 applied to Xn
an

. By Kronecker’s Lemma (Lemma
3.3.1), then limn→∞

1
an

∑n
j=1 Xj = 0, a.s. ■
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Theorem 3.4.2. Let {Xn, n ≥ 1} be a sequence of uncorrelated random variables with
second-order moment bounded by a constant C, independent of n. Then,

Sn − E(Sn)

n
a.s.−→

n→∞
0.

Proof. Suppose that {Xn, n ≥ 1} is centered, then {Sn, n ≥ 1} is too. First, we want
to prove that Sn2

n2
a.s.−→ 0, as n → ∞. Fix ϵ > 0, by the Chebyshev’s Inequality, then

P
{∣∣∣∣Sn2

n2

∣∣∣∣ > ϵ

}
≤ 1

n4ϵ2 E[S2
n2 ] =

1
n4ϵ2 Var(Sn2) =

1
n4ϵ2

n2

∑
i=1

Var(Xi) ≤
1

n4ϵ
n2C =

C
n2ϵ

,

where Var(Sn2) = E(S2
n2), since Sn2 are centered and Var(Sn2) = ∑n2

i=1 Var(Xi), as
{Xn, n ≥ 1} are uncorrelated and centered. Taking series, then

∞

∑
n=1

P
{∣∣∣∣Sn2

n2

∣∣∣∣ > ϵ

}
≤

∞

∑
n=1

C
n2ϵ

< ∞.

By the First Borel-Cantelli’s Lemma, P
{

lim supn

{∣∣∣ Sn2

n2

∣∣∣ > ϵ
}}

= 0, ∀ϵ > 0, i.e.∣∣∣ Sn2

n2

∣∣∣ a.s.−→ 0 and then Sn2

n2
a.s.−→ 0. Define Dn := maxn2≤k<(n+1)2 |Sk − Sn2 |, we want

to prove that Dn
n2

a.s.−→ 0, as n → ∞. By the Chebyshev’s Inequality, we have

P
{

Dn

n2 > ϵ

}
≤ 1

n4ϵ2 E
[
|Dn|2

]
≤ 1

n4ϵ2 (2n)2C =
4C

n2ϵ2 ,

where the next result has been used in the last inequality

E
(
|Dn|2

)
≤ E

(n+1)2−1

∑
k=n2

|Sk − Sn2 |

 =
n2+2n

∑
k=n2

E

( k

∑
l=n2+1

Xl

)2


=
n2+2n

∑
k=n2

k

∑
l=n2+1

E
(
X2

l
)
≤

n2+2n

∑
k=n2

n2+2n

∑
l=n2+1

C < (2n)2C < ∞.

Then by the First Borel-Cantelli’s Lemma, P
{

lim supn

{
Dn
n2 > ϵ

}}
= 0, ∀ϵ > 0,

i.e. Dn
n2

a.s.−→ 0. Since |Sk| = |Sk − Sn2 + Sn2 | ≤ |Sk − Sn2 |+ |Sn2 | ≤ Dn + |Sn2 |, notice
there exists n, such that for k ∈

[
n2, (n + 1)2),∣∣∣∣Sk

k

∣∣∣∣ ≤ |Sn2 |+ Dn

n2 .

Finally, taking limits,

lim
n→∞

|Sk|
k

≤ lim
n→∞

|Sn2 |+ Dn

n2 = 0,

almost surely. Equivalently, Sn−E(Sn)
n

a.s.−→
n→∞

0, as we wanted. ■
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We need one last previous result. The interpretation is that Y has finite first-
order moment if and only if the series ∑∞

n=1 P{|Y| ≥ n} is convergent.

Lemma 3.4.3. Let Y be a random variable, then it satisfies
∞

∑
n=1

P{|Y| ≥ n} ≤ E(|Y|) ≤ 1 +
∞

∑
n=1

P{|Y| ≥ n}. (3.4.2)

Proof. We will prove both inequalities. Firstly, observe that
∞

∑
n=1

P{|Y| ≥ n} =
∞

∑
n=1

∞

∑
k=n

P{k ≤ |Y| < k + 1} =
∞

∑
k=1

kP{k ≤ Y < k + 1}

=
∞

∑
k=0

kP{k ≤ |Y| < k + 1} ≤
∞

∑
k=0

∫
{k≤|Y|<k+1}

|Y| dP = E(|Y|),

as we wanted. On the other hand, the second inequality is a consequence of

E(|Y|) =
∞

∑
k=0

∫
{k≤|Y|<k+1}

|Y| dP ≤
∞

∑
n=1

P{|Y| ≥ n}+ 1.

■

Finally, we can prove Kolmogorov’s Strong Law of Large Numbers, where the
only hypothesis is that {Xn, n ≥ 1} have finite first-order moment.7

Theorem 3.4.4. (Kolmogorov’s Strong Law of Large Numbers). Let {Xn, n ≥ 1} be
a sequence of i.i.d. random variables. Then

1) If E(|X1|) < ∞, then limn→∞
Sn
n = E(X1), a.s.

2) If E(|X1|) = ∞, then lim supn
|Sn|

n = +∞, a.s.

Proof. The idea of this proof is to truncate the Xn with zero values that are not
in the interval (−n, n) and then apply the Theorem 3.4.1. We will first prove 1).
Define the sequence Yn = Xn1{|Xn|<n}. By the previous Lemma 3.4.3., since the Xn

are i.i.d.,
∞

∑
n=1

P {Xn ̸= Yn} ≤
∞

∑
n=1

P {|Xn| ≥ n} =
∞

∑
n=1

P {|X1| ≥ n} ≤ E(|X1|) < ∞,

By the First Borel-Cantelli’s Lemma, P {lim supn {Xn ̸= Yn}} = 0. Define the pre-
vious set as A := lim infn {Xn = Yn}. By definition, if ω ∈ A, there exists a n0(ω)

s.t. for all n ≥ n0, ω ∈ {Xn = Yn}, i.e. Xn(ω) = Yn(ω). Then, on the set,

1
n

n

∑
i=1

Xi(ω) =
1
n

n

∑
i=1

Yi(ω) +
1
n

n0(ω)

∑
i=1

(Xi − Yi)(ω).

7Since the hypothesis is weaker, this is a stronger result than the previous ones.
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Therefore, it is enough to prove that

1
n

n

∑
i=1

Yi
a.s.−→

n→∞
E(X1). (3.4.3)

Equivalently, to prove (3.4.3) it is enough to show that

1
n

n

∑
i=1

(Yi − E(Yi))
a.s.−→

n→∞
0, (3.4.4)

since
E(Yn) = E[Xn1{|Xn|<n}] = E[X11{|X1|<n}] −→n→∞

E(X1),

implies that
1
n

n

∑
i=1

E(Yi) −→n→∞
E(X1).

By Theorem 3.4.1 applied to the sequence {Yn − E(Yn), n ≥ 1},8 (3.4.4) is true if the
r.v. satisfy that ∑∞

n=1
σ2(Yn)

n < ∞. Using the hypothesis on Xn and Yn, notice that
∞

∑
n=1

σ2(Yn)

n2 ≤
∞

∑
n=1

E(Y2
n)

n2 =
∞

∑
n=1

1
n2 E

[
X2

n1{|Xn|<n}
]
=

∞

∑
n=1

1
n2 E

[
X2

11{|X1|<n}
]

=
∞

∑
n=1

1
n2

n

∑
k=1

E
[
X2

11{k−1≤|X1|<k}
]
=

∞

∑
k=1

E
[
X2

11{k−1≤|X1|<k}
] ∞

∑
n=k

1
n2

≤
∞

∑
k=1

kE
[
|X1|1{k−1≤|X1|<k}

] 2
k
≤ 2E (|X1|) < ∞,

where in the second-to-last inequality it has been used the next bound
∞

∑
n=k

1
n2 ≤ 1

k2 +
∫ ∞

k

1
x2 dx =

1
k2 +

1
k
≤ 2

k
.

Now (3.4.4) is proved and therefore the result 1). Finally, we prove 2). For any
constant K > 0,

∞

∑
n=1

P{|Xn| ≥ Kn} =
∞

∑
n=1

P
{
|X1|

K
≥ n

}
≥ E(|X1|)

K
− 1 = ∞.

Define the previous set BK := lim supn{|Xn| ≥ Kn}, for any K, then by the Second
Borel-Cantelli’s Lemma, P(BK) = 1. Consider the set B :=

⋂∞
K=1 BK, then P(B) = 1.

By definition of B, observe that

|Sn|
n

+
|Sn−1|
n − 1

>
|Sn|+ |Sn−1|

n
≥ |Sn − Sn−1|

n
=

|Xn|
n

≥ K,

for infinite n and for all K ≥ 1, i.e. it is satisfied that |Sn|
n ≥ K

2 for infinite n. Finally,
lim supn

|Sn|
n = ∞ in B, as we wanted to see. ■

8{Yn − E(Yn), n ≥ 1} are independent, centered and have finite second-order moment.



Chapter 4

Weak convergence of probability measures

Let {µn, n ≥ 1} be a sequence of probability measures in R. The next question
may arise: when is it possible to say that µn converges to a probability µ? The
quick definition is limn→∞ µn(B) = µ(B), for all B ⊂ B(R), but this is not sufficient
in our studies. Consider a sequence {µn, n ≥ 1} of discrete probabilities that
converges to a continuous probability µ. This is not possible with the previous
definition, for instance, if A is a countable set equal to the support of all µn, then
µn(A) = 1, for every n, but µ(A) = 0, which is a contradiction with the statement.

The next mode of convergence differs conceptually from the previously stud-
ied ones since it is defined on a sequence of probability measures. It is the weakest
type however, it is frequently used since it is used in the CLT. In this chapter, we
will begin studying the Weak convergence of probabilities and some criteria for it,
such as Paul-Lévy’s Continuity Theorem. Finally, we will focus on convolutions
of probability measures, which will be crucial for the next chapter. For further in-
formation regarding Weak convergence, we recommend ([4], Chapter 6). To review
the concept of probability measures and measures check ([4], Sections 1.2 and 2.1).

4.1 Weak convergence of finite measures

The terms weak convergence, convergence in law and convergence in distribu-
tion are often used interchangeably. We will define these concepts and study their
relation, as well as some similar results.

Definition 4.1.1. Let {µn, n ≥ 1}, µ be probability measures in R. This sequence
converges weakly to µ if

lim
n→∞

∫
R

f (x) µn(dx) =
∫
R

f (x) µ(dx), (4.1.1)

21
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for all f ∈ Cb(R).1 This is denoted ω − limn→∞µn = µ.

The limit of µn is unique, if exists. Note that if f ≡ 1, then µn(R)
n−→ µ(R).

We will begin to study different criterion of weak convergence. The first one
is known as convergence in distribution and is in terms of distribution functions.

Theorem 4.1.2. A sequence of probability measures {µn, n ≥ 1} converges weakly to a
probability µ if and only if limn→∞ Fn(x) = F(x), for every continuity point x ∈ R of F,
where Fn and F are the distribution functions of µn and µ, respectively.

Proof. Assume that ω − limn→∞ µn = µ. Fix a continuity point x in F. Fix a real
number ϵ > 0, then consider the bounded and continuous functions

f+ϵ (y) = 1(−∞,x](y) +
(

1 − y − x
ϵ

)
1(x,x+y)(y)

and

f−ϵ (y) = 1(−∞,x−ϵ](y) +
x − y

ϵ
1(x−ϵ,x)(y).

Define l := lim infn→∞ Fn(x) and L := lim supn→∞ Fn(x). Hence, note that

F(x − ϵ) = µ((−∞, x − ϵ]) ≤
∫
R

f−ϵ dµ = lim
n→∞

∫
R

f−ϵ dµn

≤ lim inf
n

µn((−∞, x]) = l ≤ L = lim sup
n

µn((−∞, x]) ≤ lim
n

∫
R

f+ϵ dµn

=
∫
R

f+ϵ dµ ≤ µ((−∞, x + ϵ]) = F(x + ϵ),

i.e. F(x − ϵ) ≤ l ≤ L ≤ F(x + ϵ), then taking ϵ ↘ 0, l = L = F(x). Equivalently,
limn→∞ Fn(x) = F(x), for every continuity point x of F, as we wanted.

Assume that limn→∞ Fn(x) = F(x), for every continuity point x of F. Con-
sider f ∈ Cb(R). Fix ϵ > 0, there is a natural k such that µ ((−k, k]c) < ϵ, since⋂∞

k=1 ((−k, k]c) = ∅. Let a, b be continuity points of F with a ≤ −k, b ≥ k, i.e.
[−k.k] ⊆ [a, b]. Then µ ((a, b]c) < ϵ. Since f is uniformly continuous in [a, b], there
exists δ > 0 such that: if x, y ∈ [a, b] and |x − y| ≤ δ, then | f (x) − f (y)| < ϵ.
Decompose the interval (a, b] in a finite number of Ii = (ai, bi], 1 ≤ i ≤ r, each
with length lower or equal to δ and their endpoints are continuity points of F.
Therefore, we will first decompose (a, b] in intervals with lengths lower than δ

2 .

1Throughout this chapter, denote Cb(R) the set of bounded and continuous functions f : R→ R.



4.2 Weak convergence of probabilities 23

Then in each one, we will take a continuity point of F. Observe that∣∣∣∣∫
R

f dµn −
∫
R

f dµ

∣∣∣∣ = ∣∣∣∣∫
(a,b]c

f dµn +
∫
(a,b]

f dµn −
∫
(a,b]c

f dµ −
∫
(a,b]

f dµ

∣∣∣∣
=

∣∣∣∣∣
∫
(a,b]c

f dµn +
r

∑
i=1

∫
Ii

f dµn −
∫
(a,b]c

f dµ −
r

∑
i=1

∫
Ii

f dµ

∣∣∣∣∣
≤
∣∣∣∣∫

(a,b]c
f dµn −

∫
(a,b]c

f dµ

∣∣∣∣+
∣∣∣∣∣ r

∑
i=1

∫
Ii

f dµn −
r

∑
i=1

∫
Ii

f dµ

∣∣∣∣∣
≤ ∥ f ∥∞ (µn((a, b]c) + µ(a, b]c)) +

r

∑
i=1

∣∣∣∣∫Ii

f dµn −
∫

Ii

f dµ

∣∣∣∣ .

(4.1.2)

By hypothesis,

µn((a, b]c) = Fn(a) + 1 − Fn(b) −→n→∞
F(a) + 1 − F(b) = µ((a, b]c).

We want to bound the last term of (4.1.2). Since f is uniformly continuous, then∣∣∣∣∫Ii

f dµn −
∫

Ii

f dµ

∣∣∣∣ ≤ ∣∣∣∣∫Ii

( f − f (ai)) dµn

∣∣∣∣+ | f (ai)[µn(Ii)− µ(Ii)]|

+

∣∣∣∣∫Ii

( f − f (ai)) dµ

∣∣∣∣
≤ ϵ(µn(Ii) + µ(Ii)) + | f (ai)[µn(Ii)− µ(Ii)].

(4.1.3)

Remember that limn→∞ µn(Ii) = µ(I), for any i ∈ {1 ≤ i ≤ r}. Taking limits on
(4.1.2) and (4.1.3) as n → ∞ and using the previous results, then

lim sup
n

∣∣∣∣∫
R

f dµn −
∫
R

f dµ

∣∣∣∣ ≤ 2∥ f ∥∞µ((a, b]c)) +
r

∑
i=1

(2ϵµ(Ii) + 0)

≤ ϵ(2∥ f ∥∞ + 1).

Since ϵ > 0 is arbitrary, take ϵ close to 0 and finally, limn
∫
R

f dµn =
∫
R

f dµ. ■

4.2 Weak convergence of probabilities

In this section, we aim to prove two more criteria for weak convergence of
probabilities. First, we will need to define the weak compactness and tightness of
a family of probabilities and study some related results.

Definition 4.2.1. Let P be a family of probability measures in R. Then
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(a) P is relatively compact if every sequence with elements in P , has a subsequence
that converges weakly.

(b) P is tight if for all ϵ > 0, there exists a > 0 such that µ([−a, a]c) < ϵ, for every
µ ∈ P .

Notice that if P := {µ1, ..., µr} is finite, then P is tight, since

sup
µ∈P

µ([−n, n]c) ≤
r

∑
i=1

µi([−n, n]c) −→ 0,

as n → ∞.

We aim now to prove the equivalence of the two previous concepts. We will
prove a more general case and consider functions with the image in [0, M].

Theorem 4.2.2. (Helly-Bray’s Theorem). Let {Fn, n ≥ 1} be a sequence of functions
Fn : R −→ [0, M], increasing and right-continuous. Then, there exists another function
F : R −→ [0, M], increasing and right-continuous and a subsequence Fnk such that

lim
n

Fnk(x) = F(x), (4.2.1)

for all x ∈ R continuity point of F.

Proof. First of all, we define the sequence Fnk . Fix the set D := {xn, n ≥ 1} in R.
We will use Cantor’s diagonal method to construct a subsequence {Fnk(xj), k ≥ 1}
that converges to a limit yj, for all j ≥ 1. Since 0 ≤ Fn(x1) ≤ M, for all n ≥ 1,
there exists a subsequence {F1,n(x1)} that converges to a limit y1 ∈ [0, M]. Since
0 ≤ F1,n(x2) ≤ M, for all n ≥ 1, there exists a subsequence {F2,n(x2)} that
converges to a limit y2 ∈ [0, M]. In general, since 0 ≤ Fm,n(xm+1) ≤ M, for
all n ≥ 1, there exists a subsequence {Fm+1,n(xm+1)} that converges to a limit
ym+1 ∈ [0, M]. Consider now the diagonal sequence Fnk(x) = Fk,k(x). Then, for
all xj ∈ D, Fnk(xj) = Fk,k(xj) is a partial sequence of {Fj,k(xj), k ≥ 1} for k ≥ j,
satisfying limn→∞ Fnk(xj) = yj.

For better clarity, define the function FD : D −→ [0, M], such that FD(xj) := yj.
FD satisfies that limk→∞ Fnk(x) = FD(x), for all x ∈ D. Notice that it is also
increasing: if x ≤ y, Fnk(x) ≤ Fnk(y), for every k ≥ 1, then FD(x) ≤ FD(y), since F
is increasing.

Secondly, we desire to define an increasing and right-continuous function as
F : R −→ [0, M]. Consider the function F : R −→ [0, M], defined by the infimum
F(x) := inf{FD(y) : y ∈ D, y > x}. We see it satisfies the required properties:

• F is increasing: If x1 ≤ x2, then F(x1) = inf{FD(y) : y ∈ D, y > x1} ≤
inf{FD(y) : y ∈ D, y > x2} = F(x2), by the definition of FD.
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• F is right-continuous: Consider the decreasing sequence {zn, n ≥ 1} to x.
Then F(zn) ↘ b ≥ F(x). Suppose that b > F(x). By the definition of F(x),
there exists a y0 ∈ D, satisfying that y0 > x and FD(y0) > b. Then for n
sufficiently big, x ≤ zn < y0 and consequently, F(zn) ≤ FD(y0) < b, by
the definition of F(zn). Then b = limn→∞ F(zn) ≤ FD(y0) < b, which is a
contradiction. Therefore b = F(x).

Finally, we want to show that limn→∞ Fnk(x) = F(x), for every continuity point x
of F. Consider a y ∈ D such that y > x, where x is a continuity point of F. On one
hand,

FD(x) = lim sup
k

Fnk(x) ≤ lim sup
k

Fnk(y) = FD(y)

and therefore,
lim sup

k
Fnk(x) ≤ F(x). (4.2.2)

On the other hand, if x′ < y < x, y ∈ D, then

lim inf
k

Fnk(x) ≥ lim inf
k

Fnk(y) = FD(y) ≥ F(x′),

by the definition of F(x′). Since this is satisfied for every x′ < x and F is continu-
ous in x, then

lim inf
k

Fnk(x) ≥ F(x′) > F(x). (4.2.3)

By (4.2.2) and (4.2.3), finally, limn Fnk(x) = F(x), as we wanted. ■

Observations 4.2.3. Two consequences are the following:

1) A similar result can be formulated for functions F : Rn −→ [0, M], right-
continuous and with non-negative rectangular increments.

2) In particular, taking M = 1, the Helly-Bray’s Theorem does not guaran-
tee, in general, that F is a distribution function, since it may not satisfy the
required conditions limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

At last, we can prove two criteria for weak convergence. Firstly, we will see
a useful theorem, which guarantees the equivalence between weak compactness
and tightness of probabilities.

Theorem 4.2.4. (Prokhorov’s Theorem). Let P be a family of probabilities in R. Then,
P is tight if and only if it is relatively compacted.

Proof. Assume that P is tight. Consider a sequence {µn, n ≥ 1} ⊆ P . Let Fn be
the distribution function of µn, for every n ≥ 1. By Helly-Bray’s Theorem (Theorem
4.2.2), there exists a subsequence {Fnk , k ≥ 1} such that limk Fnk(x) = F(x), for
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every continuity point x of F, where the function F : R −→ [0, 1] is increasing and
right-continuous. Now we only need to show that

lim
x→−∞

F(x) = 0 ; lim
x→∞

F(x) = 1. (4.2.4)

Fix ϵ > 0 and a > 0 such that µ([−a, a]c) < ϵ, for all n ≥ 1. Let b ≥ a and c < −a
be continuity points of F. Then

Fn(b) ≥ µn([−a, a]) > 1 − ϵ

and
Fn(c) ≤ µn([−a, a]c) < ϵ.

Taking n → ∞, F(b) > 1 − ϵ and F(c) < ϵ and taking ϵ close to 0, (4.2.4) is
satisfied. Finally, P is relatively compact, as we wanted.

Assume that P is relatively compact. We will prove P is tight by contradiction.
Suppose P is not tight. Then, there exists ϵ > 0 such that for all n ≥ 1, there
exists µn ∈ P satisfying that µn([−n, n]c) ≥ ϵ. By hypothesis, there exists a
subsequence {µnk , k ≥ 1} such that ω − limk→∞ µnk = µ. Consider the function
f m(x) := [|x| − (m − 1)]+ ∧ 1. For every nk ≥ m,

0 < ϵ ≤ lim sup
k

µnk([−nk, nk]
c) ≤ lim sup

k

∫
R

f m dµnk =
∫
R

f m dµ

≤ µ([−m + 1, m − 1]c),

and taking m → ∞, we get a contradiction. Therefore, P is tight, as we desired. ■

Finally, we can study another criterion for weak convergence.

Theorem 4.2.5. Let {pn, n ≥ 1} be a tight sequence of probabilities in R, such that all
convergent subsequences have the same limit p. Then, ω − limn→∞ pn = p.

Proof. We will prove it by contradiction. Suppose that {pn, n ≥ 1} does not
weakly converge to p. Then, there exists a function f ∈ Cb(R) such that the
set {

∫
R

f dpn, n ≥ 1} does not converge to
∫
R

f (x) dp(x), i.e. there exists ϵ > 0
and a subsequence {pnk , k ≥ 1} such that∣∣∣∣∫

R

f dpn −
∫
R

f dp
∣∣∣∣ ≥ ϵ, (4.2.5)

for all k ≥ 1. By Prokhorov’s Theorem (Theorem 4.2.4), there exists a subsequence
{pnki

, i ≥ 1} of the weakly convergent sequence {pnk , k ≥ 1} and with limit p,
which is a contradiction with (4.2.5). Finally, ω − limn→∞ pn = p, as we wanted. ■
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At last, we can study the final criterion for weak convergence, which guaran-
tees the weak convergence in terms of the characteristic function. This is exactly
Paul-Lévy’s Continuity Theorem and it will be crucial for the next chapter. We
need a prior truncation inequality.

Proposition 4.2.6. (Truncation inequality). Let p be a probability in R and φ be its
respective characteristic function. Then, for every a > 0,

1
a

∫ a

−a
(1 − φ(t)) dt ≥ p

{
x : |x| ≥ 2

a

}
. (4.2.6)

Proof. By Fubini’s Theorem and using that sinus is an odd function,

1
a

∫ a

−a
(1 − φ(t)) dt =

1
a

∫ a

−a

(∫
R

(1 − eitx) p(dx)
)

dt

=
1
a

∫
R

(∫ a

−a
(1 − cos(tx)) dt

)
p(dx)

=
∫
R

2
(

1 − sin(ax)
ax

)
p(dx)

≥ 2 inf
{|y|≥2}

(
1 − sin(y)

y

) ∫
{x: |ax|≥2}

p(dx)

≥ p{x : |x| ≥ 2
a
},

using in the last step that
∣∣∣ sin(y)

y

∣∣∣ ≤ 1 and particularly
∣∣∣ sin(y)

y

∣∣∣ ≤ 1
2 , if |y| ≥ 2. ■

Theorem 4.2.7. (Paul-Lévy’s Continuity Theorem). Let {pn, n ≥ 1} be a sequence of
probabilities in R and {φn, n ≥ 1} the sequence of its respective characteristic functions.
Therefore,

1) If pn converges weakly to a probability p as n → ∞, then limn→∞ φn(t) = φ(t),
for every t ∈ R, where φ is the characteristic function of p.

2) If limn→∞ φn(t) = φ(t), where φ is the continuous function in t = 0, then φ is
the characteristic function of p and it is satisfied that ω − limn→∞ pn = p.

Proof. We will prove both statements. The first one 1) is trivial by the definition
of weak convergence and characteristic functions, since cos(tx) and sin(tx) are
bounded and continuous functions.

To prove the statement 2) we will need Proposition 4.2.6 and the Dominated
Convergence Theorem (which can be used since |φn(t)| ≤ 1). Therefore,

pn

{
x : |x| ≥ 2

a

}
≤ 1

a

∫ a

−a
(1 − φn(t)) dt
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and by hypothesis,

1
a

∫ a

−a
(1 − φn(t)) dt −→

n→∞

1
a

∫ a

−a
(1 − φ(t)) dt.

On the other hand, φ is continuous in t = 0 by hypothesis,

lim
a→0

1
a

∫ a

−a
(1 − φ(t)) dt = 2(1 − φ(0)) = 0.

Fix ϵ > 0 and let a > 0 be such that 0 ≤ 1
a

∫ a
−a(1 − φ(t)) dt ≤ ϵ

2 . Taking n0 ≥ n,
then

pn

([
−2

a
,

2
a

]c)
≤ pn

{
x : |x| ≥ 2

a

}
≤ 1

a

∫ a

−a
(1 − φn(t)) dt

≤ 1
a

∫ a

−a
(1 − φ(t)) dt +

ϵ

2
≤ ϵ.

For 1 ≤ n ≤ n0, there is an > 0 such that pn([−an, an]c) ≤ ϵ. Therefore, con-
sidering b = max{a1, ..., an0 , 2

a}, it is satisfied that supn µn([−b, b]c] ≤ ϵ. We have
proved that {µn, n ≥ 1} is a tight sequence of probabilities in R. By the criterion
Theorem 4.2.5, to prove that ω − limn→∞ pn = p, it is sufficient to show that all con-
vergent subsequences have the same limit p. Consider a subsequence {pni , i ≥ 1}
convergent to a probability named υ. Using the first statement 1),

φυ(t) = lim
i

φni(t) = φ(t),

implying that φ is the characteristic function of a probability denoted p := υ and
also ω − limn→∞ pn = p, since all the convergent subsequences have a limit p. ■

4.3 Convolutions of probability measures

This section aims to introduce a new concept: convolutions of probability mea-
sures. We will begin with convolutions of measures, followed by convolutions of
probability measures and conclude with the distance between them. This will be
important to prove different versions of the Central Limit Theorem (Chapter 5).

4.3.1 Convolutions of measures

Throughout this section we will define M := {set of finite measures in R}. Con-
sider µ1, µ2 ∈ M and B ⊂ B(R).

Definition 4.3.1. Let µ1, µ2 be finite measures in R. The convolution of the measures
µ1 and µ2 is defined by

(µ1 ∗ µ2)(B) :=
∫
R

µ2(B − x)µ1(dx), (4.3.1)

where B − x := {y : y + x ∈ B} and µ1(dx) = dµ1(x). This is denoted µ1 ∗ µ2.
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We will study some properties of a convolution of two measures.

Proposition 4.3.2. The convolution µ1 ∗ µ2 is a measure. Furthermore, the operation is
commutative, associative and has a neutral element.

Proof. First of all, we want to prove that the operation µ1 ∗ µ2 is a measure. Define
the map T : R×R −→ R, T(x, y) := x + y. Then the preimage of T is given by
T−1(B) := {(x, y) : x + y ∈ B}. The measure of the image is

υ(B) :=(µ1 ∗ µ2)(T−1(B)) =
∫
R

1{T−1(B)} d(µ1 ∗ µ2)(x)

=
∫
R×R

1{T−1(B)} dµ2(x)dµ1(y) =
∫
R

[∫
{x: x∈B−y}

dµ2(x)
]

dµ1(y)

=
∫
R

µ2(B − y) dµ1(y) = (µ1 ∗ µ2)(B)

(4.3.2)

Therefore, µ1 ∗ µ2 is indeed a measure. We will check now the desired properties.
First, notice that µ1 ∗ µ2 is commutative, i.e. µ1 ∗ µ2 = µ2 ∗ µ1. Note that if we
interchange µ1 and µ2 in (4.3.2), we get υ(B) = (µ2 ∗ µ1)(B) = (µ1 ∗ µ2)(B), there-
fore the desired property is fulfilled. Secondly, we see that µ1 ∗ µ2 is associative,
i.e. (µ1 ∗ µ2) ∗ µ3 = µ ∗ (µ2 ∗ µ3). Consider the measures µ1, µ2, µ3 ∈ M. By the
definition of convolution,

((µ1 ∗ µ2) ∗ µ3)(B) =
∫
R

µ3(B − x) d(µ1 ∗ µ2)(x)

=
∫
R×R

µ3(B − (x + y)) dµ1(x)dµ2(y),

and
(µ1 ∗ (µ2 ∗ µ3))(B) =

∫
R

(µ2 ∗ µ3)(B − x) dµ1(x)

=
∫
R×R

µ3(B − (x + y)) dµ2(y)dµ1(x),

then ((µ1 ∗ µ2) ∗ µ3)(B) = (µ1 ∗ (µ2 ∗ µ3))(B), as we wanted. Thirdly, there exists
a neutral element denoted by µe. Define the measure µe(x) := 1{x=0} ∈ M and
consider µ ∈ M. Observe that µ(B) ∗ µe(x) = µ(B) and also

µe(x) ∗ µ(B) =
∫
R

µ(B − x) dµe(x) =
∫
R

µ(B) = µ(B).

■

4.3.2 Convolutions of probability measures

In this subsection, we want to discover what happens if we consider probability
measures instead of measures. We will define P := {set of probability measures}.
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Consider p1, p2 ∈ P . Applying the definition of convolution of measures to the
probabilities p1 and p2, the convolution p1 ∗ p2 is indeed a probability:

(p1 ∗ p2)(R) =
∫
R

p2(R− x) dp1(x) =
∫
R

dp1(x) = p1(R) = 1, (4.3.3)

since pi(R) = 1, i = 1, 2, by definition of probability. This is denoted p1 ∗ p2.

Now we wonder how to describe the distribution function, density and char-
acteristic function of p1 ∗ p2, knowing the respective functions of p1 and p2.

Definition 4.3.3. Let F1, F2 be the distribution functions of p1, p2, respectively. Let F be
the distribution function of the convolution p1 ∗ p2. F is defined by

F(x) :=
∫
R

F2(x − y) dF1(y). (4.3.4)

F is the convolution of F1 and F2, i.e. F = F1 ∗ F2.

The equation (4.3.4) is the result of

F(x) = (p1 ∗ p2)((−∞, x]) =
∫
R

p2((−∞, x − y]) dp1(y) =
∫
R

F2(x − y) dF1(y),

where by definition F2(x − y) = p2((−∞, x − y]) and by notation dF1(y) = dp1(y).

Definition 4.3.4. Let p1, p2 be continuous probabilities and f1, f2 their density functions,
respectively. Let f be the density function of the convolution p1 ∗ p2. f is

f (t) :=
∫
R

f2(t − y) f1(y) dy. (4.3.5)

f is the convolution of f1 and f2, i.e. f = f1 ∗ f2.

The equation (4.3.5) is a consequence of

F(x) =
∫
R

F2(x − y) dF1(y) =
∫
R

[∫ x−y

−∞
f2(z) dz

]
f1(y) dy

=
∫
R

[∫ x

−∞
f2(t − y) dt

]
f1(y) dy =

∫ x

−∞

[∫
R

f2(t − y) f1(y) dy
]

dt,

taking t = z + y.

Definition 4.3.5. Let φ1, φ2 be the characteristic functions of p1, p2, respectively. The
characteristic function φp1∗p2 of the convolution p1 ∗ p2 is φp1∗p2 = φp1 φp2 .

The definition is due to

φp1∗p2(t) =
∫
R

eitx d(p1 ∗ p2)(x) =
∫
R

eit(x+y) dp1(x)dp2(y)

=
∫
R

eitx dp1(x)
∫
R

eity dp2(y) = φp1(t)φp2(t),

using that eit(x+y) = eitxeity.
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4.3.3 Distance of convolutions

We aim to define a distance and study its relation with weak convergence
and convolutions of probabilities. For any k ≥ 1, define Ck

b := { f : R −→ R :
bounded, k-times differentiable and with continuous and bounded derivatives}.

Definition 4.3.6. The distance between two measures µ, υ ∈ M is defined by

dk(µ, υ) := sup

{∣∣∣∣∫
R

f (x) µ(dx)−
∫
R

f (x) υ(dx)
∣∣∣∣ , f ∈ Ck

b ,
k

∑
i=0

∥ f (i)∥∞ ≤ 1

}
.

(4.3.6)
Observe the distance decreases as k increases, i.e. d1 ≥ d2 ≥ d3 ≥ ....

First, we state weak convergence in terms of the previous distance dk.

Proposition 4.3.7. Let {µn, n ≥ 1}, µ be probability measures. Then, it is satisfied that

µn
ω−→ µ

1)⇐⇒ ∃k ≥ 1, dk(µn, µ) −→
n→∞

0
2)⇐⇒ ∀k ≥ 1, dk(µn, µ) −→

n→∞
0. (4.3.7)

Proof. We aim to prove both equivalences. We will start with 1). Suppose there is
k ≥ 1, dk(µn, µ) −→

n→∞
0. If F is the distribution function of µ, let x be a continuity

point of F. Let fn(x), gn(x) ∈ Ck
b be two sequences of functions such that

1(−∞,x] ≤ fn(x) ≤ 1(−∞,x+ 1
n ]

and
1(−∞,x− 1

n ]
≤ gn(x) ≤ 1(−∞,x].

Notice that dk(µn, µ) −→
n→∞

0 implies that
∫
R

f (x) dµn(x) −→
n→∞

∫
R

f (x) dµ(x) and

f ∈ Ck
b satisfies that ∑k

i=0∥ f (i)∥∞ ≤ 1, by definition. Observe that for all n ≥ 1,

F
(

x − 1
n

)
= µ

((
−∞, x − 1

n

])
=
∫
R

1(−∞,x− 1
n ]

dµ ≤
∫
R

gn dµ

= lim
m→∞

∫
R

gn dµm = lim inf
m→∞

∫
R

gn dµm

≤ lim inf
m→∞

∫
R

1(−∞,x] dµm ≤ lim sup
m→∞

∫
R

1(−∞,x] dµm

≤ lim sup
m→∞

∫
R

fn(x) dµm = lim
m→∞

∫
R

fn dµm

=
∫
R

fn dµ ≤
∫
R

1(−∞,x+ 1
n ]

dµ = F
(

x +
1
n

)
.

Therefore, for every n ≥ 1,

F
(

x − 1
n

)
≤ lim inf

m→∞
Fm(x) ≤ lim sup

m→∞
Fm(x) ≤ F

(
x +

1
n

)
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and taking limits as n → ∞,

lim inf
m→∞

Fm(x) = lim sup
m→∞

Fm(x),

i.e. limm→∞ Fm(x) = F(x), for every x continuity point of F and by Theorem 4.1.2,
finally µn

ω−→ µ.
Suppose µn

ω−→ µ. We want to see that there exists a k ≥ 1 satisfying
dk(µn, µ) −→

n→∞
0. Since d1 ≥ d2 ≥ ..., it is enough to prove d1(µn, µ) −→

n→∞
0, i.e.

take k = 1. Fix ϵ > 0, then observe the disjoint union R =
⋃∞

n=1(an, bn], where
an, bn are the continuity points of F with bn − an < ϵ, for every n ≥ 1.2 Define
In := (an, bn]. Consider f ∈ C ′

b such that ∥ f ∥∞ + ∥ f ′∥∞ ≤ 1. Then∣∣∣∣∫
R

f (x) dµn(x)−
∫
R

f (x) dµ(x)
∣∣∣∣

=

∣∣∣∣∣
∫
R

f (x) dµn(x) +
∞

∑
k=1

f (ak)µn(Ik)−
∞

∑
k=1

f (ak)µn(Ik)−
∫
R

f (x) dµ(x)

∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
k=1

∫
Ik

( f (x)− f (ak)) dµn(x) +
∞

∑
k=1

∫
Ik

( f (ak)− f (x)) dµ(x)

+
∞

∑
k=1

f (ak) [µn(Ik)− µ(Ik)]

∣∣∣∣∣
≤

∞

∑
k=1

∫
Ik

| f (x)− f (ak)| dµn(x) +
∞

∑
k=1

∫
Ik

| f (ak)− f (x)| dµ(x)

+
∞

∑
k=1

| f (ak)| |µn(Ik)− µ(Ik)|

≤
∞

∑
k=1

∫
Ik

ϵ dµn(x) +
∞

∑
k=1

∫
Ik

ϵ dµ(x) +
∞

∑
k=1

|µn(Ik)− µ(Ik)|

≤ 2ϵ +
∞

∑
k=1

|µn(Ik)− µ(Ik)|

(4.3.8)

The second-to-last inequality is a consequence of the following. Taylor’s expansion
is f (x) = f (ak) +R(α), where R(α) = f ′(α)(x − ak) and α ∈ (ak, x). Recall that
∥ f ′(α)∥∞ ≤ 1 and |x − ak| < ϵ, therefore

| f (x)− f (ak)| = |R(α)| ≤ ∥ f ′(α)∥∞|x − ak| < ϵ.

Also ∥ f ∥∞, ∥ f ′∥∞ < 1, due to ∥ f ∥∞ + ∥ f ′∥∞ ≤ 1. Taking the supremum on f in
(4.3.8),

sup
f∈C ′

b

{∣∣∣∣∫
R

f (x) dµn(x)−
∫
R

f (x) dµ(x)
∣∣∣∣} ≤ 2ϵ +

∞

∑
k=1

|µn(Ik)− µ(Ik)| .

2Note that the discontinuity points of Fµ might be countable, finite or non-existent.
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Since f satisfies ∥ f ∥∞ + ∥ f ′∥∞ ≤ 1, the left-side corresponds to d1(µn, µ). We need
to see that the right side tends to 0. We want to bound ∑∞

k=1 |µn(Ik)− µ(Ik)|,3

∞

∑
k=1

|µn(Ik)− µ(Ik)| = 2
∞

∑
k=1

[µn(Ik)− µ(Ik)]
+ −

∞

∑
k=1

[µn(Ik)− µ(Ik)]

= 2
∞

∑
k=1

[µn(Ik)− µ(Ik)]
+ ,

(4.3.9)

since
∞

∑
k=1

[µn(Ik)− µ(Ik)] =
∞

∑
k=1

µn(Ik)−
∞

∑
k=1

µ(Ik) = 1 − 1 = 0.

Define gn(x) := 2 ∑∞
k=1 [µn(Ik)− µ(Ik)]

+
1(k,k+1](x), then it is fulfilled the equality

∑∞
k=1 |µn(Ik)− µ(Ik)| =

∫
R

gn(x) dx, by (4.3.9). Observe that gn(x) −→
n→∞

0, for every

x ∈ R, since µn
ω−→ µ. On the other hand,

|gn(x)| ≤
∣∣∣∣∣ ∞

∑
k=1

2µn(Ik)1(k,k+1](x)

∣∣∣∣∣ =: g(x).

Lebesgue’s Dominated Convergence Theorem can be applied to g since∫
R

g(x) dx =
∞

∑
k=1

2µn(Ik) = 2 < ∞,

therefore
lim
n→∞

∫
R

gn(x) dx =
∫
R

g(x) dx = 0,

which implies that (4.3.9) tends to 0, by definition of g, i.e.

∞

∑
k=1

[µn(Ik)− µ(Ik)] = 2
∞

∑
k=1

[µn(Ik)− µ(Ik)]
+ −→

n→∞
0.

Finally, {∣∣∣∣∫
R

f (x) dµn(x)−
∫
R

f (x) dµ(x)
∣∣∣∣} −→

n→∞
2ϵ

and taking ϵ close to 0, we are done.
Now we want to prove 2). It is a one-line proof since the forward implication

is a consequence of the property d1 ≥ d2 ≥ ... and the reverse implication is trivial.
Finally, we are done. ■

The last result of this chapter gives a bound of the defined distance in terms of
convolutions of probabilities.

3Recall that |A| = 2A+ − A, for every set A.
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Proposition 4.3.8. Let µ1, ..., µn, υ1, ..., υn ∈ P be finite probability measures. Then,

dk(µ, υ) ≤
n

∑
i=1

dk(µi, υi), (4.3.10)

where µ := µ1 ∗ ... ∗ µn, υ := υ1 ∗ ... ∗ υn ∈ P .

Proof. We will do the proof by induction. First, we show that the statement holds
for n = 2. Consider the probability measures µ1, µ2, υ1, υ2 ∈ P . By the triangular
inequality and definition of dk,

dk(µ1 ∗ µ2, υ1 ∗ υ2) = sup
f∈Ck

b

{∣∣∣∣∫
R

f (x) d(µ1 ∗ µ2)(x)−
∫
R

f (x) d(υ1 ∗ υ2)(x)
∣∣∣∣}

= sup
f∈Ck

b

{∣∣∣∣∫
R

f (x + y) dµ1(x)dµ2(y)−
∫
R

f (x + y) dυ1(x)dυ2(y)
∣∣∣∣}

≤ sup
f∈Ck

b

{∣∣∣∣∫
R

f (x + y) dµ1(x)dµ2(y)−
∫
R

f (x + y) dµ1(x)dυ2(y)
∣∣∣∣

+

∣∣∣∣∫
R

f (x + y) dµ1(x)dυ2(y)−
∫
R

f (x + y) dυ1(x)dυ2(y)
∣∣∣∣}

= sup
f∈Ck

b

{∣∣∣∣∫
R

(∫
R

f (x + y) (dµ2(y)− dυ2(y))
)

dµ1(x)
∣∣∣∣

+

∣∣∣∣∫
R

(∫
R

f (x + y) (dµ1(x)− dυ1(x))
)

dυ2(y)
∣∣∣∣}

≤
∫
R

sup
f∈Ck

b

{∣∣∣∣∫
R

f (x + y) ((dµ2(y)− dυ2(y))) dµ1(x)
∣∣∣∣}

+
∫
R

sup
f∈Ck

b

{∣∣∣∣∫
R

f (x + y) ((dµ1(x)− dυ1(x))) dυ2(y)
∣∣∣∣}

= dk(µ1, υ1) + dk(µ2, υ2).

The induction step consists of proving the statement for n + 1, if it is true for
n. Consider the probability measures µ1, ..., µn, µn+1, υ1, ..., υn, υn+1 ∈ P . Denote
µ := µ1 ∗ ... ∗ µn, υ := υ1 ∗ ... ∗ υn ∈ P . By assumption, dk(µ, υ) ≤ ∑n

i=1 dk(µi, υi),
therefore it is fulfilled that

dk(µ ∗ µn+1, υ ∗ υn+1) ≤ dk(µ, υ) + dk(µn+1, υn+1)

≤
n

∑
i=1

dk(µi, υi) + dk(µn+1, υn+1) =
n+1

∑
i=1

dk(µi, υi),

using the base case in the first step. Finally, the statement is proved. ■



Chapter 5

Central Limit Theorem

The Central Limit Theorem (CLT) states that the distribution of a normalized
version of the sample mean converges to a standard normal distribution, as the
sample size becomes larger. The convergence is weak and the assumption is that
all samples are independent, identical in size, and have a finite second-order mo-
ment, regardless of the population’s actual distribution.

The theorem has faced many changes from classical to modern probability the-
ory. We will go through the principal variants of the CLT, such as their differences,
interpretations and historical prominence. For in-depth learning of the normal
distribution and its applicability, we suggest ([5], Chapter 4) and ([6], Chapter 5).

5.1 De Moivre-Laplace’s Theorem

We will start with the de Moivre-Laplace’s, which is a particular case. Its first
appearance was in the second edition of The Doctrine of Chances (1738), by Abraham
de Moivre. The interpretation is that the normal distribution can approximate the
normal distribution. Let X1, ..., Xn be independent r.v. Let L(X1), ...,L(Xn) be their
respective distribution functions. Denote Sn := ∑n

i=1 Xi. Then

L(Sn) = L(X1) ∗ ... ∗ L(Xn), (5.1.1)

due to the independence of {Xi, i ≥ 1}. On the other hand, if Xi ∼ N(0, σ2
i ), for

every i ∈ {1, ..., n} and σ2 = ∑n
i=1 σ2

i , then

N(0, σ2) = N(0, σ2
1 ) ∗ ... ∗ N(0, σ2

n). (5.1.2)

Proposition 5.1.1. Let X1, ..., Xn be independent r.v, centered and bounded by C (i.e.
|Xi| ≤ C a.s. for every i ∈ {1, ..., n}). Denote σ2

i = E(X2
i ) and σ2 = ∑n

i=1 σ2
i . Then,

d3(L(Sn), N(0, σ2)) ≤ Cσ2 1
6

(
1 +

√
8
π

)
. (5.1.3)

35
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Proof. Using the equations (5.1.1) and (5.1.2) and Proposition 4.3.8, then

d3(L(Sn), N(0, σ2)) ≤
n

∑
i=1

d3(L(xi), N(0, σ2
i )). (5.1.4)

Denote Yi ∼ N(0, σ2
i ) for all i ∈ {1, ..., n} and Y ∼ N(0, σ2). Consider f ∈ Ck

b such
that ∥ f ∥∞ + ∥ f ′∥∞ + ∥ f ′′∥∞ + ∥ f ′′′∥∞ ≤ 1. Taylor’s Development around x = 0 is

f (x) = f (0) + f ′(0)x +
f ′′(0)

2
x2 +

x3

6
f
′′′
(α).

Denote R(α) := x3

6 f
′′′
(α) with |R(α)| ≤ ∥ f ′′′(α)∥∞ ≤ 1 and α between 0 and x.

Considering the random variables Xi ans Yi and ω ∈ Ω, then

f (Xi(ω)) = f (0) + f ′(0)Xi(ω) +
f ′′(0)

2
X2

i (ω) + R(T(ω)),

f (Yi(ω)) = f (0) + f ′(0)Yi(ω) +
f ′′(0)

2
Y2

i (ω) + R(T′(ω)),

where |R(T(ω))|, |R(T′(ω))| ≤ 1, and also T(ω) is between 0 and Xi(ω), and
T′(ω) is between 0 and Yi(ω). Taking expectations on f (Xi) and f (Yi),

E[ f (Xi)] = f (0) +
σ2

i
2

f ′′(0) +
E[X3

i R(T(ω))]

6
,

E[ f (Yi)] = f (0) +
σ2

i
2

f ′′(0) +
E[Y3

i R(T′(ω))]

6
.

Therefore,

E[ f (Xi)− f (Yi)] =
1
6

E[X3
i R(T(ω))− Y3

i R(T′(ω))]. (5.1.5)

Applying the definition of d3 and taking absolute values on (5.1.5), then

d3(Xi, Yi) ≤
1
6
(E[|Xi|3|R(T(ω))|] + E[|Yi|3|R(T′(ω))|]) ≤ 1

6
(E[|Xi|3] + E[|Yi|3]),

(5.1.6)
using |R(T(ω))|, |R(T′(ω))| ≤ 1. Notice that E(|Xi|3) ≤ CE(|Xi|2) = Cσ2

i and also

E(|Yi|3) =
2√

2πσ2
i

∫ ∞

0
y3 exp

(
−1

2
y2

σ2
i

)
dy =

4σ2
i√

2πσi
σ2

i =

√
8
π

σ3
i ≤

√
8
π

Cσ2
i ,

since {Xi, i ∈ {1, ..., n}} are bounded a.s. by C and Yi ∼ N(0, σ2
i ), by hypothesis.

Plugging these into (5.1.6),

d3(L(Xi), N(0, σ2
i )) ≤

1
6

(
Cσ2

i +

√
8
π

Cσ2
i

)
=

C
6

(
1 +

√
8
π

)
σ2

i .
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Finally, substituting this in (5.1.4),

d3(L(Sn), N(0, σ2)) ≤
n

∑
i=1

(
C
6

(
1 +

√
8
π

)
σ2

i

)
=

C
6

(
1 +

√
8
π

)
σ2.

■

Now we can prove the first Central Limit Theorem in history.

Theorem 5.1.2. (De Moivre-Laplace’s Theorem). Let {Xn, n ≥ 1} be a sequence of
independent random variables with Xi ∼ Bernoulli(p). Then,

∑n
i=1 Xi − np√
np(1 − p)

ω−→
n→∞

N(0, 1). (5.1.7)

Proof. Let X1, ..., Xn be independent r.v with Xi ∼ Bernoulli(p). Let Yi := Xi−p√
np(1−p)

,

for every i ∈ {1, ..., n}. Note that Yi are independent r.v, centered and bounded by

|Yi| =
∣∣∣∣∣ Xi − p√

np(1 − p)

∣∣∣∣∣ ≤ max(p, 1 − p)√
np(1 − p)

=: C.

Denote σ2
i = E(Y2

i ), then

σ2
i = Var

(
Xi − p√

np(1 − p)

)
=

Var(Xi)

np(1 − p)
=

1
n

.

Define Sn := ∑n
i=1

Xi−p√
np(1−p)

= ∑n
i=1 Xi−np√

np(1−p)
, with σ2 = ∑n

i=1 σ2
i = ∑n

i=1
1
n = 1. Finally,

by Proposition 5.1.1, then

d3(L(Sn), N(0, 1)) ≤ 1
6

(
1 +

8
π

)
max(p, q)√
np(1 − p)

−→
n→∞

0.

■

5.2 Lindeberg-Lévy’s CLT

Now we will study the classical and most common CLT. It was independently
developed by Paul Lévy and Harald Cramér in the 1920s. This theorem provides
the conditions for which the distribution of a normalized version of the sample
mean converges to a standard normal distribution, as the sample size increases.

Theorem 5.2.1. (Lindeberg-Lévy’s CLT). Let {Xn, n ≥ 1} be a sequence of independent
and identically distributed r.v. with finite second-order moment. Let m = E(Xi) and
σ2 = Var(Xi), for every i ∈ {1, ..., n}. Denote Sn := X1 + ... + Xn, then

Sn − nm
σ
√

n
ω−→

n→∞
N(0, 1). (5.2.1)
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Proof. Define the random variable Yn := Sn−nm
σ
√

n , for n ≥ 1. Observe that E(Yn) = 0

and σ2(Yn) = E(Y2
n) = 1. Compute the characteristic function of Yn, if t ∈ R, then

E(eitYn) = E
[

exp
(

it
Sn − nm

σ
√

n

)]
= E

[
exp i

(
∑n

i=1 Xi − nm
σ
√

n

)
t
]

= E

[
exp i

(
n

∑
i=1

Xi − m
σ
√

n

)
t

]
=

(
E
[

exp i
(

X1 − m
σ
√

n

)
t
])n

= (φn(t))n,

where φn is the characteristic function of the r.v. X1−m
σ
√

n . Observe that φn(0) = 1. φn

is two times differentiable with continuous derivatives, since E(|X1|2) < ∞. Then,

φ′
n(0) = iE

(
X1 − m

σ
√

n

)
and

φ′′
n(t) = −

∫
R

x2eitx

[
P0

(
X1 − m

σ
√

n

)−1
]

dx = −E

[(
X1 − m

σ
√

n

)2

exp
(

it
X1 − m

σ
√

n

)]
.

In particular at t = 0, φ′′
n(0) = − 1

n . Taylor’s Expansion applied to the function
φn(t) around t = 0 is

φn(t) = 1 − t2

2n
+

t2

2
[φ′′

n(θt)− φ′′
n(0)], (5.2.2)

where |θ| ≤ 1. Therefore,

n[φ′′
n(θt)− φ′′

n(0)] = −nE

[(
X1 − m

σ
√

n

)2 (
exp

(
itθ

X1 − m
σ
√

n

)
− 1
)]

= − 1
σ2 E

[
(X1 − m)2

(
exp

(
itθ

X1 − m
σ
√

n

)
− 1
)]

.

(5.2.3)

Notice that ∣∣∣∣(X1 − m)2
(

exp
(

itθ
X1 − m

σ
√

n

)
− 1
)∣∣∣∣ ≤ 2|X1 − m|2

and

lim
n→∞

(X1 − m)2
(

exp
(

itθ
X1 − m

σ
√

n

)
− 1
)
= 0.

Applying the Dominated Convergence Theorem to the last expression in (5.2.3),

n[φ′′
n(θt)− φ′′

n(0)] −→n→∞
0.
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Plugging this into (5.2.2), then

lim
n→∞

(φn(t))n = e−
t2
2 , ∀t ∈ R.

By the Paul-Lévy’s Continuity Theorem (Theorem 4.2.7), the sequence {Yn, n ≥ 1}
converges weakly to a r.v. with distribution N(0, 1).1

■

5.3 Lindeberg’s Theorem

We will focus on a stronger version of the CLT. This was published by Jarl
Waldemar Lindeberg in 1920. The Lindeberg’s Condition is a sufficient condition
for the CLT to hold. We will study the definition of a triangular family, following
with the Lindeberg’s CLT and the Feller’s Theorem.

Definition 5.3.1. A triangular family is a sequence {Xnj , 1 ≤ j ≤ kn, kn ↗ ∞}, where
the rows are independent random variables.

Theorem 5.3.2. (Lindeberg’s CLT). Let {Xnj , 1 ≤ j ≤ kn, kn ↗ ∞} be a triangular
family with centered random variables. If it is satisfied that

(a) ∑kn
j=1 E(X2

nj
) −→ σ2,

(b) (Lindeberg’s Condition). ∑kn
j=1 E[X2

nj
1{|Xnj |>δ}] −→n→∞

0, for every δ > 0.

Then,

Sn :=
kn

∑
j=1

Xnj

ω−→
n→∞

N(0, σ2). (5.3.1)

Proof. Define the r.v. Xnj,δ := Xnj1{|Xnj |≤δ}. Denote Sn,δ := ∑kn
j=1 Xnj,δ and also

σ2
n,δ := ∑kn

j=1 σ2(Xnj,δ). We want to see that the next terms tend to 0 as n → ∞,

d3(L(Sn), N(0, σ2)) ≤ d3(L(Sn),L(Sn,δ − E[Sn,δ]))

+ d3(L(Sn,δ − E[Sn,δ]), N(0, σ2
n,δ)) + d3(N(0, σ2

n,δ), N(0, σ2)).
(5.3.2)

We will start with d3(N(0, σ2
n,δ), N(0, σ2))−→

n→∞
0. Note that

• (Xnj − Xnj,δ)
2 = X2

nj
− X2

nj,δ
= X2

nj
1{|Xnj |>δ},

• σ2(Sn)− σ2(Sn,δ) ≥ 0,

1Note that e−
t2
2 is the characteristic function of a N(0, 1) variable (Chapter 2).
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• E(Xnj) = 0 = E[Xnj1{|Xnj |≤δ}] + E[Xnj1{|Xnj |>δ}], by definition of Xnj . Taking

squares, (E(Xnj,δ))
2 = (E[Xnj,δ1{|Xnj |≤δ}])

2 = (E[Xnj,δ1{|Xnj |>δ}])
2.

Hence, for every δ > 0,

0 ≤ σ2(Sn)− σ2(Sn,δ) =
kn

∑
j=1

E(X2
nj
)−

kn

∑
j=1

E[Xnj,δ − E(Xnj,δ)]
2

=
kn

∑
j=1

(
E(X2

nj
)− E[Xnj,δ − E(Xnj,δ)]

2
)
=

kn

∑
j=1

(
E(X2

nj
)− E(X2

nj,δ) + [E(Xnj,δ)]
2
)

=
kn

∑
j=1

(
E[X2

nj
1{|Xnj |>δ}] +

[
E[Xnj1{|Xnj |>δ}]

]2
)
≤ 2

kn

∑
j=1

E[X2
nj
1{|Xnj |>δ}] → 0,

by hypothesis b), i.e. limn→∞(σ2(Sn) − σ2(Sn,δ)) = 0. Since limn→∞ σ2
n,δ = σ2,

d3(N(0, σ2
n,δ), N(0, σ2)) −→

n→∞
0. Secondly, we see d3(L(Sn),L(Sn,δ − E[Sn,δ])) −→n→∞

0.

We will show that Sn − (Sn,δ − E[Sn,δ])
ω−→ 0. Using that E(Sn) = 0,

E[(Sn − (Sn,δ − E[Sn,δ]))
2] = E[((Sn − Sn,δ)− E[Sn − Sn,δ])

2] = σ2(Sn − Sn,δ)

= σ2

(
kn

∑
j=1

(Xnj − Xnj,δ)

)
=

kn

∑
j=1

σ2(Xnj − Xnj,δ) ≤
kn

∑
k=1

E[(Xnj − Xnj,δ)
2]

=
kn

∑
j=1

E[X2
nj
1{|Xnj |>δ] −→n→∞

0,

by b). At last, we prove that d3(L(Sn,δ − E[Sn,δ]), N(0, σ2
n,δ)) −→n→∞

0. Observe that

• Sn,δ − E(Sn,δ) = ∑kn
j=1 Xnj,δ − E(Xnj,δ),

• |Xnj,δ − E(Xnj,δ)| ≤ |Xnj,δ|+ |E(Xnj,δ)| ≤ 2δ,

• σ2(Sn,δ − E(Sn,δ)) = σ2
n,δ.

Therefore, by Proposition 5.1.1,

d3(L(Sn,δ − E(Sn,δ)), N(0, σ2
n,δ)) ≤

1
6

(
1 +

√
8
π

)
σ2

n,δ2δ.

Since limn→∞ σ2
n,δ = σ2, taking limits on n → ∞, then

d3(L(Sn,δ − E(Sn,δ)), N(0, σ2
n,δ)) ≤

1
6

(
1 +

√
8
π

)
σ22δ −→

δ→0
0.2

Plugging the three limits in (5.3.2), finally, d3(L(Sn), N(0, σ2)) −→
n→∞

0, as we wanted.
■

2Note that in (5.3.3) we are taking the limit on δ → 0.
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We will now study the reciprocal result: the Feller’s Theorem. This provides a
way to prove the Lindeberg’s Condition, based on infinitesimal triangular families.

Definition 5.3.3. A triangular family {Xnj , 1 ≤ j ≤ kn, kn ↗ ∞} is infinitesimal if

lim
n→∞

max
1≤j≤kn

P{|Xnj | > ϵ} = 0, ∀ϵ > 0. (5.3.3)

Corollary 5.3.4. Let {Xnj , 1 ≤ j ≤ kn, kn ↗ ∞} be a triangular family. If Xnj satisfies
the Lindeberg’s Condition, then Xnj is an infinitesimal triangular family.

Proof. By hypothesis, ∑kn
j=1 E[X2

nj
1{|Xnj |>ϵ}] −→n→∞

0, for every ϵ > 0. Notice that

kn

∑
j=1

E[X2
nj
1{|Xnj |>ϵ}] ≥ ϵ2

kn

∑
j=1

P{|Xnj | > ϵ} ≥ ϵ2 max
1≤j≤kn

P{|Xnj | > ϵ} ≥ 0.

Therefore,

lim sup
n→∞

kn

∑
j=1

E[X2
nj
1{|Xnj |>ϵ}] ≥ ϵ2 lim sup

n→∞
max

1≤j≤kn
P{|Xnj | > ϵ} ≥ 0.

Putting everything together, max1≤j≤kn P{|Xnj | > ϵ} −→
n→∞

0, as we wanted. ■

Theorem 5.3.5. (Feller’s Theorem). Let {Xnj , 1 ≤ j ≤ kn, kn ↗ ∞} be an infinitesimal
triangular family with centered random variables such that:

(a) σ2(Sn) = ∑kn
j=1 E(X2

nj
) −→

n→∞
σ2,

(b) Sn = ∑kn
j=1 Xnj

ω−→
n→∞

N(0, σ2).

Then, Xnj satisfies the Lindeberg’s Condition.

Proof. The proof will consist of two parts. At the first part, we will show that

kn

∑
j=1

E[|Xnj |1{|Xnj |>ϵ}] −→n→∞
0, (5.3.4)

for every ϵ > 0. Therefore, we will be able to see that for every ϵ > 0,

kn

∑
j=1

P{|Xnj | > ϵ} −→
n→∞

0. (5.3.5)

At the second part, we will prove the Lindeberg’s Condition. First, we see (5.3.4).
Let µ be a measure in R such that 1

|x| is integrable. By the Jensen’s Inequality,3∫
R

1
|x| dµ(x) ≥ 1∫

R
|x| dµ(x)

. (5.3.6)

3The Jensen’s Inequality is reviewed in Chapter 1.
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Applying (5.3.6) to the distribution of |Xnj |21{|Xnj |>ϵ}, then

∫
R

1
|x|dL

(
|Xnj |21{|Xnj |>ϵ}

)
= E

[
1

|Xnj |2
1{|Xnj |>ϵ}

]
≥ E[|Xnj |21{|Xnj |>ϵ}]

−1,

equivalently, E
[

1
|Xnj |

21{|Xnj |>ϵ}

] 1
2

E
[
|Xnj |21{|Xnj |>ϵ}

] 1
2 ≥

√
1 = 1. Applying the

Schwarz’s Inequality in the first step, then

E
[
|Xnj |12

{|Xnj |>ϵ}

]
≤
(

E
[
|Xnj |21{|Xnj |>ϵ}

]) 1
2
(

E
[
1

2
{|Xnj |>ϵ}

]) 1
2

≤
(

E
[
|Xnj |21{|Xnj |>ϵ}

]) 1
2
(

P{|Xnj | > ϵ}
) 1

2
1.

Applying the previous inequalities,

E
[
|Xnj |12

{|Xnj |>ϵ}

]
≤ E

[
|Xnj |21{|Xnj |>ϵ}

] 1
2
(

P{|Xnj | > ϵ}
) 1

2 E

[
1

|Xnj |2
1{|Xnj |>ϵ}

] 1
2

and using the inequality
(

E
[

1
|Xnj |

21{|Xnj |>ϵ}

]) 1
2

≤
(

1
ϵ2 P{|Xnj | > ϵ}

) 1
2
, then

E
[
|Xnj |12

{|Xnj |>ϵ}

]
≤ 1

ϵ
E
[
|Xnj |21{|Xnj |>ϵ}

]
P{|Xnj | > ϵ}

≤ 1
ϵ

E(|Xnj |2) max
1≤j≤kn

P{|Xnj | > ϵ}.

Taking sums on j and applying the hypothesis (a), then

0 ≤
kn

∑
j=1

E[|Xnj |1{|Xnj |>ϵ}] ≤
1
ϵ

max
1≤j≤kn

P{|Xnj | > ϵ}
kn

∑
j=1

E(|Xnj |2) −→n→∞
0,

since also Xnj is an infinitesimal triangular family. Finally, (5.3.4) is proved. We

have also seen (5.3.5), by the definition of E
[
|Xnj |1{|Xnj |>ϵ}

]
and using (5.3.4). Now

we can prove the second part. Fix δ > 0, then define Xnj,δ := Xnj1{|Xnj |≤δ}. Then,

denote Sn,δ = ∑kn
j=1 Xnj,δ and E(Sn,δ) = ∑kn

j=1 E(Xnj,δ). On one hand, we will prove

Sn,δ − E(Sn,δ)
ω−→

n→∞
N(0, σ2). (5.3.7)

On the other hand, define σ2
δ := lim infn→∞ ∑kn

j=1 E(X2
nj
). Therefore, we will prove

Sn,δ − E(Sn,δ)
ω−→

n→∞
N(0, σ2

δ ). (5.3.8)
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Proving (5.3.7) and (5.3.8) and using the unicity of the limit in weak convergence,
we will have σ2

δ = σ2. Since |Xnj |21{|Xnj |>δ} = X2
nj
− X2

nj,δ
,

kn

∑
j=1

E
[
|Xnj |21{|Xnj |>δ}

]
=

kn

∑
j=1

E(|Xnj |2)−
kn

∑
j=1

E(|Xnj,δ|
2).

Then,

0 ≤ lim sup
n→∞

kn

∑
j=1

E
[
|Xnj |21{|Xnj>δ}

]
≤ lim sup

n→∞

kn

∑
j=1

E
(
|Xnj |2

)
− lim sup

n→∞

kn

∑
j=1

E
(
|Xnj,δ|

2
)
= σ2 − σ2

δ = 0,

i.e. limn→∞ ∑kn
j=1 E

[
|Xnj |21{|Xnj |>δ}

]
= 0. Finally, the Lindeberg’s Condition is

satisfied. If we prove (5.3.7) and (5.3.8), we will be done. Note that

P{|Sn,δ − Sn| > ϵ} ≤ P{Sn,δ ̸= Sn} ≤ P{|Xnj | > δ, for some j ∈ {1, ..., kn}}

≤
kn

∑
j=1

P{|Xnj | > δ} −→
n→∞

0,

applying (5.3.5) in the limit and also

|E(Sn,δ)| =
∣∣∣∣∣ kn

∑
j=1

E
[

Xnj1{|Xnj |≤δ}

]∣∣∣∣∣ =
∣∣∣∣∣ kn

∑
j=1

E
[

Xnj1{|Xnj |>δ}

]∣∣∣∣∣ ≤ kn

∑
j=1

E
[

Xnj1{|Xnj |>δ}

]
,

where the last term tends to 0 as n → ∞ by (5.3.4). Therefore,

Sn,δ − E(Sn,δ) = Sn,δ − Sn + Sn − E(Sn,δ) −→n→∞
0 + N(0, σ2) + 0 = N(0, σ2).

We prove (5.3.8). If σ2
δ := lim infn→∞ ∑kn

j=1 E(X2
nj,δ

), then there exists a subsequence

∑
kni
j=1 E(X2

nj,δ
) −→

n→∞
σ2

δ . Construct {Xnj,δ − E(Xnj,δ), 1 ≤ j ≤ n, kn ↗ ∞}. We want
to show it satisfies both hypotheses in the Lindeberg’s Theorem:

(a) σ2(Sn,δ) = ∑
kni
j=1 E(X2

nj,δ
)− [E(Xnj,δ)]

2 −→ σ2
δ ,

(b) ∑kn
j=1 E

[
|Xnj,δ − E(Xnj,δ)|21{|Xnj |>ϵ}

]
→ 0.

Then, Sn,δ − E(Sn,δ) −→n→∞
N(0, σ2

δ ), as we wanted. First, we see a). Applying (5.3.4),

0 ≤
kni

∑
j=1

[E(Xnj,δ)]
2 =

kni

∑
j=1

(E[Xnj1{|Xnj |>δ}])
2 ≤

kni

∑
j=1

(E[|Xnj |1{|Xnj |>δ}])
2 −→

n→∞
0.
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Then,
kni

∑
j=1

(
E(X2

nj,δ)− [E(Xnj,δ)]
2
)
=

kni

∑
j=1

E(X2
nj,δ)−

kni

∑
j=1

[E(Xnj,δ)]
2 → σ2

1 + 0 = σ2
1 .

Now, we see b). Notice that

{|Xnj,δ − E(Xnj,δ)| > ϵ} ⊂ {|Xnj,δ| >
ϵ

2
} ⊂ {|Xnj | >

ϵ

2
},

since ∑kn
j=1 |E(Xnj,δ)| → 0, when |E(Xnj,δ)| < ϵ

2 . Finally, using (5.3.5),

0 ≤
kni

∑
j=1

E
[
|Xnj,δ − E(Xnj,δ)|

2
1{|Xnj ,δ−E(Xnj ,δ)|>ϵ}

]

≤ (2δ)2
kni

∑
j=1

P
{
|Xnj,δ − E(Xnj,δ)| > ϵ

}
≤ (2δ)2

kni

∑
j=1

P
{
|Xnj | >

ϵ

2

}
−→
n→∞

0.

■

5.4 Lyapunov’s Theorem

In this section, we will study a generalized variation of the CLT, which is
named after Aleksandr Lyapunov. It is also a sufficient condition for the CLT.

Theorem 5.4.1. (Lyapunov’s Theorem). Let {Xnj , 1 ≤ j ≤ kn, kn ↗ ∞} be a triangular
family of centered random variables satisfying that

(a) ∑kn
j=1 E(X2

nj
) −→

n→∞
σ2,

(b) (Lyapunov’s Condition). There is a δ > 0, such that ∑kn
j=1 E(|Xnj |2+δ) −→

n→∞
0.

Then,

Sn :=
kn

∑
j=1

Xnj

ω−→
n→∞

N(0, σ2). (5.4.1)

Proof. We will show that the Lyapunov’s Condition implies the Lindeberg’s Con-
dition and we will be done. Notice that for every ϵ > 0, then

kn

∑
j=1

E
[
|Xnj |2+δ

]
≥

kn

∑
j=1

E
[
|Xnj |2+δ

1{|Xnj |>ϵ}

]
≥ ϵ2

kn

∑
j=1

E
[
|Xnj |21{|Xnj |>ϵ}

]
≥ 0.

By hypothesis b) ∑kn
j=1 E(|Xnj |2+δ) −→

n→∞
0 and ϵ is fixed, then E[|Xnj |21{|Xnj |>ϵ}] → 0,

i.e. the Lindeberg’s Condition is satisfied, as we wanted. ■

Observation 5.4.2. If the Lyapunov’s CLT holds, then the Lindeberg’s CLT also
holds. However, the reverse is not always true. Consequently, the Lyapunov’s CLT
is stronger, although it is harder to check since it involves higher-order moments.
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5.5 Multidimensional CLT

It might be interesting studying the multidimensional version of the classical
CLT (Subsection 5.2), since it is often used in Statistics. We will state and proof the
multidimensional CLT.4 The next result is a theorem-definition.5

Theorem 5.5.1. Let m ∈ Rn and Λ be a n × n non-negative symmetric matrix. There is
a probability in Rn named the multivariate normal distribution and with

φ(t) := exp
(

it∗m − 1
2

t∗Λt
)

, (5.5.1)

for every t ∈ Rn. This probability is denoted N(m, Λ).

Proof. Let C be an orthogonal matrix s.t CΛC∗ = D, where D is a diagonal ma-
trix. Let λ1, ..., λn be the elements of the principal diagonal of D. These are the
eigenvalues of Λ and so non-negative, by hypothesis. Then, Λ = C∗DC. Let
Y = (Y1, ..., Yn), where all the components are independent and have N(0, λi) if
λi ̸= 0 or Yi ≡ 0 if λi = 0, for every i ∈ {1, ..., n}. Notice that

φY(t) := E

[
exp

(
i

n

∑
j=1

tjYj

)]
=

n

∏
j=1

e−
1
2 tj2λj = e−

1
2 t∗Dt.

Consider X := C∗Y + m. Consequently, the characteristic function of X is exactly

φX(t) := eit∗m φY(Ct) = eit∗me−
1
2 (Ct)∗DCt = eit∗m− 1

2 t∗Λt.

■

We see now the main properties of the Multidimensional Normal Distribution.

1) Let X ∼ N(m, Λ) and C be orthogonal s.t Λ = C∗DC. Then, Y := C(X − m)

has independent components with N(0, λi) if λi ̸= 0 or equal to 0 if λi = 0.

Proof. A consequence of Proposition 5.5.1 and

φY(t) :=eit∗(−Cm)φX(C∗t) = exp(−it∗Cm + it∗Cm − 1
2

t∗CΛC∗t).

■

2) Let X ∼ N(m, Λ), where m, Λ are the vector of means and the matrix of
variances and covariances of X, respectively.

4The same notation will be used throughout this section.
5A theorem-definition combines the role of a definition and of a theorem at the same time.
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Proof. Check that E(X) = C∗E(Y) + m = m and also

E[(X − m)(X − m)∗] = E[C∗YY∗C] = C∗DC = Λ,

■

3) Let X ∼ N(m, Λ) and n-dimensional. Let A be a r × n matrix. Then, the
random vector AX has distribution N(Am, AΛA∗).

Proof. For every t ∈ Rr, it is a consequence of

φAX(t) :=φX(A∗t) = exp
(

it∗Am − 1
2
(A∗t)∗Λ(A∗t)

)
= exp

(
it∗(Am)− 1

2
t∗(AΛA∗)t

)
.

■

In particular, every random vector (Xi1 , ..., Xim) with m ≤ n has a normal
distribution and also every linear combination ∑n

i=1 aiXi does. Reciprocally,
if X = (X1, ..., Xn) is s.t every linear combination ∑n

i=1 aiXi is normal, then X
has a normal multidimensional distribution.

Proof. Since E(eit∗X) = φt∗X(1) = e−
1
2 σ2(t∗X)+iE(t∗X), then E(t∗X) = t∗E(X) and

σ2(t∗X) := E[[t∗(X − E(X))]2] = E[(t∗(X − E(X))((X − E(X))∗t] = t∗Λt.

Therefore, X ∼ N(m, Λ), with m := E(X) and Λ := E[(X − m)(X − m)∗]. ■

4) Let X = (X1, ..., Xn) ∼ N(m, Λ). The independence of the r.v X1, ..., Xn is
equivalent to the matrix Λ being diagonal, i.e X1, ..., Xn are uncorrelated.

Proof. If X1, ..., Xn are independent, then Cov(Xi, Xj) = 0, for every i ̸= j.
Reciprocally, if Λ is a diagonal matrix and λ1, ..., λn denote the components
of the diagonal, then

φX(t) := eit∗m− 1
2 t∗Λt =

n

∏
j=1

eitjmj− 1
2 λjt2

j =
n

∏
j=1

φXj(tj).

■

5) If Λ is an invertible (or non-singular) matrix (i.e. det(λ) > 0), then the
normal distribution N(m, Λ) is non-degenerate.
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Proof. By hypothesis, λi > 0, for every i ∈ {1, ..., n}. Define φ(y) := C∗y +

m = x. Since X := φ(Y), 6

fX(X) = fY(φ−1(X))
∣∣Jφ(y)

∣∣−1
=

n

∏
i=1

1√
2πλi

e−
1

2λi
y2

i

= [(2π)n det(Λ)]−
1
2 exp

(
−1

2
(x − m)∗Λ−1(x − m)

)
,

using that y∗D−1y = (x − m)∗C∗(x − m) = (x − m)∗Λ−1(x − m) and also
|Jφ(y)| = |detC∗| = 1, λ1...λn = det(Λ). ■

On the other hand, if Λ is a singular matrix, then N(m, Λ) is degenerate.

Proof. Assume that the rang of Λ is r < n. Let λ1, ..., λr be the non-zero
eigenvalues of Λ. Therefore, Yr+1 = ... = Yn = 0 and the random vector
Z = (Y1, ..., Yr) has an r-dimensional non-degenerate normal distribution. ■

Finally, we can study the multidimensional CLT. The theorem states that sums
converge to a multivariate normal distribution as the sample increases.

Theorem 5.5.2. (Multidimensional CLT). Let {Xn, n ≥ 1} be a sequence of random
vectors k-dimensional, independent and identically distributed. Let Sn := X1 + ... + Xn.
Suppose that the components of X1 have finite second-order moment. Denote m := E(X1)

and Λ := E[(X1 − m)(X1 − m)∗]. Then,

Sn − nm√
n

ω−→
n→∞

N(0, Λ). (5.5.2)

Proof. Define the random vector Yn := Sn−nm√
n . Fix t ∈ Rk, then {t∗Xn, n ≥ 1} is

a sequence of independent and identically distributed random variables. Their
mean is E(t∗Xn) = t∗m and their variance is

σ2(t∗X1) = E[t∗(X1 − m)(X1 − m)∗t] = t∗Λt.

Applying the Lévy-Lindeberg’s CLT (Theorem 5.2.1), then

t∗Yn =
1√
n

[
n

∑
j=1

t∗Xj − nt∗m

]
ω−→

n→∞
N(0, t∗Λt).

Therefore,

φYn(t) := E[eit∗Yn ] = φt∗Yn(1)
ω−→

n→∞
φN(0,t∗Λt)(1) = e−

1
2 t∗Λt = φN(0,Λ)(t),

for every t ∈ Rk, i.e. the characteristic function of Yn converges to the character-
istic function of the normal distribution N(0, Λ). Finally, by the multidimensional
version of the Paul-Lévy’s Continuity Theorem (Theorem 4.2.7), Yn

ω−→
n→∞

N(0, Λ). ■

6The transformation of random variable’s formula is applied to X.
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5.6 Convergence of the compound Poisson distribution

In this section, we aim to consider sequences where the underlying distribution
of the r.v. does not meet the hypothesis of the CLT. For instance, sequences with
distributions that do not have finite variance, such as the Cauchy distribution. In
particular, we will focus on the compound Poisson distribution.

Definition 5.6.1. Let µ be a finite measure in R. The compound Poisson distribution
is given by

Poiss(µ)(B) := e−µ(R)
∞

∑
k=0

µ ∗ ... ∗ µ(B)
k!

, (5.6.1)

for every B ∈ B(R). It is denoted by Poiss(µ) and the first term will be δ{0}(B).

Proposition 5.6.2. The compound Poisson distribution is a probability.

Proof. First of all, note that Poiss(µ)(B) ≥ 0, for every B ∈ B(R). Secondly,
observe that Poiss(µ)(∅) = 0 and also

Poiss(µ)(R) = e−µ(R)
∞

∑
k=0

µ ∗ ... ∗ µ(R)

k!
= e−µ(R)

∞

∑
k=0

(µ(R))k

k!
= 1.

Finally, we show that the function is σ-additive. Take A ∈ B(R) with A =
⋃∞

i=1 Ai,
where Ai are pairwise disjoint sets. By the additivity of convolution of measures,

Poiss(µ)(A) = e−µ(R)
∞

∑
k=0

µ ∗ ... ∗ µ(A)

k!
= e−µ(R)

∞

∑
k=0

∞

∑
i=0

µ ∗ ... ∗ µ(Ai)

k!

=
∞

∑
i=0

e−µ(R)
∞

∑
k=0

µ ∗ ... ∗ µ(Ai)

k!
=

∞

∑
i=0

Poiss(µ)(Ai).

■

We will now see that the sum of a sequence of r.v. with a Poisson distribution
is exactly a compound Poisson distribution.

Proposition 5.6.3. Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed r.v such that Xi ∼ υ, for every i ∈ {1, ..., n}. Let N be a random variable such
that N ∼ Poiss(λ) and N is independent to Xi, for every i ∈ {1, ..., n}. Then,

S :=
N

∑
i=1

Xi ∼ Poiss(µ), (5.6.2)

where µ := λυ and υ is a probability. In particular, if also N ≡ 0, then S ≡ 0.
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Proof. Consider B ∈ B(R). Hence, using in the last equality µ(R) = λυ(R) = λ

and λkυ ∗ ... ∗ υ = (λυ) ∗ ... ∗ (λυ),

P{S ∈ B} = P

{
N

∑
i=1

Xi ∈ B

}
=

∞

∑
k=0

P

{
N

∑
i=1

Xi ∈ B, N = k

}

=
∞

∑
k=0

P

{
N

∑
i=1

Xi ∈ B

}
P{N = k} =

∞

∑
k=0

P

{
k

∑
i=1

Xi ∈ B

}
λk

k!
e−λ

= e−λ
∞

∑
k=0

υ ∗ ... ∗ υ(B)
k!

λk = e−µ(R)
∞

∑
k=0

µ ∗ ... ∗ µ(B)
k!

.

■

Now we may compute the characteristic function of the compound Poisson.

Proposition 5.6.4. The characteristic function of the compound Poisson S is

φS(t) := exp
(∫
R

(eitx − 1) dµ(x)
)

. (5.6.3)

Proof. By the definition of conditional expectation,7 then

φPoiss(µ)(t) = E(eitS) = E[E(eitS|N)] =
∞

∑
k=0

P{N = k}E(eitS|N = k)

=
∞

∑
k=0

λk

k!
e−λE

[
e

(
it

k

∑
i=1

Xi

)]
=

∞

∑
k=0

e−λ λk

k!
(φX(t))k = exp(−λ + λφX(t))

= exp
(∫
R

(eitx − 1)
)

dµ(x),

using that λφX(t) = λ
∫
R

eitx dx =
∫
R

eitx dµ(x) in the last equality. ■

We will see some basic properties of the compound Poisson before the final
result.

Proposition 5.6.5. Let {µn, n ≥ 1}, µ be probability measures. Then, it is satisfied that

1) If µn
ω−→

n→∞
µ, then also Poiss(µn)

ω−→
n→∞

Poiss(µ).

2) Poiss(µ) = Poiss(µ1) ∗ ... ∗ Poiss(µn), where µ = ∑n
i=1 µi.

3) supA∈B(R) |Poiss(µ)(A)− µ(A)| ≤ (µ(R− 0))2.

7The concept of conditional expectation can be reviewed in ([4], Chapter 6).
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Proof. We will begin proving 1). Since µn
ω−→

n→∞
µ, then µn(R) −→ µ(R) and

φµn(t) −→ φµ(t), for every t ∈ R. Hence,

φPoiss(µn)(t) = exp
(∫
R

(eitx − 1) dµn(x)
)
= exp(φµn(t)− µn(R))

−→
n→∞

exp(φµ(t)− µ(R)) = φPoiss(µ)(t).

Now we will show 2). Note that

φPoiss(µ)(t) = exp
(∫
R

(eitx − 1) dµ(x)
)
= exp

(∫
R

(eitx − 1) d
∞

∑
i=1

µi(x)

)

= exp

(
∞

∑
i=1

∫
R

(eitx − 1) dµi(x)

)
=

n

∏
i=1

φPoissµi(t).

Let A ∈ B(R). First of all, we want to prove both inequalities to prove 3).
Since this will be shown for every A ∈ B(R), then taking the supremum of A,
supA∈B(R) |Poiss(µ)(A)− µ(A)| ≤ (µ(R− 0))2. Observe the following. Let υ be
a measure s.t υ(A) = µ(A) − µ({0})δ{0}(A). Note that υ = µ|R−{0}. Assume
υ(R) = ϵ ≥ 0, then also (µ(R− {0}))2 = (υ(R))2 = ϵ2. Furthermore, note that
1 = µ(R) = υ(R) + µ({0})δ{0}(A) = ϵ + µ({0}), i.e. µ({0}) = 1 − ϵ. Con-
sequently, µ(A) = υ(A) + (1 − ϵ)δ{0}(A). We will first suppose the inequality
Poiss(µ)(A)− µ(A) ≥ 0. Applying the previous observation, then

0 ≤ Poiss(µ)(A)− µ(A) ≤ Poiss(υ)(A)− υ(A)− (1 − ϵ)δ{0}(A)

= e−υ(R)

(
∞

∑
k=0

υ ∗ ... ∗ υ(A)

k!

)
− υ(A)− (1 − ϵ)δ{0}(A)

= e−ϵ

(
δ{0}(A) + υ(A) +

∞

∑
k=2

υ ∗ ... ∗ υ(A)

k!

)
− υ(A)− (1 − ϵ)δ{0}(A)

≤ (e−ϵ − 1 + ϵ)δ{0}(A) + (e−ϵ − 1)υ(A) + e−ϵ
∞

∑
k=2

ϵk

k!

= (e−ϵ − 1 + ϵ)δ{0}(A) + (e−ϵ − 1)υ(A) + e−ϵ

(
∞

∑
k=1

ϵk

k!
− ϵ

)
.

(5.6.4)

Let f (x) = e−x − 1 + x s.t. f (0) = 0 and f ′(x) = e−x + 1 ≥ 0, then f is increasing
and taking x = ϵ ≥ 0, e−ϵ − 1 + ϵ ≥ 0, i.e. ϵ ≥ 1 − e−ϵ. Applying in (5.6.4) that
the first term is positive and suppressing the second term since e−ϵ − 1 ≤ 0 and
υ(A) ≥ 0, then

0 ≤ Poiss(υ)(A)− υ(A)− (1 − ϵ)δ{0}(A) ≤ e−ϵ − 1 + ϵ + e−ϵ(eϵ − 1 + ϵ)

≤ e−ϵ − 1 + ϵ + 1 − e−ϵ − ϵe−ϵ = ϵ(1 − e−ϵ) ≤ ϵ2,
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as we wanted. On the other hand, suppose (µ(A)− Poiss(µ(A))) ≤ 0. Similarly,

0 ≤ υ(A) + (1 − ϵ)δ{0}(A)− e−ϵ

(
δ{0}(A) + υ(A) +

∞

∑
k=2

υ ∗ ... ∗ υ(A)

k!

)

≤ (1 − e−ϵ)υ(A) + (1 − ϵ − e−ϵ)δ{0}(A)− e−ϵ
∞

∑
k=2

υ ∗ ... ∗ υ(A)

k!

≤ (1 − e−ϵ)υ(A) ≤ ϵυ(R) ≤ ϵ2,

applying in the second-to-last inequality that (1 − ϵ − e−ϵ) ≤ 0 and the last term
is also negative. Finally, we are done. ■

The compound Poisson is used to approximate random variables of a sum of
random variables that are almost always different to 0. At last, we are able to
relate a serie of a compound Poisson to the distribution of a sum of r.v.

Proposition 5.6.6. Let X1, ..., Xn be independent random variables. Define Sn := ∑n
i=1 Xi

and ϵk = P{Xk ̸= 0}. Then,

sup
A∈B(R)

∣∣∣∣∣Poiss

(
n

∑
i=1

L(Xi)

)
(A)−L(Sn)(A)

∣∣∣∣∣ ≤ n

∑
i=1

ϵ2
i . (5.6.5)

Proof. We will do the prove by induction. First of all, applying the property 2) of
Proposition 5.6.5, then

sup
A∈B(R)

∣∣∣∣∣Poiss

(
n

∑
i=1

L(Xi)

)
(A)−L(Sn)(A)

∣∣∣∣∣
= sup

A∈B(R)

|Poiss(L(X1)) ∗ ... ∗ Poiss(L(Xn))(A)−L(X1) ∗ ... ∗ L(X1)(A)| .

We want to prove that

sup
A∈B(R)

|Poiss(L(X1)) ∗ ... ∗ Poiss(L(Xn))(A)−L(X1) ∗ ... ∗ L(X1)(A)|

≤
n

∑
i=1

sup
A∈B(R)

|Poiss(L(Xi))(A)−L(Xi)(A))|.
(5.6.6)

Now we show that the statement holds for n = 2. Note that8

Zn = sup
A∈B(R)

|Poiss(L(X1) + L(X2))(A)−L(X1 + X2)(A)|

=

∣∣∣∣∫
R

∫
R

1A(x + y) dPoiss(L(X1))(x)dPoiss(L(X2))(y)

−
∫
R

∫
R

1A(x + y) d(L(X1))(x)d(L(X2))(y)
∣∣∣∣ .

8Note that since we are taking the supremum in A ∈ B(R), it is the same to consider either the
indicator 1A−x(y) or 1A(y).
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Continue with

Zn =

∣∣∣∣∫
R

[∫
R

1A(x + y)(dPoissL(X2)(y)− dL(X2)(y))
]

dPoissL(X1)(x)

−
∫
R

[∫
R

1A(x + y)(dPoissL(X1)(x)− dL(X1)(x))
]

dPoissL(X2)(y)
∣∣∣∣

≤
∫
R

sup
A∈B(R)

{∫
R

1A(x + y)|dPoissL(X2)(y)− dL(X2)(y)| dPoissL(X1)(x)
}

+
∫
R

sup
A∈B(R)

{∫
R

1A(x + y)|dL(X1)(x)− dPoiss(L(X1))(x)|
}

dL(X2)(y)

≤
∫
R

sup
A∈B(R)

{∫
R

1A(y)|dPoissL(X2)(y)− dL(X2)(y)| dPoissL(X1)(x)
}

+
∫
R

sup
A∈B(R)

{∫
R

1A(y)|dL(X1)(x)− dPoiss(L(X1))(x)|
}

dL(X2)(y).

Finally, integrating,

sup
A∈B(R)

|Poiss(L(X1) + L(X2))(A)−L(X1 + X2)(A)|

≤ sup
A∈B(R)

|Poiss(L(X2))(A)−L(X2)(A)|+ sup
A∈B(R)

|L(X1)(A)− Poiss(L(X1))(A)|.

The induction step consists of proving (5.6.6), which is done following the same
arguments. Applying the property 3) from Proposition 5.6.5, then

sup
A∈B(R)

∣∣∣∣∣Poiss

(
n

∑
i=1

L(Xi)

)
(A)−L(Sn)(A)

∣∣∣∣∣
≤

n

∑
i=1

sup
A∈B(R)

|Poiss(L(Xi))(A)−L(Xi)(A))| ≤
n

∑
i=1

|L(Xi)(R− 0)|2

=
n

∑
i=1

(P{Xi ̸= 0})2 =
n

∑
i=1

ϵ2
i .

■

In conclusion, although the CLT is a core theorem in probability theory and
many other fields, it is important to recognize the limitations and conditions under
which it holds. For instance, r.v. with infinite variance and distributions that
deviate from the normality. Hence, in this case, it might be more appropriate to
use alternative methods and distributions. With this theme, a new extensive work
could begin, but we will leave it for another time.
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