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A B S T R A C T   

Aging is a major risk factor for neurodegenerative diseases like dementia and Alzheimer’s disease. Even in non- 
pathological aging, decline in cognitive functioning is observed in the majority of the elderly population, 
necessitating the importance of studying the processes involved in healthy aging in order to identify brain 
biomarkers that promote the conservation of functioning. The default mode network (DMN) has been of special 
interest to aging research due to its vulnerability to atrophy and functional decline over the course of aging. Prior 
work has focused almost exclusively on functional (i.e. undirected) connectivity, yet converging findings are 
scarce. Therefore, we set out to use spectral dynamic causal modeling to investigate changes in the effective (i.e. 
directed) connectivity within the DMN and to discover changes in information flow in a sample of cognitively 
normal adults spanning from 48 to 89 years (n = 63). Age was associated to reduced verbal memory perfor
mance. Modeling of effective connectivity revealed a pattern of age-related downregulation of posterior DMN 
regions driven by inhibitory connections from the hippocampus and middle temporal gyrus. Additionally, there 
was an observed decline in the hippocampus’ susceptibility to network inputs with age, effectively disconnecting 
itself from other regions. The estimated effective connectivity parameters were robust and able to predict the age 
in out of sample estimates in a leave-one-out cross-validation. Attained education moderated the effects of aging, 
largely reversing the observed pattern of inhibitory connectivity. Thus, medial prefrontal cortex, hippocampus 
and posterior DMN regions formed an excitatory cycle of extrinsic connections related to the interaction of age 
and education. This suggests a compensatory role of years of education in effective connectivity, stressing a 
possible target for interventions. Our findings suggest a connection to the concept of cognitive reserve, which 
attributes a protective effect of educational level on cognitive decline in aging (Stern, 2009).   

1. Introduction 

People across the world are getting increasingly older. Societies are 
aging due to advances in modern medicine and lifestyle changes (Arc-
Chagnaud et al., 2019). As a result, the proportion of people over 60 is 
estimated to have nearly doubled by 2050, however the additional years 
are often spent in poor health (WHO, 2022). Aging is a major risk factor 
for neurodegenerative diseases like Alzheimer’s disease (AD) (Liu, 
2022), however even in healthy (i.e. non-pathological) aging physical 

and mental capacity are decreasing (Arc-Chagnaud et al., 2019; Onoda 
et al., 2012). This demographic shift entails major challenges for soci
eties that must accommodate their healthcare and social systems. Thus, 
it is important to study the processes involved in healthy aging and try to 
identify biomarkers that promote the conservation of functioning and 
increase quality of life in old age. 

The human brain is affected by many structural and physiological 
changes in advanced age, and is key to understanding the effects of aging 
(Watanabe et al., 2021). Aging is associated with cortical thinning and 
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loss of white matter tracts (Vaqué-Alcázar, 2020; Watanabe, 2021; 
O’Sullivan, 2001; Raz and Rodrigue, 2006). Changes in cortical integrity 
display functional and structural correspondence, such that aging 
related structural deterioration has been associated with altered neural 
activity and cognitive functioning (Hu et al., 2014). Aging-related at
rophy predominantly affects medial temporal memory regions including 
the hippocampus (Raz and Rodrigue, 2006; Barnes, 2009), with edu
cation and healthy lifestyle choices attenuating the effects (Nobis, 
2019). 

The brain’s functional architecture shows robust alterations in 
healthy aging as well, which studies on resting-state functional con
nectivity demonstrate (e.g. Damoiseaux et al. 2016, Farras-Permanyer 
et al. 2019). Resting state functional magnetic resonance imaging (fMRI) 
is used to investigate the functional connectivity (i.e. functional 
coupling in terms of Pearson’s correlations) of intrinsic spontaneous 
fluctuations in resting state networks (RSNs) in the absence of any 
experimental task manipulation. Although age-related alterations in 
functional connectivity have been reported for various RSNs, the most 
consistent findings in both healthy and pathological aging have been 
identified within the default mode network (DMN) (Ferreira and 
Busatto, 2013). The DMN is most active at wakeful rest and when simply 
letting the mind wander and deactivates when engaging in certain 
cognitive tasks (Raichle, 2015; Raichle et al., 2001). Main hubs include 
the inferior parietal lobules (IPL), posterior cingulate cortex (PCC), 
medial temporal lobes including hippocampus (HPC), and medial 
frontal regions. DMN activity has been associated with self-referential 
cognition and mental simulations based on past experiences (Buckner 
et al., 2008). 

The network is of special interest for aging research due to its 
vulnerability to atrophy and patterns of hypometabolism in AD (Buckner 
et al., 2005) and healthy aging (Marchitelli et al., 2018). Task induced 
deactivation of the network is attenuated in normal aging and to a 
greater extent in AD, which might reflect a gradual progression of 
cognitive decline (Buckner et al., 2005). This is supported by findings 
associating reduced DMN functional connectivity in older age with 
lower performance in behavioral measures of cognitive function, as well 
as attention, and memory performance (Damoiseaux et al., 2008, 2016; 
Onoda et al., 2012). Whereas the effects of age and cognitive function on 
alterations in DMN FC appear to be modulated by educational attain
ment, indicating a potential protective factor (Shen et al., 2018; Chen 
et al., 2018; Montemurro et al., 2023). 

Functional connectivity of the hippocampal DMN node seems to be 
particularly sensitive to aging. Andrews-Hanna et al. (2007) identified 
reduced functional connectivity between hippocampus and other nodes 
of DMN in elderly adults. These findings were complemented by Dam
oiseaux et al. (2016) who discovered a decrease in connectivity of pos
terior hippocampal formations with PCC, medial prefrontal cortex 
(mPFC), and lateral parietal cortex, all central hubs of the DMN. 

Despite the numerous studies, the number of converging findings 
related to FC in healthy aging is small (Oschwald et al., 2019), with some 
studies finding no changes in connectivity (Koch et al., 2010) or even 
reporting increased connectivity with increasing age (Salami et al., 
2014). Further studies suggest a non-linear relationship for FC strength 
and age (Farras-Permanyer et al., 2019; Montalà-Flaquer et al., 2023). 
The vast heterogeneity of findings may be, at least partially, attributed 
to the inherent absence of model-based methods in measures of FC. FC 
measures the spatio-temporal relationship between brain regions in the 
form of statistical dependence and is therefore insufficient to capture 
certain within network characteristics that might be key to under
standing changes in healthy aging. Effective connectivity (EC) is defined 
as the directed influence a neural system exerts over another to generate 
the information flow within a network and in that way can be under
stood as a complementary measure to FC (Friston, 2011). EC is strictly 
model-based and works by comparing models of different network ar
chitectures that best explain the observed FC within a network, thereby 
enabling inferences about coupling between brain regions (Friston, 

2011). 
Dynamic causal modeling (DCM) is a framework for modeling EC 

(Friston et al., 2003). Compared to other methods of EC, DCM was 
created explicitly for the analysis of fMRI time-series data and infers 
causality of between region effects in a more intuitive way by using 
differential equations (Friston, 2011). Furthermore, DCM is considered a 
biologically plausible model of connectivity by taking neurovascular 
coupling and hemodynamics into account. Neural activity within brain 
regions is modeled on the neuronal level and treated as hidden states 
that are tuned by the strength of the connections which in turn drive a 
model of neurovascular coupling and hemodynamics. Taken together, 
these model the processes that make up the 
blood-oxygen-level-dependent (BOLD) signal that is measured in fMRI 
together with some observation noise. 

With DCM, inferences on the group level can be drawn in a 
straightforward way by treating model parameters as random effects 
and analyzing second level effects with classical linear models (i.e. 
GLMs) (Friston et al., 2016). This allows both classification and pre
diction of experimental factors based on effective connectivity param
eters. Though originally developed to model the stimulus-driven 
changes of effective connectivity in task-fMRI, Friston et al. (2014) 
developed spectral DCM (spDCM) to estimate effective connectivity in 
task-free fMRI designs. spDCM has been implemented successfully in a 
multitude of studies investigating resting state fMRI (e.g., Esménio et al. 
2019, Lorenzini et al. 2021, Yu et al. 2021) and its validity and reliability 
have been ascertained (Razi et al., 2015). DCM’s predictive ability 
together with a resting state fMRI design, which is unconfounded by 
performance differences across individuals, makes it a well-suited 
technique to identify possible biomarkers of age-related changes on a 
neurophysiological level. 

Thus, in this study, we sought to apply resting state fMRI and to use 
spDCM to analyze effective connectivity in DMN in order to quantify 
how its functional architecture relates to healthy aging. To the best of 
our knowledge, this is the first study implementing spDCM to investigate 
the information flow within DMN in healthy aging. By understanding 
the information flow among DMN regions, we hope to better understand 
the role of each node in age-related changes in cognitive functioning. In 
particular, we aimed to examine the effects of healthy aging on changes 
in DMN effective connectivity by leveraging computational models. 
Additionally, we aimed to investigate the effects of attained education 
on aging-related variations in the DMN effective connectivity in order to 
identify targets of potentially protective factors. 

2. Materials and methods 

2.1. Participants 

The data used in this study was collected as part of a prior investi
gation of the Department of Medicine, Faculty of Medicine and Health 
Sciences, University of Barcelona. The whole sample consisted of 63 
subjects (40 female) in total with an age range of 48–89 years (see 
Table 1 for a detailed description of sample characteristics). The pro
tocol was approved by the ethics committee of the Hospital Clínic Bar
celona (October 22, 2009; Approval number: 2009-5306). All 
participants gave their written informed consent in accordance with the 
Declaration of Helsinki. 

The exclusion criteria for the study included the inability to undergo 
neuropsychiatric testing, prior cerebrovascular accident (i.e. stroke), 
current diagnosis of a psychiatric disorder, cognitive deterioration, de
mentia or other neurodegenerative diseases, any major chronic somatic 
illness (such as heart failure, chronic liver disease, kidney failure, blood 
disease or cancer) and any conditions that would affect the eligibility to 
safely undergo an MRI examination. Inclusion criteria were based on the 
neuropsychological assessment and were defined as the absence of 
cognitive decline in terms of the behavioral performance in a battery of 
neuropsychological tests. 
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A total of 12 subjects were discarded due to incomplete recordings or 
insufficient number of fMRI volumes (i.e. fewer than 300). The exclusion 
was based on simulations that have shown that the estimation accuracy 
of parameters in spDCM as a function of the number of time bins 
collected may provide accurate estimates for short runs with at least 256 
or more data points (Friston et al., 2014). Furthermore, 2 subjects were 
removed from the analysis due to excessive head movement during the 
course of functional image acquisition, which exceeded the predefined 
maximum of 2 mm translation or 2◦ rotation. 

2.2. Neuropsychological scales 

The neuropsychological examination was designed with the goal of 
assessing a comprehensive measure of healthy cognitive levels in a va
riety of cognitive domains. The assessment involved the following in
struments: Mini-Mental-State-Examination (MMSE) (Folstein et al. 
1975; Tombaugh and McIntyre, 1992); National Adult Reading Test 
(NART) (Nelson, 1982; Nelson and Willison, 1991); the vocabulary 
subscale of the Wechsler Adult Intelligence Scale (WAIS) (Lezak et al., 
2004); Boston Naming Test (BNT) (Kaplan et al., 1983, 2001); and Rey 
Auditory Verbal Learning Test (RAVLT) (Rey, 1964). These scales made 
up the inclusion criteria, i.e. a neuropsychological evaluation to verify 
normal cognitive functioning in relation to age standardized norms. 
Hence, only subjects with scores considered clinically insignificant were 
included in this study. 

2.3. MRI acquisition 

MRI data were collected using a Siemens Magnetom TrioTim Syngo 3 
Tesla scanner (Erlangen, Germany) at the Unitat d’Imatge per 
Ressonància Magnètica IDIBAPS of Hospital Clínic in Barcelona (Spain). 
A high-resolution 3D T1-weighted structural image was obtained using a 
MPRAGE protocol (repetition time (TR) = 2300 ms, echo time (TE) =
2.98 s, 240 slices, pixel size = 1 × 1 mm, slice thickness = 1 mm, flip 
angle = 9◦, field of view (FOV) = 256 mm). Functional images were 
acquired as 10-minute (300 volumes) whole-brain resting state fMRI 
scans using a T2*-weighted echo-planar imaging (EPI) BOLD sequence 
(TR = 2000 ms, TE = 16 ms, 40 slices, pixel size = 1.7 × 1.7 mm, slice 
thickness = 3 mm, interslice gap = 25 %, flip angle = 90◦, FOV = 220 
mm). Participants were instructed to lie down with their eyes closed and 
not fall asleep. 

2.4. Functional connectivity pre-processing and analysis 

To investigate the temporal and spatial characteristics of low fre
quency fluctuations in terms of resting-state functional connectivity, 
spatial independent component analysis (ICA) was employed using tools 
provided as part of the FMRIB Software Library (FSL v6.0.5.2; htt 
ps://fsl.fmrib.ox.ac.uk/fsl/) (Beckmann et al., 2005). Pre-processing 
steps included: removal of first five volumes (10 s) to allow steady 
state magnetization to develop as well as for subjects to adjust to the 
loud scanner noise; slice-timing correction to account for differences in 
slice acquisition times; McFlirt motion correction using rigid-body 
transformations of each volume to the middle volume as a reference; 
Co-registration to each high-resolution structural image and subsequent 
non-linear normalization to MNI standard space in a two-step 

procedure; spatial smoothing with a 5 mm full width at half-maximum 
(FWHM) smoothing kernel; band-pass filtering (0.01–0.08 Hz) to 
retain only low-frequency BOLD fluctuations which reflect spontaneous 
neural activations in resting state (Biswal et al., 1995; Soares et al., 
2016); 80 % probability tissue maps generated from segmenting white 
matter (WM), grey matter, and cerebrospinal fluid (CSF), were used to 
extract the mean time-series of WM and CSF; and finally, nuisance 
regression of all six motion parameters together with mean CSF and WM 
time-courses was performed. 

FSL’s MELODIC algorithm was used to infer on resting-state con
nectivity patterns across subjects and acquire a group specific map of 
DMN regions using a temporal concatenation ICA approach (Beckmann 
et al., 2005). This is a multivariate data-driven approach that de
composes the fMRI signal into its different sources of variability (i.e. 
components) while maximizing the independence between them. The 
results are spatial maps of functionally connected brain regions. We used 
MELODIC’s automatic Bayesian dimensionality estimation technique in 
order to uniquely decompose the data so that each component very 
likely corresponds to exactly one physiological or physical source 
(Beckmann and Smith, 2004). Using this approach, we extracted 112 
independent components. Dual regression was used to generate subject 
specific sets of spatial maps corresponding to each independent 
component in a two-step procedure (Nickerson et al., 2017). First the 
spatial components were regressed onto each subject’s 4D dataset to 
extract time-courses corresponding to each spatial independent 
component. Afterwards, the time-courses were regressed onto each 4D 
dataset resulting in subject-specific spatial component maps. We then 
used a term-based meta-analysis map summarizing results from 777 
studies (Neurosynth; Yarkoni et al. 2011) (threshold: P(FDR) < 0.01) 
using the term ‘default mode’ to robustly identify the IC map corre
sponding to the DMN. 

Inference on the group level was performed by taking the subject- 
specific maps to a second-level analysis using SPM12 (Version 12.5; 
https://www.fil.ion.ucl.ac.uk/spm/). A one-sample t-test was computed 
to assess regions of the DMN that were consistent across participants. 
Additionally, age, gender, level of education, and the interaction of age 
and education were added to the analysis as covariates. Results were 
considered significant at a p-value < 0.05 family-wise error corrected 
(FWEc) using SPM’s whole brain cluster-wise threshold based on 
random field theory. 

2.5. Effective connectivity pre-processing and analysis 

For the estimation of DMN effective connectivity, we performed a 
second pre-processing and analysis pipeline using SPM12. The following 
pre-processing steps were carried out: removal of the first five volumes 
(10 s); slice-timing correction to the middle-acquired slice; motion 
estimation and correction by realigning all slices to the mean image; 
unwarping to remove movement induced variance caused by the 
susceptibility-by-movement interaction; co-registration to high- 
resolution T1-weighted images and subsequent normalization to a 
MNI standard space template; smoothing using a 5 mm FWHM gaussian 
kernel; nuisance regression of all six motion parameters as well as CSF 
and WM time-courses. After preprocessing all images were visually 
inspected to ensure correct normalization. 

Resting state effective connectivity within DMN was estimated using 

Table 1 
Overview of sample characteristics and neuropsychological variables.   

N Gender (female) Age Years of education MMSE BNT NART WAIS (vocabulary) RAVLT 

Mean 63 40 68.41 13.17 28.52 54.20 25.28 41.47 41.00 
Range – – 48–89 8–25 24–30 43–60 16–30 17–60 17–64 
SD – – 9.81 4.94 1.38 3.93 3.68 9.77 9.14 

MMSE = Mini Mental State Exam; BNT = Boston Naming Test; NART = National Adult Reading Test; WAIS = vocabulary subscale of Wechsler Adult Intelligence Scale; 
RAVLT = Rey Auditory Verbal Learning Test. 
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spectral Dynamic Causal Modeling implemented in SPM12 (DCM 
Version 12.5) (Friston et al., 2014). spDCM estimates the cross-spectral 
densities of the BOLD signals, which is the cross-correlation in the fre
quency domain. This provides a simple and efficient way of estimating 
models of effective connectivity in resting-state fMRI. 

First, we defined brain regions of interest (ROIs) based on the sample 
specific DMN map retrieved with ICA (see above). Cluster peaks within a 
meta-analytic mask generated with Neurosynth and corresponding to 
the ‘default mode’ (see above) were used to localize centers for each 
ROI. We pursued this approach in order to estimate the relative speci
ficity of the functional brain activity identified with ICA and the DMN 
(see e.g., Wang et al. 2020). Seven regions resembling key nodes of the 
DMN were identified (Raichle, 2015), namely the right inferior parietal 
lobule (rIPL), the left inferior parietal lobule (lIPL), the PCC, the right 
middle temporal gyrus (rMTG), the left middle temporal gyrus (lMTG), 
the left hippocampus (HPC), and the medial prefrontal cortex (mPFC). 
The ROIs were masked by an 8 mm sphere and the first principal 
component from each ROI was extracted as a summary time-series. 

In the next step we defined the connectivity matrix of the forward 
model. We adopted an exploratory approach and started with a fully 
connected model which included all biologically plausible connections 
for each subject, i.e. all 49 connections between ROIs and 7 recurrent 
self-connections. In a subsequent step, the models of each subject were 
inverted, and the posterior estimates of the parameters (i.e. connection 
strengths) were iteratively updated so that the generated time series best 
explained the observed data. Using a technique called Variational Lap
lace, parameters with the best trade-off between model fit and 
complexity were determined (Friston et al., 2007). Explained variance of 
estimated first-level DCMs was inspected to ensure convergence (Mean 
= 87.97 %; SD = 3.61 %; Range = 74.66–95.11 %). No model was 
excluded due to poor data fit. Moreover, all models displayed non-trivial 
neural parameters with 90 % credible intervals (i.e. Bayesian confidence 
intervals) that excluded zero. 

After inverting each subject’s DCM, we investigated group-level 
commonalities in connectivity parameters and effects associated with 
healthy aging using the Parametric Empirical Bayes (PEB) approach, 
which is a Bayesian Framework for group level statistics of DCMs 
(Friston et al., 2016). PEB takes the connectivity parameters from the 
first level DCMs to the group level and models them as a linear combi
nation (GLM) of a group mean, between-subject differences modeled by 
covariates of interest, covariates of no interest, and random effects 
variability (Zeidman et al., 2019b). We set up a design matrix with age 
and the interaction of age and education as our effects of interest and 
included gender and level of education as covariates of no interest. All 
covariates were mean centered. Having estimated the group level pa
rameters, we applied Bayesian Model Reduction in an exploratory 
fashion comparing all nested models (i.e. models with certain connec
tions switched ‘off’) and iteratively discarding parameters that did not 
contribute to model evidence. This is essentially a greedy-search algo
rithm. Afterwards, a Bayesian Model Average (BMA) was computed over 
the remaining 256 models, providing posterior parameters estimates 
and their covariances. In line with prior research, credible intervals were 
computed and parameters with 90 % credible intervals not including 
zero were deemed large enough to be of interest (Almgren et al., 2018; 
Lorenzini et al., 2021). However, due to the large number of connections 
we focused on EC parameters with an associated posterior probability >
0.99. 

To further investigate the effective connectivity parameters associ
ated with healthy aging, we conducted a leave-one-out cross validation. 
We assessed the predictive validity of our parameter estimates, i.e. 
whether the effect sizes were large enough to be able to predict the 
subjects’ age from their neural response. PEB models were fitted to all 
but one subject and the age for the left-out subject was predicted. This 
was repeated over each subject and the accuracy of the prediction of out 
of sample estimates was recorded. A correlation between actual and 
predicted age was calculated and tested for significance. A correlation 

coefficient with an associated p-value < 0.05 was deemed significant. 
We went on to study the relationship between effective connectivity 

estimates related to healthy aging and variability in the neuropsycho
logical assessment. To understand the relative influence of different 
neuropsychological subscales or aspects of cognitive functioning on 
each subject’s changes in network connectivity, we performed canonical 
variate analysis (CVA) (Darlington et al., 1973). Canonical vectors with 
an associated p-value < 0.05 were considered significant. 

3. Results 

3.1. Neuropsychological variables 

Even though the neuropsychological variables in our sample where 
within the sub-clinical range, we were interested whether the perfor
mance was declining with age. Therefore, we performed a multiple 
regression analysis between the neuropsychological performance and 
age (F(7,37) = 2.775; R2 = 0.3442; p = 0.02). Out of all neuropsycho
logical scales only RAVLT scores were associated with age (β = -0.5863; t 
= -2.875; p = 0.0067), while accounting for gender and level of edu
cation (see Fig 1). An additional regression model examining the asso
ciation of age, gender, and level of education with RAVLT, revealed that 
RAVLT scores were furthermore positively associated with level of ed
ucation (β = 2.9034; t = 2.32; p = 0.025; F(4,44) = 7.664; R2 = 0.411; p 
= <0.001), while the negative association with age remained (β =
-0.4556; t = -2.72; p = 0.0093). Gender (β = 3.1456; t = 2.145; p = 0.15) 
as well as the interaction of age and education was not significantly 
associated to RAVLT test scores (β = 0.0025; t = 0.021; p = 0.983). 

3.2. Functional connectivity 

The main goal of the ICA was to retrieve a sample specific map of the 
DMN. A one-sample t-test of the first level DMN spatial IC maps revealed 
several significant clusters at the group level (P(FWEc) < 0.05). The 
main regions consisted of the bilateral angular gyri within the inferior 
parietal lobules, PCC, bilateral middle temporal gyri, medial prefrontal 
cortex, and left hippocampus (see Table 2 & Fig. 2). 

3.3. Effective Connectivity 

In order to understand the importance of DCM results an essential 
distinction between directed extrinsic connections between regions and 
intrinsic self-connections must be made. Whereas the former represents 
what we know as effective connectivity, i.e. the effect one region exerts 
over another in units of Hz (rates of change), self-connections reflect the 
susceptibility of a node in a network to incoming directed connections 
from other regions (i.e. extrinsic afferents) (Zeidman et al., 2019a). This 
change in susceptibility is parameterized as unitless log-scaling param
eters that modulate the default self-inhibition of a region set at -0.5 Hz. 

In terms of coupling, the PEB analysis showed that aging was related 
to an overall strong coupling between regions of the posterior DMN, 
including left and right IPL and PCC, with HPC and rMTG (see Fig. S1). 
rMTG showed the most extensive coupling within the network with 
connections to four of the six remaining nodes susceptible to aging. 

Excitatory effective connections (i.e., when a region’s activity causes 
an increase in activation in their efferent destination) associated to aging 
were discovered from PCC to rIPL (52), lIPL to rMTG (75), rMTG to 
lMTG (83), and lMTG to PCC (85) (see Fig. 3a). Inhibitory effective 
connections, which are defined to cause a decrease in activity in the 
receiving region depending on activation of the source region (or in 
other words to have a reduced influence over another region), were 
detected at a higher number. Inhibitory connections associated to aging 
included from PCC to rMTG (54), PCC to HPC (56), mPFC to lMTG (62), 
rMTG to PCC (78), rMTG to rIPL (80), rMTG to lIPL (80), and HPC to lIPL 
(95). Apart from effective connectivity parameters, there was also a self- 
connection parameter observed with a very high posterior probability 
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for the HPC (98). With increased age the sensitivity of the hippocampus 
towards inputs from other nodes of the DMN was increasingly reduced, 
disconnecting it from the network’s influence. 

In order to assess the meaningfulness of the neural parameters linked 
to healthy aging, we carried out a leave-one-out cross validation for the 
parameters with an associated posterior probability > 0.99 and it was 
examined whether the neural parameters were able to predict out of 
sample values of age. The predicted values for age were significantly 
correlated with the samples’ actual age values (r(47) = 0.30; t(47) =
2.13, p = 0.039) meaning that the spDCM parameters were predictive of 
age-related changes in neural network activity (see Fig. 4). spDCM pa
rameters associated with the interaction of age and level of education 
attained over the course of life revealed more long-range coupling for 
DMN nodes with more remote regions (see Fig. S2). The pattern of in
formation flow within DMN implies more engagement of frontal regions, 
rMTG to be a less prominent network hub, shifting towards PCC as a key 
modulatory node of network activity with many inhibitory extrinsic 
connections (see Fig. 3b). 

Excitatory connectivity parameters comprised connections from 
mPFC to HPC (210), lIPL to mPFC (219), lMTG to rMTG (236), HPC to 
PCC (239), and HPC to LIPL (242). Inhibitory connections were 
discovered for the connections from PCC to mPFC (198), rIPL (199), 
lMTG (202), and HPC (203). Further inhibitory connections were found 
from rMTG to lIPL (228) and from HPC to rMTG (243). The self- 
connection parameter of the lIPL (221) was associated with the inter
action term, suggesting increased susceptibility to network inputs. 

Canonical variate analysis of the multivariate relationship between 
DCM effective connectivity estimates associated with healthy aging and 
neuropsychological performance in different cognitive domains showed 
no significant canonical correlations for any canonical vectors. 

4. Discussion 

Societies are aging increasingly and with this comes an increased risk 
for diseases such as dementia. However, also in non-pathological aging 
cognitive functioning can be deteriorating for a large portion of the 
elderly community. Finding biomarkers that code for age-related 
changes in brain physiology could help to better understand the detri
mental effects on cognitive functioning with higher age. Importantly, 
localization of central hubs that drive these changes would ease the 
identification of potential targets for interventions. The aim of this paper 
was to identify changes in information flow at rest within the default 
mode network that were driven by increasing age in a sample ranging 
from 48 to 89 years. By investigating the information flow and coupling 
architecture, we sought to identify the relative contribution and 
involvement of each node. 

The results from our spDCM with age as a continuous predictor show 
that every DMN node is affected by changes in effective connectivity, 
however some more prominently than others. For the right MTG 

Fig. 1. Results from a multiple regression analysis of age with each scale of the neuropsychological assessment, gender and level of education as predictors. RAVLT 
scores sig. predicted age (p = 0.0067). Regression line is shown in red. Shaded area shows 95 % confidence area of the regression line. Pearson’s r = -0.523. RAVLT =
Rey Auditory Verbal Learning Test. 

Table 2 
ICA group map peak regions within a term-based meta-analytic mask (term: 
‘default mode’) resembling key nodes of the DMN. x, y, z = MNI coordinates.  

Peak Region x y z T 

PCC -6 -48 38 15.8 
Left Inferior Parietal Lobule -52 -58 38 11.73 
Right Inferior Parietal Lobule 46 -58 36 9.84 
Right Middle Temporal Gyrus 62 -6 -26 6.66 
Left Hippocampus -24 -36 -16 5.98 
Medial Prefrontal Cortex 18 58 18 5.95 
Left Middle Temporal Gyrus -61 -22 -16 5.31  
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together with the left HPC, we found efferent connections inhibiting 
activity in the left and right IPL as well as the PCC. All three regions are 
part of the posterior DMN. These regions are the first to show AD related 
decline in FC within the DMN (Damoiseaux et al., 2012). A similar 
pattern has been identified in healthy aging, albeit at a slower rate 
(Jones et al., 2011). Jones et al. (2011) further discovered that changes 
within posterior DMN FC were associated to cognitive performance in 
healthy aging as well as in AD, suggesting these regions to be essential in 
tracing impending cognitive dysfunction. The breakdown in communi
cation between the IPL and the PCC has been linked to disrupted 
metabolism (i.e. hypometabolism) in dementia-related pathologies, 
such as mild cognitive impairment and AD (Marchitelli et al., 2018). In 
healthy aging, reduced metabolism was mainly detected for the PCC, 
and moreover, this hypometabolism was predictive of cognitive decline 
(Mosconi et al., 2007). This suggests the MTG and HPC to be driving 
factors in the downregulation of posterior DMN nodes that could explain 
the widely observed decrease in functional connectivity in the literature. 

The PCC builds a core memory network with temporal regions 
including the MTG and HPC (Svoboda et al., 2006). Rabin et al. (2010) 
discovered that the MTG together with the PCC and the HPC were 
associated with autobiographical memory or “thinking about past ex
periences” in general. The same regions have been implicated in 
encoding long term memories (Wimber et al., 2010). Milton et al. (2012) 
associated the MTG and PCC with autobiographical memories as well 
and found changes in effective connectivity of the right hemispheric 
MTG for patients suffering from a form of epileptic amnesia that impairs 
memory recall. 

Interestingly, using ICA in a task-based design to probe biographical 
memory retrieval, Ge et al. (2014) found the middle temporal gyri to be 
increasingly recruited for older compared to younger participants when 

recalling positive memories. The authors concluded that this might 
signify an overcompensation, in the way that older individuals would 
need to recruit further resources to attain a similar result. This is in line 
with Damoiseaux et al. (2012) who discovered in a longitudinal study of 
AD patients that the ventral DMN subnetwork, which mainly includes 
the temporal lobes, initially showed increased FC that deteriorated in 
the later stages of the disease. 

Notably, in our study only the right MTG appeared to reduce its in
fluence over the posterior DMN, with a reciprocal inhibitory coupling to 
the PCC. Age-related decrease in FC between ventral and posterior DMN 
regions has already been discussed and these inhibitory connections 
would explain the observed changes in FC. What remains to be eluci
dated is the lateralization in EC for temporal lobe regions, more spe
cifically the MTG. Although there have been some studies associating 
age- and memory-impaired disorders with a functional lateralization in 
DMN nodes (e.g. Banks et al. 2018, Milton et al. 2012, Svoboda et al. 
2006), these findings have been inconsistent with regards to a certain 
hemispheric dominance and should profit from further investigations 
focusing on lateralization of functional and effective connectivity 
changes. One has to keep in mind that lateralization found in the FC of 
brain networks must not necessarily coincide with the underlying EC 
structure that drives the observed network connectivity. 

The hippocampus is critical to memory function, which is consider
ably impaired in the elderly population probably due to dysfunctional 
synaptic plasticity in medial temporal lobe regions (Torres and Carde
nas, 2020). One of the key findings in the present study is that with 
increasing age the HPC appears to functionally segregate itself from the 
DMN. This is reflected by the increasingly inhibitory self-connection 
parameter. When using Regional Homogeneity (ReHo), a measure of 
local connectivity of neighboring voxels, Harrison et al. (2019) 

Fig. 2. Axial slices of spatial independent component resembling the DMN. Images have been thresholded at P(FWEc) < 0.05. Color bar displays t-values. Slices are 
displayed in neurological convention. Numbers in white denote slice z-coordinate. Numbers in black denote ROIs: (1) lMTG = left middle temporal gyrus; (2) HPC =
hippocampus; (3) rMTG = right middle temporal gyrus; (4) mPFC = medial prefrontal cortex; (5) lIPL = left inferior parietal lobule; (6) PCC= posterior cingulate 
cortex; (7) rIPL = right inferior parietal lobule. 
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Fig. 3. Group effective connectivity wiring diagrams (upper half). Straight arrows denote directed connections, curved arrows self-connections. Solid lines represent 
excitatory connections, dashed lines inhibitory connections. PEB effective connectivity parameters with posterior probability > 0.99 that the parameters are not 
0 (lower half). PEB parameter numbers (values on the x-axis) correspond to the connectivity parameters in the wiring diagrams. (A) spDCM parameters associated 
with healthy aging. (B) spDCM parameters associated with the interaction of age and level of education. Red error bars represent 90 % credible intervals. Units of PEB 
parameters are in Hz for directed connections. Parameters for self-connections are unitless log-scaling parameters scaling the default value of -0.5 Hz. PEB =
parametric empirical bayes; spDCM = spectral dynamic causal model. 

Fig. 4. Leave-one-out cross validation on the group-level PEB parameters associated with healthy aging. A) Actual age plotted as an orange dotted line for each 
subject with corresponding estimate (solid orange line) and 90 % confidence interval (shaded area) based on connectivity parameters. B) Subjects’ actual age plotted 
against cross validation estimates (r(47) = 0.30; t(47) = 2.13, p = 0.039) with a line of best fit. PEB = parametric empirical bayes. 
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discovered that in elderly adults HPC ReHo was increased whereas HPC 
FC was decreased. Both measures of connectivity were related to AD 
pathology and higher ReHo within HPC was predictive of worse memory 
performance in neuropsychological tests. Taken together, they inter
preted their findings as an age-related functional isolation in terms of 
long-range disconnection that lead to increased local connectivity of 
HPC and decreased memory performance. Montalà-Flaquer et al. (2023) 
also found increased ReHo in hippocampal regions in healthy aging, 
however they interpreted their findings as a possible compensatory 
mechanism that is supposed to offset functional impairment, as they 
found no relationship to cognitive performance measured with a battery 
of neuropsychological tests. The increased functional segregation of 
HPC observed in the current study demonstrated by both age-related 
disconnection from the network as well as inhibitory connections to 
PCC and LIPL could explain how the functional isolation emerges. 
Moreover, this pattern might be an early precursor of mild cognitive 
impairment (MCI) pathology, which is associated with reduced activity 
in left HPC together with reduced PCC, left IPL, and left MTG activity 
(Vogelaere et al., 2012). 

To summarize, the observed pattern of EC in this study is well in line 
with findings from studies investigating both functional and structural 
changes with advancing age. These studies, together with our findings, 
convey a picture of disrupted DMN information flow for regions essen
tial in memory functioning. Andrews-Hanna et al. (2007) discussed a 
two-factor model of aging-related deficits that comprises memory 
disruption linked to AD which is hypothesized to be grounded in medial 
temporal lobe deficits and secondly, executive dysfunction linked to 
frontal-striatal dysfunction. Our findings fit well within the former part 
of this theoretical model. At this point it should be stressed that among 
the different neuropsychological scales only RAVLT scores were asso
ciated to age (i.e. verbal memory decreased with age), further sub
stantiating the decay of memory function even in non-pathological 
aging. 

We tested the predictive validity of our model parameters, i.e. we 
assessed whether we could predict subjects’ age based on their infor
mation flow between DMN nodes. We were able to conclude that the 
effect size estimated by spDCM was sufficiently large to predict out-of- 
sample subjects’ age above chance. However, with a Pearson’s r =
0.3, there’s still a lot of variability left to be explained. Nonetheless, the 
model serves as a potential predictive biomarker of brain changes in 
healthy aging. 

For our second research question, we examined possible moderating 
effects of years of education. We detected changes in both couplings and 
signs of EC parameters. Most notably, we found that the excitatory EC 
parameters associated with the moderation are almost exclusively 
concentrated around the HPC. Compared to the effective connectivity 
architecture of parameters related to healthy aging, the interaction with 
educational attainment appears to reverse or counteract the inhibiting 
role of HPC and RMTG on the bilateral IPL and the PCC. The HPC in
hibits the right MTG, which in turn is also expressing fewer inhibiting EC 
parameters to posterior DMN nodes. Additionally, the HPC displays two 
outgoing excitatory connections to the PCC and left IPL. Together with 
the mPFC, that forms an excitatory efferent to the HPC, these regions 
build an excitatory cycle. Furthermore, the mPFC appears to take a 
moderating role in the network with both excitatory and inhibitory af
ferents from posterior DMN nodes and an outgoing excitatory connec
tion to the HPC. 

When comparing MCI patients with memory problems to education 
matched healthy elderly, Vogelaere et al. (2012) found a left lateralized 
increase in HPC, IPL, and PCC activity for healthy elderly, proposing a 
possible compensatory role of these regions. Especially the PCC has been 
shown to play a key role in supporting cognitive function and is pre
dictive of cognitive performance (Lin et al., 2016). Sala-Llonch et al. 
(2015) further highlighted the importance of the prefrontal cortex as a 
core region related to compensatory mechanisms to age-related func
tional decline. For instance, decline in FC between mPFC and HPC was 

predictive of poorer global performance in older adults and this was 
linked to a gene variation which is associated to worse cognitive decline 
and cognitive impairment in Alzheimer’s disease (Franzmeier et al. 
2021). Activity within the left posterior parietal lobe, the PCC, and the 
mPFC has been predictive of working memory performance in a study 
investigating age-related alterations in DMN (Sambataro et al., 2010). 
This finding is further corroborated by Andrews-Hanna et al. (2007) 
who found that the FC between PCC and mPFC was associated with 
higher cognitive performance in older adults. In line with that, a study 
using MEG found that high performing elderly showed increased acti
vation within left PFC regions, a possible sign of compensation of brain 
function (Lin et al., 2018). This indicates that in healthy elderly with 
additional years of education, the DMN effective connectivity is asso
ciated with excitatory coupling to regions that are essential for cognitive 
performance and memory functioning. 

Our findings can be interpreted in the context of cognitive reserve. 
Cognitive reserve was defined to account for the high heterogeneity 
regarding susceptibility to age and dementia-related brain changes on 
cognitive functioning (Stern, 2009; Stern et al., 2020). Essentially acting 
as a buffer from decline. Importantly, most of the processes that are 
thought to underlie cognitive reserve can be modified across the lifetime 
(e.g. proxies such as education, physical exercise, social engagement). 
This highlights how important it is to continue to work on these aspects 
across the lifespan and presents opportunities for early interventions. 
Reserve is at its core a moderation of aging or pathology-related bio
markers and sociobehavioral proxies, such as aging and educational 
attainment across the lifespan. 

This study and its design entailed some limitations. We set out to 
investigate changes in aging, covering the age-range between 48 and 89 
years. Prior work suggests that aging related effects do not only apply to 
the transition from general adulthood to older age, instead it is more 
likely for different cognitive aspects to follow an inverse U-shape with 
peaks between 20 and 45 years (Hartshorne and Germine, 2015). We 
applied strictly linear modeling to our EC parameters on the group level 
and therefore might be missing effects that follow a higher order (i.e. 
non-linear) relationship with aging (see Farras-Permanyer et al. 2019, 
Montalà-Flaquer et al. 2023). This should be considered by future 
research. Furthermore, our study design was cross-sectional and any 
changes we found in relation to aging could potentially be confounded 
by sample specific differences between participants. Future work should 
employ longitudinal designs to investigate whether these aging related 
changes in DMN EC can be replicated. In addition, including follow up 
examinations could have helped determine whether the participants 
remained healthy over a significant period of time. This would allow 
additional insight into which factors could be attributed to aberrations 
seen in healthy aging and which might be symptoms of pre-clinical 
age-related neuropsychological deteriorations as seen under AD. Be
sides, this study focused strictly on the DMN as a network of interest for 
healthy aging. Therefore any findings and conclusions discussed here 
are limited to this network. It would be interesting however, to see 
whether these effects generalize to other resting-state brain networks. 

A caveat to our findings is that the parameter effect sizes were rather 
small in the range of 0.01–0.02 Hz. We chose a correlational design 
which is known to produce smaller effect sizes in contrast to designs that 
compare means. However, we intentionally chose a regression model in 
order to capture the whole range of age in our sample. Additionally, our 
parameters were associated with a very high posterior probability (>
0.99) and our effect sizes were sufficiently large to predict out-of-sample 
covariates in a leave-one-out cross-validation. 

Finally, our EC parameters did not show a multivariate relationship 
to any of our neuropsychological variables. However, we identified a 
negative relationship of age and a positive relationship of level of edu
cation with performance on the memory test RAVLT. Identifying age- 
related brain changes that covary with levels in cognitive performance 
could provide a deeper mechanistic understanding. By deliberately 
excluding any participants that were in the clinical spectrum of a 
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neuropsychological examination, we were left with very little variation 
in these tests between participants. A different design that incorporates 
scores within the clinical range might be more suitable to detect asso
ciations between changes on the brain and behavioral level. It will also 
be important for future work to incorporate task-fMRI to investigate the 
relationship of age-related network changes and memory. Using a larger 
sample and combining rs-fMRI with a memory task could confirm our 
initial findings and provide us with a more comprehensive under
standing of the individual involvement of DMN nodes susceptible to age- 
related changes and memory. 

5. Conclusion 

In conclusion, we identified how the information flow within the 
DMN changes in association to healthy aging. We found distinct changes 
within temporal lobe and posterior DMN regions that are in line with 
age-related memory impairment and functional disconnection observed 
in prior studies. Moreover, we identified changes in EC parameters 
susceptible to the moderation of healthy aging and years of education. 
We found that education reversed many of the inhibitory connections 
associated with aging, especially concerning the mPFC, HPC, and LIPL. 
These regions formed a cycle of excitatory connections, possibly dis
playing the effects of cognitive reserve on the brain level. To the best of 
our knowledge we were the first (i) to identify coupling architectures 
and patterns of information flow within the DMN in relation to healthy 
aging, and (ii) to identify how years of education (as a proxy for 
cognitive reserve) moderates these connections. Future work should 
seek out to further investigate resting state network changes in healthy 
and pathological aging by incorporating different networks and try to 
validate these changes on a behavioral level. 
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Soares, J.M., Magalhães, R., Moreira, P.S., Sousa, A., Ganz, E., Sampaio, A., Alves, V., 
Marques, P., Sousa, N., 2016. A Hitchhiker’s guide to functional magnetic resonance 
imaging. Front. Neurosci. 10 https://doi.org/10.3389/fnins.2016.00515. 

Stern, Y., 2009. Cognitive reserve. Neuropsychologia 47 (10), 2015–2028. https://doi. 
org/10.1016/j.neuropsychologia.2009.03.004. 

Stern, Y., Arenaza-Urquijo, E.M., Bartrés-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., 
Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W.S., Okonkwo, O., 
Scarmeas, N., Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P., 
Vuoksimaa, E., and the Reserve, Resilience and Protective Factors PIA Empirical 
Definitions and Conceptual Frameworks Workgroup, 2020. Whitepaper: defining 
and investigating cognitive reserve, brain reserve, and brain maintenance. 
Alzheimer’s Dementia 16 (9), 1305–1311. https://doi.org/10.1016/j. 
jalz.2018.07.219. 

Svoboda, E., McKinnon, M.C., Levine, B., 2006. The functional neuroanatomy of 
autobiographical memory: a meta-analysis. Neuropsychologia 44 (12), 2189–2208. 
https://doi.org/10.1016/j.neuropsychologia.2006.05.023. 

Tombaugh, T.N., McIntyre, N.J., 1992. The mini-mental state examination: a 
comprehensive review. J. Am. Geriatr. Soc. 40 (9), 922–935. https://doi.org/ 
10.1111/j.1532-5415.1992.tb01992.x. 

Torres, D.M.C., Cardenas, F.P., 2020. Synaptic plasticity in Alzheimer’s disease and 
healthy aging. Rev. Neurosci. 31 (3), 245–268. https://doi.org/10.1515/revneuro- 
2019-0058. 
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